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Abstract

Perturbation theories that expand in the amplitudes of the unstable modes are an important
tool for analyzing the nonlinear behavior of a weak instability which saturates in a final
state characterized by small mode amplitudes. If the unstable mode couples to neutrally
stable modes, such expansions may be singular because nonlinear effects are very strong
even in the regime of weak instability and small amplitudes. Two models are discussed that
illustrate this behavior; in each case the unstable mode corresponds to a complex conjugate
eigenvalue pair in the spectrum of the linearized dynamics. In the first model, there is only a
single neutral mode corresponding to a zero eigenvalue. This example is first solved exactly
and then using amplitude expansions. The Vlasov equation for a collisionless plasma is the
second model; in this case there are an infinite number of neutral modes corresponding to
the van Kampen continuous spectrum. In each of the two examples, the neutral modes
sharply reduce the size of the resulting nonlinear oscillation. For the Vlasov instability, the
amplitude of the saturated mode is predicted to scale like 4* where +.is the linear growth
rate.
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These systems usually share another common feature in addition to weak growth rates
and small mode amplitudes at saturation: there are no neutral modes (o, is empty). The
importance of this latter feature is not always emphasized, but it plays a crucial role in the
widespread success of amplitude equations in the analysis of weak instabilities. When the
physical system has neutral modes, then one can find examples where nonlinear effects are
very strong even when the unstable modes have arbitrarily small growth rates and saturate
at arbitrarily small amplitudes. ,

The Vlasov equation for a collisionless plasma is a particularly interesting example of
this circumstance but there are many other examples as well. In particular one can find
- very simple dynamical systems in finite dimensions where the dramatic effects of neutral
modes can be analyzed in detail. Our interest in this issue originated in a study of weakly
unstable modes in a Vlasov plasma,’'? but the subtleties of the nonlinear behavior can be best
appreciated by first considering less complicated examples. In this discussion we concentrate
primarily on a simple three-dimensional dynamical system where the consequences of a single
neutral eigenvalue are similar in many respects to the consequences for the Vlasov equation
of an infinite continuum of neutral modes.

In the Vlasov case we have focussed on the situation where o, contains only a simple

conjugate pair of eigenvalues : : .
oy = {7y L iw} : T (14).

such that ¥y > 0, w > 0 and 0 < |y/w| << 1. One knows that there are small amplitude,
fully nonlinear traveling waves (periodic orbits) in such a plasma® and numerical studies?
show that these periodic orbits appear to describe the nonlinear saturation of the instability
at least over moderately long time scales 0 < wt < 1200. One question which has been of
considerable theoretical and experimental interest is the dependence of the amplitude of the
saturated wave on 7 as v is taken to zero.*=7 In the absence of neutral modes, one commonly
finds this dependence to be /7. The presence of neutral modes can drastically reduce the
size of the saturated wave leading to scalings of the form 4” where p = 1 for our finite
dimensional example and p = 2 for the Vlasov equation.

In the next section we analyze the equations describing one neutral mode and one unstable
complex mode (1.4). Then in section III, we briefly formulate the corresponding one mode
instability for the Vlasov equation and descrlbe our results for the amphtude equation in
that case. ‘

II. A simple model: one neutral mode

Consider an n-dimensional flow (1.1a) so that X € R™(n > 3) and assume the linear
matrix £ has a pair of unstable eigenvalues (1.4). We further assume £ has a simple real
eigenvalue u near zero and that all remaining eigenvalues belong to o, and are bounded away
from the imaginary axis. For (y,+) near (0,0), the time-asymptotic behavior of this flow
near X = 0 is captured by a three-dimensional center manifold, and on this manifold the
evolution equation reduces to a three-dimensional dynamical system which may be written




In more complicated problems, finding the exact solution for the periodic oscillation
associated with such an instability will not be feasible because the number of neutral modes
may be very large. This is the situation for the Vlasov equation. In the absence of exact
results there have been several efforts to analyze the nonlinear saturation of such a Vlasov .
instability using amplitude expansions.® These efforts have not been particularly successful,
and the origin of the difficulty can be understood by re-analyzing the present model (2. 3)
using such an amplitude expansion.

We base our derivation of the amplitude equation for the unstable mode on the two-
dimensional unstable manifold associated with the two unstable eigenvalues.® As long as o,
consists of a single complex conjugate pair, the unstable manifold will be two-dimensional
even if there are many neutral modes. Hence this approach can also be readily applied to
the Vlasov problem described in the next section.

The two-dimensional unstable manifold W* in (2.1) appears as a one-dimensional unsta-
ble manifold in (2.3). Asshown in Flg 1, the unstable manifold is tangent to the (r, §)-plane
at (r,z) = (0,0), and near the origin we may describe the manifold as the graph of a function
h(r):

(ryz) e W* then (r,2) = (r,h(r)) o an (27)

which satisfies :
R(0) =A'(0)=0 . | o (2.8)

Given k(r), the dynamics on the unstable manifold is obtained by replacing z with h(r) in
(2.3a): _ :
r=rly + a1h(r) + agr?] . (2.9)
This is the amplitude equation for the unstable mode; it is expected to be valid for r

sufficiently small since our representation of W* in (2.7) will only hold in general near
(r z) = (0,0). To calculate the nonlinear oscillation, we seek r, > 0 such that # = 0 in (2.9)

v+ aih(r,) + a2r§ =0 . (2.10) -

This should determine ro(y) from which the scaling beliavior as ¥ — 0 could be calculated.

Before (2.10) can be solved, we must find an expression for A(r). The equation determin-
ing h(r) follows from the fact that W* is invariant under the dynamics (2.1). For a solution
(r(t),2(t)) € W* there are two ways to calculate z : () from z = h(r) and (2.9) we have

z= %r[*’y + a1h(r) + azr?] (2.11a) |
(1) from z = h(r) and (2.3b) we have |
2 = ph(r) + byr? + byh(r)? . | (2.11b)

On W*, these two calculations must agree; hence

dh
Erh + a1h(r) + agr?] = ph(r) + bir® + boh(r)? (2.12) .



—_— .

and

dH = ba?4bH?
dz ~ z[l+aH+ agyz?]’ H(0) =0 (2:20)
respectively. The original system (2.3) is rescaled to
z = vz[l + a1 + ayyz? A (2.21a)
¢ = Albia? + 57 . (2.21b)

One could now solve (2.20) perturbatively H(z) = & 2% + &@,z*+ ---, and then attempt to
find z, from (2.19) by solving 1 + a1H (z,) + azyz? = 0.

The limitations of this rescaled perturbation theory are most readily appremated by first
cons1der1ng the exact system (2.21). The exact solution for the periodic orbit (2.4) is now

given by
—b; -1
(mo,Co)=( baga"—) asy—0 .

The stability of this solution is found by linearizing (2. 21) about (z,,{,) and ﬁndmg the
eigenvalues Ay, .

—by  |ba (b
N . ay ay (al B 2) + O(’Y) )

Since (2.2) implies by/a; > 0 there are essentially two possibilities:

(z) 2 < % < oo. For these parameter values, Ay form a complex conjugate pair and
ReA < 0 so the solution (z,,(,) is stable.

(1) 0 < —1 < 2. For these parameter values, A, are real and negative. The periodic orbit
(z0,(,) is a,ga.m stable. '

The global behavior of the unstable mamfold of the origin is quite different for these two
cases. The phase portraits are shown in Fig. 2 with the corresponding evolution of the mode
amplitude for the flow on W*. Note that since z, is not small, a low order approximation
to W*, i.e. H(z) = @z? + O(z*), will not in general lead to accurate results. When the
eigenvalues Ay are complex, there is an additional difficulty. In this case, the desired solution
(%0,(,) is not located on the segment of W* described by solving (2.20). Thus even if the
perturbation series for H(z) could be summed the resulting calculation of z, would be wrong.

III. - Collisionless one mode beam-plasma instability

The problem of a weakly unstable wave in a collisionless plasma provides a much less
trivial example of singular behavior in an amplitude expansion.® Consider a one-dimensional
plasma with mobile electrons, a neutralizing fixed background of positive charge density en,



and z =1A/k satisfies
Alk,2) =1+ / dvvn_kzv ~0
with

1(k,v) = - (WZ’Z") 8.Fo(v) .

To ana.lyze the arnphtude equation on the unstable manifold, we introduce the complex
mode amplitude A = re'® as before:

f(z,v,t) = AY(z,v) + Za(m?v) + S(z, v, 1) (3.4)

where S represents the components in the eigenfunction expansion for £ orthogonal to %
and . The evolution equation (3.2a) determines the equations for A and 8,3:

A = M+ <¢,/\/’(f) > (3-55)
S = LSHN()-[<d,N(F)>%+ cel " (3.5b)

where < 9, > denotes the projection with the appropriate adjoint eigenfunction 1. The
amplitude equation for r = |A| follows by restricting (3.5a) to the two-dimensional unstable
manifold. This calculation will be discussed elsewhere'®; the results can be easily summa-
rized. From translation invariance it follows that the amplitude equation will take the form

=rly +9(%)] o (36)

where g(z) is a function satisfying g(0) = 0. The amplitude expansion will, in principle, give
the result -
g(r*) = > ar? . ' (3.7
n=1
In practice the calculation of the coefficients is laborious and at present only the leading
term c;r? has been analyzed. In the limit of weak instability we find®

ap = g[bo + O(y)] as y—0F | " (3.8a)
with -
t by = — 1(——5——Y[ (k,7) +%( lﬁﬂ@)] (3.8b)
° 4dm|A'(k,r)|2 (e’ (k7)) v—r '
where

9
! = —
W(ko) = nk,o)
o !
P[ ﬂ%%@+mﬂhﬂ.

Hl

N (k)
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I. Introduction

The circumstance that leads to an amplitude equation with singular behavior may be
roughly formulated as follows. A physical system has an equilibrium state X, and the
dynamics of any other state X, + X may be described by an evolution equation of the form

%=[,X+N(X), XeM, (1.1a)
where £ is a linear operator that depends on X, and N (X) represents nonlinear terms in
X. In practice (1.1a) can be either finite dimensional (an o.d.e.) or infinite dimensional (a
p.d.e.) depending on the dimension of M, the phase space of the system.

For X near X, it is common to concentrate first on the linearized dynamics, ignoring in
a first approximation the nonlinear terms M (X). Often the spectrum of £, denoted by o,
determines the solutions to the linear problem:

X -
==X . (1.1b)

One first finds the spectrum by analyzing the eigenvalue problem
LY =)\P (1.2)

(or more precisely from the properties of the resolvent (£ — A)~1); then, for example, a
nondegenerate eigenvalue A; with eigenfunction ¥, implies that exp{\;¢}¥; is a solution to
(1.1b). Whether such a solution grows or decays in time depends on the sign of Re);; this
distinction makes it useful to partition the spectrum o into three subsets o = o, U 0, U o,
where

o, = {A€coRe) <0} (1.3a)
0. = {A€o|Rer=0} (1.3b)
oy = {X €0o|ReA >0} - (1.3¢)

denote the stable spectrum, center spectrum and unstable spectrum, respectively.

When there are eigenvalues A € oy, if an initial condition has components along the
corresponding unstable modes then these modes will grow exponentially until the nonlinear
terms NM(X) are strong enough to arrest the growth and saturate the instability. One often
finds that if the initial growth rate Re is weak then the nonlinear effects saturate the growth
of the mode at a small amplitude. When the new nonlinear state involves small amplitude
modes, it is natural to expect that nonlinear effects are weak. Under these circumstances,
an effective theoretical description of the growth and saturation of the unstable modes may
be obtained by treating the nonlinear effects perturbatively and solving (1.1a) using an
expansion in powers of the unstable mode amplitudes. This approach has been successfully
used to study a wide variety of systems where one finds weakly unstable modes.
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These systems usually share another common feature in addition to weak growth rates
and small mode amplitudes at saturation: there are no neutral modes (o, is empty). The
importance of this latter feature is not always emphasized, but it plays a crucial role in the
widespread success of amplitude equations in the analysis of weak instabilities. When the
physical system has neutral modes, then one can find examples where nonlinear effects are
very strong even when the unstable modes have arbitrarily small growth rates and saturate
at arbitrarily small amplitudes.

The Vlasov equation for a collisionless plasma is a particularly interesting example of
this circumstance but there are many other examples as well. In particular one can find
very simple dynamical systems in finite dimensions where the dramatic effects of neutral
modes can be analyzed in detail. Our interest in this issue originated in a study of weakly
unstable modes in a Vlasov plasma,!? but the subtleties of the nonlinear behavior can be best
appreciated by first considering less complicated examples. In this discussion we concentrate
primarily on a simple three-dimensional dynamical system where the consequences of a single
neutral eigenvalue are similar in many respects to the consequences for the Vlasov equation
of an infinite continuum of neutral modes.

In the Vlasov case we have focussed on the situation where o, contains only a simple

conjugate pair of eigenvalues
ou = {7y £ iw} (1.4)

such that ¥ > 0, w > 0 and 0 < |y/w| << 1. One knows that there are small amplitude,
fully nonlinear traveling waves (periodic orbits) in such a plasma® and numerical studies?
show that these periodic orbits appear to describe the nonlinear saturation of the instability
at least over moderately long time scales 0 < wt < 1200. One question which has been of
considerable theoretical and experimental interest is the dependence of the amplitude of the
saturated wave on v as v is taken to zero.*=7 In the absence of neutral modes, one commonly
finds this dependence to be +/7- The presence of neutral modes can drastically reduce the
size of the saturated wave leading to scalings of the form 4* where p = 1 for our finite
dimensional example and p = 2 for the Vlasov equation.

In the next section we analyze the equations describing one neutral mode and one unstable
complex mode (1.4). Then in section III, we briefly formulate the corresponding one mode
instability for the Vlasov equation and describe our results for the amplitude equation in
that case.

II. A simple model: one neutral mode

Consider an n-dimensional flow (1.1a) so that X € R"(n > 3) and assume the linear
matrix £ has a pair of unstable eigenvalues (1.4). We further assume £ has a simple real
eigenvalue y near zero and that all remaining eigenvalues belong to o, and are bounded away
from the imaginary axis. For (u,<) near (0,0), the time-asymptotic behavior of this flow
near X = 0 is captured by a three-dimensional center manifold, and on this manifold the
evolution equation reduces to a three-dimensional dynamical system which may be written



in normal form?® as

0 = w+0(r, 2 (2.1a)
Fo= rly 4 az+ axr?+ O3, |, 2°)] (2.1b)
z = pz+birt4b2® + O(r?z, 25, |r, 2[*) . (2.1¢)

In this notation, the complex amplitude of the unstable mode A has been expressed in polar
variables A = re?, and z denotes the amplitude of the real mode. We assume g < 0 and
v > 0 so that there is only one unstable mode and the real mode z is either stable (u < 0)
or neutral (4 = 0). The coeflicients a;,a3,b; and b; are assumed to satisfy

a161 <0 blbg <0 (22)

but are otherwise arbitrary.

In these variables, the equations (2.1) are independent of § and the properties of (2.1b,c)
can be analyzed without considering the phase. If we ignore (2.1a) and neglect the indicated
higher terms in (2.1b,c) we obtain the two-dimensional system

o= rly+ a1z + agr’ (2.3a)
Z = pz+br?4byz? . (2.3b)

The nonlinear periodic orbit produced by the linear instability in (2.1b) is obtained by finding
the equilibrium solution (r,,2,) to (2.3) with the property that r, # 0 and (r,,2,) — (0,0)
as 7 — 0. This solution corresponds to a periodic orbit

Ay(t) = roefe® (2.4)
if the phase dynamics (2.1a) are reinstated. A simple calculation shows z, = —(y +agr?)/a;
and '

2= W)y L oy, ) (25
107

for (u,+) near (0,0).
The effect of the neutral mode is clear. If 4 < 0 (and fixed) so that o, is empty then

2 _ (_F ‘
5= (a1b1) vy asy—0 | (2.6a)
but when g = 0 and a neutral mode is present then
Pl = =t 7* asy—0 (2.6b)
° bla% ' '

The difference between these two scalings is dramatic; for small +, the saturated mode in
(2.6a) is much larger in amplitude than the saturated mode in (2.6b).
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In more complicated problems, finding the exact solution for the periodic oscillation
associated with such an instability will not be feasible because the number of neutral modes
may be very large. This is the situation for the Vlasov equation. In the absence of exact
results there have been several efforts to analyze the nonlinear saturation of such a Vlasov
instability using amplitude expansions.® These efforts have not been particularly successful,
and the origin of the difficulty can be understood by re-analyzing the present model (2.3)
using such an amplitude expansion.

We base our derivation of the amplitude equation for the unstable mode on the two-
dimensional unstable manifold associated with the two unstable eigenvalues.® As long as o,
consists of a single complex conjugate pair, the unstable manifold will be two-dimensional
even if there are many neutral modes. Hence this approach can also be readily applied to
the Vlasov problem described in the next section.

The two-dimensional unstable manifold W* in (2.1) appears as a one-dimensional unsta-
ble manifold in (2.3). As shown in Fig. 1, the unstable manifold is tangent to the (r,§)-plane
at (r,z) = (0,0), and near the origin we may describe the manifold as the graph of a function
h(r): 4
(r,z) € W* then (r,z)=(r,h(r)) (2.7)
which satisfies

h(0) =4 (0)=0 . (2.8)
Given h(r) the dynamics on the unstable manifold is obtained by replacing z with A(r) in

(2.3a):
F=rly+ ah(r) + agr?] . (2.9)

This is the amplitude equation for the unstable mode; it is expected to be valid for r
sufficiently small since our representation of W* in (2.7) will only hold in general near
(r,2) = (0,0). To calculate the nonlinear oscillation, we seek r, > 0 such that = 0 in (2.9)

v+ azh(r,) + agr =0 . (2.10)

This should determine 7,(7y) from which the scaling behavior as ¥ — 0 could be calculated.

Before (2.10) can be solved, we must find an expression for A(r). The equation determin-
ing h(r) follows from the fact that W™ is invariant under the dynamics (2.1). For a solution
(r(t), 2(t)) € W* there are two ways to calculate 2 : (i) from z = h(r) and (2.9) we have

i= %r['y + ash(r) + azr?] (2.11a)
(%) from z = h(r) and (2.3b) we have
z = ph(r) + bir® + bah(r)? . (2.11b)

On W*, these two calculations must agree; hence

dh ~
E;r[fy + aih(r) + agr?] = ph(r) + bir?® + byh(r)? (2.12)



provides the desired equation for h(r). We solve (2.12) for h(r) using the amplitude expan-
sion

h(’l‘) — Z anr2n (2.13&)
n=1
and find b
1
o = 2.13b
R N
with 1 ;
. —2a5(n — 1)om—1 + 3751 (b2 — 2ja1)atjn—; (2.13¢)
2ny —p

for n > 2. From this solution the amplitude equation (2.9) is given by the expansion
P =ry+ (a0 + a)r’ +oprt - . (2.14)
At leading order in r? this yields an approximate solution to (2.10)

s S i el D B (2.15)
aray+a;  a1by +ag(2y — )

For p < 0, (2.15) predicts

2 [ :
ry (0151) v asy—0 (2.16a)
in agreement with (2.6a), but for x4 = 0 (2.15) predicts
r? ~ (——_2 ) 7 (2.16b)
° aiby .

which is not correct although the dependence on « agrees with the exact result (2.6b).

It is easy to see why (2.15) is wrong when x = 0. From (2.13b,c), the coefficents in our
perturbation theory are singular when p = 0:

1

7271,—1

|| ~ asy— 0, (2.17)
and this means that higher order terms in (2.14) are not negligible.

We can construct a perturbation theory free of this singular behavior by rescaling our
amplitude variable appropriately. If we define (z,() by

r=vz z=7( (2.18)

then (2.13a) becomes h(r) = v, (ar7?" 1)z?" and the coefficients c,v?"~! are now well-
behaved as 4 — 0. This motivates the additional definition A(r) = vH(z) in terms of which
(2.9) and (2.12) become

& = yz[l + a1 H(z) + azyz?] (2.19)

5



and

dH b1$2 + bgHz
_— = = 2.
de  z[l + a1 H + agyz?]’ H(0) =0 (2:20)
respectively. The original system (2.3) is rescaled to
& = vz[l+ a1 + azyz?] (2.21a)
¢ = Alba® +57 (2.21b)

One could now solve (2.20) perturbatively H(z) = &;2® + &%+ - -, and then attempt to
find z, from (2.19) by solving 1 + a1 H(z,) + agyzZ = 0.

The limitations of this rescaled perturbation theory are most readily appreciated by first
considering the exact system (2.21). The exact solution for the periodic orbit (2.4) is now

given by
(20, 6) = (/=22 =2 0
ToyGo) = bla,%, a as vy . .

The stability of this solution is found by linearizing (2.21) about (z,,({,) and finding the
eigenvalues Ay,

Ai:_—sz: 93(—6—2—2)+0(7) .

ay a; \a1

Since (2.2) implies by/a; > 0 there are essentially two possibilities:

(5 2< ff < oo. For these parameter values, Ay form a complex conjugate pair and

ReA. <0 so the solution (z,,(,) is stable.

(7)) 0< 37; < 2. For these parameter values, Ay are real and negative. The periodic orbit
(%0, (o) 1s again stable.

The global behavior of the unstable manifold of the origin is quite different for these two
cases. The phase portraits are shown in Fig. 2 with the corresponding evolution of the mode
amplitude for the flow on W*. Note that since z, is not small, a low order approximation
to W*, i.e. H(z) = &2® + O(z*), will not in general lead to accurate results. When the
eigenvalues Ay are complex, there is an additional difficulty. In this case, the desired solution
(0, o) is not located on the segment of W* described by solving (2.20). Thus even if the
perturbation series for H(x) could be summed the resulting calculation of z, would be wrong.

III. Collisionless one mode beam-plasma instability

The problem of a weakly unstable wave in a collisionless plasma provides a much less
trivial example of singular behavior in an amplitude expansion.® Consider a one-dimensional
plasma with mobile electrons, a neutralizing fixed background of positive charge density en.



and periodic boundary conditions in z € [0, L). The electron distribution function F(z,v,t)
satisfies the Vlasov equation

OF = OF | ¢ 0$0F

B + Vo + oz By = 0 (3.1a)
0% o0
57 dren,[l — /_oo F dv] (3.1b)

where the electrostatic potential ¢(z,t) is determined by Poisson’s equation (3.1b). Let
F,(v,u) denote a spatially uniform equilibrium (¢, = 0) depending on a parameter u and
define f by f(z,v,t) = F(z,v,t) — F,(v,u). Then (3.1) may be rewritten as an evolution
equation for f(z,v,t)

& rN() (3.20)
where
Lf = —v0,f - %&Bg{) 8, F, (3.2b)
N(f) = ——0:40.f | (3.2)
and
924 = dmen, /_ ‘: Fdv . (3.2d)

The spectrum of £ depends on Fy(v, u).!® For a beam-plasma equilibrium (n, = n, +n;)

=2 —(s=uP?
n,Fo(v,u) = 20 4L ‘ (3.3)
\/7o2 To?

we may regard the beam velocity u as a bifurcation parameter and fix the other parameters,
see Fig. 3a. Then if the plasma length L is chosen appropriately only the electrostatic
wave with maximum wavelength k¥ = 27/ L will become unstable as u is increased above the
critical velocity u.. A detailed description of how the spectrum of £ varies near the onset
of this instability has been given elsewhere.! In Fig. 3b we show schematically how the

spectrum appears for v < u., u = u, and u > u,. In the weakly unstable regime (u > u,),
there is a single conjugate pair of eigenvalues in the unstable spectrum (A = 7 + iw):

(2)-(3%)

where




and z = i\ /k satisfies
Ak, 2) _1+/ dvn(k,v) _0

v—2
with

2
n(k,v) = — (47r6k?°) 0y Fo(v) .

To analyze the amphtude equation on the unstable manifold, we introduce the complex
mode amplitude A = re® as before: :

f(z,v,t) = AY(z,v) + AP(z,v) + S(z,v,1) (3.4)

where S represents the components in the eigenfunction expansion for £ orthogonal to ¢
and 1. The evolution equation (3.2a) determines the equations for A and 8,S:

A = M+ <N() > (3.5a)
S = LS+N(f)=[<PN()> v+ ccl (3.5b)

where < 1), > denotes the projection with the appropriate adjoint eigenfunction . The
amplitude equation for r = |A| follows by restricting (3.5a) to the two-dimensional unstable
manifold. This calculation will be discussed elsewhere'®; the results can be easily summa-
rized. From translation invariance it follows that the amplitude equation will take the form

= rly + g(r?)] (3.6)

where g(z) is a function satisfying ¢(0) = 0. The amplitude expansion will, in principle, give
the result - ‘
g(r*) =", . ‘ (3.7)
n=1
In pract1ce the calculation of the coefficients is laborious and at present only the leading
term o;7? has been analyzed. In the limit of weak instability we find®

= $[b(7 + O(y)] as y— 0t (3.8a)
with " ) (kv)d
1 n'(k,v)dv
bo = —-]E (W) [(7!'7] (L ’f')) + 55 ( 7) ] (38b)
where

7(60) = oon(k)

A(k,r) = P/ n’(k v) dv + imn'(k,r) .

8



Note that b, is less than zero independent of the detailed shape of F,(v,u).
The singularity in (3.8a) at v = 0 indicates that the appropriate rescaling of the ampli-
tude!! is

r =% (3.9)
so that (3.6) becomes
& =vz[l+b,2°+ Y (7" a)z™] . (3.10)
n=2

The strength of the singularities in a, (n > 2) as ¥ — 0 remains to be studied, but one
can speculate on the behavior of the higher order terms in (3.10). There are at least three
possibilities:

(a) v*" 'y, — 0 as v — 0 for n > 2; then (3.10) yields
Z =vz[l+b,z%] as y—0

and 22 = —1/b, determines the saturation amplitude. Also the saturated state z, is ap-
proached in a monotonic fashion as in case (i) of the simple model.

(b) v 'ay, — 00 as y — 0 for some n > 2; then the rescaling (3.9) is too weak.

(c) lan] ~ 1/4*"1 as ¥ — 0 for all n > 2; this would be similar to the simple model. In this
case the rescaling (3.9) is correct, but to determine the saturated state z, would in general
not be practical using the perturbative amplitude equation (3.10).

Numerical results by J. Denavit show the saturation of this instability with a scaling
given by (3.9), and the approach to saturation is a decaying oscillation (trapping oscillations)
similar to case (i) of the simple model.* These results strongly suggest that it is (c) rather
than (a) or (b) that applies to the higher order terms in (3.10). The trapping oscillations
further indicate that the unstable manifold probably approaches the periodic orbit (BGK
mode) in a spiral fashion.
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Figure Captions

1. Phase portrait for system (2.3) showing the periodic orbit (r,, 2,), the unstable mani-
fold W* of the origin, and local description of W* by the graph z = A(r).

2. Dynamics for the rescaled system (2.21) showing the two possible global behaviors of
the unstable manifold and the corresponding behavior of the unstable mode as described by
the dynamics on the unstable manifold.

3. (a) Form of a beam-plasma distribution; (b) Linear stability of the distribution F,(v, v)
in the beam velocity (u) vs. wavenumber (k) plane. The spectrum of the linear operator £ in,
(3.2b) is sketched at the points A, B and C. At criticality (B) there is a complex conjugate
pair of imaginary eigenvalues embedded in the continuum of neutral modes. In the weakly
unstable regime (C) we find a quadruplet of eigenvalues: a stable conjugate pair and an
unstable conjugate pair.
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