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Abstract

The effect of magnetic shear on the toroidal ion temperature gradient driven
drift mode is investigated through two-dimensional fluid simulations. Shear reduces
the anomalous thermal transport by localizing the turbulence. Mixing length formulas
for anomalous ion thermal transport are derived in various regimes with the magnetic

shear.



I. Introduction

Drift wave instability driven by'the ion temperature gradient has been used to explain
the anomalous ion thermal conduction in tokamak experiments.!~® Recently, in ohmically-
heated discharges in ASDEX,! the unsaturated linear use of the energy confinement time
with density, 75 ~ 71, up to the density limit, was obtained. The improvement in confinement
was attributed to the stabilization of 7;-mode with the peaked density profile. The peaked
density profile with the pellet injection reduces 7; and results in the reduced ion thermal
conduction in Alcator-C tokamak.? The fluctuation evidence of the existence of 7;-mode
was found in TEXT experiments.® Density fluctuations propagating in the ion diamagnetic
direction are observed through the laser scattering experiments.

The 7;-mode has been a main topic of study in recent years. The slab 7;-mode,*~8 which
is an ion acoustic wave driven by the ion temperature gradient, and the toroidal p;-mode,”®
driven by the unfavorable magnetic curvature, and the ion temperdture, are unstable for
n; & 1. The correct threshold value for 7; and thé growth rate requires the kinetic theory
formulation which retains the full FLR effects and the resonances (ion transit and magnetic
resonances) effects.®1% In this work, we use the improved set of ﬂuid equations to study the
effect of magnetic shear on the toroidal 5;-mode, which has been neglected in previous fluid
simulations of the toroidal 7;-mode.’’*2. For both the slab and toroidal branches, FLR-
fluid equations used here give the critical (threshold) value 7. ~ £, which is a reasonable
agreement with the kinetic theory calculation.?

In Sec. II we present the ion fluid equations with the adiabatic electron response for
ni-mode. Energy conservation relations are derived and discussed. The stability analysis
is given in Sec. III. From the general dispersion relation, the analytic expressions for the

growth rate, mode width, and the mixing length estimates for ion thermal conduction are




derived for both slab (S > 2¢,) and toroidal (S < 2¢,) 7;-mode. Results of two-dimensional

fluid simulatons are presented in Sec. IV. Section V contains the summary and conclusion.

II. Model Equations

The equations describing the toroidal n; instability used in this paper are based on the
hydrodynamic ion equations assuming an adiabatic electron response. We take into account
'the effect of a sheared magnetic field in the region on the outside of the torus by using
V) € ik, £. For the perturbed electrostatic potential @, the parallel ion velocity v, and the

ion pressure p, we study the following nonlinear equations;
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where I = 5/3 in fluid theory.
In writing Eqs. (1)~(3), we used the dimensionless variables of (z,y) — ps(z,y), 2 — r 2

and t — rut/c, with ¢, = (T./M;)'/?, p, = ¢,/ and the scaling of the amplitude of the

fields by
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We also include crossfield viscosities and thermal conductivity to absorb energy transformed
to |k| = co which is outside the range of validity of the fluid equations. Values of crossfield
dissipation coeflicients are pu;, = 0.3,_%:L E‘:I/,' y Bi2 = 1.2% %z/; and X, = 1.33%:L %’:Vi .

Here v; is the ion-ion collision frequency.




In Egs. (1)-(3), we assume that the dominant nonlinear terms are the E x B convective
nonlinearities and use the Poisson brapket operator [f, g] defined by vg-Vf .= 2:VoxVf=
[#, f]. Studies with nonadiabatic electron effects were made and will be reported in a later
work. For the parameter used here the nonadiabatic effects are weak.

The transfer energy through Egs. (1)-(3) is determined by the following constraints:

%E = (& + (V) = 2. <¢-§y—p> — (Vi) —rLa (Vi) (4)
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We define the volume average by (F') = v~! [ d®z F(z,y, z,t). The transfer of the fluctuating
energy is determined by the E x B flow of ion thermal heat Q,., = <¢ % p>, the work done
by the parallel electric field on the parallel ion current, <v V“¢> and the work done by the

flow along the ion thermal energy, <v V||p>. The total energy Er = Ey + E; + £ E; satisfies

d£T=<l';77i+2%)<¢% >_1_-:yi<pvi%¢>.
— 22 ((V20)?) = 2 ((Vi0)?) = 0 ((Vip)?) . (7)

The terms <¢3 p> and <p R 37 p> correspond to the heat flux associated with E x B

drift motion and polarization drift motion respectively. In the turbulent state the relative

magnitude of these two terms are given by
<p 13y ¢>

<¢ By P>

The other terms are from ion collision dissipation. Thus the final steady state is determined

—F
—<<l

by the balance between the input from ion temperature gradient and toroidal pumping

(2€n Qes, and the dissipations from ion collisions.
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ITII. Stability Analysis

The linear stability of Eqs. (1)-(3) is investigated in this section.
First, in the shearless system, the parallel ion velocity equation is decoupled from the

potential and pressure equation, and the quadratic dispersion relation is

Aw?4+Bw+C=0 (8)
with
A=(1+k2)
B= [I—Zen— Lt ki~gen(1+ki)] k
26, k?

C=

[n;+1—21‘+£ki(1+m)+21‘en <1+%>] .

. 2 X N :
The maximum growth rate occurs for h(—l:ﬂil 2 1 and the eigenfrequency is given by

w,+¢7g~¥enk+ik,/2en ”"T‘m (9)

with 7. ~ % It is noted that the inclusion of the polarization (FLR) term in ion pressure

equation is crucial for determining the critical ion temperature gradient, 7., with a value
comparable with the values given by kinetic theory.®
With the shear, we obtain the eigenmode equation from Egs. (1)-(3),

d2
dz?

b+ Qz)é=0 - (10)

with

, Q-(1-2e) S [0+ (B4 Fe - F B )]

hT Ty Em (@+4m) [2(Q+ Le,) - L 5247]

5



2e, [M_Le (1_1)_£1+n. kz]ﬂ

-

and Q = w/wx. = w/k,.

In Fig. 1 we compare the exponential growth rate of the time signals from the linear regime
of the 2-D simulation code for Egs. (1)-(3) with the solutions from numerical integration of
the eigenmode equation (3) versus wavenumber k,. We use the initial perturbation of the

form -

f ~ e cos(k, y)

to determine the growth rate for typical wavenumber k, in the initial value code. Figure 1
shows the good agreement between the two different problems so that we conclude that the
2-D simulation code with the periodic boundary condition in z,y adequately represents the
effect of magnetic shear, when the box size is large compared with the eigenmode width.
The analytic expression for real frequency, growth rate and the mode width can be

obtained by using the standard WKB technique. Then the eigenmode equation reduces to

1%
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and the dispersion relation
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When S > 2¢,, Eq. (12) reduces to the dispersion relation for shear slab, 7;-mode and



the eigenfrequency is
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for kz = where the linear growth rate is a maximum. The effect of parallel compression,

I'V)jv); in the ion pressure equation is calculated using the perturbation technique, and the

imaginary part of the frequency shift §2; is

r 2 -1/2
ImQ, & —4—7_- 5(1 +T),‘)1/2 (77,' - 'g) for kz ~

-
1+n

(14)

Thus, the effect of parallel compression is stabilizing, but it is weak for the present tokamak

parameters.
To estimate the level of anomalous thermal transport we use the simple mixing length
formula with v and o evaluated at the source of the turbulence given by the fastest growing

linear mode ko. X; ~ 7(AX)? ~ gX- becomes

1+m; I 1/2 5/4 < 2>_3/4 ' [Pa CTe}
X, 27_ ko W S (1 + 7],) n: g ko rn eB : (15)

The shear dependence of Rec ~ S/|0}|  S1/2 cancels $/2 dependence of the growth rate ~.
The validity condition for Egs. (13)~(15) comes from the assumption |S? z2/92| < 1 used in
Egs. (11)-(12), which is given by . .

2 2\ 1/2
—3 (Ni—3
S < 7'3<1+773t> . (16)

When 2¢, > S, the eigenfrequency for toroidal 7;-mode is

2T ) ni — 2 .S\/U{‘%
N=~-—¢, 2e,, S = : 1
7_es+z €n — i3 T (17)

Effect of sheared magnetic field yields a weak stabilizing contribution to the toroidal 7;-mode.

For the mixing length formula, the anomalous transport from the toroidal n;-mode is

26 2\ 1, [ np-2 ps cT.
Xi~— i i35 & n 2 [—s e]
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The first term in Eq. (18) is the usual X; scaling law derived in earlier studies™® and the
reduction from shear effect is shown by the second term. In Eq. (18) S should be smaller
than 2¢, but larger than the critical shear Sx. Here we define Sx ~ p,/f,, such that for
values of S less than Sx, Egs. (1)-(3) are not valid and the diamagnetic frequency profile
effect’® must be taken into consideration.

-~ When § is very small, the eigenmode equation. (10) reduces to

d2
29+ Q)¢=0 (19)
with
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and wWxe = Wk, (l - f;— :z:z) where 7, = r,(z = 0). The lowest order eigenfrequency is given

by Eq. (9) but the mode width Az is determined by

1 el/4 T T2 ¢,
(A.’E)2 ~ Reo- ~ T5/4 m ;s‘ for i — Te > . (20)

In the small shear limit, the mixing length estimate for the ion thermal conductivity is given

by the Bohm type diffusion formula

T,
X;s-—>0~73/462/4 (ni—nc)l/“ ZB ) (21)

Transition formula for ion thermal conductivity is given in Hong et al.®
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IV. Results of Numerical Simulations

Equations (1)~(3) are solved numerically as an initial value problem with periodic bound-
ary conditions. In order to avoid aliasing errors, we truncate the physical domain to
(2/3)kmax."* The time advance scheme is the Runge-Kutta method. Typical parameters
of our simulation are 7, = 2,e, = 0.1, 7 = 1, and § = 0.0 or 0.1 and for these parameters
the maximum linear growth rate occurs at k; ~ 0 and ky ~ 0.5 with Ne ~ % Simulations

are performed on 64 x 64 grid with L, = L, = 20~ p,.

A. Shearless Case (S = 0.0)

Figure 2 shows the time evolution of the perturbed energy, E; and E3 defined in Egs. (4)-
(6) for S = 0.0. For S = 0.0, ion parallel velocity equation decouples. Initially they start
from Gaussian perturbation in z and y, and grow exponentially in time. After the nonlinear
breaking of the exponential growth the energies grow algebraically in time. The end of linear
regime and the “wave breaking” occurs at .the saturation level given by the mixing length
estimate which balances the mode coupling terms with the dominant linear terms driving
the instability. In the quasi.;steady stage, there is an energy tfansfer to both longer and
shorter wavelengths and E, > E,. A slow energy transfer to short wavelengths produces
a secular time growth of the fluctuation energy which is terminated by including high-k
dissipation coefficients which are p; = 0.1 and X, = 0.1. During the linéar stage, the
spectrum peaks at k, ~ 0 and k, ~ 0.5 at which the linear growth rate has its maximum.
In the final turbulent stage, however, the spectrum peaks at k, ~ 0.1 (= 27p,/L;) and
ky ~ 0.0, indicating the presence of inverse cascade behavior. To obtain a true steady state
the energy accumulating at k, = 27p,/L, and k, = 0.0 must be absorbed with a low-k
dissipation mechanism.'*® With the inclusion of low-k dissipation models, stationary state

are obtained, but the saturated rms amplitudes of fluctuating quantities and the heat flux



have a strong dependence on the low-k diésipation rates in contrast to the weak dependence
on the high-k dissipations. Since the physical basis for choosing the low-% dissipation model
is unclear, except for the shear model considered, we leave the low-k dissipation study of the
shearless system for future studies..

In Fig. 3 the anomalous jon thermal flux ¢ is shown against time. Numerically observed

q is related to the dimensional flux Q.s,

_Ps T p; _Ps cI. ¢
Qes = — — and Xi= — — ——

rneBrnq " rpneB 14

In the turbulent state, ¢ is of order 18 and the corresponding X; is of order 6.

The z-y contour plots of ¢(x,t) and p(x,t) in the turbulent state are shown in Fig. 4
for the reference parameters. The large scale (~ 20p,) and coherent structure between
potential and pressure fluctuation are apparent. It was noted by Ottaviani et al.l? that due
to the coherence in the large scale structures [¢,p] ~ 0, which results in an inhibition of
the transport across the coherent structures. In the presence of the cohergr_lt structures the
transport occurs principally alon_g the separatrix where ¢ ~ 0 as shown by Horton® for test

particle transport in toroidal ln;-’modes.

B. With Shear

Time evolutions of the perturbed energies Ei, E, and Ej of Eqs. (4)-(6) are shown in
Fig. 5 with the same parameters as Fig. 2 except S = 0.1. “Wave breaking” occurs at lower
amplitudes and in the turbulent state (quasi-steady state), rms amplitude of the fluctuations
are almost 10 times smaller than S = 0.0 case due to the spatial localization of turbulence
by magnetc shear. In the turbulent state, the potential and pressure spectrums peak at
kzps ~ 0.2 and kyp, ~ 0.0 and the velocity spectrum peaks at kxps ~ 0.0 and kyps; ~ 0.1.
With shear S # 0.0, the k, peak of the spectrum is determined by the shear and not the

box size as in the shearless case.
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In Fig. 6 the anomalous thermal flux ¢ is of order 1.5 and the resulting X; = 0.5 which
is also 10 times smaller than S = 0.0 case. To separate the effect of shear and toroidicity
on the 7;-mode turbulence we show the effect of turning off the toroidicity parameter e,
after ¢ = 170. The effect of shear changes its role from stabilizing to destabilizing when
S > 2e, and the shear induced growth rate is given by Egs. (13)-(14). Turning off the
toroidicity strongly reduces ¢ as we expected since the toroidal 7;-mode is dominant for
S < 2¢,. The potential and pressure spectrums peak at k; ~ 0.2 and ky ~ 0.0, but in this
case (g, = 0.0) (k2) which is averaged over spectrum is bigger than in the &, = 0.1 case.
The larger value of (k2) at e, = 0 results in reduced anomalous thermal flux g.

Figure 7 shows z-y contour plots of ¢(x,t), v(x,t) and p(x,?) in the turbulent state at time
¢t = 270. The coherence between the potential and pressure fluctuations is weak compared
with the S = 0.0 case (Fig. 4). With shear there is not the large transient overshoot of the

heat flux as in Fig. 3.

V. Conclusion

Two-dimensional fluid simulations of the toroidal n;-mode are presented with and without
the magnetic shear effect. Linearly, shear provides a weak stabilizing effect on the toroidal
ni-mode. But due to the shear localization of turbulence, the lsa,turated rms amplitudes of
fluctuating quantities and the anomalous thermal flux is strongly reduced with increasing
shear.

Analytic expressions for growth rate, radial mode width, and the mixing length estimate
for the anomalous ion thermal flux are derived. Depending on the shear value compared with
the toroidicity parameter €,, the final turbulent state is characterized by toroidal or sheared
slab 7;-mode. When 2¢, > S toroidal 7;-mode is dominant, instability and the wavenumber
spectrum has a smaller (kZ). When shear is very small § < Sx), the density and temperature

profile giving the profile effect in diamagnetic drift frequency determines the radial mode
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width, and resulting transport is of the Bohm-type diffusion formula (cT./eB) reduced by
powers of &, and S. For the profile effect, the box size L, can be given the physical meaning
of the size of the system over which diamagnetic frequency wx is constant..

In the linear stage, the spectrums of fluctuating energies peak at k, ~ 0 and k, ~ 0.5, but
the peak of the spectrum moves to longer wavelengths in the turbulent state indicating the
inverse cascading behavior. For a turbulent stationary state, a low-k dissipation is necessary
to advect out the energy transferred to the long wavelengths. More complicated fluid model
equations which take into account the low-k dissipation have been introduced by Horton4 .
and Waltz!® but are not used here.

The z-y contour plots show the formation of large scale (~ 20p,) coherent structures
with good coherence between the potential and pressure fluctuations. Across the coherent
structures the transport is inhibited except by the transport along the separatrix.’® The
transport associated with the coherent structure deserves future study. Exact nonlinear
dipole vortex solutioﬁ for a closely related shearless system in which the g %-driven FLR-

fluid modes are linearly unstable are known.!”
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Figure Captions

1.

Growth rate vy ¢,/r, versus wavenumber k, p, for the toroidal 7;-mode obtaioned from
the shooting code with ¢, (z? — 00) — 0 (solid line) compared with the growth rates
from the 2D simulation code (z-points). For mode width Az) small compared withthe

box size, the agreement is good.

Evolution of the energies E, and Ey for the shearless system with 7; = 2, e, = 0.1,

and 7 = 1.

The heat flux ¢ for the shearless system showing the large transient peak and the

chaotic dependence of ¢(t) in the turbulent state.

. Contours of constant levels of (a) potential ¢ and (b) pressure fluctuation ép at typical

time in the turbulent state (¢ = 260) for the simulation experiment in Figs. 2 and 3.

Evolution of the energies E,, E, and E, for the same parameters in Figs. 2-4 except

with shear S = 0.1.

The heat flux ¢ for the toroidal 7;-mode with shear § = 0.1. The order of magnitude
reduction of ¢ from the shearless case in Fig. 3 arises from the small radial correlation
length £, < 1/S in the sheared system. After ¢ = 170, the upper curve keeps ¢, = 0.1

and the lower curve has ¢, = 0.0.

Contours of constant levels of (a) potential ¢, (b) parallel ion velocity v) and (c)

pressure fluctuation ép for a typical time (¢ = 270) in the turbulent state in Fig. 5.
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