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Abstract: The response to electrostatic perturbations, ¢ = ¢(r,z)e ‘*6- ), in the
Migma Exyder is investigated. The ions are modelled as a relativistic mono-
energetic distribution with a small spread in the impact parameter (the distance of
closest approach to the axis) and with the axial extent AZ much shorter than the
radial extent R. It is found that odd /-modes do not give rise to a low-frequency
response. For =0, an energy principle for low-frequency ion-ion interactions is

formulated, and it is shown that the extremizing perturbation is located to a narrow
region surrounding the axis. The threshold is proportional to the total number of
stored particles, N = 4&y(T-2)Uy 2-Dmyc ZRO/q,-2 where ¥ is the usual relativistic
factor, and this stability condition therefore allows for a high density on axis in highly
focused systems. Compared to a cylindrical shape, a disk-shaped plasma gives an
improvement in the density by the factor Ry/AZ. The threshold in particle number
for the relativistic ion-ion two-stream instability scales as ¥> thus with relativistic
effects the instability is further suppressed. Inclusion of the electron response
increases the threshold even further. Preliminary investigations indicate that finite
frequency modes can give a lower threshold than the zero frequency case, at least for
nonrelativistic beam energies. An uncertainty arises because the variational
procedure is less accurate for the finite frequency case. These finite frequency

instabilities can arise from coupling between positive and negative energy modes.




I. Introduction

Blewett! has recently proposed a modification of the coil configuration for the
generation of the magnetic field in migma systems. He showed that one can design
vacuum magnetic field coils where the magnetic field is low on axis and large at a
radius r = r;. A suitable design of the magnetic field will focus orbits radially and
axially2:3 (see Fig.s 1a and 1b).

As in the original migma concept, the intention with this so called Migma Exyder is
to create from a self-colliding beam a plasma where the ions passes close to the axis
in each radial bouncet. The shape of some parﬁcle orbits in the (x,y) plane is
outlined in Fig.2a. Besides the possible relevance in fusion research, the Migma
Exyder has also interest as a storage ring for high energy particles, provided good
axial confinement and a high luminosity can be created near the axis.

In any migma system with convergent beams, there may be a potential danger for

onset of two-stream instabilities, which would broaden the distribution in the impact

parameter. Gnavi and Gratton have investigated two-stream ion-ion3 and ion-
electron$ instabilities in cylindrical geometry for a perfectly focused beam, i.e., Pg=0.
They showed that an ion-ion two-stream instability is present in their model when
Ry>v; | @pi where @Wp; is the plasma frequency averaged over the ion extent, v; the
ion speed and the ions are contained in a cylinder of radius R, They calculate
growth rates when Ry > v; / @p; , but only estimate the threshold density of
instability. |

Here we develop a kinetic theory for small but finite P, and consider a
configuration where the axial extent is much less than the radial extent, i.e., a disk-
shaped instead of a cylindrically shaped plasrha is considered. We derive and
analyze a quadratic dispersion functional for the pure ion-ion streaming instability

and then extent the analysis to include electron-ion interactions.




II. Orbits in the Equilibrium

A disk-shaped plasma where relativistic ions are axially focused but otherwise have
negligible axial velocity is considered. To model the two-stream effect in the Migma

Exyder, the ion orbits are approximated with straight lines in the weak field region

r <Ry . By assuming that the reflection region r 2 R, is not essential for the two-
stream effect, it is appropriate to model the system with B =0 for r <Ry and B —>
forr > Ry , in other words instantaneous reflection is assumed when the ions reach
r=R, (see Fig.2b). Inside the containment region, the magnetic field is considered
negligible for the ions. However the B -field can still be large enough to be important
for the electron dynamics. We shall consider the electron Larmor radius much less

than the system size, and for most of the work we also consider
12 . .

Wee = eBlm, > Wpe = e(n/m.£o) 2 and ® ¢ > |0 in which case electrons can be

disregarded. However, in later part of this work we reanalyze stability when' @ce/ Wpe

is arbitrary.

The energy H = ym;c 2 and the canonical momentum Pg= ym;rvy are constants of
motion. It is convenient to express the equilibrium distribution function in terms y

and the impact parameter b

ftr,v) = F(y,b)6(vy) €]
2
y=A_ - _1 \/nzizc4+c2Pr2+c2P—9 @)
mc?  mc? r2
b= (3)

CPg — Pg
VHz-m[2C4 n'lic‘lyz-l

The closest approach to the axis for the particle is [o|. By evaluating the Jacobian of

the transformation (¥, ¥ve) — (¥,b), the expressions for the line integrated density

n@r) =] ny(r,z) dz = n,AZ ( n, is the volume density) and the total number of particles
are found to be




n(r) =2c2f b I dy —L— F(y,b) (4)
1

o Vr2 b2

Ro Ro b
N = I nr) 2mrdr = 4nc2I dVRE-b? f dy YF (,b) (5)
0 -Ro 1

If we choose 7(7) =R, when 7=0, the radial bounce motion can be parametrized as

"o { p*+ (VRZ-6% fe|). . o<|c|<T4 (6)
r =
b2+ (ofe| -VRE-8%)" , Ta<|r|<TR ™

where v2=c?(y2-1)/y2 and T is the time required to complete the bounce motion

shown in Fig.2b;

T=2L - 24R{.p? (8)

Wy

We could equally well have chosen half this time, i.e., the time required to go from

r=|p out to r = Ry and back to r =|H as the fundamental period time for the radial
bounce motion, but the choice (8) has the advantage that the change in 9 in the time
T (denoted by A@in Fig.2b) is slow if the impact parameter [P is much less than
Ry

2 ;2
A0 = 2an tEVRO-DTy 4 (9)
RE-2b* Ro

The rapid @ -variation, on the other hand, can be found from




i) e'® (Ry+vre ) | -T2<7<0
r(De 'Y = x(17) +iy(7) = . ;
(D (D) +iy(7) {eleO(Ro-VTe"Aa) , 0<T<TN2

where §(7) = ég when 7 =0 and

Aa = sin-1(-b) = . A8
sin (RO) 4

The relation 4Aa =- A6 is a well known result from Eucledian geometry. We thus
have 6(7)=06p+ 6(1)+ Wp T , where wp=AB/T is the slow drift frequency and
5( 7) is a periodic function of 7 with period 7. Note that the choice r(0) = R gives

the time reversal relations r(-7) = r(7) and 5(- 7) = 'ﬁé( 7).

III. Quadratic Form

In solving the Vlasov equation, we shall assume that there is no explicit z-
dependence or v,-dependence in the response function. This procedure has formally
been justified in Ref.7 for the interchange mode, by introducing an adiabatic invariant
and showing that z-independent perturbations in the particle containment region is
an allowable eigenfunction. The identical procedure would work also here, and leads
to results that are identical with the following simplified procedure.

We shall neglect electromagnetic wave perturbations. A zero frequency
electrostatic mode is certainly justified. However, at finite frequency the accuracy of
the electrostatic approximation is questionable for too high a frequency. To justify an
electrostatic wave we need &/c, where &6 is the structural distance of an
eigenfunction, to be short compared to the wave period. The restrictions of this
constraint may be important for relativistic ions, but for simplicity we neglect
electromagnetic considerations in this work. At any event, for low harmonics and
modes localized near the axis, the electrostatic approximation is justified.

For electrostatic perturbations we take the perturbed potential in the plasma to be

(10)



of the form

¢ = () expl i(16- wr)]

(11)

The equilibrium distribution function Fj is a function of the constants of motion, the

energy H = ym;c? and the angular momentum Py, i.e., Fo= Fo(H,Pg). The Vlasov

equation for the perturbed distribution, fi = ]%(r,v) expli(l6-w?)],1is

%=Qi[aﬂ@+i((t)

at oH at

or,

dF,
5 i) ¢

ﬁ— = -iw+il 0 +'r%+ r%

(12)

where ¥ =-278(r-Rp). We change the constants of motion to v=H/m;c? and

b=Pg/l mic(y >-1)"*] and define F(¥,b) = Fo(H,Pg). Then

dFy _ 1 ,OF yb OF ) o0Fy _ 1 oF

0H me2 0y y2-10b WPy mofyEo1 0

Now integrating equation (12) yields

oF 2

gi _aﬁ_ {4 aF r

( Ey(p+iol) + i—L__2
mc2 9y y2-13db ¢ meVy2-1 b

7=

t
Try) = I dt @[r()] exp{ il[6(T) - 6] - iw(T - 1) }

oo

(13)

(14)

where 6 = 6(f). We separate out from 6(7) the slow drift motion. The integrand in

(14) is then written as

G(7) exp [ -il(8 - 8- wpD) - iw(T- D) ]

(15)




- A8 vb
aop = 22 » - X (16)
T Rg

The oscillating function 5(1) is a periodic function with period T and is given by

G(1) = PIr(D)] exp { il[6(7) - 6y -wpT] } an

= 29 { ety + (@) ¢ @+ 09 )
,

where we have used 7 = x+iy and 7 as a function of r and v, can be found by
inverting equations (6) and (7). We Fourier expand 5(1) in the bounce frequency

Wy

G = Q. Gulyb)e inost (18)
=
T/2
Gu(y,b) = :}"f G(1) e ~In®T gt (19)
-T/2

Equations (8),(10) and (19) give with r(-7) =r(7)

T A~
G, = v g A1 por1 R _vTe-iAa)l ¢ i lop+ nwp)T (20)
W/Rg-szo (o) 3 & |

It is convenient to transform from 7 to r, wherein

vry = VRZ-b% - Vr2-p%,  0<1<T/A
vi(r) =

vy = VRE-b2 + Vr2-p2, TA<T<TR

1/2
Using cos(Aa)=(1-b YRD", A6=wpT, wp=27/T, vT/2 = 2Rqcos(A),




To(r) =T/2 - 171(r) and 4Aa =-A0 equation (20) thus takes the form

Ro
Gn(b>=—1-mj el 10} Re[h(n)+<1>"*’h w] @
VRE-b% Jy  Vr2-b? 1

where * denotes complex conjugate and

. I .
h(ty) = —;—(Ro- yTie ~i8Q) ¢ -inost lop)n
(22)
2
= L(VP-b% +b) expl - i1 + i(lap + na )Erzv-b ]

Note that G, is real if $(r) is real, and because v71,0pT) and @WpT; depend.on b and
are independent on ¥, G, depends on b but not on y. For [ = 0, equations (21)
and (22) yield the exact relations Gu(-b) = Gn(b), Gy,1 =0 and G.o,(b) = Gyu(b).

Also note that A(r=Rg) = (Ro)l/2. This simplicity at the endpoints indicates that

h(7T1) can be extended to a periodic function of period T, when 7 is extended
beyond the domain 0 < 7 < T/4.

In the limit b/Ry — 0, equations (21) and (22) simplify to

2 Ry A2 p2

1) n Ro
Gon(b) = 1+CD (D j r¢(r) cos( nn‘ r )dr + O(—)
i

(23)

2 Ry 4/r2_b2

! n (Ro >
Gona(®) = L2V CU 1 100 iyl on+ DE T i + O (L)
. 2 Ry Ro

Further simplification is obtained by assuming that ¢(r) is localized near the origin.
Then Ga,.1 # 0, while




Ro ~
1+ (D' 1" ré() n
Gon » L _dr ~ (-1)"Gy
jbl Vr2-p?

If V¢| > |¢yb| near the axis, it is necessary to exclude the region r < |} from the

integration domain.

For odd ! - numbers equation (23) gives Gy) = O (b/Rp), hence all odd ! -
modes have a much smaller low frequency response than even /-modes if the mode
structure has a radial width larger than |b Hence it appears that for this orbit
configuration even low frequency modes are more important than odd low frequency

modes. We further note that a finite edge produces an additional @y roughly given

by vr/RE ( 1is the Larmor radius at the edge.) Thus if r;,> |4 our model of infinite
B at the edge needs to be modified. However, for the /= 0 mode which:is our

primary interest in this work this aspect is not important as /A6, the parameter that

appears in the theory, is zero.

Substituting (15),(16) into (13) give for f;

F b OF

> _ G o or
fi= mcz(a}’ 21
x { ¢ Z __9Gxb) exp[ -il(6- g - wpt) + inwpt ] }
nmoe @~ 10D -nO
(24)
g ai Gu(b)

exp[ -il(0 - 6 - wpt) + inwpt ]

P
mic,/.y2_1 b e ©-l0p -nwp

Although it is justified to neglect B for the ions in the containment region, the
magnetic field can be crucial for the electrons, as their gyroradii can still be small
compared to the characteristic impact parameter. To describe the electron response,
we consider a cold electron fluid with the linearized momentum balance equation

given by
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0, = ia)% Vo - iwwe(r) vex e, (25)

The continuity equation for the perturbed line-integrated electron density is

iWngy = —r—-;;—[rn(r)ve,] + il @—veg (26)

where n(r) is given by equation (4), i.e., quasineutrality is assumed for the
equilibrium. Eliminating v, from (26) by means of (25) gives a relation between the

perturbed electron density and the perturbed electric potential

a d¢ la)CE ¢
~ 1 dr o
n,1=-e— ~=—[rn(r) ]
) e { 7 or w?- wce(r)
27)
Z ¢+ 1% dp.
[7)
- n(r) 2 ’ dr }
w?- wce (r)
The Poison equation for ¢, if the axial length of the disk approaches zero, is
eV’ = - (qiniy - eney ) 8(2) (28)

Multiplying (28) with the adjoint® function (])T ¢(r 2)exp[ -i(l0 - wr) ], gives after

integration over vacuum and plasma regions the quadratic form

L@¢T) = Li+L,+L; = 0 (29)

The quantities L¢,L, andL; are the field energy, the ion and electron response,

respectively

Ly = J dramr J & &V [P(r.2)e 1) V[(r.2)e ¥ (30)
0 - e
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Ro
,,,JO TS [( L'+t on

Ro o oo
L = -g; I d 2mr §(r) I d(yvr)f d(yve) fi (32)

0 oo oo

A use of a quadratic form is convenient since the exponentials occurring in (24) will

not appear in L(¢,¢ T). This can be demonstrated by folldwing the proof given in
Ref.8. One uses' the transformation [r(t), Wr,We1— (5,%,b) , where the functions
t(r) are found by inverting equations (6) and (7). The index j goes from -2 to +2 and
0< 22.1(r) ST/4and T/4< 1t45(r) < T/2. With rj=7r(Zj), one obtains by evaluating
the Jacobian of the transformation ( W,, Wwg ) — (¥:b) and changing the order of

integration

2 Ro r °
j=-2 4 0 -r 1 V 7} ‘b

(33)

Ro Ro
= _ECZQiJ abf day Z j —'2—Y¢(rj)fl(Y:b 1)
1 j=-

*o Vet

The substitution r;— #(r) transforms the sum over the last integrals to a time-

integral over the bounce period T

b o T/Z
L = -4nczqij b J dy YVRE - b? %f d PIr()] filyvbd)  (34)
-b 1

-T172

Equation (24) for fl is now substituted into the time integral in (34)
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., T/2
_q,'_(ai__yb_ai) [ Lf ¢ ®adr - Z @Gy f G(-De inwst gy

1
(35)

T/2
g oF G 1 f G(—t)e inwst gy

- —
mc,\}'y ab n (0] QIPIT A

where 2, =lwp + nw, and we have identified 5(—1‘) = $[r(t)] expl - ilg(t) 1, which
follows from the definition (17) of 5(t) and the time-reversal relations r(-f) = r(r)
and 5(-1‘) =- E(I). The last integral in (35) is equal to G,(b), as follows from

equation (19). The resulting expression for IL; is symmetric, i.e.,

Ligo T = Lo ,9):

5 Ro r ) a
: F  yb OF-
L = -and dré J J — - =)
g m; { JO 1/7‘ ) ay y2-1 b

o Ro . 2
) 2 .2 oF yb OF | w[Gu(b)]
E” [Rodb Ro-b Il ay Y(ay y2_18b) - lwp - nwy

- (36)

©o RO 2
- R2_p2 yc OF [Gu(b)]
lngm IRO% 0-b I a Ay? 1% w-lop-nwy }

It is well known that a variation with respect to q‘)T of the quadratic form leads to
the Poison equation (28) for ¢. The choice ¢T = a(r,z)exp[ -i(l6 - wr)] ensures

that L is symmetric8, L(¢,¢ 1) = L(¢ T,¢), so that L(¢,¢ ) is also variational with
respect to ¢. This variational structure allows one to use a testfunction approach to
derive approximate stability criteria. If the trialfunction is a first order approximation

to the eigenfunction, a second order accuracy® is achieved for the eigenvalue by

calculating @ from L(¢,¢ T) =0.
Let us consider a mono-energetic ion distribution with impact parameters in the

range -by <b < by
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F(yb) = no 1 1 &(Y - ¥a) ©(b1 - b) ©(b + by) (37)
2mc2 Y

where ng=] ny(r=0,z) dz is the on axis line density and @(b) is the Heaviside

function. The particle line density and the total number of particles is given by

n(r) = no ,,-;,1 [% + 0¢-b) Lsin12y) (38)
N = 2Rqo(bo+bp)ng + O (%) (39)
Rp

With [ = 0, the ion contribution to the quadratic form can now be expressed.as (we

write ¥ instead of ¥,)

L= -no[ L;%.0 ) + R ] (40)
@y

where LEO) is independent of @

b
0) 24,-2 b; 1 an)
LY = i N/ S—-1 11 419 & 41

1 m,-czgi:{y(yz-l) nbi) + VJO db J 1)

Ro

Ro ~2 ~ 5
n(b) =j rg 9d Y > 0 (42)

- 1 ( _rear
) Vr2-b*  AVRE-b* LI Vr2-p?

If the last term in (41) is negligible, which is the case if (y2- 1)b,‘2/R02 << 1, it

follows from the Cauchy-Schwartz inequality that L,-(O) > 0 if a(r) is real. For the

frequency-dependent part in (40), one obtains by using the symmetry relations

G.2p(D) = G2p(b), Gop(-b) = Gop(b) and Gopr1(b) =0
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2 ,
R ) 24y {y’;‘—_ylw/k%-bfsw,bi)

mic? b
(43)
bi
_ [ VRE-0? [S0D)  354D) 1 4 )
A 14 ay
_ Gop(b
Sy = 2323, | Gy (44)
p=1 p @
1 Ro ~ > 3
Gop(b) = 1Y ré(r) cos(pn rz-b > )dr (45)
VRG-b* o Vr2-b? R§-b
where we have introduced a dimensionless frequency
a(rb) = 58 = BAVRG-b? ~ LRo = o (46)

It is necessary to know how R is related to the sign of Im(®w) near marginal
stability to determine a stability threshold. With b; << R and dy/dw
= - Y(y? - 1)/w, one obtains by a partial integration

R = 2412 RO(b02+ bl) Q((I) ) [ 1+ O ( l )] (47)
mc*= Yy *=-1) ()
O(an) = 200 Z P2-0¢ 16, o) (48)

p=1 (2 wd)?*

If @ — 0, one finds R ~ w2, and thus Lg- noL,-(O) <0 would correspond to a low-

frequency instability if L, = 0 and a(r) is real. It is not clear from (48) whether there
are other marginal instability points arising at a finite frequency. It should also be




noted that (47) and (48) are only accurate if the eigenfunction is broader than the
density structure, i.., if [V§| < |¢/d|.
A convenient expression for the field energy term Ly can be derived by using the

method previously developed in Ref.s 7 and 9. If we neglect any induced charges on

surrounding walls [ which should be adequate if a(r) is peaked on axis ], we obtain

(see appendix A for derivation)

RO ) ~
~ de(r)/dr 2
Lr = 8¢ ¢0) + s a&r—t——— 1 ds , =0 (49)
! 0[0 { .[0 Vs2-r2 }

Note that ¢ in the vacuum région need not be determined to calculate Ly. The
procedure to calculate Ly for a disk-shaped plasma can be generalized to arbitrary
values of the mode number /. The following formula, in which &p stands for

Kronecker's 8-symbol, is valid for any integer number [

N

15

Ro ’ .
Lf = 8¢ $0)6 10+ s l-lJ d—L— Dl Vs (50)
f OI { 10 b s2-p2 d }

0

IV. Low-frequency /=0 Modes

We are now in a position to choose a trial function ¢(r) and determine a threshold
density for the two-stream instability from Lg+ L, + L; = 0. Let us first consider the

trial function

N 1, r<é
o) = { (51)

ofr, r>6
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This corresponds to an accumulation of net charge in the region r < 8. The function

$ given by equation (53) is highly peaked on axis if 5; << § << R. With our trial
function the total electrostatic energy is proportional to &, whereas if the trial
function did not fall of as 1/r outside the region r < § the total electrostatic energy
would scale as unity. Therefore, eigenfunctions that do not fall of as 1/r have a much
larger energy, which is far from the extremizing condition. Assuming b; << § << Ry
we obtain from equations (49),(41),(42) and (31) with @ = 0 and B constant

2 2 3 3
8L ~ T-2 - A(l-KeR—g) i +21 bo +bi
g0 s 1882 bo+b 52)
+/1k§0—[1(ln Roy2 +ln§9+1]
1= nolbo+b1) o2 . N 1 22 (53)
wy2-1) 2egmic?  2Ro y(y2-1) 2egmic?
-

where R, = yv m;/eB is the ion Larmor radius in the particle containment region
and K, represents the electron response. As L, ~ 1/6 3 and L;~1/6 the electrons

may dominate the particle response for a sufficiently localized perturbation, (/R 0)2
< K,. This effect can arise because the electrons with their negligible Larmor radii
can efficiently sample a localized structure while the ions with their large orbits tend
to sample a global structure. This effect can be further amplified for a well focused
system. Our calculations assume & << R. This will be fulfilled if (bo + b1)/Ro << 1
and K, <<1. However, in realistic systems the assumption K, << 1 can fail and our
analysis then breaks down. _ ‘

The characteristic length § for the perturbation is found by making L stationary

with respect to variations in 4. One obtains from equation (52)
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3 3
4K, + (g_-,y2+%)__2_b(_)_tél__ )
&)= RoGo*BD) . g, 2By (s5)
Ry (ln&)_)z 9 Ry
é

If K.>(ybi/ 3R0)2 , one finds that & is increased compared to the pure ion-ion case

(one would get & > R,if 4K, 2 1 which is particularly easy to achieve with
relativistic beams), but the threshold is not necessarily strongly modified by the

electrons, as Ke52 / Rg still can be small. However, as mentioned earlier, with Ry ~

SRy a significantly increased threshold is obtained with electrons included.

If K.<Q2y;/ 3R0)2 , we can neglect the electron response and estimate & from

S A (Ay2,2\1B (B3 56
2y (9y 9) (RO) (56)

Our assumption that p; << § << Ry imposes a restriction on the impact parameters,

(bi/ Ro)> << 9/ (4y 2+2) , which is readily fulfilled for particles with nonrelativistic
energies, but can become restrictive in the large y limit. With the minimizing §
estimated by (56), a threshold particle storage number for the onset of a two-stream

ion-ion instability is found from (52) and (53)

. 2
N S No=de(m-2y(y 2- 1) = agm-2py+ 1) Romy,  (57)
g; g

where Ey;, = mic 2(y- 1) is the kinetic energy of the beam. An alternate form of

(57) is (@pl0s)" 5 V’RUAZ | where B3 = qPnave/gmi . The threshold (57) only
depends on the total number of stored particles and on the energy y. The low
frequency two-stream instability does therefore allow for a very high density near
the axis. This favorable scaling for highly focused systems is a result of the reduction
of the particle threshold of the relativistic two-stream due to the geometricai focusing
in the radial and axial directions. In fact, the particle threshold due to equilibrium

limitations, such as overfocusing®, seems more restrictive than the low frequency

-
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ion-ion two-stream instability for relativistic systems. The limitation in particle

staorage number in the Exyder due to overfocusing may be best expressed in terms

of the luminosity L defined as L=c [ n2d 3. For a completlely neutralized Exyder,

the condition is

& InRoft) B0 (58)
27 [in(e)) 0,2 m? |

L <

where By is the edge magnetic field and & = (©:AZ/yv) + |BRo.The ratio of the

threshold (57) to the limitation in particle number due to overfocusing is roughly

No ;-2 21 AZID)] |
Noy == (y°-1) i _ (59)

where 77, is the Larmor radius at the outer turning point. For energies relevant to
antiproton production (i.e., only Egy, ~ 10 GeV of ¥y~ 10in a migmal® ) diamagnetic
limitations due to overfocusing could thus be more restrictive than the criterion (57).

For strongly relativistic energies, the critical particle number (57) goes as ¥3,
which in slab geometry would correspond to propagation parallel to the beam
direction. The ¥* dependence can be traced back to the result that the trial function
(51) minimizes L if b; << § <<Ry , which mainly corresponds to longitudinal

propagation.

V. Finite Frequency Instabilities
With L, = ngL', , our dispersion relation is
N o_ ) T
L(¢.¢') = Lf- mlL; "+R -Le] = 0 (60)

where Ly, L,-(O), R and L', are independent of ny. If we again consider the trial function

given by equation (51) and assume B = constant and b; < § < R(, we can evaluate
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L, from equations (31) and (38)

v e? 1 '
L, = ’%W [ g(bo) + g(by) ] (61)

g(b) = sin '1(b)+ 1 5[4/ U —sm 1(b)]
- —{szn'l(L)+l—°[4/ .. —Om'l(—b‘)]}
R} 2b R§ P

We may consider L as a function of ®,5 and ng, i.e., L = L(®,8,ng).
Marginal stability requires JL/dw = 0 together with the equation L = 0 and the
variational condition JdL/d8 = 0. Near any marginal state, one arrives at the

dispersion relation

_ LE d ny
-’ =2 3% 3 Aw?

where dng is a small deviation from the density threshold and @, is the frequency of
the marginal solution. If *LPW2<0 a density increase produces an instability
while if 9°LAw2>0 a den51ty decrease produces instability. Since equation (48)

gives 9°0/0w?> 0 if w and ¢(r) are real, one always obtains 3°LAw2<0if I, =0.
Thus this shows for streaming ion-ion instabilities, without electrons, that once

instability is reached at a critical density #ng , the system is unstable for all # > ny.

In principle, if the electrons response is included and if ’LPw?>0 at a marginal

point, an increase of the density from the threshold value can result in a stable state.
This would imply an instability band bounded at low and high densities. However, in
detailed computations we did not find any high density stabilizing regime.

As a first attempt to evaluate Q(@o), we consider a trialfunction a(r) which peaks
strongly on axis. To approximate Gy, we use b = 0 and Go,(0) = (-1)PGo(0) , which

seems to be a reasonable approximation in view of Eq.(45), at least up to modestly
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large indices p [the approximation is inaccurate for pm 6§ >> Ry ]. The sum in (48)

can now be carried out by residue techniques!l

> 2 2
0 = (pf 20§ X, 2%

P=1 (2 0f)’

= (o1 - 2 . % 62
(@ {1 - m oo [200(m an) sinz(na)o)]} ©

where (¢)= Go(0). For wg real and positive, it follows from (62) that Q(-@o) =
Q(@0), Q(@p + 1) > Q(@Wo), Q(Wo) 2 0 and Q(Wo) —> « if Wy —> o (see Fig.3). If k
is an arbitrary positive definite integer, one also finds that Q(@o) — < as wy—k

and that 9Q(wor)/dwy = 0 for some real frequency @Wox in each interval

k< wor< k+1. However, since Q( @o) — e« as @®p — «, this crude way of
evaluating Q(®o) would indicate (provided the variational condition dL/dé = 0 can be
satisfied) an extremely low (or even zero) density threshold for high frequency ion-
ion instabilities. This is clear, since ngR ~ npQ(wpy) and thus the threshold in
particle number no ~ Ls/Q(@ox) goes to zero as Woix — °.

To avoid that our approximation gives Q(@o) — o if @9 — «, we note that a

peaked trial function having the form (51) roughly leads to

(&/Ro)’[ In(Ry/6) 1* P8Ry << 1

2 o~
G200 = 1 (6Ry? Rolpm8)* cos 2om8IR), prsiRe>> 1

If 8/Rg <<1, a convenient interpolation formula, with the correct dependencies for

small and large p, can be expressed as

(6/R0)*

(63)
{ Un®RUOT™ + V2@msRe? }

[G2p(0)]* =

Using the approximation (63), we again carry out the sum in (48) by residue

methods
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"

O = [ L) P[1- —FL __(©0;+0y] (64)
Ro Ro (1 + wdiz)’
" VIn®y/®) 76 (63)
2 2,2
01 = 2(1- 20 cormay) - UL+ @07z) (66)
zy sin “(Twgp)
2 4 2 4
0y = D8 + 720+ 20y corn(mzg) + 3-22.120) T (g7
02 4 g 2 23 2z sinh*(mzo)

The essential modification from Eq.(62) is the appearance of a finite z, and the factor
0O, , which is important in the high-frequency regime. For finite z,, i.e., § is
nonvanishing, it is clear that asymptotically Q(@ox) —>0 where @Wox are the
asymptotic frequencies at which 8Q/dwg = 0.

Some results from numerical computations of @g,6 and N/Ng [Ng is the threshold
predicted by equation (57)] at the marginal states from the equations L =0,
dL/dw = 0 and JdL/36 = O are shown in Tables I-IIl. More than one marginal state
was found in some frequency intervals. In such a case, the tabulated values
correspond to the marginal state with the lowest density. The integers in
parenthesis are the number of thresholds found (with N positive) in each frequency
interval. Only marginal states with p; < § < R, are considered in the tables.

Table I and IV for ion-ion interactions show thresholds roughly 30 times lower than
the zero frequency threshold given by equation (57). The solutions where § — |b[
are suspect as the analysis assumed & >> [, The threshold densities, which scale

as ¥3 for jon-ion interactions if b; << 8 << Ry » are typically much larger with high
energy particles than with nonrelativistic energies. With a moderately strong B -

field, inclusion of electrons enhance the particle number significantly , by a factor of 4
for o =0 and Rg/Rg = 5 (compare Table I and II). The zero frequency threshold is
increased further with decreasing B, but the finite frequency thresholds can for some
harmonics be reduced by a weaker magnetic field (Table II and III). In contrast to the

ion-ion case, an increase in harmonic number for ion-electron interactions does not
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always give a lower density threshold in the frequency regime 0 < @o < 10.

The scaling of the thresholds for ion-electron interactions with the beam energy is
shown in Fig.4. The critical particle numbers are increasing with beam energy, and
for a sufficiently high energy there is a cut-off, i.e., no marginal state could be found in
the computations. As an example, no marginal points for the ion-electron modes
were found in the frequency interval 0 < @g < 10 with Rg/Rg = 5 but otherwise the
same parameters as in Table IV. Thus relativistic effects seem to increase the
threshold even more than the ¥>- scaling predicted from the ion-ion interaction.

For sufficiently high frequencies, one obtains § ~p; , and then it would be
necessary to compute R (@ 2/0)1,2) to higher order in b/Rp as well as to know the
eigenfunction structure in more detail. Although our choice of trial function is a crude
approximation to the eigenfunctions, the results in the tables for nonrelativistic
beams nevertheless give some hint that finite frequency two-stream instabilities in
the Exyder might lead to a lower density threshold than predicted from solely the

zero frequency ion-ion mode. However, reliable stability statements in the regime

require a more thorough investigation.

VI. Summary

A formalism to deal with the Vlasov stability of a thin plasma disk in the Exyder has
been developed. Compared to a cylindrical shape, a disk-shaped plasma gives an
improvement in the two-stream threshold by the factor Ry/AZ. The straight line
approximation together with the periodicity constiaint for the ion orbits is justified for
two-stream interactions, but might be an insufficient model to describe the [ =1
modes, if the ion Larmor radius 7. near the outer turning points is larger than the
typical impact parameter [} If 7. <<|}| , on the other hand, no low frequency flute
instability could exist in the Exydér, at least if the perturbation is not too strongly
localized to the axis, [V¢| << |¢/b| . The large B - field near the plasma surface
would of course be responsible for that improvement in stability.

Our results for low-frequency streaming interactions, given in equation (57), are

favorable for systems with small impact parameters, particularly for relativistic
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systems where the critical particle storage number goes as ¥ 3. The threshold in
particle number is even further increased by inclusion of electrons. Diamagnetic
limitations due to overfocusing seems more restrictive with relativistic beams as
pointed out in equation (59). The finite frequency / = 0 modes near harmonics of the
ion bounce frequency were investigated. Our preliminary study indicates that the
finite frequency modes give a significantly lower threshold than the zero frequency
case. The thresholds of these modes are quite sensitive to electron dynamics. These
modes set the most stringent limitations to stability, but more careful work is
needed to check the sensitivity of our results to the accuracy of the test function.

We have only examined the / = 0 case in detail as the problem simplifies
considerably from finite / -modes as the equations are independent of the particle
drifts. However, finite / -modes at finite frequency are expected to be important and
further investigation is needed. We should also add that our results are very
optimistic for relativistic systems as no stringent limitation on luminosity is provided
by the two-stream effect. Even if overfocusing is taken into account, there is still a
possibility for a substantial luminosity which is of interest for a storage ring3. On the

other hand, our results do set limits on non-relativistic systems.
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Appendix: Field Energy of a Disk-Shaped Plasma

In addition to its relevance to the Exyder, the formula (52) for the field energy is also
useful in studies of other disk-shaped objects, for instance the accretion disks of
interest in cosmological research. It could therefore be worthwhile to present a

derivation of equation (19b) in some more detail than given in Ref.7.

The starting points are a perturbation of the form ¢ = a(r,z)e i and the expression
for the field energy A

oo o
Ly = dr2mnr I dz £0V[q’>\(r,z)e -8y . V[(ﬁ(r,z)e i19]
JO

- 00

rRo R
= dr 21r o(r) ¢(r) (A1)

We have here assumed that there is no induced charge on any surrounding wall, and

used 80V2¢ = - 06(z) , where 0 is the induced surface charge on the plasma disk.
Variations of ¢ with z inside the thin disk is neglected.

The next step is to use the Coulomb integral for a(r)

Ro
o) = | arr B (A2)
4mey 0
o ilp -
1) = f e 749 (A3)
o Vr2+r?-2rr'cosp

The substitution &=rr'e % transforms the integral in (A3) to a closed contour integral

C encirculating the singular points at &= 0 and & = min(r 2,5
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1-12
Iry) = —1 ¢ d¢
i(rr)’ £ @* -9 ¢-a "

5 Iaz l—1/2d§
- x Ao (A4)
o) Jo Vat-& Va?- &,

where d = max(r,r’), a = min(r,r’) and C is the circle |£|=77. The last
expression for I(r,r’) is obtained by deforming the circle C to the contour C’, as
shown in Fig.5. With (- a2 =i|a 2- &|? onC';, the analytical continuation is

&-an)'? = -i]a2- &1 onC's. The circular segments C'yandC'y give no
contribution to the integral in (A4) if their radii go to zero. With s = Y&, , we find
from (A2),(A4) and by changing the order of integration

r RO 1-1 ~
o) = L | a2 o)
r' ¢(r) 7eg L ds ) L dar = (AS5)

It is convenient here to define a function f(s) which is identical to the second
integral in (AS);

Ro 1-15
f(S) = J dr 'ﬂ (A6a)
] 722
A5y = - 2.9 Mﬁ;ﬂﬂ_ (A6b)
Tar . s2_r2

Equation (A6b), the Abel inversion of (A6a), can be derived from the identity

2x dx =ﬁ | (A7)
Vs2-x2 Vx2-r2

By substituting (A6a) into (A5), we find that r’(f is an Abel transform of the
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function s2(s)

rr) = I ds szif(s)z (ASa)
0 re-s
Agey = npn O RN )
Sfls) = 260 IO s "=t (ASb)

Equation (A8b) is found by Abel-inverting (A8a). Eliminating 0(r) from (A1) by

using (A6b) gives after a ipartial integration and a change of the order of integration

Ro

Ro S
= 4 fR) | —L—rp)ar J ds@ij & —L—r'¢(r) }(A9)
‘Lf { 0 IO /Rg_rz 0 s 0 s2—r2 }

At this point, it is most convenient to eliminate r’¢ first, and make use of Eq.(A7)

Ro
L= % L ds [s fs))? (A10)

The final expression is obtained by substituting Eq.(A8b) into (A10)

Ro K )
= o 1-1 & d 1y 2
Ly = 82 L ds { 9o + s 1 L S reon @

This convenient formula shows that it is sufficient to know $(r,z) at the plasma disk
only to determine the field energy. A simple application of Eq.(A11) is the classical

problem of determining the charge distribution on an insulated metal disk with net

charge Q. Variations of (A11) yields 0() = Q/[2mRo(Rs*-r2)"?] .
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Table I. Marginally stable parameters for nonrelativistic ion-ion interactions (Ey;, =

1 MeV with protons). The electron response is neglected. The parameter values are

" bo/Ro = by/Rg = 0.005.

Frequency range Wo d/bo N/Ng
O<wo<l (1) 0 1.87 1.25
1<wg<2 (3) 1.391 4.52 0.34
2<wg<3 (1) 2.439 335 0.16
3<wg<d  (3) 3.458 2.58 0.094
4<wyp<5 ) 4.468 2.09 0.065
5<wp<6 (1) 5.474 1.74 0.049.
6<wy<7 (1) 6.479 0.039

1.50



Table II. Marginally stable parameters for nonrelativistic electron-proton

interactions, Ey, = 1 MeV, with po/Ry=b1/Ry = 0.005, R,/Ry = 5 and

K= 2.28x10. The computation is restricted to frequencies well below the electron
cyclotron frequency (electron resonance occurs at @y~ 117).

Frequency range @o 8/bo N/Ny
0<awp<l1 €)) 0 30.0 5.13
l<wpg<?2 ¢y 1.433 9.90 0.74
2<wg<3 (1) 2.466 6.60 0.34
3<wg<4  (3) 3.480 5.05 0.22
4<wy<5 3) 4.487 4.15 0.16
S<wp<6 3) 5.491 3.55 0.13. -
6<wg<7 3) 6.493 3.12 0.11
7T<wy<8 (1) 7.495 2.81 0.10
8<wp<9 (1) 8.497 2.57 0.93

O9<wp<10 (1) 9.498 2.37 0.88
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Table III. Marginally stable parameters for nonrelativistic electron-proton

interactions, Ey;, = 1 MeV, with by/Ry = b1/Ry =0.005 R,/Ro =7 and K, = 4.47x 107,

Frequency range Wo /bo N/Ng

0<swp<1 ¢)) 0 40.0 9.20
1<wy<2 ¢ 1.500 20.0 5.97
2<wp<3 (1) 2.480 8.32 0.75
3<wg<4 3) 3.490 6.48 0.52
4<wy<5 3) 4.496 5.42 0.44
S<wyg<6 2) 5.499 4.72 043
6<wp<7 2) 6.501 4.28 0.47

T<wy<8 2) 7.503 3.92 0.58
8<wy<9 2) 8.504 3.70 0.95
9<we<10 (2) 9.505 3.55 0.48



Table IV. Marginally stable parameters for relativistic proton-proton interactions,

Exn = 10 GeV or y =11.6, with by/Rg = b1/Ry = 0.005. The electron response is

neglected.

Frequency range @o 8/bo N/Ny
0<wp<1l (17 0 9.88 2.13
l<wp<2 9 1.403 6.30 0.39
2<wp<3 1) 2.448 432 0.18
3<wg<4 3) 3.464 3.32 0.11
A<wg<5 (1) 4.474 2.67 0.077
S5<wp<6 0)) 5.479 2.26 0.059
6<wyg<7 (1) 6.483 1.95 0.047
7<@y<8 ¢y 7.486 1.74 0.039
8<wo<9 (1) 8.488 1.57 0.033
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Figure Captions

1. a) Geometry of the coil configuration in a Migma Exyder.
b) Profile of B, in the (x,y) plane as produced by the coils shown in Fig.1a.
Reversal of the field in the central region is obtained in the case I; = - I;. (Figure
from Blewett, 1988.)

2. a) Outline of orbit shape in the Blewett storage ring. The orbits A and B would
be stable while the orbit C would be lost in the axial direction. (Figure from
Blewett, 1988.)

b) Ion orbits used to model the two-stream effect in the Migma Exyder.

3 Plot of the function Q(wg)/ (¢)2 , where Q(@o) is given by equation (37). Q(wo) is
singular whenever @y = w/2wp, = k , where k is a positive definite integer. The
marginal points are the frequencies @ox at which d0/dwy = 0. The marginal points

nearly intersect with the curve m2w¢ (dashed line).

4. Threshold density for electron ion interactions versus beam energy for the zero
frequency mode (k = 0) and the first three harmonics (k = 1,2,3). The
computations were made with /Ry = b1/Ry = 0.005 and R,/Rg = 5.

5. Deformation of the integration contour C to the contour C'. Both curves encircle

the branch points at =0 and £ =a?2.
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