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Due to their high sensitivity to magnetic fluctuations, runaway electrons
can be used to probe the structure of electromagnetic turbulence that causes
anomalous electron heat transport in the L-mode confinement regime. The
results of runaway conﬁnerﬁent experiments from ASDEX are analyzed and the
radial scale length of the magnetic turbulence is determined to be about 1 mm.
Using this value and that of experimentally deduced electron thermal diffusivity,
we determine the radial magnetic fluctuation level at the plasma edge in the L-
mode to be about 2 x 10~%. From a comparision of these results with the
predictions of various theoretical models, it is concluded that resistive-ballooning
modes offer the best possibility for a consistent interpretation of the data.

Neoclassical MHD equations, which are valid in the experimentally rele-

vant, low-collisionality régimes, support instabilities which might be responsible
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for anomalous heat transport and high turbulence level of the tokamak edge.
From the nonlinear study of neoclassical pressure-garadient-driven turbulence
(NPGDT), the turbulent pressure diffusivity is obtained as an eigenvalue of the
renormalized equations. The levels and radial scales of turbulence are also deter-
mined, and are shown to exceed mixing length estimates by powers of a nonlin-
ear enhancement factor. The reconsideration of the radial structure of magnetic
flutter driven by NPGDT leads to estimates of the electron heat transport and
magnetic fluctuation levels which differ substantially from previous calculations.
Neoclassical rippling modes can tap the density gradient expansion free energy

source through the density dependence of the neoclassical resistivity. The tur-

bulent radial diffusivities of the temperature and the density are obtained as.

eigenvalues of the renormalized eigenmode equations at steady state. The den-
sity gradient acts to enhance the level of turbulence, compared to that driveﬁ By
the temperature gradient alone. The saturated turbulent state is characterized
by: current decoupling, the breakdown of Boltzmann relation, a radial mode

scale of density fluctuations exceeding that of temperature fluctuations.
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CHAPTER 1
INTRODUCTION

This thes;s consists of two major studies: a study of runaway electron
confinement (Chap. II) and a theory of neoclassical MHD turbulence (Chap. III
and IV). The aim of the former is to study the structure of internal magnetic
turbulence in tokamaks, which is thought by many to be responsible the heat
transport. The aim of latter is to extend existing theories of MHD turbulence in.
tokamaks into experimentally relevant low-collisionality regimes. This section.
contains a theory of neoclassical pressure-gradient-driven turbulence (Chap. IIT)
and a theory of neoclassical resistivitj—gradient—driven turbulencé (Chap. IV).

One of the primary goals of magnetic fusion research is to sustain a high-
density and high—teﬁlperature plasma for a period of time, sufficient to generate
fusion power greater than input power. To this e_nd, the tokamak appears to be
the most efﬁcieﬁt device. Hence lots of experimental and theoretical efforts has
been focused on understanding the behavior of the tokamak plasma. However, it
is well known' that the energy confinement time (7g) of the tokamak plasma is
much shorter than what is predicted by the classical Coulomb—collisio/n-induc.ed
transport theory for tokamak magnetic geometry? (neoclassical transport). This

excessive loss of the plasma heat is dubbed anomalous transport. Furthermore,
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it seems inevitable that auxiliary heating such as neutral beam injection (NBI)
will be necessary to heat plasmas to thermonuclear temperatures. With the
onset of auxiliary heating, the decrease of 7g by a factor of 2 to 4 from the
value with only Ohmic heating (OH-mode) has been observed?® universally. This
deterioration of TE ,' referred to as the low-energy-confinement mode (L-mode),

becomes more severe® with increased auxiliary heating power.

Magnetic fluctuations are often suggested* as the cause of the anoma-
lous transport (especially in the L-mode) since even very small levels of magnetic -
flutter® can destroy magnetic flux surfaces, thus leading to enhanced trans-

port. When two adjacent magnetic islands overlap, magnetic field lines wander

‘sAtochastica.lly, and particles can transport energy along perturbed field lines due

to random-walk processes. Since electrons are more mobile than ions, they are
more effective heat carriers. It is important to note that electron dissipation is
essential for generating perperdicular mr—;Lgnetic ﬂuctué,tions, since it relaxes the
ideal frozen-in constraint.® Thus, it .induces parallel current fluctuations which,
in turn, induce magnet'ic fluctuations through Ampere’s law. With the level and

sturcture of magnetic fluctuations specified, the electron heat transport coeffi-

~cient (xe) has been calculated by many authors.”:8 However, these models are

not self-consistent in that electron motions are not allowed to affect magnetic



fluctuations. Also, the actual source and the structure of magnetic fluctuations

are not well understood yet.

Runaway electrons (REs) can serve as tests particles to elucidate the na-
ture of magnetic turbulence, since they are collisionless and sensitive to magnetic
fluctuations due to their large parallel velocity. Most runaways are produced dur-
ing the initial discharge phase, when the electric field inside the plasma exceeds
the Dreicer electric field.® Later, they are accelerated and in the current plateau
phase, they are.lost, due to magnetic turbulent transport. One unexpected as-
pect of the behavior of REs is that the RE confinement time (7r) ig found to
exceed 7, in the contrary to intuition and earlier theoretical prediction.” It was
shown?%11 that this discrepancy can be remedied when RE drift effects across
magnetic field lines were considered. Therefore, REs ca be used to determine

the radial scale length of the magnetic turbulence.

The motivation behind Chdp. II is the fact that 7g and 7g are well

correlated in the L-mode and tha they track the OH—L transition. The exper-

~ iments were performed on ASDEX. We develop a simple, generalized theory of °

electron heat transport, applicable to REs as well, to estimate W from the expe-
rimantally determined ratio of 7g/7r. This, in turn, is used to estimate the level

of magnetic turbulence by equating the measured electron heat diffusivity to the
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‘theoretical electron heat transport coefficient due to stochastic magnetic fields.

The parameter dependences of W and the level of turbulence are determined
from parameter scan experiments. These results are compared to theoretical

predictions in order to determine consistencies of existing theoretical models.

As resistive modes'? seem to offer the most consistent interpretation,
we further investigate the turbulence evolving from these instabilities. Also, the

turbulence in tokamaks evolves from instabilties due to relaxation of the infinite

conductivity constraint,® since tokamaks are designed to be stable in ideal MHD.

The peculiar feature of resistive instabilities is that magnetic reconnection be-

tween seperate magnetic flux surfaces can occur, leading to deterioration of heat

confinement. The important parameter, here, is the magnetic Reynolds numbér,
Su = mp/7a, where 7, is the resistive timescale, associated with the magnetic
reconnection, and 74 is the poloidal Alfvén transit timescale, associated with
magnetic free energy. The value of Sis for present-day tokamak parameters
reaches 10°, and is expected to reach 10 for future devices. The growth rate
() of resistive instabilities is slower than that of ideal MHD modes and it scales

as y ~ S3,;75 %, where s is a fraction between 0 and 1.

Three basic resistive modes were first identified by Furth, Killeen, and

Vs

Rosenbluth,? and extensive investigations followed. These still remain topics of



current research. The three modes are: (i) the tearing mode, due to the relax-

ation of magnetic free energy associated with the gradient in the current profile

(expfessed by A'), with s = 3/5, (ii) the resistive-g mode (resistive interchange

mode), due to the interaction of the pressure gradient with unfavorable curva-

- ture (curvature was effectively replaced by gravity in Ref. 12), with s = 1/3, (iii)

the rippling mode, due to the resistivity gradient, with s = 3/5. Although re-

sistive interchange modes are unstable, thus possibly accounting for anomalous

transport, in stellarators'® and reversed-field pinches,'* the average favorable..

curvature'® (minimum-B configuration) in tokamaks can stabilize these modes.
In addition, it may act to suppress'®1® the growth of the unstable tearing and
rippling modes. Therefore, attention has shifted to resistive ballooning modes,*”
where the pressure gradieﬁt in the localized outer region of unfavorabie curvature

forces modes to balloon outwards.

The resistive instabilities have been succesful!® in identifying many char-
acteristics, universally observed in tokamaks. The Mirnov oscillations,'® salient
in the current ramp-up phases, are associated with m > 2 (m is the poloidal
mode number) teaing modes.2° The sawtooth Qscilla.tions21 may possibly be ex-
plained by m =1 téaring modes.?? When a magnetic island from the m = 2

tearing modes grow, nonlinearly in the Rutherford regime,?® and contacts with



islands of different helicity (usually m = 3/n =2 and m = 5/n = 3,' where n
is the toroidal mode number), it may lead?* to major disruptions.?® The resis-
tive ballooning modes have been well correlated with anomalous transport in
the auxiliaﬁly heated ISX-B tokmak.?® The energy confinement scaling is best
described?” in terms of dimensionless parameters, derived from resistive MHD

28—34¢ may be responsible for the highly turbu-

equations. The rippling modes
lent characteristics of the tokamak Plé,sma edge®®: a broadband spectrum of
frequencies, high levels of density fluctuations (7i/ng = 10 ~ 100%, where ng
is the density) increasing radially, high level of electrostatic fluctuations, lazf.ge
diffusivities which are possibly correlated with fluctuation levels, and the viola-

tion of Boltzmann relation (fi/no # ed/T., where ¢ is the elctrostatic potential

fluctuation, T, is the electron temperature).

The resistive MHD model, however, is based on a short mean-free-path
description®® of the plasma, valid only in fhg Pfirsch-Schliiter regime,®” where
Vie > 1 (Ve = ve/¥Pwy., € is the inverse aspect ratio, v. is the electron
collision rate, and ws, is the electron bounce frequency). This renders the appli-
cation of these models to present-day tokamak operational regimes rather du-
bious, since the temperature is so high that even the edge plasma falls into the

low-collisionality, banana-plateau regimes. Recently, the reduced equations®® of




resistive MHD have been extended®® into the experiinentally relevant banana-
plateau regimes by incorporating the parallel viscous stress effects. The resultant
neoclassical MHD equations include a bootstap curre-:'nt,2’4° an enhancement of
the inertia*! (an enhancement of the perpendicular dielectric constant by a fac-
tor of B?/B%), trapped particle effects? in the resistivity, and the neoclassical
damping of the vorticity,ias Wéll as other properties.

The neoclassical MHD equations support a pressure-gradient-driven

39,42,43 17,25,44

instability, anologous to the resistive ballooning instabilities,
that the growth rate scales as v ~ 2/ 35’;41/ 3721 (B is the ratio of the kinetic

pressure to the magnetic pressure) and that the structure is quite similar. How-

ever, the neoclassical pressure-gradient-driven instabilities are more virulent in

- that they are unstable for arbitrary 3, Sy, etc., and that the neoclassical drive

dominates over the magnetic field line curvature in providing access to the ex-
pansion free energy. The turbulence evolving from the neoclassical pressure-
gradient-driven turbulence is the subject of Chap. III.

12,28=34 can couple to the density gradient through

The rippling modes
the neoclassical correction to the resistivity, since the effective neoclassical resis-

tivity is a function of the density as well as the temperature while, the classical

Spitzer resistivity®® depends on the temperature only. This coupling is signif-

n.
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icant when v, ~ 1, where most tokamaks operate. The density fluctuation
dynamics change the evolution of the rippling mode. In Chap. IV, we investi-
gate the neoclassical modification of rippling modes and the characteristics of
the turbulence evolving from the linearly unsfa,ble neoclassical rippling modes.

The modification of the tearing modes will be discussed in the Appendix._

Since the thesis contains three relatively independent works (Chapters
III, IV, and V), the discussion of each of them is self-contained. Note that -
the similar notation niight have different meaning in different chapters, so that.
some notation may have been redefined. A" substantial amount of introduction
is required to each chapter. It will be given at the beginning of each work, and
will not be repeated here. In the remainder of this chapter, we will give a brief |

summary of the individual works.

In Chap. II, we investigate the nature of magnetic turbulence. Sec-
tion 2.1 contains the introduction to this work aﬁd in Sec. 2.2, we summarize
experimental results, related to this work. In Sec. 2.3, we derive the electron
heat diffusivity (x.) due to electron motion along perturbed magnetic field lines,

starting from the electron drift kinetic equation.*> Magnetic flutter nonlinearity

is retained. It is shown that the calculated y. reduces to that of Ref. 7 in the

quasilinear approximation. For REs, the Doppler shift due to radial excursions
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across the mode rational surface reduces the effect of magnetic fluctuations on

RE transport. Therefore, the ratio of 7p/7r can be expressed as:

2 _ ViR g (VD,RLS>
TR Vi \ Vj,gW

Here, V) is the parallel velocity, Vp is the drift velocity, Ls is the shear length,
and S is the radial structure function of magnetic fluctuations. Also, the sub-
scripts, ‘R’ and ‘th’ denote REs and thermal electrons, respectively. When

S(Vp,rL:/V),rW) < Vjj,t1/V),r, one finds 7g/Tr < .1, consistent with exper-

imental results.!® In Sec. 2.4, we analyze experimental data from ASDEX. to.

obtain values and scalings of W and magnetic Auctuation levels (B,/By), W??
test the consistency of existing theories by comparing our results to theoret-
ical prgdictions. If § function is determined from the expérimental runaway
energy spectrum, it can be inverted to find W. We use a Gaussian S function
for simplicity in this investigétion to find W ~ 0.lem from 7g/7r. We can
also determine B:,. /Bo if W is known. It is higher in the L-mode than in the
OH-mode, and is higher at the edge than interior to account for experimentally
measured,* radially inceasing y.(r). The rﬁagnitude of B./By at the plasma
edge in the L-mode is determined to be about 2x107*%, consistent ,WithAt‘he
theoretical prgdiction of resistive. ballooning modes.” The scalings of W and

B, /Bo are also determined from parameter-scan experiments. As well as the
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three resistive instabilities identified in Ref. 12, skin-depth turbulence theory*”
and electromagnetic drift-wave turbulence*® are tested. Tt is concluded that the
resistive ballooning modes!” and possibly microtearing modes*® seem to pro-
vide the most consistent explanations of our results. Sectién 2.5 contains the

conclusions of this work.

In Chap. III, we investigate the nonlinear evolution and saturation of
neoclassical pressure-gradient-driven turbulence (NPGDT). Section 3.1 contains
an introduction to this study. In. Sec. 3.2, We,silmma‘,rize how the basic reduced
equations of resistive MHD (Ohm’s law, vorticity evolution, and pressure evo-
lution) are modified by neoclassical parallel viscous stress effects. In Sec. 3.3,
it is shown that the bootstrap current in Ohm’s law and the neoclassical vis-
cous démping of the vorticity acts to destabilize neoclassical pressure-gradient-

driven instabilities.39:42

43 The resistive ballooning modes in the Pfirsch-Schliiter
regime make a smooth transition fo néoclassical presSure-gradient-dﬁven insta-
bilities in the banana-plateau regime, as neoclassical effects become predomi-
nant over the curvature drive. Due to the neoclassical correction to the resis-
tivity, modes with poloidal wavelengths shorter than radial wavelenghts (i.g.,

m > 1) are suppressed, in contradiction to the case of resistive interchange

instabilities.’® In Sec. 3.4, nonlinear study of NPGDT is presented. Satura-

10




R

~ tion criteria are proposed. We use one-point DIA theory®® to renormalize the

E x B convective nonlinearities for the pressure and vorticity equations, yielding
ﬂuctuation—spectrum-dependent diffusivities. They are obtained as eigenvalues
of the renormalized equations at saturation. The turbulent radial diffusivities,
the level of turbﬁlence, and radial scales éf fluctuations are found to be enhanced
significantly over mixing length estimates. In Sec. 3.5, x. due to NPGDT is re-

examined. This may be the dominant heat loss channel in the L-mode, as shown

in Chap. II. The bootstrap current contribution to magnetic fluctuations domi--

nates over the Ohmic current contribution at saturation. The detailed structure

-of magnetic fluctuations should be considered when we determine mixing length.

Proper analysis leads to results which significantly different from previous ones.?°

Section 3.6 contains a summary and conclusions of this work.

In Chap. IV, we investigate the nonlinear evolution of neoclassical resis-

tivity gradient driven turbulence (NRGDT). Section 4.1 contains the introduc-

tion to this study. In Sec. 4.2, the theoretical model used in the study of NRGDT

is presented. We describe how the classical Spitzer resistivity is modified to ob-
tain the neoclassical resistivity. The structure of the neoclassical resistivity is
investigated in detail. It is shown that the density coupling to the resistivity

is greatest near v, . ~ 1. Since the couplings of the density and temperature

11




are different, the basic equations consist of Ohm’s law‘, vorticity evolution, and
temperature and density fluctuation evolutions. In Sec. 4.3, the linear stability
results are presented. Eigenmodes have radially asymmetric structure because
of the resistivity fluctuation, which is neglected in the study of NPGDT. Since
the parallel equilibration of density fluctuations due to the neoclassical viscous
damping has weaker stabilizing effects than the parellel thermal conduction,

the density gradient free energy source dominates over that associated with the

temperature gradient. Therefore, neoclassical rippling modes grow faster than:

ususl rippling modes,?® and the region where these modes are significantly ex-

cited extends to higher m-numbers. In Sec. 4.4, the nonlinear theory of NRGDT

is presented. The same criteria for saturation as used in NPGDT are applied.
The peculiar feature by which NRGDT at saturation can be distinguished from
other saturated turbulence is current decoupling: the current fluctuation is neg-
ligible W'here. other fluctuations are significant. Therefore, the vorticity evolution
equation decouples from other basic equations. Eigenvalue analysis to obtain
turbulent diffusivities is also utilized in this case. The density diffusivity is found
to be larger than the temperature diﬁ'uéivity. They differ from mixing leng.th

estimates not only quantitatively as in Chap. III, but also qualitatively. This

is because the nonlinear decorrelation rate is completely different from the lin-




ear growth rate. The turbulence level is characterized by: T./T. < #/ng, and
ed/T, # 7i/ng, consistent with experimental findings.?® The magnetic fluctua-
tion level due to NRGDT is too feeble to be significant. Section 4.5 contains
conclusions of this work.

In Chap. V, we present a summary and conclusions of the thesis, and
possible future applications. In Appendix A, it is shown that electrostatic
turbulence cannot simultaneously eﬁcpla,in the behavior of 75 and TR On AS-
DEX, as noteed to Chap. II. In Appendix B, we present a study of neoclasi
sical tearing instabilties driven by A’. It is shown that f;hese modes grow as:
v o~ S;{lrgl. Therefore, dominant neoclassical instabilities are neoclassical
resistivity-gradient-driven instabilities, neoclassical pressure-gradient-driven in-
stabilities, aﬁd possibly neocalssical tearing modes driven by other than the

current density gradient.

13




CHAPTER II

A STUDY OF RUNAWAY ELECTRON CONFINEMENT

2.1 Introduction

It is well known?! that the electron thermal diffusivity in tokamaks is
much larger than that predicted ‘by neoclassical theory.? Magnetic microturbu-
lence is often suggested as the cause of this anomalous transport,* since even
very small levels of magnetic flutter® can destroy magnetic flux surfaces, thus
leading to enhanced transiport. ’i‘he resulting electron thermal diffusivity, XAe,’

due to stochastic magnetic flelds has been calculated in various regimes,* "% with

‘the use of simple models for the structure of magnetic turbulence. However, the

actual source and the structure of magnefic ﬂuctuation; are not well understood.
Here, we report on the use of runaway electrons (REs) to elucidate the nature of -
magnetic turbulence. Such experiments are motivated by the high sensitivit;} of
REs to magnetic _ﬂutter.m’11 It was shown in Ref. 10 that when RE drift effects
were considered and a perpendicular correlation length was assumed, theoretical
predictions for the RE confinement time (tr) and the é;lobal energy confinement
time (7g) could be reconciled with the experimental results for moderate levels

of magnetic turbulence. In this chapter, we report on the results of experiments

14
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in the ASDEX tokamak which used REs as a probe to study the structure of
magnetic turbulence that appears to be responsible for both 75 and 7g in L-
mode confinement regimes. Using a simple, generalized expression for x. for the
runaway and thermal eleétrons, we can determine the radial correlation length
(W) of the magnetic turbulence from the experimentally determined ratio of

7g/7Tr. This, in turn, is used to estimate magnetic turbulence levels.

In ASDEX discharges, REs evolve through three different phases: pro-

duction, acceleration, and loss. First, during the initial discharge phase, when-

the breakdown voltage is 8 — 10 V, REs are produced throughout the plasma,

since the electron temperature (Te) and the density (n.) profiles are flatter than -

those later in the discharge. The generation of REs greatly diminishes after 60
ms, since the loop voltage drops below 1.5V, so that F inside the plasma is less
than 1/30 of the Drecier electric field® (Epreicer). The fact that there is no more
significant RE production is further confirmed by sequential beam firing experi-
ments (see Sec. II). In the second phase, during the current ramp-up (typically
600 — 800 ms), REs are no longer generated but are continuously accelerated.
Finally, after about 1 second, the current plateau phasé begins. This phase is
characterized by a steady state RE distribution at a mean energy of about 1

MeV. In this phase, REs are continuously lost due to turbulent transport.

15



The measurements of thick target, hard X-ray bremsstrahlung®? (¢2)
are used to detect REs. A characteristic time for the exponential decrease of ¢,
during the plateau phase can be interpreted as 7g, since the population and the
energy distribution of REs are invariant during this period. In ohmically heated
plasmas (OH-mode), 7R is generally a few hundred ms, while 75 is 80— 90 ms. It
is worthwhile to note here that 7 is strongly influenced by a change of magnetic

field topology at the plasma periphery; a sharp degradation of 7, accompanied

by strong modulation of ¢, by sawtooth activity, is observed when ¢, is near 3,.

where ¢, is the value of the safety factor at the edge. However, the bulk plasma

is insenstive to such variations.

During neutral beam injection (NBI), ¢, surges upward and then de-
creases very sharply, corresponding to a deterioration in RE conﬁnemenﬁ. This
deterioration is accompgnied by a degradation in 7 and in the particle confine-
ment time (7p), even at low beam power. Unlike the OH-mode case, there is
no additional drop in 7p when a ratiénal ¢o value (g, = Bj is passed through.
This suggests that the quality of the magnetic field topology has deteriorated, so
that the effeéts of additional perturbations are not so dramatic. Indeed, unlike
in the OH-mode, sawteeth strongly modulate ¢, in the L-mode for all g, value;.

However, because f, is low (8, is the ratio of the kinetic pressure to the poloidal

16



magnetic field pressure), the deterioration of 7z cannot be trivially attributed
to increased sawtooth activity. Furthermore, the behavior of ¢, remains same
without sawteeth in both OH- and L-modes. At the transition from the L-mode

to the H-mode,? the confinement of REs sharply improves, along with 7z and

7p, while 8, also increases due to improved global confinement.

A clear correlation between' the confinement properties of the bulk
plasma and of thev REs suggests that the degradation of 7 and 7p in the L-
mode is p‘erhaps due to magnetic turbulence, which vis evidently also responsible -
for RE confinement. There is still doubt whether the OH cdnﬁnement of the
C) bulk plasma is controlled by magnetic turbulence, since the g, dependenges of
7g and 7g are uncorrelated in the OH-mode. However, it is clear that magnetic
turbulence is not a trivial consequence of rising f, as predicted by drift wave
theory,*8 because of the implication of what is observed at the L—H transition,

where £ and 7 both increase.

In the present study, we analyse RE confinement data to probe the
structure of magnetic microturbulence. Specifically, we determine the radial
correlation Iength of the underlying magnetic turbulence using a simple model,
explained in Sec.III, which clarifies and extends previous work.®1%1! Because of

the dominant VB drift effect, the coupling of REs to microturbulence is greatly
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reduced, so that the effects” of large RE velocity parallel to the equilibrium mag-
netic field (By) are weakened by cross-field drifts. This enables us to calculate
W from the ratio of 7g/Tr, using the assumptions that energy is lost through
the electron conduction channel and that the electron loss channel is controlled
by:magnetic turbulence in L-mode. Then, the relative amplitude of magnetic
ﬂﬁ;:tuations (bo = B, / Bo) necessary for the stochastic ﬁeld—induced Xe to match
the expermentally deduced x. can also be determined if the spectrum-averaged
poloidal mode number (77) is known. The dependences of W and by on basic.
plasma parameters, such as the toroidal magneticﬁeld (Br), the density, and
the total input power (P), are determined seﬁi—empiﬁcdly from experimental
scans of 7z and 7 with respect to those' parameters. Having obtained the val-
ues and parametric dependences of W and by, we then test the consistency of

various microturbulence theories. -

The remainder of this chapter is organized as follows. In Sec. 2.2, the
experimental data is presented. The implications for x. and 7r are discussed.
A simple model for x. for both thermal and runaway electrons, including drift
and finite Larmor radius effects, is derived in Sec. 2.3. In Sec. 2.4, the results
obtained by using the model to analyze the data from AISDEX are compared

with the predictions of various theoretical models. Finally, Sec. 2.5 contains a




O

O

summary and conclusions of this chapter.
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2.2 Experimental Results

The measurements described below were performed on ASDEX, a di-
verted tokamak with major radius R = 165 ¢m and minor radius ¢ = 40 cm.
Discharges cover the parameter range of Br = 2.0 — 2.8 T, plasma current
I, = 200 — 400 kA, loop voltage V = 0.5—1.5 V, and n = (4 —8) x 10*3cm ™>.

The RE drift orbit is shifted outward with respect to the magnetic field
linesS? (Fig. 2.1), because the guiding-center velocity of REs has both a poioidal

(8) component, due to the helical motion around the magnetic axis, given by

B
vg = V)| B—; (2.1)

(where B, is the poloidal magnetic field), and a vertical component, due to

curvature and VB drifts, given by

L) , - (2.2)

[N R

1 2,
Vp = Un T
D Q.R \I
where {0, = eBr/ymec is the electron gyrofrequency and «v is the relativistic

factor. The orbital displacement AR is determined by tracking vy and vp.

When a > AR, we have

2

—7v/7? -1, | (2.3)
eBr .

AR~

where g is the average g value along the trajectory. Figure 2.1 shows the magnetic

field topology of ASDEX with the nested surfaces (dashed curves).




(1

FIG. 2.1 Runaway electron drift orbit (solid line) shifted outward with respect

‘to the magnetic separatrix (dashed line).
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FIG. 2.2 Time evolution of hard X-ray signal ¢, during the OH-mode inter-

rupted by two sequential neutral beam injection (NBI) pulses. NBI phases are

indicated by hatched time intervals.
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The RE drift surfaces for an energy of 5 MeV are shown as solid curves, both
inside the plésma and at the separatrix. When this orbit intersects a target
placed at the plasma midplane a few centimeters outside the separatrix on the
low-field side, hard X-rays are emitted.’? The target is also shown in Fig. 2.1.
Two targets are used, one out of molybdenum and the other out of tungsten.

Both are movable radially outward from the separatrix, on a shot-to-shot basis.

In Fig. 2.2, ¢ is measured during the OH-mode interrupted by two

sequential NBI pulses. During the first NBI phase, an initial increase of ¢, is

foﬂéwed by a sharp decrease, indicating that REs are quickly lost due to strong
magnetic turbulence. The trasient increase of ¢, at the OH—L transtion (by
a factor of the ratio of 7z before NBI to g after NBI) ¢an be understood as a
further confirmation of a reduction of 7z during NBI. We note that V;, decreases

as soon as NBI is applied. However, the second NBI pulse has little effect on ¢,

because REs are already almost gone and there has been no significant generation .

since the first pulse. In order to confirm this situation on ASDEX in more detail,

‘the loop voltage has been increased in the phase between the NBI pulses or after

NBI (the plasma current also increases as a consequence). In spite of the phases
of increased Vi, no REs are observed even in the phase of current termination.

This result, along with the fact that the electric field inside the plasma is much
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smaller than FEprejcer, confirms the assumption that most REs are geﬁerated
during the discharge initiation phase, especially before 60 ms. We note that
¢, during a discharge is solely determined by the filling conditions prior to tl}e
break-down.

Also, a steady-state energy distribution of REs seems t‘o dévelop during
the plateau phase, since the acceleration of high energy REs greatly diminishes
compared to “free-fall” acceleration during this phase. At the three phases of
an ohmic discharge, ¢, spectra have been investigated. In the plateau phase,
steady conditions are lachieved also for the RE distribution. A typical RE energy
of 1 MeV is assumed in the analysis of Sec. 2.4. The detection system cuts off
energies below 0.4 MeV. The viable probe position corresponded to RE energies
in the range of 1—4 MeV. Because of the steep decrease of the RE flux towards
higher energy (concluded from the ¢, radiaton spgctra), 1 MeV seems to be
typical RE energy of the resﬁlts presented here. Lower energy REs hit the
target plates. REs of energy above 10 MeV intersect auxiliary limiters. Because
of these characteristics and because the variation of ¢, is roughly exponential;
the e-folding time of ¢, is a good measure of 7g, even if there may be some

corrections due to weak generation and acceleration proesses.®® It is worthwhile

to note that these corrections have little effect on the results.
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FIG. 2.3 Time evolution of (a) plasma current Ip, central chord-averaged elec-
tron density 7., loop voltage Vi, and (b) ¢, during the initial and current

ramp-up phases.
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FIG. 2.5 Time evolution of (a) ¢, and Ip in the OH-mode and (b) ¢, in the

L-mode. NBI phase is indicated by the hatched time interval.
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Figure 2.3(a) shows I, and the central chord-averaged electron density,

Te, during the initial and current ramp-up phases. The corresponding ¢, is

~ shown in Fig. 2.3(b). In the current ramp-up phase, ¢, increases, not because

- more REs are generated, but because REs continuously gain energy. The se-

quence of rational ¢ surfaces moves from the interior across the separatrix as I,
is ramped up, with 7r being degraded as each rational g, crosses the separatrix.
The quality of magnetic field configuration is not influenced by the presence of

the separatrix, but rather by the cylindrical g, value.

In ohmic discharges, RE confinement is strongly affected by ¢, whereas.

bulk plasma confinement is not, as shown in the Br scan of Fig. 2.4. A sharp

degradation of 7r is observed at g, ~ 3, where ¢, is strongly modulated by

sawteeth. Away from ¢, ~ 3, little or no modulation of ¢, is observed. Other

known global quantities, such as 7 in Fig. 2.4, are almost completely insensitive

to thé destruction of the magnetic field topology at the plasma periphery.

NBI applied during the ohmic plateau phase causes a very sharp .d.e—
crease in ¢, (Fig. 2.5(b)), as compared to the case without NBI (Fig. 2.5(a)).
The variation of ¢, corresponds to a sharp reduction in 7r, leading to almost

full depletion of the RE population in a very short period of time.
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FIG. 2.6 Power dependence of 7g (open rectangles), particle confinement time
7p (asterisks, deduced from the particle balance; the recycling particle fluxes
correspond to the backflow from the divertor chamber and is measured seper-

ately), and 7r (open circles) normalized by their OH values.




In the L-mode, strong modulation of ¢, by sawteeth is observed for all g, values
(Fig. 2.5(b)), but in the OH-mode, only for rational ¢, values. Sawteeth give rise
to additional RE losses.’* However, the dominant mechanism is the increased
level of the magnetic turbulence. Also, in sawtooth-free injection phases, dis-
charges display the same variation of ¢, with NBI as discharges with sawteeth.
The turbulence that causes anomalous transport in the L-mode affects all three
confinement properties (7, 7p, and 7g) simultaneously (Fig. 2.6) and increases
with higher neutral beam power (Py1). Both 75 and 7& decre.ase monotonically
from their values in the OH-mode with increasing Pnr and approach 100 ms
and 20 ms, respectively, when Py reaches a few megawatts. In all cases, 7r
remains 5 — 10 times greater than 7g. The sharp drop in 7z at low Py indi-
cates that a substantial degradation of magnetic field topology occurs at very
low Pnr. It also indicates that sawt‘ooth coupling does not play a significant
role in 7g. This suggests that in the case of ASDEX, at least, the L-mode is not

a mere continuation of the OH-mode, but rather that a different mechanism is

triggered by NBI. We note that the increase in Pyy is quantized in power steps

of individual sources. The operation of a single source corresponds to a large

step because the power input step is doubled.
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FIG. 2.8 Time evolution of (a) 7, (b) ¢, (c) Ho-radiation, (d) back-reflected
flux. ¢, from the neutralized plate, in the OH-, L-, and H-modes. the transition

from the L- to the H-mode is indicated by the dashed vertical line.
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During NBI, 7 increases monotonically with ¢, in a By scan (Fig. 2.7), unlike
the case of the OH-mode, where sharp degradations at rational g, values are
observed (Fig. 2.4). The high sensivity of REs to magnetic turbulence indicates
that NBI degrades the quality of the magnetic field configuration to such an
extent that the additional disturbance caused by a rational ¢, surface is barely
observaJ'ole. The bulk plasma is insenstive to rational g, values, as in the OH-
mode.

Figure 2.8 shows sequential traces for ¢, ne, H, o',-radiation, and ¢, for
OH-, L-, and H-modes. The H,-radiation and ¢, are measures of the energy

flux and the particle flux into the divertor, respectively. It is interesting to note

that although the three signals (¢, Ha, and ¢,) are governed by different trans- -

port properties (i.e., RE, heat, and particle transport), they show simultaneous

OH—L and L—H transitions. Especially at the L—H transition, the rapid in-

crease in TR, characterized by a sharp drop in ¢, (7r in the H-mode cannot be

measured because fewer REs are left after the preceding L-phase), tracks the
increase in 7g and 7p.

It is clear from correlations between the confinement properties of REs
and the bulk plas,ma: in the L-mode that the confinement properties of both may

be governed by magnetic turbulence.
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- FIG. 2.9 n.-dependence of 7g in the OH-mode (open squares) and the L-mode

(open triangles) and of 7 in the L-mode (closed squares),




By analyzing data presented in this section, we can extract some useful informa-
tion about the structure of magnetic microturbulence, mainly, W and by. The
scaling dependence of W and by on P and ¢, (or equivalently on Br) can be
determined by analyzing Figs. 2.6 and 2.7, respectively. The results of the scans
of 7., which are used to determine the parametric dependence of 7z and 75 on
7 in the OH- and L-modes, are presented in Fig. 2.9, where 7g increases with
T, While 7'1% decreases with 7, for moderate beam power (Py; = 0.4MW). We
note that the density for L-mode power scans are kept below 3 x 10'% cm™3 to

avoid H-transitions at a power level above 1.8 MW.
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2.3 Generalized Theory of Electron Thermal Diffusivity

In this section, a simple model for x. due to stochastic magnetic field is

set forth. An attempt is made to relate 75 and 7r, which are global quantities,

to local values of x. that are determined from local estimates of microinstability-

induced transport.

A. EBlectron Thermal Diffusivity

"To" derive an expression for x. that is applicable to REs as well as

thermal electrons, the electron drift kinetic equation®3 is used:

) - . > . z  Of
—i (W —wp = k) Gz o+ D 01885 0 Vi F e =~ b kw g, Jo (FLpe).
’ E ,w! .

(2.4)
Here, gz, is the nonadiabatic part of the fluctuating electron distribution func-
tion, w is the mode frequency, k| is the wavenumber parallel to the magnetic
field, 65 is magnetic fluctuation normalized to By, §b = 68 /Bo, and fo the is
equilibrium electron distribution function. Also, Jy is the Bessel function of

zeroth order, representing FLR effects, and p, is the electron Larmor radius. A

simple slab geometry is used to calculate the drift frequency, wp:

wp = "KZR— (’U“ + 5?)_[_) N (2.5)
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where kg is the poloidal wavenumber. Note that the only nonlinear interaction of

gz ., in Eq. (2.4) is with magnetic flutter, 55}: - This nonlinear term is simplified

as

Z U”(Sbl-c",w' ) vﬁz—z’,w—w’ = _gl_c',w’ (26)

1 oyt
k! jw

where 7 is the nonlinear decorrelation time, which is an effective lifetime for

eddies of scales of order |k|~1. The evolution of f; is described by

Ofo or,
v =P 2.
o o (1)
Here, I', is the phase space flux, given by
Pp = U” Z Zr?—z,—wjo(k-]-pe>§l:,w' (28) ‘

R
Tt is easy to see that Eq. (2.7) is a diffusion equation with diffusion coefficient
determined from Egs. (2.4), (2.6), and (2.8) as
. ' AN
7 2 .
Xe =] > [b 5P T3 (k1pe)Re [i (w —wp = kjyj + ?> } ,  (29)
Ew ek
where Re[- - ] denotes real part of |- - -].

In the quasilinear approximation, where we neglect nonlinear mode cou-

pling, Eq. (2.9) becomes

e =m0f > (b5 P IE(kLpe)6(w —wp — Eyvy). (2.10)
Fw ‘
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When the ballistic frequency, k|v), is dominant over w and wp and FLR effects
are ignored, x. further reduces to
Xe = mlog] > 16,5 26y (2.11)
Ew
It'is interesting to note that Eq. (2.11) is equivalent to the expression for x.
derived in Ref. 7, since kj can be also written as (n —m/q)/R, where n and
m are the toroidal and the poloidal mode number;, respectively. However, this

simple expression for x. leads to the conclusion that 7r < 7g (because of the

very large v of REs), in contradiction with experimental results from ASDEX,. .

for which 7g ~ (5 ~ 10)75 (see Fig. 2.6), and elsewhere.!® This discrepancy can’

/

~ be resolved!®!! when the full expression for Y. is considered.

B. Magnetic Fluctuation Spectrum

In this section, we specify the structure of the radial magnetic field
fluctuations and make a few simplifications in order to evaluate the right-hand
side of Eq. (2.9). The first simplification can be made if one notes that magnetic
fluctuations that contribute to y. are due to microturbulence, excited near ‘a,

rational surface and localized in radius. For a continuum of localized modes, we

can write

Zz: = ;Zﬁ/dm%lmlfdw, | (2.12)
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where ¢' = dg/dr and z is the radial displacement from the rational surface.

With this change, it is convenient to describe b, in terms of m and z, i.e.,

.5 o2 = ol = CM F(m) g, <Wiw> . (2.13)

Here, F(m) is a poloidal mode number distribution function, W, is the radial
correlation length for mode m, and St , is a radial structure function. The
constant CM is chosen to give the mean-square amplitude of the magnetic fluc-

tuation level, i.e.,

bg = Z Igr,E,wIQa (2.14)
Ew 4 ,
and therefore
, -1.
oM = 2 [%—' / dm[m[W'mF(m)] . (2.15)

Separafing the frequency spectum from S Fw in Eq. (2.13) yields

bg sz

k - T/Vm_rIF<n?)SE <W.m) 7 {(w —wg)? + (Awg)?}

|2

(2.16)

rk,w

Here, Awy, is the line width of the frequency spectrum,

I=(l¢'/¢*) / dm|m|F(m),

and Wp,r normalizes Sy such that

1 T
Wont / 45 (WZ> =b (240
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with SE(O) = 1.
From Egs. (2.12) and (2.17), one can easily evaluate the right-hand side

of Eq. (2.11), which yields
|y | Lsb3

R L 2.18
kGWmI ( )

7
where L; = Rgq/§ is the shear length and § = r¢’/q is the shear parameter. We
have used k” = koz/L,. Thus the effective connection length, denoted as D, in
Ref. 7, is identified as 7L, b% / koW m 1, where (7) denotes the spectrum average.

One can now experimentally estimate x. for the bulk plasma if by, W1, and

kg (or ) are measured.

C. Basic Scales and Regimes
The estimation of x. is further simplified, without loss of generality, if
Xe is evaluated in two different regimes, separated according to different time
scales. Autocorrélation times (7,c) are reléted to the natural randomization
time of the spectrum. These are |v DAl_c’I‘1 (due to the spread in wavenumber,
AE), Aw}?—l (due to the spread in frequency spectrum), and Ik],|vIIW7c’|_1 (the
wave-electron decorrelation time). Usually, one can take
Tac = (Kjjloy| W)™, (2-19)
since it is the fastest of the three time scales. The correlation time (7;) is

the turbulent decorrelation time, determined under the assumptions that the
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dominant length scale causing anomalous transport is Wy and that the dominant
time scale is 7, i.e.,
-1
X
Te = (W) : (2.20)
P/ |
In the ‘strong’ turbulence regime, where 7, < Tae, turbulence is fully
developed and the nonlinear interaction between different modes becomes dom-
inant. In the ‘weak’ turbulence regime, 7, < 7. and nonlinear interactions can

be neglected.

D. Comparision of x. for Thermal and Runaway Electrons

In this section, we evaluate x. (Eq. (2.9)) for thermal and runaway
electrons in both strong and weak turbulence regimes. These are compared in
order to obtain W. The magnitude of by can also be estimated so as to match
the experimentally observed value of y. when ™ is known.

For thermal electrons in the weak turbulence regime, y. is given by

Eq. (2.18). For thermal electrons in the strong turbulence regime, x. can be
calculated from Egs. (2.9), (2.12), (2.16), (2.17)’, and (2.20) to yield

Xe,th = [v)ftabo W, (2.21)
where the subscript ‘th’ is added to indicate thermal electrons. Thus, in this
regime the effective connection length for thermal electrons (Ds;) is b W. Com-

paring Eqgs. (2.18) and (2.21), one can see that the integration constant W s is
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" absent in Eq. (2.21) because St is radially averaged instead of being evaluated

at a particular position (at £ = 0 in Eq. (2.18)). It is interesting to note that
because the dependence of y. on by is different in the two regimes, one can
experimentally determine the proper regime for thermal electron diffusion. |

It is very likely that REs are in the weak turbulence regime because of
their large parallel velocity. However, x. is not given by Eq. (2.18) since wp and
kv are comparable vand the Doppler shift away from the k- B = 0 resonance

becomes significant for REs. Therefore, we have

o

Xe,2 =m0 g > (5,7 [P I3(kLpe,R)6(wD,R = Fyvy, ), (

Fw

22)

where the subscript ‘R’ denotes runaway electrons. Even for REs, the argu-
ment of Jp is small enough for FLR effects to be ignored. Therefore, with our

representation of the magnetic fluctuation spectrum, Eq. (2.22) yields

stg WD R
Xe,R =T|V||RT— Sz | = : . 2.23
‘ il keWmr " <k1|UI|,RW 223

It is important to note the appearance of Sg, representing the significance of
radial excursion of the ‘REs, as well as the appearance of W, (instead of ).
The X-ray spectrum is expected to cut off at very high enefgy because the radial
excursion width of very high energy REs greatly exceeds W and the argument

of Sg becomes so large that Xe,r eventually vanishes.
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Now, by comparing xe,:» and Xe,r and by using Fig. 2.6, we can cal-
culate W. For simplicity, we assume that thermal electrons are also in the
weak turbulence regime. This assumption is marginally satisfied for ASDEX

parameters. From Egs. (2.18) and (2.23), we obtain

B o XeR _ VIR o (L“’D’R) . (2.24)
TR Xeth  Ulth * \ Wo,r

Without the S term, Eq. (2.24) would predict/ Tr < TE, as in the simple theory.”
However, St evaluated at the radially shifted position for REs becomes smaller
than the ratio of v g/v) ¢, so that 7r becomes longer than 7z, consistent with
experimental results.

To find W, we need to solve Eq. (2.24), which requires inversion of the
S§ function. the structure of Sy could be understood in detail experimentally, if
the 7 specﬁrum of RE energy were measured. We consider a simple case here.

If St is Gaussian, then Eq. (2.24) yields

W = L, 22:E -4 <M> : (2.25)
V)R V| ¢ATE 4

and from Egs. (2.18) and (2.25), we find

— 1

—1 (keXewmvD,R\*, _1 [ V|,RTR

bo =% <—X—Q—) In~% [ LEE D (2.26)
Y||,tr Y|, R Y||,trTE

Thus, only 7g/7r and the average energy of the REs need to be measured to
determine W. However, X ; and ko (or M) must also be known in order to

determine bg.
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2.4 Analysis of Data
Having derived a simple generalized expression for x. for the REs and
the bulk plasma, we now analyze experimental data from the ASDEX tokamak

in order to find the magnitudes and scalings of W and by. Noting that the 7z and

TE measurements are global, we calculate W and bg at the two different radial -

positions of plasma, thajt are believed to be related to the overall transport
behavior, viz., at the ¢ = 2 surface®® and at the edge®® of the plasma. The
results are shown in Table 2.1. For the L-mode, a typical neutral beam injection
power of 1 MW is chosen. It is worthwhile to note again that in the OH-
mode, it is quéstionable whether the confinement of the bulk plasma is also
govérned by the magnetic turbulence, since the g, dependences of 7z and 7
are uncorrelated. However, 7 and 7z cannot be simultla,neously governed by
electrostatic turbulence, as shown in the Appendix.

The magnitude of W is insensitive tcl)‘the theoretical model for St.
Hence, detailed information about the structure of St (the 7z spectrﬁm in terms
of the RE energy) is not very important for finding W and by. | Asseenin Table 1,
W is also insensitive to the confinement zones and is of order of 1 mm, consistent

with the notion that W arises from microturbulence.
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W (mm)

OH-mode L-mode

g=2 edge g=2 edge

1.3 1.1 1.3 1.2

6B,/By (1074

" OH-mode L-mode
g=2 edge g=2 edge
0.48 0.87 1.1 1.8

TABLE 2.1 Values of the radial correlation lentgth (W) and the radial mag-

netic fluctuation level (6B,/By).
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With the experimeﬁtally deduced radial profile’” of y. and with the
choice®® 6 < m < 10, it is found that by is larger at the edge than at thé
g = 2 surface, corresponding to radially increasing y.. The magnitude of by is
also larger in the L-mode than in the OH-mode, corresponding to confinement
degradation during auxiliary heating. It is interesting to note that even very
weak radial magnetic fluctuations (b > 10™*) can induce significant anomalous

electron heat transport. Furthermore, this level suffices for magnetic field lines

to become stochastic, which is a necessary condition for this theory to be valid...

The scalings of W with P (note that P denotes the total power, not

- just the neutral beam injection power) cad be found by analysing Fig. 2.6. It

should be noted here that the ratio of 75 /TE is mostly influenced by W; i.e.,
when W is decreases, the RE drift effect is enhanced, leading to an increase in
Tr/TE and vice versa. Now, since Fig. 2.6 shows that the responses of 7 and
7g to changes in P are quite similar, it can be easily inferred that W is very

weakly dependent on P.

However, 7r and 75 respond to changes in ¢, (or Br) differently; i.e.,
TR Increases with da, While 7 remains constant in the L-mode, making 7r/7x
increase with ¢, as shown in Fig. 2.6. This indicates that W decreases as da

increases, in that the Doppler effect of the REs due to their large radial excursion
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becomes larger. The inverse scaling of vp,r with Br makes this dependence
even stronger. However, because 7r/7g decreases as n. increases as shown in
Fig. 2.9, W increases as n. increases, so that the RE drift effect is suppressed.

The parameter scan results can be summarized as
0.2 p—1.3 p0.05 -
W ~ng“Bp " P77, (2.27)

Furthermore, a scaling study of by can be similarly done, although simple infer-
ences are not easily drawn from Figs. 2.6, 2.7, and 10 because of rather compli-

cated dependences. The results is given by
bO ~ ne—0.05BEO.6PU.6 (228)

We next compare these results with predictions of various microtur-
bulence theories. First, “skin-depth turbulence”*” whose radial scale length is
¢/wpe, Where wp, is the electron plasma oscillation fréquency, is inconsistent with

scaling result because ¢/wp, is proportional to n;°-° whereas W is proportional

0.2

e . It is also inconsistent with the Bp scaling result that W is strongly

dependent on By, since ¢/wp, is independent of Br.
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In the usual theory of electromagnetic drift wave turbulence,*® one has

W ~ 3p,,
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and

b§"g3ﬁ§i.

n

Here, the superscript “dw” denotes drift wave turbulence. Also, ps = ¢5/Qi, ¢ =
\/W, Q; is the ion gyrofrequency, M; is the ion mass, 8 = 8wp,/B%, and
L, = —|[dlnn./dr]"" . Although this theory correctly predicts the Br scaling,
b2¥ is about 1/10 of by. Also, because 3 is lower at the edge of the plasma, b§¥" at

the edge is smaller than g% at the ¢ = 2 surface, in disagreement with the fact

that by must be larger at the edge in order to account for the radially increas-

ing xe. Furthermore, 7p and 7z increase sharply at the onset of the H-mode

(Fig. 2;8) while f, also increases further, due to improved global confinement.
This indicates that the high level of magnetic turbulence in the L-mode is not
a trivial consequence of increasing fp, in contradiction with the prediction of
simple electromagnetic drift wave turbulence theory.

We now investigate the three resisti%ze MHD instabilities.*? Rippling

28=33 or current convective instabilities, are excited by a resistivity gra-

modes,
dient and a parallel equilibrium current in Ohm’s law and are stabilized by a

large parallel thermal conductivity. A nonlinear study shows that

1
ri E()Ls 3 —12,_1
WM:G%%>WM”&
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Here, the superscript “ripp” denotes rippling modes, Ey is the equilibrium elec-
tric field, n is the resistivity, L, = [dlnn/dr]_l, "fl = kg/Ls, and x| is the
parallel thermal conductivity. One can then find by by integrating Ohm’s law
around the rational surface and using the constant-¥ approximation,'? which

yields

. 9 By [ EoL.\? s
br:pp - A .
0 = 1B (CBoLn> Gk

Calculations show that WW™PP agrees with W, both in magnitude and in scalings.

However, b5?? is smaller than by by a factor of 102, which makes transport due.
to magnetic fluctuations induced by rippling modes insignificant.

Microtearing modes*® are driven by an electron temperature gradient
and the time-dependent thermal force. These modes have frequencies compa-
rable to the diamagnetic drift frequency, wye, and can be separated into two
regimes according to the electron response: collisional for adiabatic electrons
(w > X”kﬁ), and semicollisional for isothermal electrons (w < X”kﬁ). The Width

of the thermal conduction layer determines W#:

‘ 1
2 ——
we = () @R

Here, the superscript “ut” denotes microtearing modes, v, is the electron colli-

sion rate, and Lt = — [dIn T, / dr]™r. When W#* is comparable to the width of
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the magnetic island, one finds

b#t . Vel
0

= 0l
With ASDEX parameters, W#® is in agreement with W and is consistent with
scaling results. This correctly predicts the radially increasing yxe, since bf tat
the edge is larger than b} t at the ¢ = 2 surface, because of the low edge temper-
ature. Its magnitude also agrees with by as observed in the OH-mode. However,

microtearing modes do not seem to be a viable candidate because the magnitude

of b&" is about 1/10 that of by in the L-mode.

26,40 are excited by a pressure gradient in the

Resistive-ballooning modes
bad curvature region, when f, is large, in spite of the average minimum-B con-
figuration of the tokamak. These are the toroidal analog of resistive interchange
modes. Since field line bending is a dominant stabilizing force, one finds W™

by balancing inertia with field line bending to obtain

k
W = ;q [énzvnTA/SM] .

=

Here, the superscript “rb” denotes resistive-ballooning modes and Sps is the
ratio of the resistive time 7. to the poloidal Alfvén time 74, with 74 = Rg/va

where v4 is the Alfvén speed. The growth rate, y,, is given by

—(gem ) (PN
7n—<ﬁpeLP> <5M> 4

s
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Here, € is the inverse aspect ratio and L, = —[dIn p/dr]—l, where p is the

pressure. Using Ohm’s law and Ampere’s law, one finds

47 %9 b\ 4
bp = —— (W7 .
0 ¢ nL, (W ) Tn
For ASDEX, W™ agrees well with W in magnitude and scalings. Also, byt is

consistent with radially increasing x. and the observed confinement degradation

during NBI. Although the n, and Br dependence of b3 is somewhat stronger

than that indicated by the parameter scan, resistive-ballooning modes seem to

offer the most plausible explanation of the results.

It is interesting to note that a recent study®® of the effect of a diverted

tokamak geometry shows that, because of increased shear near the separatrix,

* resistive MHD modes can be quenched, thus leading to a transport barrier®?

and a good confinement behavior in the H-mode. It is also interesting to note
that because W™ and b5 are strongly dependent on m, an accurate measure-
ment of 77 may reveal that W™ and b™ are considerably larger or smaller than

indicated by the present calculations. However, we note that scalings as well as

relative magnitudes at different positions (i.e., by at ¢ = 2 must be smaller than

bo at the edge to match with the radially increasing x.) and in different opera-

tional regimes (i.e., by in the L-mode must be larger than by in the OH-mode to

be consistent with confinement degradation during auxiliary heating) are more
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important than the magnitude itself in determining the consistency of theories.

Finally, Alfvénic microturbulence is also a plaﬁsib,le candidate since it

has a characteristic radial scale length that is comparable to the Alfvén layer

width, 24 = pscsLs/Lnva. Note that z4 is proportional to ne%BEl, consistent

with the n. and B7 scan results. Further, detailed experimental results are

needed to distinguish between the various possibilities.




2.5 Conclusions

We have derived a simple theory for x., which enables us to calculate
the radial correlation length, W, of the electromagnetic turbulence from the
ratio of 7r/7g. Then by can also be defcermined by matching the experimantally
deduced x., if m is known. This electromagnetic microturbulence seems to
govern g and 7g simultaneously in the L-mode, as evidenced by the clear
correlation in confinement properties. Scalings of W and by are deduced from
parameter scans. These properties of microturbulence are compared with various
theoretical predictior;s in order to test the consistency of theories.

The principal results are as follows:

(1) From the ratio of 7r/7E, we calculate W to be about 1 mm, independent
of assumptions about confinement zones or modelling.

(i1) With the assumptions that 7 is 6 — 10 and that the radial stucture of
the underlying magnetic turbulence is nearly Gaussian, by is estimated
to be about 2 x 10™* at the edge of the typical L-mc;de plasma. This
result is in agreement with the level which is experimentally deduced

-

from measurements outside the separatrix.®
(iii) From plasma parameter scanning results, we find

<3

W o~ ng.ZB’-T—l.SPO.OS and bO ~ ne—O.OSBEO.ﬁ‘PO.G.
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(iv) Among various turbulence theories, the skin-depth turbulence theory?’
is in contradiction with our scan results, since ¢/wp. is proportional
to n7%5. Rippling?®~*? and microtearing®® modes predict magnetic
fluctuation levels that are too low to explain the observed x. in the L-

mode. Resistive-ballooning modes?®%% seem to be the candidate which

is most consistent, in both magnitude and scalings, with the data.

54




o

o

N

CHAPTER III

THEORY OF NEOCLASSICAL

PRESSURE-GRADIENT-DRIVEN TURBULENCE

3.1 Introduction

Resistive interchange-ballooning instabilities'? have been successful in
explaining experimentally observed anomalous heat transport in stellarators,!3 .
reversed-field pinches,'® and the auxiliary heated high-8 ISX-B tokamak.2® How-
ever, these theories are based on a short mean free path description of the
plasma, valid only in a Pfirsch-Schliiter regime where the collisional mean free
path is much shorter than the parallel scale length (i.e., connection leﬁgth).
This makes the application of these mbdels to present-day tokamak operational
regimes ra,the; dubious since the temperatures are so high that plasmas are in
low-collisionality, banana-plateau regimes.

Recently, neoclassical MHD equations have been developed®® to treat
the low collisionality regime. It has been shown?? that these equations support
interchange-like instabilities when (dP/dr)(dg/dr) < 0, where P and ¢ aré the
pressure and the safety factor, respectively. In a related study,*® a kinetic treat-
ment of the dynamics of trapped particles reached similar conclusions. More-
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over, these neoclassical MHD equations have well-known neoclassical properties
such as: a boots’érap current*? in Ohm’s law as the consequence of the interac-
tion of the pressure gradient with the radial excursion of trapped particles, an
enhancement of the inertia*! (by a factor of B?/B2) because of an additional
polarization drift, neoclassical diffusion fluxes,? the Ware pinch,®? and the neo-
classical correction to the resistivity.? Experimental evidence for the bootstrap
current has been observed in TFTR®? as well as in a toroidal multipole.®* The
neoclassical correction to the resistivity has important implications for the dy-
namics of resistivity-gradient-driven instabilities?®~%* (rippling modes) since the
neoclassical resistivity is 2 function of the density as well as the temperature.

This will be discussed in Ch. IV.

In this chpter, we study the nonlinear saturation of neoclassical pressure-
gradient-driven turbulence V(NPGDT), evolving from linear interchange-like in-
stabilities described by the neoclassical MHD equations. The structure of the
neoclassical pressure;‘gradjent-driven instabilities is similar to that of resistive
interchange modes.!® However, it should be -noted that neoclassical modes are
somewhat more virulent, in that they are unstablé for arbitrary £, Su, etc. (B
is the ratio of the kinetic pressure to‘ the magnetic pressuré and Sy is magnetic

Reynolds number). Renormalized equations are derived. They are solved, yield-

o6
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ing the amplitude-dependent nonlinear viscosity (or diffusivity) as an eigenvalue.
A similar treatment for resistive interchange modes®® led to the conclusion that
although mixing-length estimates correctly predict the parameter scalings in
leading order, they significantly underestimate the magnitude. Our study shows

that the same result holds for NPGDT.

The remainder of the chapter is ofga,nized as follows. In Sec. 3.2, neo-
classical MHD equations are summarized and corrections to the ususal resistive
MHD equations due to the inclusion of the parallel viscous stres.s tensor effects
will be discussed. The parallel viscosity due to trapﬁed particles leads to a boot-
strap curre‘nt and a neoclassical correction to the resistivity. The perpendicular
component of tﬁe parallel viscous force (the cross viscosity) leads to additiogal
viscous damping and a neoclassical enhancement of the polarization drift. En;
ergetic trapped particle effects,®® which are significant in experiments®® with
perpendicular neutral beam injectio_ri or resonant radio frequency heating, are

also incorporated.

In Sec. 3.3, linear analysis reveals various branches of the neoclassical
resistive interchange instability. Without neoclassical or hot trépped particle
effects, resistive interchange modes!® become unstable due to the interaction of

the pressure gradient with the average unfavorable curvature. These modes are
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stable in tokamaks because of the minimum-B configuration. However, when
the hot particle population trapped in the unfavorable curvature region becomes
significant, energetic trapped-particle-dﬂven resistive interchange modes®” are
unstable. When plasmas are in the banana-plateau regime of the collisional-
ity, neoclassical effects are dominant and neoclassical pressure-gradient-driven
modes*?*3 (bootstrap current modes) become unstable. NPGDT evolves from

these modes. In all cases, when the radial correlation length is much smaller

=1

than the poloidal correlation length, the growth rate scales like v ~ S;,Il/ % ;4
where 74 is the poloidal Alfvén transit time. In the case of resistive interchange
modes,'® it has been shown that when the poloidal correlation length becomes
shorter than the radial mode width, one can recover fast interchange modes
where the growth rate is independent of the resistivity. However, because of
their rather unusual structure, bootstrap current modes are stabilized in the
short poloidal wavelength limit. The neoclassical correction to the resistivity is

responsible for suppressing small scale bootstrap current modes.

-In Sec. 3.4, nonlinear study of NPGDT is presented. Nonlinear satu-
ration occurrs when the nonlinear energy cascade from linearly unstable, long
wavelength modes to the short wavelength dissipation range balances the linear

source. This cascade is mediated by E X B convective shearing. As to dominant

o8




long wavelength modes, the saturation mechanism can be viewed as a radial
diffusion, which balances the driving forces, naturally leading to the broade:rlingr
of theée modes. The amplitude-dependent turbulent diffusivity is obtained from
the renormalized equations (i.e., as an eigenvalue of the renormalized eigen-
value problem at saturation) and is significantly larger than the mixing-length
estimate. Other fluctuation quantities are also evaluated, showing significant
enhancement over mixing-length estimates.

In Sec. 3.5, the problem of the electron heat transport due to stochastic

magnetic fields driven by NPGDT is revisited. The radial structure of magnetic

flutter® associated with NPGDT is recoﬁsidered. The bootstrap current con-’

tribution to anomalous transport, which is unique to NPGDT, is also included
in the determination of magnetic fluctation ievels. Thus, a cross correlation
between the pressure fluctuation and the electrostatic potential fluctuation ap-
pears. Results show both qualitative and quantitative differences from previous
calculations®® of y. (x. is the electron heat diffusivity). A recent study®® of
Xe due to reistive interchange modes reached the same conclusion, as expected
because of the similarity in the structure of the resistive interchange modes and
NPGDT.

Finally, Sec. 3.6 contains a summary and conclusions.
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3.2 Basic Equations

The neoclassical MHD equations®® are employed in order to study the

structure of neoclassical pressure-gradient-driven turbulence (NPGDT). They

are valid in the long mean-free path (banana-plateau) regime. A comprehensive

theory of the extension of resistive MHD equations, which are valid only in the
short mean-free path (Pfirsch-Schliiter) regime, into a low collisionality regime
can be found in Ref. 39. In this section, we summarize the results necessary
for the nonlinear study of NPGDT, and discuss the differences between the two
models.

The major correction to the momentum balance equation is the addi-

tion of a large parallel stress tensor due to the friction between trapped and _

circulating particles. The flux-surface averaged neoclassical parallel Ohm’s law

is then

| Le ¢ dP
E”::zg{_b Vqﬁ_nsp <1+_> J”—l—?’]spa ” B_GE: (31)

Here, Fy is the parallel electric field, b = B/|By|, ¢ is the parallel component
of the magnetic potential, ¢ is the electrostatic potential, J)| is the parallel
current, and 75 is the classical Spitzer resistivity (which is a function of the

electron temperature only). For Zeg ~ 1, a. ~ 0.51 and

2.3 :
. = 1>/2€ve (3.2
14102032 { 1.0,
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Here € is the inverse aspect ratio, v, is the electron collision rate and v, =
ve/ 3/ 2 e, Whe being an electron bounce frequency. Recalling that the classical

Ohm’s law in resistive MHD is

By = nspJy,

it is easy to see that the Spitzer resistivity is replaced by the effective neoclassical

resistivity,

lneo = TJsp (1 =+ Fe ) . (3’,3‘) ;

QeVe
It is interesting to note that since nye, is a function of the density as well as the
temperature, rippiing modes?® 3% which tap the free energy in the resistivity
gradient, can now be driven by a density grédient. A nonlinear study, incorporat-
ing density dynamics in the evolution of resistivity-gradient-driven turbulence,
indicates that the density gradient acts to enhance the turbulence level for nor-
mal tokamaks profiles (i.e., n,7" > 0) where n. and T, are the electron density
and the temperature, respectively, and n, = dn./dr, etc.. A detailed study
of the neoclassical resistivity-gradient-driven turbulence will be presented in
Ch. IV. The bootstr_ap current term in Eq. (3.1), Jpt = (ue/aeve)(c/Be)dP/dr,
Whicﬁ does not have an analog in the classical Ohm’s law should also be noted.

The bootstrap current arises due to the fact that ion poloidal current vanishes




because of large ion viscous drag and electron viscous drag reduces electron
poloidal current.
The vorticity evolution equation, derived from the charge neutrality

condition, is

d B\ ,: B_ . BBd_ - B S o
1+ = — = —bxK-V(2P+B,+P
g <1+ Bg> Vit = 2 Vit g, g P T P X K VP Bt P,

(3.4)
where K = b - Vb is the magnetic curvature, the subscript ‘h’ denotes the hot
particle component, and d/dt = 8/8t+(¢/B)bXx V¢-V denotes the total convec-
five derivative. The 1eft—hand4side of Eq. (3.4) denotes the parallel component
of the vorticity, which arises from the éo_larization drift. Note that the iner-
tia is enhanced by a factor of B2?/B%. The first term in the right-haﬁd—side of
Eq. (3.4) represents fleld line diffusion (field line bending) and the second term
represents viscous damping due to anisotropies in the perturbed pressure. The
latter is an analog of the boots‘trap current and should be kept pairwise with
it. The interaction of these two terms is crucial in driving:neoclassical pressure-
grédien‘c-driven \inst;a,bili’cies.‘“’43 Finally, the third term denotes the interaction
of the pressure with the magnetic curvature. Note that hot particles, treated
separately from the core or warm particles, do not contribute to viscous damping

because the collision rate for hot components is very small. Their contribution
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to the bootstrap current is also negligible since Jui,n ~ —(¢/Bg)dP) 1 /dr, so

that in the present ordering scheme, €2P ~ e¢P) ), ~ Py -

For the core plasma,

P 0P <

e +Bbxv$-\7P=o, (3.5)
i.e., the convective response to E x B flow is used. When hot particle effects
and the curvature interaction are ignored, Eqgs. (3.1j, (3.4), and (3.5) constitute
the basic equations for theor.etical model of NPGDT. When the hot trapped
particle population becomes significant, as in thelperpendicular neutral beam
injection experiment,®® the perturbed distribution function is obtained from
a drift kinetic description of hot particle dynamics. A complete description
can be found elsewhere.®® Taking a second moment of the nonadiabatic part ofv
the perturbed distribution function of trapped particles yields the hot particle

pressures.

Pir Bl

x /dE{O‘B/Q(i"QB)} E—%Q—”—‘(qﬁ— Ly). ©5)

P ; B i
( ~'L’h> =— 257rehB/ da(l — ozB)l/2

w— Wyp
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Here,

: 0
Qh = (wB_E_ +w*h> FOh,

~

Gsh = ——Db - xV1n Fyp - V,
Qp

o _bx(vﬁ_VlnB-i—,?vﬁK) o
dh = —1 -V,
204

Qpr = epB/mpc is the cyclotron frequency, o = u/E is the pitch angle, yu ="

v} /2B is the magnetic moment, £ = v?/2 is the energy per unit mass, Fop
is the unperturbed hot particle distribution function, and (---) denotes bounce

averaging between turning points, i.e.,

o L)
Jdlfvy

Also in a low-f approximation, VIn B ~ K. Now, Egs. (3.1), (3.4), (3.5), and
(3.6) constitute the basic equations for NPGDT with hot particle and curvature

effects. The linear theory of this system will be studied in the next section.




3.3 Linear Theory "

Having introduced the basic theoretical model, we study the linear sta-
bility of this model in this section. To render the theory analytically tractable,
two important approximations are made. First, as a consequence of the elec-
trostatic approximation, the neoclassical Ohm’s law is simplified and b reduces
to the unit vector of the equilibrium magnétic field. Second, by neglecting the
rippling effect (7j evolution), the density and the temperature evolutions need -
not be treated separately, and the model consists of evolution equations for 3,
3", and P.

\/ With these approximations, one finds two coupled equations for & and

Jj by solving for P, e,

¢ ¢n, dPdd® -
k” Z?]J” + 6. — B B —kg— ar d:E (3/)
B2 B2y B dP d
,0’)’2 <1 + Eg) Vﬁ_@ =1 2 k'” J” + B—Le ar do <I{ )@

B? [ KB /dEwE Qn

®.(3.8
CY2(1—@53)% W — Wdh ( )

Here,
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1 = Tneo, K is the total curvature, & = (4), and Jjj = (7)) where ((---)) denotes

flux surface averaging,

@B
(¢ = L2,

Therefore, coefficients are also flux surface averaged. Also, perturbed quantities

are Fourier analyzed according to:

- i (v -t

where m and n are péloidal and toroidal mode numbers, respectively, Rq is the’

major radius of tokamaks, z is the coordinate along the major axis, and z = r—r,
is the displacement fromv the mode rational surface ['»*v;hére g(rs) = m/n]. In
Egs. (3.7) and (3.8), the analysis assumes two different spatial scales: the longer
parallel length scale, related to the connection length, and the:shorter perpen-
dicular length scale, related to the resistive layer width. Perturbed quantities are
averaged ovef along the slowly varying parallel direction, such that the equa-
tioné are in the fast variable z. This a,nal;lysis is valid since these_ modes are
extended along the magnetic fleld lines. Also, one can write ch = kez/Ls where
Ls = Rq/3 is the shear length, and § = ;"q’ /q is the shear parameter. If one
further assumes that the radial variation is much faster than the poloidal varia-

tion, the approximation V2 =~ §%/8z? is possible. Then, solving Egs. (3.7) and
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(3.8) for @ yields

d? d
Iy 5@~ Foya®® + (Ny - Fpp)o@ + (Vv — K + Km)@ =0, (3.9)

Here,
2
I=1+ —Eg,
_ Bk
57 L2
BEk2 dP
Nv =g, <_ dr) ’
Fpp = 5e-NV7
ke dP
= 2K\ (=22,
=2k, p < dr)

Physical interpretation for these terms is as follows: I represents the inertia of
the fluid, Fp is the fleld-line bending, Fgp is an additional field-line bending
due to the presence of the bootstrap current; and Ny is the neoclassical viscous
damping which represents anisotropy in the perturbed pressure, which, in turn,
drives NPGDT when combined with Fgg. Also, K denotes the interaction of
the core plasma pressure gradient with the curvature, which drives the resistive
interchange mode,!® important in stellarators. However, this has a stdbilizing
effect in tokamaks because of their average favorable curvature (minimum-B
configuration). Finally, Ky représents the interaction of trapped hot pa:rticle

pressure with the curvature, driving energetic trapped-particle-induced resistive
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interchange modes.%” The calculation of Ky is simplified when Fpy is approxi-

mated as slowing-down distribution, corresponding to a neutral beam injected

at energy En,,
Co
Fon = z

—E—S/zé(a — ap),
for F < En,, where ay is related to the injection angle. This choice of Fyp, yields:

Wxh

Ky = = Bonlo(w). (3.10)

Wdh
Here, ©Ogn = Wan/E, Bpn is the poloidal B for hot particles, and I is a function;
of éomplete elliptic integrals. For modes growing faster than hot particle preces-
sional time, Kg is independent of the growth rate.5” Then, the general solution

for Eq. (3.9) can be written as
&(z) = @()ke_zz/QleHz(a:z:).

Here, H; is a Hermite polynomial, [ is an integer,

i

o= <(NV — Fgp)? N F_B)

4412 yI
w2 — (Wv —Fpp)*  Fp\* L Nv —Fss
k 44412 yI 2y

The eigenvalue condition is:

Ny 4+ Fgp — K + Ky
27

Ny —Fgg Fm 3
= 2l+1I1/2<————|-—> .
( ) 4ry? v
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The [ = 0 modes are centrally localized and
3(z) = Boee™® 12k, (3.11)

Now, @¢x is the magnitude of the electrostatic potential of the mode k, which
cannot be determined from the linear theory, and Wy is the radial width of the
mode. By substituting Eq. (3.11) into Eq. (3.9), one finds two coupled equation

for v and Wy, i.e., -

2
0% Ny — Fgp
A Y _—-£7 .12
I =Ny +Kg-K. 4 (3.13)
Wi ) .

These centrally localized modes are dominant, in that their growth rate exceeds
that of higher modes due to field line-bending stabilization (of higher, broader

modes). Various instability branches emerge immediately from these relations.
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A. Resistive Interchange Modes

In the absence of neoclassical effects (Ny = Fpg =0, I = 1) and
trapped energetic particles (K7 = 0), resistive interchange modes, which might
play an important role in anomalous thermal transport in stellerators® and
reversed-field pinches,* are excited by the interaction of the pressure gradient

with the average unfavorable curvature, where,
v = (=K 5" ~ k5P 55 Pt (3.14)

Here, Spr = 7r/74 is magnetic Reynolds number, 75 = r?/nc? is the resistive

time scale, and 74 = Rg/v4 is the poloidal Alfvén transit time, v4 being the

Alivén speed. Instability of these modes requires K ~ (Kw) < 0 which is not

satisfied in tokamaks because of their minimum-B configuration. As a result,

these modes are supressed in tokamaks.
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B. Energetic Trapped-Particle-Driven Resistive Interchange Modes

When neoclassical effects are ignored (Ny =Fgp =0, I= 1), ener-

’ gefic trapped-particle-driven interchange modes®” (due to hot particles trapped

in the outside region for which wyp /was > 0) are excited even though tokamaks

have average favorable curvature. The growth rate for these modes is

- 2/3
Wxh £ 1/3 -1/3 _—
v = (Q:h Bonlo — K) /FB/ ~ ST (3.15)

There is a threshold for these instabilities given by

Bon > 22— (3.16)

L:’*hIO

We have considered only the fluid limit here. These modes are purely growing

in this limit and are not resonant with the precessional drift frequency of hot
particles. Detailed results when these modes are resonant with the hot particle

precession are described in Ref. 67.
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C. Neoclassical Pressure-Gradien- Driven Modes

In the absence of curvature effects (K = Ky = 0), effects from boot-

strap currents and neoclassical viscous damping, which are absent in a short

‘mean free path description of the plasma, combine to destabilize the pressure-

gradient-driven modes in the banana-plateau collisionality regime*?*3 (boot-

strap current instabilities) yielding:

NvFee\'® o
72(“%3)‘ ~ kg Sy P (3.17)

Interestingly, both the MHD description*? and the kinetic treatment?? lead to
the same result. Note that I = B2 /B2 in this case. To be unstable, both Ny and

Fpp are required to be positive. This is equivalent to ¢'P’ < 0, as is satisfied in

tokamaks. It is also interesting to note that v is independent of 3, in contrast

“to previous cases where the shear has stabilizing effects. However, the effect

of the shear here is to limit the radial width of the'm'odes. These modes are
of particular interest because they have fast growth rates, and they may play
an important rqle in anomalous electron heat transport in tokamaks. NPGDT
evolving from these modes and electron heat transport associated with magnetic
fluctuations in the nonlinearly saturated state are the main topics of this chapter,

and will be be discussed later in Sec. 3.4 and in Sec. 3.5, respectively.
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D. Compelete Description

When we retain all of effects discussed earlier, we obtain
v =(Fgp + Ku — K)3(Ny + Kg — K)Y3)(IFp)/® ~ S350, (3.18)

‘The instability condition is Fgp + Ky > K and Ny + Ky > K. Bootstrap
current interaction with viscous damping, as well as hot particles trapped in
the unfavorable curvature region favors instability, while the core pressure gra-

dient interaction with average curvature favors stability. Since the inequeality,

Nv, Fpp > K, Kp is usually satisfied for the hot, core region of tokamaks, ’

previously mentioned case C (bootstrap current modes) is of the greatest in-
terest. It is worthwhile to note that all the modes treated here are of resis-
tive interchange-ballooning fa:‘cnily, in the sense that all growth rates scale as

-1/3_-1
7 ~ SJM' IA «

Now, concentrating on neoclassical pressure gradient driven modes, one

can rewrite Eq. (3.17) as

2 211/3
B?p dr

5, 1/3 2/3 , o 2/3 :
~ sy r'ke)" g 18,1 (3.19)
167 g7 Lp Mo A

where Lp = —(dln P/dr)™! is the pressure scale length. Then, from Egs. (3.12)
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and (3.13), the radial mode extent is

wom (2) s 28

dP l 1/6
By BE?

dr

e \YE /s . \1B
=\/§<Eﬁp) ( ) SHA(L,Lp) M. (3.20)

167 keL%_-,

It is important to note that we recover the slow interchange regime, where 7 is
proportional to n1/3, in the limit where V2 =~ §%/8z%. This is satisfied only for
low-m modes, i.e., W < ke_z. In Ref. 13, it was found that there are also fast
interchange regime where + is independent of n, for very large m. However, since
the structure of neoclassical pressure gradient modes is somewhat different from
resistive interchange modes (i.e., both bootstrap current and viscous damping
contribute to the former, while the pressure gradient in bad curvature is the only
source for the latter), one finds that there are no instabilities for large m, where
kg < 8%/8z%. This is due to the fact that §, > 1, which leads to an unphysical

situation of radially increasing eigenfunction for growing modes.
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3.4 Nonlinear Theory

In this section, we investigate nonlinear evolution and saturation of
NPGDT evolvi-ng from linear neoclassical pressure gradient driven instabili-
ties. Dominant F X B drift convective nonlinearities are replaced by spectrum-
dependent turbulent diffusion coefficients using standard one-point renormaliza-
tion theory.’® The renormalized equations are solved as an eigenvalue problem
to determine transport coefficients at saturation. The pressure diffusivity and
fluctuation levels are found to exceed mixing-length estimates by powers of an
enhancement factor obtained from the eigenvalue analysis.

Before describing the nonlinear closure scheme, we define two energy-

like quantities. By eliminating f”, we obtain two coupled equations for & and

II = (P):
B% d an B? d B? d
—‘—“v2 @ TS e — 2 pa— E_ —_— 1 —_— + 2 2 : .2
Pprar 't 2y N8 g Vig T+ o Vil 4 puViVLe, (3.21)
d c dP 0 '
—_—]] = —— P D L 4 =T 292
dtH Bdrbxr V& +x. Vi (3.22)

Here, pp and x 1 are added to provide energy sinks at small scales for V2 & and II,

respectively. They serve as short-wavelength disssipatiori to allow a nonlinearly

- saturated, turbulent state. However, they do not affect the growth of large scale

modes. As usual, we define Ex and Ep as

1
EK = ;/dsx/)lv_]_@lz,

E4
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The evolution of these quantities is determined by:

d B} 2 s Bo d
EEK_ /d3x—lV|<I>| +/d 2 —6.3V) @

BZ
/d% e v"cb /d%p#B—g]vi@{z, (3.23)

d c dP 2
- Er= /d%EEHb X - V® — /d%m[vm] : (3.24)

The interaction of bootstrap currents with neoclassical viscous damping drives
the kinetic energy (Ex), part of which is dissipated by viscosity (1) and part of

which is transformed into magnetic energy which, in turn, is dissipated by mag-

O ' netic field diffusion (i.e., resistivity). The averaged pressure fluctuation (Ep) is

driven by relaxation of equilibrium pressure gradients and damped by small scale
dissipation due to x 1. A saturated state is attained when there is energy trans-
fer, mediated by nonlinear three wave couplings, from the low-m energy source
to the high-m dissipation region. To build a complete picture of the saturated
state, two point theory, which allows the calculétion of the fluctuation spectrum,
must be utilized. However, in this chapter, we study the saturation mechanism
of low-m modes using the standard one-point theory where nonlinear interaé—
tions are renormalized to yield spectrum-dependent turbulent diffusivities. The

saturation condition (7 = 0) then determines these diffusivities.
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Since detailed treatment of the standard one-point theory can be found
elsewhere,!® we only summarize basic steps here. Noting that the dominant

nonlinearity comes from E X B convection, one can write the nonlinearity for

the fleld Ak (in our case, Ay denotes V2 &k or II}) as:

N(Ak) =Z—B—'a— {Z Iug(@ kIAkII —_ @k”A k')

. C 0% _yr OA_y _
+ ZELQ ; <Aku T Dyn o ) , (3.23)

where k' =k 4+ k’. Now, the total convective derivative can be written as

d 0
Ay = e

9
= Ay + N(A4y). (3.26)

We renormalize N (Ak) by iteratively substitutiﬁg the nonlinearly driven fluctu-
ations (Ak,, and @g,)) resulting from the direct beat interaction of test modes
(@fj) and AS)) with background modes (@l(j,) and AS,)) to extract the piece
which is phase coherent with test modes. Here, the superscripts “(1)” and “(2)”
denote first and second order in perturbed quantities, respectively. The renor-
malization can be simplified when one notes that @ff,,) is spatially smoother than

<I>§<2;,) or Hg,) The smoothness is because @fd,) is obtained from the inversion

of the eigenmode operator, involving complicated spatial convolutions. By ne-

glecting @S,) , we can write equations for the driven fields as:
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84W oAM aa) a3
A2 = (kg@f{l)—:—l—kg@g) . —k;Afj,)—:j koA -

x i =T~ (An) (3.27)
where I'"?(Ayr) is the propagator for Ay,
D(V2 Byn) = yir + Aw(VE Eyen) — uV2, (3.28)

P(Hku) = Y + AW(HR[I) — X-LV?L : (3.29)

Here, vk is the growth rate, Which vanishes at saturation. Also, Aw(Ayxn)
is the nonlinear decorrrelation rate which effectively limits the coherence time
of nonlinear interactions. Since II is not straightforwardly related to &, II is
convected by @ and it is easy to calculate N(Ilk) as:

N(Hk)z—%D -;—nk k2 DYVTIL, (3.30)

where

TT C2 ! 2
DY = = Z Ky /T(Te),

8@1{/

DY = = , /r(nk,,). (3.31)

Here, termssuch as ), ®_x/ (0P /0r), etc. have been eliminated by symmetry
arguments. Physically, DE® and DYY are interpreted as turbulent radial and

poloidal pressure diffusivities, respectively.

78




~

To calculate N(V% @), one cannot simply neglect bef,,) in Eq. (3.25) .

because the vorticity is directly related to ®. Equivalently, the vorticity is not
simply convected by @, so that its back-reaction on ® must be considered, as well.
To simplify this consideration, we note that for a continuum of localized modes,
one can replace the sum in k-space by [dm'|m'q'/¢?| [ dz’, where ¢' = dg/dr.

Then, N(V? &) can be written as

N(V2 &) =~ z Z kemQ(_ll)dv2 @8:)

1)
. Z m? + 2mm/ 5@_k, 2 =(2) .
+ Z§k€ . m//2 67‘ VJ_@k// . (3.32)

' We have used dz''/de' = m"/m', near the mode rational surface of k. By

substituting Eq. (3.27) into Eq. (3.32), we get

8 220 2 Yo 8 .0 ,
N(VA®x) = —g-pi* = Vidi + B V0w — 5 CEF 50+ KIOE
(3.33)
where
sz _ C m? 2 2
P = po z mi2 |91 /P(V_L@k”)a
kl
c? a@w
Y = ) m”° / D(V3 @),
c? _
Ck* Bz Z mi2 k€|V-L(I’k’ /P(v_l_@k”)> (3.34)
. "
c? m?2 a@k/
O = o5 > T |V [TV ).
kl
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Here, odd moments in z' as well as in kg-space vanish because of symmetry
considerations. The factor of m?/m"? (in comparision to Eq. (3.31)) represents
the effect of the back-reaction of the vorticity on the convecting fluid. Physical
intrepretations of these coefficients are as follows. uf® and p}* are nonlinear
radial and poloidal diffusivities of the vorticity, respectively, and act as effective
sinks for Ex. CE* and C}¥ are their kinetic energy-conserving counterpart, and

act as destabilizing energy sources.

Now, we determine how much energy outflow from long wavelength

modes due to nonlinear multiple-helicity interactions is needed to balance the
growth of these modes. When low-m modes dominate in the energy spectrum,
turbulent radial diffusions are most effective stabilizing effects. Thus at satura-

tion, the low-m modes satisfy:

0 0

2 5 B By d By d )

oz lu’k axV_L k — VH@k - "*‘5 V” ar —Ilx + —pa—-—V“Hk =0, (3.30)
d 0 dP

5o Di" 5= The + zk(;%?@k = 0. (3.36)

By solving these eigenmode equations, we obtain DE® and pf® as z-independent
eigenvalues, required for the saturation of low-m modes. The level of turbulence
is then determined from Df® and pif®. In this treatment, nonlinear multiple-

helicity interactions and significant overlap between different helicity modes are
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crucial. We solve this eigenvalue problem by Fourier transforming, i.e.,
B(u) = (2m) /2 /dx By ()™, ete..

Then, from Egs. (3.35) and (3.36),

d? I'gg—Ny d 2Ny — Fgg
2.2 —-co -tV = sy BB zz 6 = 0.
Fgu 2 ®(u) + e uducb(u)-!— < Dz pptIu® ) @(u) =0

(3.37)

Here, V2 ~ 8/8z? is used again. The solutions are Bessel functions of integer

order,®°
3(u) = u’Z,(\u?),
where
1 _op FBE— NV
” FpDg=

For localized modes v = 0, and an eigenvalue condition for this case is
b = (2Ny — Fgp)/FpDE®,

or

Fpp—Nv\? _Fpp—3Ny
14| ———— 22— = 3.3
( FpDz* > T mp D (3:38)

Note that YW = Fpp/Fp is the mixing length estimate of DZ® obtained by
balancing the linear growth rate and the turbulent diffision (Di/W}). Thus, if

we put

Dge = n2522 (3.39)

FB"
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we can interprete A as a nonlinear diffusion enhancement factor. Equation (3.37)

is thus an eigenvalue equation for A:
AP =357t~ 127t (2671 1)) (3.40)

We have chosen the + sign to eliminate the unphysical situation of zero diffusion
as fie/@eVe — co. Thus, A? > 4 is always satisfied. It. is interes'ting to note
that nonlinear interactions always act to enhance the pressure diffusivity over
the mixing length estimate (A > 1). This is consistent with the notion that the
stabilizing mechanism for low-m modes is turbulent radial diffusion, thus leading
to broadening of the modes. Also, although A? — oo at very high temperature
(e/ aeQe — 0), the pressure diffusivity remains finite.

From Eq. (3.39), we can evaluate saturation levels of perturbed quaﬁti-
ties. We follqwh the standard procedure®® by approximating T(V3 @y ) ~ pf®/A%
and I'(Ix) ~ DE®/AF, where Ag and Zin are nonlinear mode widths of ® and

II, respectively. We thus find

T mz A¢ zx
fre = m_zz'_HDk ; \ (3.41)
zz\2
Vz ~ Q.RL (3.42)

T (A%[>rms .

Here, (---) denotes spectrum-averaged value of (--+), i.e., |

Bp = lzul"/ Do|owl’s ete.
k k .




Also, V. = cky®/B is the radial F x B velocity. Then, asymtotically balancing

nonlinear viscosity with field-line bending yields:

2z €2 pnL2

6 __
A<I>_1uk Bekg )

(3.43)

while balancing nonlinear pressure diffusion with the source (the pressure gra-

dient) gives:

I - |dP
2 =V, |—|. 4
© Vil (3.44)

It is interesting to note that by combining Eqs. (3.42) and (3.44), one finds

pelg=|
I

ol

which is just the mixing-length estimate of the pressure fluctuation. However,

- since Ap is different from its linear value, Wy, due to mode broadening, this

relation should be understood in its nonlinear sense. Finally, balancing nonlinear

viscosity with destabilizing neoclassical viscosity near the rational surface gives:

V)i _ Bk}

:BflI(T‘

= I1%)1/2 3.45
/‘Lk (A%)rms BPL3< ) ( )

rms-*

Equations (3.39) - (3.45) completely determine levels and radial scales of turbu-

lence, i.e.,:

Ro = WiAlle,
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Ve= ')’WkAs/z
- 2w,
Lp
DE® = yW,A®
1e€ L
9 1 €, 5 o Ls
= AP e
e M2_—2

Our results are quite similar to those in Ref. 13. This is as expected, because of
similarities in the structure of Basic equations. It is shown there that analytic
results agree well with nonlinear multiple-helicity simulations. It is interesting to -
- note that in the nonlinearly saturated state, Ag > Ag, which is a consequence ‘
of the direct dependence of the vorticity on the convecting E x B velocity (D** >
L), Also, because A is only weakly dependent of plasma parameters, nonlinear
‘results have the same parameter dependences as the mixing-length results, but

show considerable enhancement in the magnitude.



- 3.5 Electron Heat Transport

In this section, we evaluate eleétron heat diffusivity due to stochastic
magnetic fields” in satuated NPGDT. Magnetic fluctuations in NPGDT are
coupled to electrostatic modes through the parallel Ohm’s law.

From the electron drift kinetic equation*® with magnetic flutter nonlin-
earity, one can calculate y. yielding:

. —1
017 . i -
Xe = E vmbr,kIZRe I:z (w —wp — k”v” + —) ] . (3.47)

k Tek /

Here, x. is electron heat diffusivity, w is the mode frequency, wp is the drift fre-

quency, brx = Brx/Bo, and 7.k is the nonlinear decorelation time, representing

- the nonlinear interaction term. Also, Re[(: - )] denotes the real part of (---). In

the qué,silinear approximation, where 1/7. is neglected, Eq. (3.47) reduces to
the x. of Ref. 7. In the more relevant so-called strong turbulence regime, where
nonlinear mode couplings become dominant, we can approximate Eq. (3.47) to
yield -
Xe = Y vflbracl e | (3.48)
k

To find Er,k, we use the neoclassical Ohm’s law and Ampere’s law;

b xr
B

br,k = : v";k; (349)
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where, |
i = i—;rva,@w R dink. | (3.50)
By Fourier transforming, §ve can approximate 7. by
T = XeT, - (3.51)
where

u

Il

- /2
(21( u2|~¢k|2>1 ) ) (3.52)
o [Px]?

To evaluate ©?, we note that

-

where R is the major radius of the tokamak. By assuming that nonlinear inter-

(3.53)

actions change the radial correlation lengths without significant deformation of

the linear eigenfunctions, we can write

_2 /2 1., .
&(u) = As {C@O S'@(Lg)] exp (—;L\%u‘) ,
I(u) = iAg |Coll sn(ke)} exp <—%A§Iu2> : (3.54)

Here, Sg and ST represent kg-spectrum of @ and II, respectively. Also, Cs and

Chn satisfy spectrum-averaged fluctuation level normalization conditions,

S le =7,
k
P

k



to yield
Ikl -
C@ - |'7Tl/2TR/ o L S@(k‘g)Aq{I 3
| ks -
O = [Wl/er / o 2 Sn(kg)An] . (3.55)

From Egs. (3.50), (3.53)-(3.55), we obtain

I
-2 __ 41
= (3.56)
Here,
4r
L = (an ) cq,@zﬁ—"/dkgw Se(ke)AS 22
, ¢l\ -RT I
+( 5% o I dkg [ke|Stu(ke)Anl]
o CsC: I/OQHR?” 2 2 e
— o(4r%s, ‘I’CBI:)??L 2557 SH AL 12T, (57)
. '4:’/_( _-RT &P
I = <ans> CsB /dk9|kg| Se(ke)AL LS
o [4x R
+ <Eée> CHIIZ_—Ll dkg |kg| St (k) AZ I
CeC) /@10
— 2(4r)? 24, ( ‘chIEz]L Rr/dk9|k9| 51/251/"A3A2 ‘I’H, (3.58)
where

2
I@@ /+oo p Oz4e—a
1 = @
S CE T

I +eo ate™®
I = doo ———————
1 / (a+ k2AZ)?’
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o /’+°° do ot exp [ (1 + AL /AY ) /2]
@R

2

I@@:/+oo 0426 @

-2 (a2+k2A2)2’
+oo 2 _—a?

81 a“e

T _ +°°d a? exp [—az (1+A /Az)/2]
g “/ . (a? + B3 0%)? |

—c0

(3.59)

—oo

These integrals can be evaluated analytically, yielding:

+oo 4 —p?a? \/: —
a“e _ 0 2.2y i 2 9 uzyz .
/_ oy = (L 1) = (8 + 2P )™ (L — Bef()

—co o 4+ v*

/ 'wda(“—iel‘%#—(z 2030%)er™” [1 ~ Brf(uv)] — /7

where Erf(pv) is an error function,

2 I3
Erf(uv) = _\/i_ / dae™” e
0

—
1

In the limit where low-m modes are dominant, we obtain

I - 47.'759 2Z4?5" 476 2_ﬁ2
1= enLs TeT T A\B, ¢

-2
_ o n)’k 12577 oY
CBQT]L (A@AH ) @H 1+ — Al;:[ 9

2

1/~

<5/ e
8 []”9 5/2 (3.60)

czzg 77L B

A simple mixing length would suggest?® @? ~ W ? This approximation would
be relevant if NPGDT has a tearing parity or if magnetic fluctuations have Gaus-

sian structure. However, NPGDT has a twisting parity, or negligible magnetic



fluctuations near z = 0. By using the turbulence level determined in Sec. 3.4,
we find T? ~ ko/W, when A is large. Therfore, the radial structure of magnetic
fluctuations plays an important role when we apply the mixing length principle.

By substituting Eqs.'(3.49)-(3.53), and (3.56) into Eq. (3.48), we obtain

2

47 k‘ 4" ukg T(u)

“BenL, (u? + 12) du FOR Ol £ B2

_ (Jg) O (3.61)

During the linearly growing stage, x. due to magnetic fluctuations is negligible

| because contributions from & and II ﬁutuafioﬁs are almost equalkin magnitude
but opposite in sign (i.e., I, ~ 0). However, in the nonlinearly saturated state,
the contribution from the bootstap current becomes dominant over ’;hat from
the inductive current because of different power dependences on A.. When A is

large, x. can thus be written as

' 4/3 2/3 _
Xe = 4.6 x 107%|vy| L, Gﬁp) §3/% <E9::2 > STEBATI, (3.62)
P

Parameter scalings of y. are
Xe ~ 8L p LT AL, (3.63)

It is interesting to compare these results with those of Ref. 26. There, the

mixing length theory is used, thereby neglecting the contribution from integrals

O
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due to the radial structure of magnetic fluctuations. If the same approximation

is applied to NPGDT, one finds that the scaling of x. would be
Xe N§_3/2S;4153/2L;3/2T3/2.

Hence, both quantitative and qualitative differences are apparent. Note that
because of the similarity in the structure of NPGDT and resistive-interchange
modes,'® the same procedure can be applied to resistive-interchange modes.
Recent study®® of the electron heat transport due to resistive-interchange modes
reached conclusions similar to the present study.

Finally, the magnitudes of the radial and the poloidal magnetic fluctu-

ation levels are given by

B € 5/8 3 P2I3N\NYE L,
T s /2 8 1/2 /4
B o (55) an (22) " s

B, e \7/® r2 L3 He
=% _9.6x1072 (—ﬁp> S S22 | SRATYS,
B g koLB

Thus, magnetic fluctuation levels and associated electron thermal conduction are
enhanced by increasing £, and a sharper pressure gradient, but are suppressed

by strong shear.
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3.6 Summary
From neoclassical resistive MHD equations®® including hot, trapped par-
ticle effects, we have identified various branches of instability: stable resistive-

interchange modes,'® which are due to the average unfavorable curvature in

- the absence of neoclassical effects; energetic trapped-particle-driven resistive-

interchange modes,%” destabilized when there is a sufficient population of hot
trapped particles; and neoclassical pressure-gradient-driven modes*?:43 (béot-
strap current modes), which become important when neoclassical effects are
dominant. The linear study of NPGDT shows that small scale bootstrap cur-
rent modes are stabihzed.

Nonlinear saturation of NPGDT is achieved via nonlinear coupling of
unstable, long-wavelength modes to stable, short-wavelength modes, thus bal-
ancing the linear free energy source with its ultimate sink, the viscosity and ..
Renormalized equations are obtained. The turbulgnce level is‘determined from
nonlinear steady state condition. The principai results are as follows:

() The pressure diffusivity is obtained as an eigenvalue of renormalized
equations at saturation, yielding:

_ 1
P gn

€ 2 L 4
- C 56 A‘.
qﬂp n LP

This value islarger than the mixing length estimate of Dp by a factor
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of A? (A is always greater than 1; see Eq. (3.40)).
(i) At saturation,vthe radial scale of pressure fluctuations differ from that

of electrostatic potential fluctuations, i.e.,

AH:\/_2_ Eﬂ e _1_ ber i -I/B(LL )1/2A7/6
qg"? 16m kg L%

Ny fﬂ 1/6 1 ber 1/3 _1/3(LL )1/9A1/6
g’ 167 ko L%

(iii) The levels of turbulence are determined from the diffusivities, i.e.:

~ —

fs_d’-ﬁ 5. 2/3 fﬂ 5/6 r5k9 1/3S_2/3(L3LP)1/2 TA 5/
T. ~~\16x g’ Lp M ps  kec,

~

E _ < /3 1/6 55 -.?" 1/3 & 1/2 5—1/3A7/6
P P 167 ko L% Ip. Mo AT

(iv) Electron heat transport due to stochastic magnetic fields induced by

NPGDT has been estimated. The radial structure of magnetic fluctua-

tions has been taken into account, yielding:

Xe = 4.6 x 10_2I'UHIL3 <_ r p > 5—9/3/\. /3
keLj;

(v) Magnetic fluctuation levels are also determined:

5/ 1/4
€ r L 9 =
1(2 53/2 —1/-A1/4
<qﬂp> <L5 ) ou ’

7/6 273\ /8
9.6 x 1077 ( ﬁp> 54/ <§§—L-—> ST,
q LT,

Il

SESE

We note that while the resistive MHD turbulence!? is relevant only

in the cold edge of the plasma, the region where NPGDT can be applied is
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extended over wide zone between the ceﬁter and the edge of the plasma. Also, as
the pressure is increased with additional heating, NPGDT becomes aggravated.
Therefore, NPGDT may have some bearingsl on confinement degradation during
the L-mode.! Furthermore, since NPGDT shows similar behavior®® to resistive
turbulence under the influence of strong shear, it can be suppressed at the edge
of an H-mode discharge,?? thus providing improved confinement behavior.

So far, we have investigated the turbulence evolving from instabilities
with the t’.»visting parity. Neoclassical tearing instabilities driven by current

density gradient will be studied in Appendix B.
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CHAPTER IV

THEORY OF NEOCLASSICAL

RESISTIVITY-GRADIENT-DRIVEN TURBULENCE

4.1 Introduction

Resistivity-gradient-driven turbulence?® (RGDT) has been successful in
explaining many characteristics®® of tokamak edge plasmas: large fluctuation
levels, radially increasing large diffusivities, and the breakdown of Boltzmann

relation. Consideration of impurity density fluctuation dynamics32:®® and radi-

ation effects®* has made RGDT an even more realistic tokamak edge turbulence

model. Recently, it has been argued?® that these attractive features are ill-
founded from the conventional standpoint of linear stability. Indeed, RGDT
evloves from unstable rippling modes, ?:3%:31 and detailed linear analyses?® indi-

cate that the linear rippling modes tend to be quenched at moderate temperature

due to stabilizing effects of large parallel thermal conduction and finite electron

diamagnetism. However, both theoretical and computational analyses?8:*® have
demonstrated that the nonlinear evolution of RGDT is characterized by the non-
linear broadening of an asymmetric mode structure, so that the resistivity and

potential fluctuations move away from the rational surface and decouple from
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the current perturbation. This current decoupling drastically modifies the usual

linear structure!? of the perturbations, and renders the stabilzing influence of
field line bending ineﬁ'ectiye. Therefore, RGDT is nonlinearly robust. It is also
crucial to note that the tokamak edge is rarely quiescent,®® due to the pres-
ence of impurities, plasma-wall interaction, etc.. Therefore, the conventional
picture of linear instability developing from a quiescent plasma at equilibrium
is not necessarily appropriate. Hence, the tokamak edge fluctuations can only
be understood by nonlinear theory. All afore-mentioned RGDT models?®:3%:34
are based on a reduced, resistive MHD description®® of a plasma, and consists
of Ohm’s law and the Vori‘iicity and resistivity evolutions. However, this model

is valid only in the Pfirsch-Schliiter collisionality regime.®”

.. Recently, neoclassical MHD equations®® have been dgrived which are
valid in the experimentally relevant banana-plateau collisionality régﬁmes. The
most significant modification in RGDT due to neoclassical effects is that the
neoclassical resistivity?®® is now a function of the density as well as the tem-
perature, while the classical Spitzer resistivity®® depends on the temperature
only. Therefore, rippling modes?®~33 can couple to the density gradient, and
the density fluctuation dynamics becomes significant in determining the evélu—

tion of neoclassical rippling modes. Main purpose of this chapter is to investigate

P




neoclassical resistivity-gradient-driven turbulence (NRGDT) evolving from neo-
classical rippling modes, to incorporate density fluctuation dynamics, and to

extend the validity regime of RGDT further into high temperature, low col-

* lisionality regimes of tokamaks. The resulting particle diffusivity increases as

temperaturé decreases, allowing a possibility of explaining the radially increas-
ing profile of particle diffusivity from experimental measurements.?®%% We note

that drift wave instsabilities®” are unable to account for this experifnenta,l result.

Linear stability analysis shows that without neoclassical coupling to the
density gradient, the large parallel thermal conduction has a étrong stabilizing
effect for small scale modes, and that the growth rate decreases with the poloidal
mode number, m, for large m. In a small-m limit, parallel conduction is less
efficient, and the growth rate increases with m. Therefore, conventional rippiing
modes are most unstab}e (linearly) for moderate Im-values. When the density
gradient is included, the equilibration of density fluctuations along flux surfaces
is affected by parallel stress tensor effects (due to collisions between trdpped and
untrapped particles). This has a much weaker stabilizing effect than thermal
conduction. Therefore, the unstable region extends both in distance from the

edge (i.e., into regions of higher temperature) and in m-values.

The radial asymmetry in the mode structure develops further during
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the nonlinear evolution, resulting in negligible current ﬂuctué,tion in the region
of interest. This leads to the decoupling of the vorticity evolution equation from
the other basic equations, so that the system consists of Ohm’s law and the
temperature and density evolution equations. Nonlinear saturation is attained
when parallel dissipations, enhanced by nonlinear mode broadening, balance

linear instability sources. The mode broadening results from nonlinear mode

couplings mediated via E x B convection. Convective nonlinearity is renormal-

ized to yield spectrum-dependent turbulent diffusivities. The turbulent tem-
perature and density diffusivities are obtained as eigenvalues of the stationary

renormalized eigenmode equations at saturation. Their values are much larger

than naive mixing length estimates, based upon linear growth rates and mode

widths. The dominant effect of the inclusion of the density dynamics is the

considerable increase in the level of turbulence, in comparision to the case with

- only the temperature gradient. |

Levels of electrostatic potential, temperature, and density fluctuations
are determined. The level of density fluctuation is higher than that of tem-
perature fluctuation as a consequence of larger radial scale-length of density
fluctuation, and is different from the level of electrostatic ﬂuctua,tion.. The mag-

netic fluctuation level is shown to be too low to induce any significant heat
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transport along perturbed magnetic field lines.
The remainder of this chapter is organized as follows: In Sec. 4.2, the
" theoretical model for NRGDT is presented. The structure of the neoclassical
resistivity is investigated in detail. In Sec. 4.3, the linear stability results are
presented. In Sec. 4.4, the nonlinear saturation mechanism is identified and the
level of turbulence is det.ermined. A discussion of the thedry in the context of
edge localized modes (ELMs) in DIII-D H-mode’ plasmas is also presented.

Finally, Sec. 4.5 contains a summary and conclusions.
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4.2 Neoclassical Resistivity-Gradient-Driven Turbulence Model

In this section, we present the basic neoclassical resistivity-gradient-
driven model which is derived from the simplified neoclassical MHD equations.3®
The simplification is due to the omission of perpendicular flow. The neoclassi-
cal correction®3® to the Spitzer resistivity is most relevant to the evolution of
NRGDT, and is discussed in detail.

The simplified neoclassical Ohm’s law in the electrostatic approximation

can be written as:

. P 1 Aa
By ==V ¢ = nucJ| + finc I — -V <Te;; + Te) : (4.1)

Here, E) is the parallel electric field, ¢ is the electrostatic potential, J | is the
parallel current, T, is the electron temperature, and ng is the density. Also,

———

(-++) denotes the perturbed quantity and the 7. is the neoclassical resistivity,
the expression for which will be given later. The origin of Eq. (4.1) can be easily
seen by considering the electron momentum balance equation,

S A R TIERNR 2 N (4.2)
ez = ~eEI— et le + €Msp ) :

Here, P, is the electron pressure, m. is the electron mass, I} is the parallel
stress tensor, and b = B/B. Also, the Spitzer resistivity,®® s, is given by

Me
o Ve,

ep = I{" Nge~”

T

T
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where K| ~ 0.51 for Zeg = 1 plasma, and the electron collision rate, ve, is

4 noet
- Ve = 5 Zlen A.

The parallel viscous drag due to collisions with trapped particles is given ap-
proximately by:

bV -1l > menopev)- (4.3)
Here,

N 2.3¢t/2y,
T 1410202 1 1.0Tvke

fe (44)

where ¢ is the inverse aspect ratio, vee = Ve /wpee®/?; whe = vsn.e/Roq, Ro is the

major radius, and ¢ is the safety factor. The poloidal component of the first

order electron perpendicular flow, leading to the bootstrap current?:3® is omitted
for simplicity. From Egs. (4.2) and (4.3), Ohm’s law becomes
4.51¢/? 1 _
E” = Nsp 14+ 172 ]” — —b- - VP,. (4.8)
1+1.02v5e" + 1.07v,, Eng

2,39

Thus, the neoclassical resistivity“*°” can be written as

rae = (14 4.51¢'/2
e 14+ 1.0202% +1.070he )

Note that 15 now depends on the density as well, through the density depen-

dence of vy, while the Spitzer resistivity is a function of T, only, i.e.,
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FIG. 4.1 Plot of the density coupling coefficient to the neoclassical resistivity

(Cp = —8lnny./0lnn,), in terms of vy for (i) e=1/4 (solid line), (ii) e=1/5

(dashed line), and (i‘ii) e=1/6 (dash-dotted line).
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Nsp X Te_s/ 2, Therefore, in the neoclassical theory, resistivity-gradient-driven
turbulence?® is modified by, and depends on density fluctuation dynamics as
well as temperature fluctuation dynamics. Exploring the consequence of this
novel feature is the motivation of the present work.

The structure of the neoclassical resistivity fluctuation can be written

as
o _ gL _g B .
T]nc - CtTe CTL no 3 (....6)
where
C, = _Olomme
Blnno
' ~1
_ 451205108 +1.07) [, 45162 (4.7)
(1+1.02020% + 1.07v,.)2 11021107, )
dlnmpne
a"amﬂ
3 )
=572 ' (48)

Sin;e C, vanishes in both limits (v« — 0 and v, — 00), the density gradient
effect on rippling modes é,lso vanishes for values of vy, far from the unity. For
mbdera‘te values of ¢, O, has a maximum value of about 0.2 around v4. ~ 1 and
decreases slowly as v, increases, as seen in Fig. 4.1. Also, note that C,, and C;

are always positive.
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The vorticity evolution equation can be derived from the charge neu-

trality condition:

BZ

c2

d

paVié = V”f”, (4.9)

where p is the mass density. We have neglected the neoclassical enhancement
of the inertia (arising from an additional polarization drift) and the neoclassi-
cal cross viscosity®%? (arising from an anisotropy in the perturbed pressure)

in Eq. (4.9). The neoclassical cross viscosity, along with the bootstrap current

which is also neglected in Eq. (4.1), act as destabilizing sources for the neoclas-

sical pressure-gradient-driven instabilities.*?:

N
) the inertia as well as the ion diamagnetism acts to reduce the growth rate.
However, in lowest order, these are irrelevant to the evolution of NRGDT due to
current decoupling. The heating due to the bootstrap current is also neglected

for simplicity.

The density equation is determined from the continuity equation:

dn c

. 1 . y
P Bb X Vo -Vng+ Ev”,]” — noV”u". (4.10)

The center-of-mass velocity 4y evolves as

62~ 1 . .
2 = _Svyi— =V T — iy £11
Vi = 37 ViTe = wid (4.11)

43 The neoclassical enhancement of
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Here, ion temperature fluctuations are neglected, M is the ion mass,

1

2= (T, +T;

cs M( + )7
0.66€1/2y;

pi = )
14103022 + 0.31vs

where v; is the ion collision rate and v4; = V4e—i. The term involving p; comes
from the ion neoclassical parallel viscous force due to collisions with trapped ions.
The first-order ion perpendicular flow component has been omitted, consistently
with pr;evious simplifications. In the regime where modes grow slower than the
effective neoclassical collision time (d/dt < pi), Eq. (4.10) simplifies to:

dﬁ 9~ no 25 C ~ . 1 4 .
d_t — XnV“TL —_— mv”Te = —Eb X Vé . Vno -T gV”J”, (4.12)

where xn = c¢2/u;. Note that y,, combined with the shear, cuts off sound wave
propagation. Also, note that up to additional couplings to 7. and f” dynamics,.
density fluctutation dynamics is similar to impurity fluctuation dynamics,3?23
with neoclassical viscosity repla.cing effective parallel diffusion x.. Therefore,

results structurally similar to those of Ref. 33 are expected.

The temperature evolution equation is

d - . c i
=T~ xViT. = —5b x V4§ VL, (4.18)

( where x| is the parallel electron thermal conductivity. The large value of y

tends to localize classical rippling modes around the mode rational surface, and
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thus has a strong stabilizing effect. We have neglected impurity radiation cooling
effects,?* for simplicity.
Equations (4.1), (4.9), (4.12), and (4.13) constitute the basic NRGDT

model to be studied analytically.




N

4.3 Linear Theory

We study the linear instability described by the basic NRGDT model
by Fourier analyzing perturbations as:
§=2_ Pna(e) oxplitm0 - n) + 7t
where m and n are poloidal and toroidal mode numbers, respéétively, R is
the major radius, z is the coordinate along the major axis, and z = r — ry is
the distance from the singular surface, r,, at which ¢(r;) = m/n. Then, the

eigenmode equation becomes

d?.r) @ - E.Xz —_— 5tX — 611-}3-' . 1 - ____C_ZL @
dX?5 4 145X2 145,X7 0 145X7
. af_X‘Q' an_X‘?. dt_Xz '
- N _ dX? . ,
Z L +5:X2 " 145 X? <1 Txox2 )| 20 (1
Here,
X =z/zg,
4 1 cL, 2
Ip = 47']nc7p Bke ,
CCtE”Ls
61
4ByLizr
5 = Xl (kezr
t - I ,
5. = Crb:
Ctne
neTe <k9$R>
dy = = ,
ypiM \ L,
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h = Xn ko
n - ")/ Ls I
T.cke

= 4LieyB’

Op = /7.
We have used V3 ~ d%/dz? > kg, Ve = tkg = itm/rs, and V| = ik =
—ikoz/L,. Also, L, = Rq2/rq’ is the shéar lenéth, Li = —[dInT./dr]™? is
the temperature scale length, L, = —[dlnno/dr]™! is the density scale length,
and ne = Ln/L:. The first term in Eq. (4.14) represents the inertia and the
second represents field line bending which has a stabilizing effect. The third and
the fOllI;‘th represent drive due to the temperature gradient (6;) and the density
gradient (6,), respectively, throﬁéh temperature and density dependences of
the neoclassical resistivity. The drive is limited to small regions by b; and by.
Also, the d; factor represents the coupling of temperature evolution to density
evolution. Finally, the imaginary part of Eq. (4.14) represents the electron
diamagnetic effect, which ‘gives rise to finite real frequency. It is crucial to
note that the eigenmode equation is not synlmetric in z, with the consequence
that @ is asymrnetricaﬂy skewed about the rational surface. The resistivity
fluctuation breaks the parity of Ohm’s law to localize & at the high resistivity
side around the rationalll surface. This is because the destabilizing part of IxB

N ~ N . . 9
force (proportional to 7j) changes sign as the rational surface is crossed.1?32
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Equation (4.14) can be solved appproximately®! by using the WKB
method, by ignoring the subdominant imaginary part. Eigenvalues are deter-

mined from the condition:

X §:X 8. X 4 X? x21'?
X : - - - — =—(2l+1
/0 d [1+th2+1+an2 (1 1+th2> 4] 5 (2 +1),
(4.15)
where [ is an integer, and X, is a turning point, other than 0.
First, we consider the limit where §, = 0, corresponding to the flat

density profile, where the density coupling to the resistivity is neglected. In the
limit of small electron parallel thermal conduction (b; = 0), exact solutions can

be found:
B(X) = &(0)exp [_-}i(x - zat)z] H [zl/z(x - zat)} , 4.16)

where H; is a Hermite polynomial. The eigenvalue condition is 267 = 2 + 1.
Note that the center of modes are located 28; outside the rational surface. Most

dominant modes are the localized [ = 0 modes, for which

N\ 1/5 Rr3qk9LsCt2Jﬁ 23 ~3/5_—1
(7) B3 Su A (0

Yt

Here, Sy = 7r/74 is the local magnetic Reynolds number, 7 = r?/nc? is

the resistive time scale, 74 = Rg/v4 is the poloidal Alfvén transit time, and
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va = B/(4mp)'/? is the Alfvén speed. In the limit of large x| (b¢), the dominant

mode has

cE”C'th 4/3 Ls 2/3 R2q2 -1
v = 0.78 <Tt><”> "I;e— 2 SM’TA . i (418)

Except for the extreme edge region of tokamaks, the approximation given by
Eq. (4.18) is more appropriate. The radial scale length, W, is also greatly

reduced compared to the small x) limit, and is given by

. CE"Ct 1/3 '
~ R ——— S' 4v1
e <BLt><nk§> L (4.19)

The naive mixing length ‘principle’, based on linear mode widths and growth

rates, thus predicts a thermal diffusivity:

EyCiL.Rg\? _ L2
DML~(—C e ) Su=2, 4.20
: BL:x | ker M (+:20)

which 1s small, due to strong dependenc¢ on x| This is qualitatively different
from the nonlinear prediction of D?, as we will see later in Sec. 4.4. This is
because the character of the nonlinear evolution of NRGDT differs significantly
from its linear antecedent, because of current decoupling.

It is interesting to note that the growth rate for a small b; scales as y; <
m?/5. The nonlinear saturation mechanism requires that the energy cascades to
small scale modes where it is eventually dissipated. Therefore, additional sinks

at small scales would be necessary to achieve nonlinearly saturated state in a
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small b; limit. However, for a large bs, 7: o« m~2/%, and nonlinear saturation is
attained without additional sinks.

Next, we consider the isothermal limit (6; = 0), while retaining the
density dependence of the resistivity (6, # 0). The mathematical structure is

same as when 6, = 0, since b; > d;. When b,, is small,

o 2/5
m\1/5 [ RriqkeLCA T} -3/5_—1
_(T 5.-1 .2
. (4) ( S5z Sy Tx (4.21)
When b, — oo,
cByCaLs \*? (L \*° B¢ . _,
078 [ SBICRLs Ls r 4.22
¥ 0 (8( BLan > ke r2 SM A ( )
_ CE“On 1/3 '
N : 4.23) .
W, (——-——B Lnxnk§> L, - - 42

DML - CE”CanRq ?'L_;%
" BLnxnkeT‘

Since by, /by ~ O(me /M), these modes cannot be neglected (v, > v:), even in a

T4

relatively high temperature region.

In general, tokamaks operate in the regime where L; and L, are com-

parable and same in sign. Therefore, both driving terms contribute to the

instability. In the limit of b; = b, =0,

P =] gl

n )

i.e., the density gradient acts to enhance the growth rate. In a more relevant,

large b; and b, limit, v is expected to be slightly bigger than v, (Eq. (4.22)),
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since b; > b,. When two gradients have different sign, these modes will grow

more slowly.
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4.4 Nonlinear Theory

Having discussed the linear properties of the basic NRGDT model, we
investigate the nonlinear evolution and saturation of NRGDT evolving from lin-
early unstable neoclassical rippling modes. Energy-like quantities (E x, Fy, and
E,) are defined. These are required to be stationary at saturation. The condi-
tion OFk /0t = 0 leads to the current decoupling, an important feature common
to turbulence?®:*3:*4 evolving from the linear rippling instabilties.28 =32 Two re-
maining conditions determine the level of the turbulence. We use the standard
one-point DIA theory?? to iteratively renormalize the dominant £ x B convective
nonlinearities. This procedure shows that amplitude-dependent:radial diffusions
are induced by convective nonlinearities. The spectrum-dependent radial diffu-
sion broadens radial scales of modes. This, in turn, facilitates coupling to x;
and xn 'dissipafion as a means for saturation. This saturation mechanism per-

sists without, and dominates over, the quasilinear flattening of the background

gradients.

To study the nonlinear dynamics of fluctuations, it is customary to de-
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fine energy-like integrals which are quadratic in fluctuation quantities as follows:

Ex = l/dTle$|2a

These will evolve as:

OFEx 2 o 7 ;
8B _ _ / dr [0 x V- VT +x V)Tl (4.26)
t B |
aEn C . 7 Vi 7
gD = —/d’i‘ \:En b x V@ vn o—rxan"nl — -—n VHJ“ ’I)T

i

Nonlinear mode coupling terms do not appear explicitly the speétrum—summed

(4.

énergy evolution since they only represent energy transfer between fluctuations
at different scales. Destabilizing sources are the resistivity perturbations pro-
duced by the relaxation of the backgroﬁnd temperature and density gradients.
The magnetic field line bending, thermal conduction, and viscous drags are sta-
bilizing. We note that the current decoupling approximation (f“ is negligible
where @ is significant) is a sufficient condition for 8E¢/0t = 0. Also, the simula-
tion results?®:33 support this condition showing that é, T., and 7 (equivalent to

Zeﬁ‘ in Ref. 33) are sharply skewed off the rational surface where J | is peaked.




Therefore, we can neglect f" in the region of interest. This condition (current
decoupling) greatly simplifies the governing equations because it renders the
vorticity evolution equation irrelevant. This decoupled system is also referred to

as the current convective instability.?? Indeed, in the nonlinear regime, RGDT

reverts from its manifestation as a rippling mode to that of a current convec-

tive instability. This is accomplished by the fact that nonlinear effects resolve
singularities at the mode rational surface. We study the nonlinear evoluton of
NRGDT for this case.

We use a standard one-point DIA theory?®:23:30 to describe the nonlin-
ear evolution of NRGDT. The driven fields, (ﬁff,? and ’_7"2(,212,,), which are ‘second
order’ in fluctuations, are calculated from Egs. (4.12) and (4.13). These are
produced by the direcf beating between the test (k) and the background (k')
modes where k" = k + k'. Subdominant contributions from other driven fields
are neglected. The driven fields are then substituted into the E X B convective
nonlinearity to yield amplitu@e—dependent diffusivities. The coupled, renormal-

ized equatons are

~ - . Bk "' ~
"?"Te,k - X”vﬁTe k— iDt _a-T k = s < (OtTe’k + Cnn—k)

ot 9z %9z " B kyLs T ng
. Cz:Iek .ﬂk )
— Wt : = 4.2
zw*eTe< i + no) , (4.28)
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2 = xa Vs %D{z—a-ﬁk ~ 2LV, = ST (ctT LI aﬁ)

8$ /.L,'M fi=es B l{:”Ln Te ng

o Tox #
— W, .0 ("T—;k -+ ;%) . (429)
Here,

wi, = kocTe/eBLy,

wy, = kecTe/eBL,,

t__ ¢t \=1] S 7 |?
'Dk == ; (F II) 'Blye@kI{ ’ (4:.30)
n o _ n\=1{C .17 2
Dy = ; (T%n) l Bkaékr{ (4.31)
The propagators are
-1
(Th)™ = Re [ + Ao — 3 V3 + Wl (k)] (4.32)
- T-1
(TZ)™ =Re [fyku + Awp, — XnVﬁ -+ iwfe(k")_' . (4.33)

Here, Re[(: - )] denotes the real f)art of (--+), and Awyr is the nonlinear decor-
relation rate, which eﬁ'ectivély limits the coherence time of nonliner interaction.

It is interesting to note that one-point DIA theory generically does not
conserve the total energy. However, in energy spectrum evolution,” incoherent

emission as well as coherent damping act to conserve energy. Indeed, the local

(in k) competition of these two effects yields a spectrum flow rate comparable -

115



to the damping rate predicted by one-point theory. This feature underlies the
validity of one-point theory here. It is worthwhile to draw analogy between
the propagtor in energy-conserving two-point theory and the propagator in one-
point theoi‘y. By neglecting 7 for simplicity, one can write for 7%:

aTe Kk

5 + ZQch k= Z Ak’,k" ¢k’ Te,k", (4:34)

k=k/+k"

where,

Nonlinear terms conserve energy since [ dr T.b x V¢- VT, = 0. By multiplying

T*k to Eq. (4.34), one finds the evolution of the energy spectrum:

30, ),

y A—k' k” (Te k(DkI Te k”)
k=k/+k"

e > e (B eTopr) + (b TB)) . (435)
k=k/+k/

Here, {(--+)) denotes ensemble-average. The first term in the right—hénd-side
of Eq. (4.35) denotes the incoherent emission and the second term denotes the
7(2)

coherent damping. The contributions from (T*kzpk, T x) are similar to the

second term, and are neglected for simplicity. From Eq. (4.34), T*( 2) satisfies:

e /dt' SO A () T ().
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Here, Awy reflects nonlinear scrambling due to interaction with modes other
than k' and k. We further assume that the spectrum evolution time-scale is

much larger than the nonlinear scrambling time-scale to approximate:

(ggf;,(t’)q?k, (t)) = <q§2(t)>k, e~ (i +Aw ) (11
Therefore, Eq. (4.35) can be written as

2z, - 2n() (12),
~ R Z / dt' e~ (iR +Quw +Qun)+Awkt Awpr + Awgr F(i— —t")
k—k’+k”
e i (0} (0), b (70, ()

e (12, e (), )y use

~ Re Z Akl k'
k=k/ k! ’ Z(\Q; - ..ri Qku) Auk Awk: AL..—kH

Note that the terms on the right hand side of Eq. (4.36) are comparable as noted

above. Also, the nonlinear decorrelation rate can be recursively defined as

Mo gerhsone (8)
Z(Q* + Qe + Qku) + Awg + Awyr + Awyrr '

Awk ~ Re E
k kl kll

Therefore, the propagator can be written as:
: (Pf{u)_l = Re [Z(Q; + Qe + an) 4+ Awy 4+ Awyr + Awku]_l . (4.37)

When nonlinear interactions are negligible, the interaction time becomes infinite,

and we recover the weak turbulence limit. However, since rippling modes are
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nondispersive (wir = wi + wi), NRGDT is always in the strong turbulence
regime, and the real frequency and w,. effects play no role. Also, the radial

diffusivities can be written as:

2/172
pt = LlV) (4.38)
X kg(A1)? -
20772
pp = L) (4.39)
Xnkg(A™)?
Here,
.~ - )2
V; = Zk: \éke,@k{ 3 . (4.40)

and kg is the spectrum-averaged mean poloidal wavenumber. Also, A? and
A™ are the nonlinear radial scale lengths for the temperature é.nd the density
fluctuations, respectively, evaluated at ky.

We now determine the level of the turbulence which mediates the énergy
cascade from the dominant large scale modes to small scale modes, thus leading
to the saturation of NRGDT. To find the dependences of At and A” on the
level of turbulence, we asymptotically balance (at large z) the radial turbulent

diffusions with parallel conduction terms, yielding:

2Dt '
AL)* = 227k (4.41)
(A4) X|1kg

L2Dn
APV = 2ok 4.49
(k)’ a2 (4.42)
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We note that A* and A™ increase as the level of the turbulence increases. When
the turbulence level reaches the point where the dissipation sink (X”Vﬁ and

XnVﬁ) balances the linear instability source, the saturated state can be attained.

Following Ref. 33, we multiply [ dr * to Eqs. (4.28) and (4.29), yield-

ing:
(] Ly |Te) (| Te) + (] La |3) (A]7) = 0, (4.43)
(7] Ls | Te)(R|Te) + (3] Ls |)(7]R) = 0. (4.44)
Here,
dr n* ~e
(7| L |E) = LT
(R|Te)
(ﬁ|’fe)=/drﬁ*f’e,
_ kg 9 . 0° CE”le
Ll“X”Lg"” iz G
T. CE”LS 1
Ly =—-—=C, -
2 ng BL, z’
nokg 2 ™ cEyLs 1
La= ™ ~1.%5L, o
b2 a" CE”LS 1

where we have required §/0t = 0 for saturation. We note that 7, and # are
skewed about the rational surface, and that they are negligible at z = 0. There-
fore, integrations involving 1/z remains finite. Also, when cross products are

involved in integration, A* should be taken as the characteristic width, since
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A < A™. For Egs. (4.43) and (4.44) to have a nontrivial solution, the determi-

nant should vanish, i.e.,

Vr - CtCE”Ls/BLt : _C’ncE”Ls/BLn =0 (4: 45)
TeVe/xpiM — CicByLs/BL:  Vp — CucEyLs/BLn| ‘
The solution is
- cE L,
r = n el - 4.
Vo= S [c <1+X”MM> +0tn} (4.46)

As expected, the density gradient acts to enhance the turbulence level, in com-

parision to the case with only the temperature gradient.?® However, the way the

gfadjent drives combine [(Crn/L,)+ (C:/L:)], is interesting because one may

naively expect the temperature gradient drive contribution to be suppressed,
due to the large parallel thermal conduction.

From Egs. (4.38)-(4.42), and (4.46), we obtain

(210

[cEyL, 13 7
Al = B{'L (Cn + Cme) (X”L—g> , (4.47)
n | cEyLs 13 =\ ¢ '
A = B{'L (Co + Cine) <xn Li) : (4.48)

We have used x| > Te/pu: M. Turbulent radial diffusivities are then given by

: 4 oy —1
"cEyLs 13 ko) ° _
Dt = B*i (Cn + Cine) (X” L—i) , (4.49)
L4 —2\ —%
[cEyL, 3 k
D" = " (C + Ctne) <XnL_§> . (4.50)
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Since A™ > A!, and A™ controls the particle flux, the thermal fiux due to
NRGDT is dominated by convection (D™ > D). By comparing Eq. (4.49)
for L, — oo (or Cp = 0) with Eq. (4.20), we find that the prediction of DMV
according to the mixing length principle differs substantially from the more con-
sistent nonlinear result: The same can be said when Eq. (4.50) for L; — oo
is compared with Eq. (4.24). However, A* and A™ compare well with W* and

W™, respectively, in limiting cases. Therefore, we conclude that the nonlinear

decorrelation time-scale decouples from the linear growth time-scale, in contra-

diction to the mixing length prediction. Also, sincé L, has the same sign as
L; in tokamak discharges, the density gradient acts to enhance the turbulence
level. The density gradient drive is most relevant nea; Vie ~ 1, where C, has
a maximum, and C; Ahas a minimum. The density gradient drive becomes also
important for a steep density profile (7. < 1). Thus, the region where resistivity-
gradient-driven turbulence is significantly excited broadens inward from the edge
of the plasma. The particle diffusivity in Eq. (450) has an interesting scaling
which may offer further insights into understanding of confinement properties in
H-mode?® tokamak edge, in particular, ELMs in DIII-D tokamak.”® The confine-
ment improvement in the H-mode after L—H transition is due to the formation

of a transport barrier just inside the separatrix flux surface.’? It has been also

121



suggested’® that the strong global shear near separatrix region is responsible for
the reduction of turbulent transport due to resistive MHD type of modes and
the creation of a transport barrier. This favorable role of global shear is also
supported by the limiter H-mode results in JFT-2M,”? where the quality of H-
mode is better for higher elongation. After L—H transition, the plasma density

at the edge rises continuously. In DIII-D, the electron density profile changes

dramatically, and becomes very flat (sometimes even hollow) with a sharp gra-

dient at transport barrier region. It is '}ntereéting to note that 7, at the edge
remaions relatively low, implying a higher value of v.. for H-mode compared to
L-mode. This unique ‘_feature of DIII-D H-mode profiles at the edge (sharp L,
high ng, v«e > 1, modest T3) is usua,llj;f destroyed by ELMs, résulting in a large

outward particle flux. Interestingly, from Eq. (4.50), we have

n(1)/3 Cn(V*e) " Ct(V*e> 4/3

D" i )
= TE/S Lyp Ly

which indicates a rapid incr‘ease in turbulent particle flux as the density and
density gradient are increased as v4e passes through unity from below. To this
end, it should be noted that recent experiments have established that the ideal
ballooning stability limits edge pressure gradients but have not identified the
physical mechanism of the giant ELMs. Indeed, it should be mentioned that

resistive ballooning modes®®4? are also a candidate for explaining ELM activity.
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Now, we derive the saturation amplitude of various fluctuations. Bal-

ancing the destabilizing gradient with the stabilizing parallel conduction (this is

effective mixing length theory in that the nonlinear mode width is used) yields:

L2V,

S - (4.51)
Te  xyka(AH)2L,

~ 257

L ——_QLL (4.52)
no Xnke(An)QL

By combining Egs. (4.51) and (4.52) with Eqgs. (4..47) and (4.48), we obtain the

temperature and density fluctuation levels:

LAY 1 cE L, 0B\ §

1 ’];:‘2 —%
(CnTC’me)} (an—i) : (4.54)

W=

Usually, since A™ > A?Y,

(Z)/(2) =n(2)' <

as experimentally observed in tokamaks.?® The electrostatic potential fluctuation

level is given by
ed _ eBL
Te TekeLn

(Cn - Ctﬂe) (4'55)

We note that unlike drift wave turbulence,*® the Boltzmann relation, e [Te.=
ni/ng, does not hold in NRGDT, which is also consistent with experimental

results.3%
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Unlike T, and 7, .f“ has nonvanishing components near the rational
surface:
Jj

_— p— n- - 4-56
']II ‘ CtTe +0 ng ( )

Therefore, magnetic fluctuations can be induced in NRGDT. Then, by integrat-

2

ing Eq. (4.56) using the constant-1 approximation,'? we obtain

~ dx s 7
Al = =Ty (CtAtE + CnA"£> ,
Te g

where 1 is the parallel component of the vector potential. For large poloidal

mode numbers, A’ ~ —2kg, and therefore,

-ér = 27;']” CE”LS ! % E; o 1 Xn % A=
B h CBLn BLn (Cn —1‘0”76) Xnﬁ Cn_x' Ctll?e l X” . (7.07)

This magnetic fluctuation level is too feeble to induce any significant electron

heat transport due to stochastic magnetic fields.” The electron heat transport

according to NRGDT is mainly due to thermal convection.
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4.5 Summary and Conclusions

We have incorporated the effects of the neoclassical correction to the
resistivity?39 into the evolutio‘n of rippling modes.28~33 Through the density
dependence of the nepclassical resistivity, rippling modes can tap the density
gradient free energy source as well as the usual temperature gradient free energy

source. The density coupling (C,) to the neoclassical resistivity is strong when

Vae ~ 1. Although C, is smaller than C, the density gradient is much more

".. . effective free energy source, since conduction of density fluctuations along flux

surfaces provided by neoclassical viscous force is less efficient than the parallel
thermal conduction. Thus, the region where the neoclassical rippling modes

are significantly unstable (linearly) extends further inside from the edge. The

growth rate and the linear mode width are calculated in limiting cases.

The nonlinearly saturated state is characterized by current decoupling:
asymmetry further develops to make other fluctuations skewed around the sin-
gular surface where J || is localized. Mathematically; this is a sufficient condition
for a stationary Fx. Two remaining stationary conditions determine the level
of turbulence. The saturation mechanism is nonlinear mode coupling between
long wavelength modes and stable short wavelength modes. It is shown that

NRGDT is always in the strong turbulence regime, and that w and wye do not

125




play important roles in nonlinear evolution. In one-point DIA theory,?° the non-

linear damping is expressed in terms of fluctuation-spectrum-dependent radial

diffusion, acting to broaden the radial scale of modes, thus leading to more ef-
fective parallel dissipation of ﬂuctuations. The renormalized coupled equatiofls
are solved by treating the turbulent diffusivities as an eigenvalues. The principal

results are as follows:
(i) The density gradient enhances the turbulence level in comparision to
the case with only temperature gradient,?® as expected from the linear

" theory.
(i1) The density fluctuation becomes much broader than the temperature
fHuctuation.

(iii) Turbulent radial diffusivities (D* and D™) are different from mixing
length estimates (y*(W?)? and 4y*(W™)?) both qualitatively and quan-

titatively, i.e.,:

AIEN

| [cEyLs 1 2\
D" = . B.”Ln (Cn + Ct"?e) (an%)

-1
" cEy L, 7 AN
Dt = Bg}n (Cn =+ Ct'r]e) <X[] L_g") )

|
=

We note that the recent nonlinear study of resistive interchange modes*?
and neoclassical pressure-gradient-driven turbulence (Ch. III) revealed

only quantitative diffference between nonlinear results and estimtes from
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mixing length principle. Here, current decoupling, a novel feature which
modifies the mode structure drastically in NRGDT, is responsible for
this more significant discrepancy.

(iv) The density ﬂuctuatién level is higher than the temperature fluctuation

level and the Boltzmann relation does not hold:

1 —2\ —
n 1 [ecEyLs 3 kg
- = L_n [—”_(Cn + Ctne)} (Xn_%) y

w=

No BLn
Te _ 1 CE“LS ' 3 7{:-3 N
Te = Lt [ BLn (Cn T Ctne):l (X” Lg 3
ed 6E”Ls
—_ = = Cn. + C e
. = Tkl 1)
()
e " (v) The magnetic component of NRGDT is calculated to be too feeble to

be significant.

(vi) The region where RGDT applies is extended into vx . < 1 regimes. Real
frequgncy and wy effegts do not play a significant role in the nonlinear
evolution.

0 are devel-

(vii) Some speculations into ELMs in DIII-D H-mode plasmas’
oped in the context of this model.
Other potentially important neoclassical corrections which we neglected

in this study due to the omission of the poloidal component of the first order

perpendicular flows are the bootstrap current®®® in Ohm’s law and neoclassical
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viscous damping in the vorticity equation. These effects combine to exéite neo-
‘classical pressure-gradient-driven instabilities*?*%. These instabilities are signif-
icant when f (B is the ratio of the kinetic pressure to the magnetic pressure) is
large, while the present study is limited to a low-f case. Study of turbulence
evolving from neoclassical pressure-gradient-driven instabilities is reported in
Ch. III. Modification of the current decoupling in presence of these neoclassical

corrections will be studied later.
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CHAPTER V
CONCLUSIONS

In this thesis, we have investigated several aspects of runaway elec-
tron confinement and neoclassical MHD turbulence in tokamakst The study of
runaway electron confinement was motivated by high sensitivity of runaway elec-
trons to the structrure of magnetic fluctuations and the experiments on ASDEX,
which revealed strong correlation in the behavior of particle, heat, and runaway
electron confinement during L-mode and at the transitions of OH—L—H. The
motivation behind the study of neoclassical MHD turbulence is to extend the va-
lidity of resistive MHD theories, which Ba.ve been successful in explaining many
phenomena in tokamaks, into more experimantally relevant, low collisionality
regimes. The results provide us with reasonable criteria to check consistency
of theoretical models and reasonable explanations for experimentally observed
particle diffusion, heat transport, and levels of turbulence. Furthermore, the
method developed here can be applied to other systems, thus leading to a better
understanding of turbulence. In this section, we summariz\e our understandings
and offer some suggestions for future work.

In Chap. II, we have shown that the radial correlation length (W) of
the. electromagnetic turbulence underlying both runaway and thermal transport
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can be determined from 7r/7Tg, when the VB drift of runaway electrons across
magnetic surfaces is considered in the analysis. The magnetic fluctuation level
(Er /Bo) is then determined to match the experimentally determined electron
thermal diffusivity. We can also determine the scalings of W and ﬁr /Bo from
parameter scan experiments. These results can be used as criteria to test the con-
sistency of theoretical models. We have concluded that the resistive ballooning
modes provide the most plausible explanation of the results. However, detailed
experimental results (average poloidal mode number and magnetic fluctuation
level inside the plasma, 7r spectrum, etc.) are necessary to further distinguish
between the various possibilities. Theoretically, it is interesting to investigate
how small generation and acceleration of runaway electrons during the cur;ent
plateau phase modify runaway electron transport. This analysis is expected to
involve a time-dependent transport coefficient. Further, self-consistent correc-
tion of magnetic ﬂﬁctuationé due to the motion of electrons, though extremely

hard to account for, is a very intresting, generic theoretical provlem.

In Chap. III, we have studied the turbulence evoloving from neoclas-
sical pressure-gradient-driven instabilities. Neoclassical MHD equations, which
are valid in experimentally relevant, low-collisionality regimes, have been used

in the study. Neoclassical pressure-gradient-driven instabilities can be catago-
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rized as the interchange and ballooning type instabilities, in that their growth

rate scale as vy « S;,Il/s

and that the pressure gradient acts as the free energy
source. However, the bootstrap current and neoclassical viscous damping of the

vorticity are crucial to the instability. Linear analyses with curvature and hot

trapped particle effects have revealed many branches of instabilities which can

be described in this context. In the case of neoclassical pressure-gradient-driven

instabilities, modes with poloidal wavelengths shorter than radial mode width
are éhown to be supp\ressed. Nonlinear saturation conditions determine the
turbulent radial pressure diffusivity as an eigenvalue of the renormalized coﬁdi—
tions. The pressure diffusivity, as well as levels of fluctuation, exceed the mixing
length estimate (based on the linear growth rate and the linear mode width),
by a power of the nonlinear enhancement factor. The radial scale lengths also
increase at sa,turatio.n, consistent with the notion of mode broadening as the sat-
urtion mechanism. The problem of the electron heat transport due to stochastic
magnetic flelds driven by NPGDT has been revisited. The reconsideration of
the radial structure of magnetié flutter leads to estimates of the elelctron ther-
mal diffusivity and magnetic fluctuation levels which differ subsfantially from

previous calculations. Nonlinear interactions between different helicities have

been considered. Nonlinear interactions with different radial modes other than
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the principal peaked modes inight be also interesting to consider. Also, one
should self-consistently investigate effects of magnetic fluctuations (not driven

by electrostatic modes) and the anomalous heat transport related to them.

In Chap. IV, we have studied the turbulence evolving from neoclas- -

sical resistivity-gradient-driven instablities which can tap the density gradient
expansion free energy source through the density dependence of the neoclasical
resistivity. The density gradient coupling to the neoclassical rippling modes is
salient when v, ~ 1. Linear analyses show that the region where neoclassical

rippling modes are significantly excited extends from the edge of the plasma to

the region where v, < 1. Since these modes are non-dispersive, diamagnetic

effects are negligible in comparision to the nonlinear decorrelation rate at satu- -

ra:'a‘ion. Thus, the rele?é‘nt regime is the strong turbulence regime. The turbulent
radial diffusivities of the temperature and the density are obtained as eigenvalues
of the renormalized eigenmode equations at steady state. These are substan-
tially different from mixing length estimates. This feature of NRGDT contrasts
with that of NPGDT, where only quantitative differences with mixing length
estimates were found. This novel feature is due to the current decoupling which
distinguishes the structure of NRGDT from its linear antecedent. The density

gradient acts to enhance the level of turbulence, compared to that driven by the
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temperature gradient aione. The saturated turbulent state is characterized by:
current decoupling, the breakdown of Boltzmann relation, a radial mode scale of
density fluctuations exceeding that of temperature fluctuations, implying that
the density diffusivity exceeds tile temperature diffusivity, and that density fluc-
tuation levels exceed temperature fluctuation levels. Magnetic fluctuation levels
are shown to be too feeble to induce any significant heat transport. An inter-
esting extension of this work is to investigate the behavior of NRGDT in the
presence of the bootstrap current. In particular, modification of the current

decoupling would be interesting. .

133 -

‘/ﬁ\

AY

I\\-"/:



APPENDICES

Appendix A.

Inbthis Appendix, it is shown that electrostatic turbulence cannot si-
multaneously underlie 7 and 75 in the ASDEX tokamak. To do this, we first
assume that heat transport of both REs and bulk plaéma is due to electrostatic
turbulence and later we will show that this assumption leads to unphysical
implications. For simplicity, only the electrostatic weak turbulence regime is
considered here.

Startiﬁg from the electrostatic electron drift kinetic equation for un-

trapped electrons, one finds . by following the same steps described in Sec. 2.3-

A

cT, 2 5 65;,&, 2
Xe =T =B, Z kgl 7 | §{lw —wp — k”v”). ) (A1)
R ©

‘Here, $ is the fluctuating electrostatic potential. The spectrum of @ can be

written as

€% 12 3 ES Bs|_¢% Awg
e F S~ . A.2
7 =T W\ Es ) e Topr r e A2

Here, the superscript “ES” denotes electrostatic turbulence and
egg,;
=y | =2 A3
%= T )
[
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Equations (A.2) and (A.3) can be compared with Egs. (2.13) and (2.11), respec-
tively, and T/V,fl—s , FES § Z:ES , and I¥5 have same meanings as before with the

replacement of “electrostatic” with “magnetic”. Since the ballistic frequenc
~ Tep g quency

dominates for thermal electrons, we have

7keL, < cT. >2 5
Xe,th = —— ¢~' (A4:)
Wogop,m \eBo/

However, because of the large drift velocity across magnetic field lines for REs,

we find

7T7€—9L cT, 2 (2 WD,R
Xe,R = —E3 > <6.B;> (PSS?S = —%&5 | - (.;4.5)
Wnrv),R kg, eWm

Then, comparing Eq. (A.5) with Eq. (A.4), one finds

gBs | _YDR__} _ TEULR (A.6)
© \FopaWa ) TRV

For typical parameters, the right-hand side of (A.6) is about 10, which is unphys-
ical because these modes are well localized around the rational surface, which

implies S; < 1.




Appendix B.

In this Appendix, we briefly discuss the properties of neoclassical tearing
~ instabilties driven by A) . We use the same notations as in Chap. III. These
modes have symmetric 1) and antisymmetric ¢ around the rational surface, while
neoclassical pressure-gradient-driven instabilties have a twisting parity. Basic

equations are:

Y oi_ s, ¢ o dg-
—=tp —Vyo =nJy+ 8¢—P, B.1
Vi =nJy+ gonde (B.1)
27 B3 Byd_ = Bi- _ Byd_
= — A | 1 - 7 2
Wit = G VN L g VIE i+ Vb (B-2)
-, . dP
7P v — =0, - (B.3)
Jy=——=vVi B4
1=-—z=VvVi¥ (B.4)

They are Ohm’s law, vorticity evolution, pressure evolution, and Ampere’s law.
We use v = —ikgcd/B, since c<p7/v“7,z > 1, and V‘7'” = i(ked/B)(d/dr). By

substituting Eqgs. (B.3) and (B.4) into Egs. (B.1) and (B.2), we have

V5 _ike 5 Mg g keclnd. |dP| dé 5
c¢ stx - WVJ'z/)-*‘ BBgy |dr|dz’ (B:3)
, keB: _,- Nyd .  kBidJy.  keBe|dP|dd
o2 T 25 Nv.d _ 2 (B
Vi "4 ch3$v'L¢ 5 da:a:¢ Z02,0}5’ dr ZBcp dr | dz (B-6)

The third and the fourth term in right-hand-side of Eq. (B.6) represent the kink
term which can be neglected inside tearing layer, and neoclassical viscous damp-

ing due to perturbed magnetic fields. Without these terms and the first term
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in left-hand-side of Eq. (B.5), the equations can describe neoclassical pressure-
gradient-driven instabilities.

Outside the tearing layer, ideal MHD equations are valid, and 11; satisfies:

B _,. 1
47&‘LSVJ‘¢_39

ap

1d 1451,
dr

(B.7)

z dz cdr z’

Therefore, the derivative of ¥ is discontinuous at z = 0, and one can usually

define A! as
1 di

A’ == 1..._— —,.—‘.
. zlj;z} '(/) dz

It is given by:

]

1‘_7)2(0) 0 dz "YU BB,

7
ar

R R

z dz ¢cB dr =z
(B.8)

Therefore, neoclassical tearing modes can become unstabilized due to the pres- -

sure gradient as well as the current density gradient.
Inside the tearing layer, we use constant-i approximatio'n, and A’ is

determined from:

N R
A-—'ycan I J, dmxdmx¢+7 0 dzmdmzé’ (B-9)

where,

. koB?

D=8
"SnpL,

(0)-

SN
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When enoclassical effects dominate over the inertia, we can normalize as

Iy?
z=XoX, and ¢=N

By,

where Xo = Ny /Fp is the tearing layer width. Then, @y satisfies:

I;’;gB %@N+E§(—X@N—6GX%@N—X2@N+X =0.  (B.10)
Also,
A= G 5 | (B.11)
e
where C; is determined from
o= / ix — = dX" X3y + Iﬂf\tB /0 ax Elf_di:" B (B12) o

Inertia terms gives correction to 7 through C;. The growth rate and the tearing

layer width are then given by

A?r2Lp (e >—1 _
= —1 - S 1',——1, B.13
7 2nC} L, q'BP MTA ( )
- C,
0 = SALs ﬁp s (B.14)

The dependences on Lp, L,, and B, are somowhat misleading, because A'
also depends on these quantities. When the inertia dominates over neoclassical
effects, one recovers the usual 7 ~ A58 —3/5, ~* growth of tearing instabil-

ities. However, neoclassical effects act to slow down linear growth of tearing
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instabilities since they grow on the resistive time scale. Therefore, the nonlin-
ear evolution near the rational surface will be dominated by the neoclassical

~ pressure-gradient-driven instabilities.
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