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Abstract

High-n WKB-ballooning mode equation is employed to study torqidicity-induced
shear Alfvén eigenmodes (TAE) in the s — « space, where s = (r/g)(dg/dr) is the
magnetic shear, and & = —(2Rq?/B?)(dp/dr) is the normalized pressure gradient for -
tokamak plasmas. In the ballooning mode first stability region, TAE modes are found
to exist only for a less than some critical value o,. We also find that these TAE modes
reappear in the ballooning mode second stability region for bands of o values. The
global envelope structures of these TAE modes are studied by WKB method and are

found to be bounded radially if the local mode frequency has a maximum in radius.




I. Introduction

It is well known that shear Alfvén waves have continuous frequency spectrum in an inho-
mogeneous plasma.! In a toroidal plasma, toroidicity induces poloidal mode coupling which
breaks up silear Alfvén continuum, and results in gaps in otherwise continuous spectrum.
Recently, it has been found®3 that discrete modes can exist with frequencies inside these
continuum gaps into a tokamak plasma. These modes are called toroidicity-induced shear
Alfvén eigenmodes (TAE). These TAE modes have finite shear Alfvén frequencies and are
marginally stable. More recently, it has been found*~® that TAE modes can be destabilized
by super-Alfvénic fusion alpha particles in an ignited tokamak for both low-n and high-n

modes, where n is the toroidal mode number.

In this work, we systematically study the high-n TAE modes in a tokamak plasma. In.

A\ o
- particular, we investigate the effects of curvature and pressure gradient on these modes.

Previously,? high-n TAE modes were shown to exist in the absence of the finite pressure .

gradient effects. Our present work is motivated from the previous study of the low-n TAE
modes.” In that Work, it was found that finite plasma pressure would shift the eigenfrequency
down toward the lower bound of the continuum gap. When the plasma beta is larger than a
critical value (2% ~ 4%), the TAE mode frequency would move into the continuum, and the
mode structure become singular. Since the low-n shear Alfvén equation is almost intractable
analytically, we turn to high-n modes for which the WK B-ballooning mode representation®-1°
can be used to reduce the high-n two-dimensional wave equation to a simple second order
differential equation along the field line, in the lowest order of 1/n < 1.

Our main results are as follows. In the ballooning mode first stability region, the lo-

cal eigenfrequency of the high-n TAE mode decreases as « increasing from zero, where

o represents the product of magnetic field curvature and plasma pressure gradient, o =




—(2Rq*/B?)(dp/dr), R is the major radius, B is the toroidal magnetic field, ¢ is the safety
factor, P is the plasma thermal pressure, and r is the minor radius. For « values larger
than a critical value o, = a,(s), the TAE mode no longer exists. This critical o is derived
analytically to be a, = s2/(1 +s) for s < 1 and o, = s+ 1 —+/2s+ 1 for s 3> 1, where
-8 = (r/q)(dg/dr) is the magnetic shear. In the ballooning second stability region, we found
that the TAE modes reappear for bands of « value. These o bands overlap at small shear
s £ 0.1. Finally, we found that the radial envelope for the TAE mode is bounded if the local
frequency has a maximum in radius.

In Sec. I, we present the formulation of Alfvén wave equation and a brief discussion of
the TAE modes. In Sec. III, the detailed numerical results and discussion are presented.
Section IV provides an analytic derivation of the critical a values for the existence of the
TAE modes in the ballooning mode first stability region. In Sec. V, the nonlocal envelope
structures of the TAE modes are discussed. Finally, in Sec. VI, a sumrmary and discussion

are given.

II. High-n Shear Alfvén Wave Equation

In this section we derive the eigenmode equation for shear Alfvén waves with high toroidal
mode number n for a toroidal plasma from the ideal MHD equations. Assuming that the
perturbation quantities can be written as &(x,t) = &(z)e~*?, the linearized ideal MHD

equations are given by

—twpv =3 x B +J x B — Vép (1)

and

E+vxB=0 (2)




where p,B,J are the equilibrium deﬁsity, magnetic field, and current density, respectively.
Note that we have neglected the initial conditions in Egs. (1) and (2), since we will be
devoted to studying the eigenmode problem. The perturbed quantities are the electric field
E, the magnetic field 6B, the current density j, the velocity v, and the pressure ép. In terms

of the electrostatic potential ® and the vector potential A, E and 6B can be expressed as:
E=—-(V®—-iwA/c), (3)
and
B=VxA. (4)

Equations (1) and (2) are to be closed by the quasineutrality condition:

the adiﬁbatic pressure law
—wép+v-VP4+~,PV-v=0, | (6)
where ~, is the ratio of specific heat, and the Ampere’s law
VA = —j. (7)
The equilibrium force balance equation is given by
IJxB=VP, (8)

where P is the equilibrium pressure. From Egs. (1) and (2), we obtain solutions for v and j
given by

v = ExB i(éB-VP+B. Vép)B (9)
- B? wp B? ’

and



jo = [(Ix6B—Vép) xB —iwpE,]/B*. (10)

Now we consider perturbations with short wavelengths perpendicular to B in comparison
with parallel wavelengths, kj/kL. < 1. By ignoring effects associated with the fast magne-
tosonic waves and the slow sound waves, we can neglect the V . v term in the adiabatic
pressure law. Note that for a low-£, large aspect ratio tokamak, the V-v term is small when
w? > (cs /qR)? where c, is the ion sound speed, and ¢ the safety factor and R the major

radius. With these assumptions, we have
Vi(p+éB-B)=0. (11)

The quasineutrality condition, V -j = 0, then reduces to!!

B- VBVZA B—Z;fv2<1>+2 BB Vi ép=0, (12)

where k = e, - Ve, is the magnetic field curvature with e, = B/B being the unit vector -
along the magnetic field line. The equation of state, Eq. (6), becomes

aP 9% ‘
zw5p+a¢ 33 =0 (13)

where S and v are related to the equilibrium magnetic field by B = VS x V). Combining
Eq. (12) and Eq. (13), together with the condition of vanishing parallel electric field, we

obtain the following linearized ideal ballooning equation for the shear Alfvén waves:

Vl r:,><B B xVP

Next, we consider perturbations with high toroidal mode number n and use § = 1/n ~
O(k/k.) as a small expansion parameter to develop an asymptotic solution of Eq. (14).
Employing the high-n ballooning mode representation,®~!° the perturbed quantities can be

expressed as, e.g.,

o(1,6,() = Z &(y,0 —274,¢) , (15)

{=—00
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where a (v, 0,() flux coordinate system is adopted. With the ballooning mode formalism,
the 6 domain of & extends from —oo to co. If we let S = (¢ —q()0 in a toroidal system, then
271 is the poloidal flux between the magnetic axis and a constant ¢ surface. 6 and ¢ are the
generalized poloidal and toroidal angles with a period of 27, and the safety factor ¢ is assumed
to be a monotonic function of ¢ only. In this coordinate system, B-V = j~1(8/80)s., where
the Jacobian is j = (Vi x V8- V()~1. Tt is clear that Eq. (14) is satisfied by the perturbed
quantities over an infinite range in § with no periodicity constraint. Then we express ® by
the WKB representation

& = ¢(4,6,6) explin X(S, )] , (16)
Wher.e X describes the rapid cross-field variations and ¢ the slow variations along the field
line on the equilibrium scale so that B - VX = 0. For an axisymmetric toroidal system, X is

separable and can be expressed as
x=(5+ [6:8)da) , | (17)

where 0 is to be determined by a higher-order, radially nonlocal analysis. In the lowest
order in 6, Eq. (14) then reduce to a second-order differential equation in 8 for every ¢ and

f%. The final ideal ballooning equation is given!!

9 IVXP D
96 7B 06

2
Pt 8_P_K,-eb><VX _

For the purpose of analytical studies we consider an axisymmetric, large aspect ratio, low-3
toroidal plasma with shifted circular magnetic surfaces.!? Employing a (r,6,() coordinate
system where r is the minor radius, ¢ is the poloidal angle, and ( is the toroidal angle, the
equilibrium magnetic field is given by B = By(1 —&cos 0)[e; +(£/q)(1+ A’ cos f)eg], € = r/R.
After expanding to the first order in &, the high-n ideal ballooning equation, Eq. (18), reduces

to
25 [G(6) (1+ 1%(8))] 75 & T VG(0) (1 + 280 cos6) x
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(1+h2%(6)) ¢+ o(cos 6+ h(6)sinf) =0, (19)

where h(8) = s(8 — 6;) — asinb, s = r¢'/q, @ = w/wa, wa = va/qR, v} = BE/p, o =
2¢°R(dP/dr)/BZ, and G(6) = 1 + [2(€ + A') — o&]cosf with A’ > 0 being the radial
derivative of the Shafranov shift, o is a quantity of order of unity which is related to the

poloidal variation of the Jacobian, i.e., j o 14+ 0€cos§. Making the following transformation,

1
VG(9) (1 + r2(6))

the ideal ballooning equation finally becomes

¢ — ,

Z s+ [0 -v(@)]e=0 (20)

with V() = F(0) — 2Q%¢ cos §, where

s—acosb)®  acosd
[14A2(0)]2 . 1+ h2(6)°

where € = 208 + (€ — o€ + A') /202, At first, we note that as § — oo, F' — 0 and Eq. (20)

F(o) = (21)

becomes a Mathieu equation!® which admits infinite pairs of real characteristic values (2,
these pairs of characteristic values define the gaps between the continuum bands. Physically,
continuum gaps are caused by resonant reflection of waves by periodic potential. A similar
example is the forbidden energy bands which appear in the energy spectrum of electrons in a
periodic potential well of the crystal lattice.} For € < 1, the continuum gaps located around
02 = Q% =402/4,4=1,2,3,..., the size of the £th gap around QZ is order of O(e*). Here
we consider the lowest gap (¢ = 1) which is bounded by 2? = 1/4(1 £ ¢€). Notice that for
Q ~1/2,¢ =2(E+ A). For  inside the continuum gap around ? = 1/4, ¢ ~ exp(%e;16)
asymptotically at large 6, where ¢; ~ O(¢).

It has been shown? that discrete eigenmode exists inside the continuum gap due to the
contribution of F(6) at finite §. Figure 1 shows the mode structure of such an eigenmode

with parameters of ¢ = —0.2, s = 0.8, and o = 6 = 0. Physically, the F(6) = s?/(1 + s%6?%)
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term provides a potential barrier at § = 0 which can damp an otherwise growing travelling
wave with frequency inside the continuum gap.

Previous work? has ignored the effect of finite pressure gradient o. Also only the lowest
order local ballooning equation (18) has been considered. In the following sections, we
will study the effects of arbitrary a value and will also consider the global solution of the

ballooning equation (14).

ITI. Numerical Results and Discussion

We numerically integrate Eq. (20) using the shooting method which makes use of variable
grid points. The boundary conditions for a bounded eigenmode is ¢ — 0 as § — *oo. For
0. = 0, the solution is either a pure even mode in 4 or a pure odd mode due to the symmetry
of Eq. (20). In this case, we integrate Eq. (20) from a large value of § = 6,, > 0 to § = 0.
The boundary conditions at § = 0 are ¢'/¢ = 0 for even mode and ¢'/¢ = 0 for odd modes,
whereas at § = 8, ¢ = 0 and ¢’ = 1. For 6, # 0 case, we integrate from 6 = 6,, to
6 = —0,,. The boundary condition at § = —6,, is /¢ = 0. The value of §,, is chosen such
that the boundary conditions are satisfied and the solution is converged. Typically we have

0 = 107 ~ 1007, depending on the values of shear, o, and ;.

A. First ballooning bode stability region

‘Here we consider the effect of o on the TAE modes in the ideal ballooning mode first
stability region. Figure 2 shows the eigenfrequency of the TAE mode as a function of « for
€ = 0.2 and s = 0.8, the dotted lines indicate the upper Bound (Q = Q) and the lower
bound (2 = Q_) of the continuum gap, respectively. As « increases from zero, §) decreases;
for a value close to a critical value o, = 0.34, Q approaches to the lower bound = Q_
of the gap. The corresponding structures of the eigenmodes are shown in Fig. 3 for several

o values. We observe that, as & approaching the critical value, the eigenfunction becomes



more and more extended. For & > a., we found that the TAE mode evolves into continuum
and its eigenfunction is no longer L,. Similar behaviors are also found for larger values of
shear. Figure 4 shows the critical value o, relative to the first ballooning mode stability
boundary (dotted line). We found e, scales as o, oc s for s < 1, and «, approaches the
ballooning mode first stability boundary for large shear.

The effects of a can be understood in terms of the potential V(6) = F(8) — 2Q% cos 6.
Figure 5 shows the potential V(6) with s = 0.8, ¢ = 0.2 for a) @ =0, and (b) a = a. = 0.34.
Recall that formation of a TAE mode inside the continuum gap is a result of the potential
barrier at the center § = 0 due to the F'(#) term [see Fig. 5(a)]. From Fig. 5(b), however, we
see that finite o can destroy this barrier at the center and therefore prevent the formation

of the TAE mode.

B. Second ballooning mode stability region.

Next we examine TAE modes in ideal ballooning mode second stability region. Both
even modes and odd modes are investigated. Recall that the TAE modes no longer exist
for a values larger than a critical value in the ballooning first stability region. Here, we
found that the TAE modes reappear in the ballooning second stability region for bands of
a values. Shown in Fig. 6 is (a) potential V(8) (b) TAE mode with ¢ = 0.2, s = 0.8 and
a = 2.9 in the second « band, and (c) eigenfrequency as a function of o in the second «
band. We observe that the potential barrier at § = 0 recovers for large «, at the same
time a new potential peak appears away from the center. Accordingly, the TAE mode is
localized between these two potential barriers. Making analogy with the quantum state of
the Schrédinger equation with ¢ being particle wave function, V() being potential and Q22
being the energy, the TAE mode can be seen as a bound state while the continuum mode
as a travelling plane wave in the potential V(). Invoking the WKB argument, the bound

state between these two potential barriers is possible only if a frequency within the gap is




compatible with the energy quantization condition. This constraint may give rise to bands
of a value for which TAE modes can exist.

Notice that in Fig. 6(a), the off-cent potential peak locates approximately at the non-
trivial zero point of A(6) = 0. For even larger a > s, more potential peaks will appear since
the number of zero points of ~(f) = 0 is approximately equal to a/sm > 1. Figure 7 shows
the potential V() for o values in a sequence of o bands with s = 0.3 and Fig. 8 shows
the corresponding TAE modes. The eigenfrequencies of the TAE modes are shown in Fig. 9
for these three a bands. We observe that for @ = 2.0 in the second band, the TAE mode
localized between the first peak at § = 0 and the second peak. Likewise, for & = 2.95 in the
third o band, the mode localized between the second peak and the third peak, and etc. We
thus conjecture that there are infinite bands of « values and the TAE mode for the (n+1)th
band is localized between the nth peak and the (n + 1)th peak.

Before ending this section, we give an overview of the existence region of the TAE modes
ins—a space. Figure 10 shows several a bands (shadowed region) in which the TAE modes |
exist; as a reference, the first stability boundary and the second stability boundary of the
ideal ballooning modes are also shown (dotted lines) for §, = 0. We observe that the first
a band (in the first stability region) and second a band are nearly parallel to the stability
boundaries for finite shear, and the slope of the higher bands de(.:rease as « increases. For
small values of shear s < 0.1, the « bands in the second stability region overlap. Finally, we

point out that odd modes begin to appear for the third or higher bands.

IV. Analytic Theories

Here we will derive the critical o value for the existence of the TAE modes in the
ballooning first stability region. First, we consider small shear s < 1. Following Cheng,
Chen, and Chance,? we solve Eq. (20) by the two-scale, asymptotic matching method, using

g€ € 1 as a small parameter. Consider the TAE mode inside the lowest continuum gap, we
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set % ~ and expand ¢ as

¢l= ¢, cos (g) + ¢, sin (g‘) ) (22)

where ¢. and ¢, represent the slow variation on scale § ~ O(1/e). Average over the fast

variation in cos(6/2) and sin(6/2), Eq. (20) then becomes

d2 c d 8
and
d?, dé.
T S Y-bm =0, (24)
0 at by
= —= 2
Ys 82 + 14 5262 + (1 4 s262)2 (25)

Here 00} = [Qz(l te)— ‘11-] >0,a: = 3a/s* and by = £ (32 + 1 ao? isa) /2. If we let
y = s6, then Eqgs. (23) and (24) can be combined to give

d 1 d d? d 1 d s
20 2 —_— B =
’ <dy Y_ dy 1) (dy2 * Y+) s i (26)
Notice that {12 ~ O(¢), we can then solve Eq. (26) by the asymptotic matching method.
We divide y in three regions: (1) y ~ O(1), (ii) y ~ O(1/+/€) and (iii) y ~ O(1/¢). Then in

these regions, Eq. (26) reduces to:

2
32{-‘1————1 d 1“d—+ &b g

dy 1+y2 + (1+y2)2 dy dy2 1 + y2 1 + y2)2
d 1 d
+ e =0 (27)
y 1+y2 + (1+y2 y
in the region (i), to
d 1 d ,
— = $* =0 , 28
dy Q" o dy ¢ (28)
T T 142
in the region (ii), and to
Q2 rd 0%
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in the region (iii).

The solutions of Eq. (28) and (29) are given by the following:

0? -
¢ = a {S—;y—%ﬂz (30)
and
¢ = e (I (31

where ¢;,c; and c3 are integration constants. To solve Eq. (27), we expand ¢} using s* <1

as a small parameter,

b. = ¢o+5°41 . (32)

Then the even parity solution can be obtained straightforwardly with

$o = 1 (33)
and
_ a4 _ b+ _ a_b_ 1 b_+ ﬁ__ —1 2
L g T 1+y2+<a++2 2 (ts™')
AN TR
+ (a++-§-) T (tg y+1+y2) : (34)
After matching ¢!, #? and ¢2, we obtain the following dispersion relation for s < 1
Q; = a(l+s)
e I )
5 =71° [ 2 } (35)
or more explicitly:
1 1-A7"?
2 _ —_— P
0_4[1+61+A] (36)

with A = %2« 5?2 (1 — a(1l + s)/s?). The analytic result of Eq. (36) shows that as « increases,

- the eigenfrequency ) decreases. When o = s?/(1 + s), O hits the lower bound of the
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continuum gap (i.e., 22 = 3 (1 +¢€)~"). Thus we obtain the critical « value for which TAE
modes no longer exists:
o, = s2/(1+43s) . (37)
Figure 11(a) compares analytic o, with the numerical calculation. We observe that the
agreement is very good. Similar dispersion like Eq. (35) has been independently derived by
Chen et al.®
Next, we consider the case of large shear s > 1. For this case, the two-scale analysis is

no longer applicable. Instead, the variational method!® may be used. Equation (20) can be

rewritten into a quadratic form:

- [ ds\’ 2 2| _
I_/_wda{<@> ~ [0%(1 +2ec0s0) — F(0)] ¢ p=0. (38)
We take the following trial function with parameters A\; and A; to be determined:

¢ == (COS(G/Z) + A; sin g

) e~ 2101/2 : (39)

where ), > 0. Notice that for s — o 3> 1, F(6) peaks at 6 = 0, so we can approximate F(§)

as
(s —a)? !
F(§) = _ _ . 40
) 1+ (s — )262)* 1+ (s —a)?0? ( ),
Then I = I();, A;) can be evaluated straightforwardly to be
XS 0 202 + 1)\ )2
Az 1+ FERY
T 2c
+ A(A1, A2) A2 + 3 (s —a) [1 - .(_;:-a-)-z.] , (41)
where
2
1 La2 A =L (A +5) 4 02(1 = A2 426 +2e)2
A ) = 2o - LT 7 (”11)A2 =% Lo
1
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Recall that ﬁi ~ O(e). According to the asymptotic behavior of ¢ at large 8 given in
Eq. (31), we order A\; ~ O(1) and A; ~ O(e). Keeping only the lowest order terms, Eq. (41)

then reduces to

N2 -0

I()‘la)‘Z) = /\2

—)\1+g(s——a) <1—(2—“> . (43)

s — a)?

Now a—a/\‘r? =0 and % = 0 gives

Xy = 20,07 (44)

2 o= M/ (45)

Since we require Ay > 0, we have \; = 0,/0_ and \; = 2ﬁ+ﬁ_. Thus, we obtain a

dispersion relation from I(A1,A;) =0

sk

s — @)?

s A ‘ 2a : : ,
TR R ”
The critical « value for s > 1 is then given by
a.=s+1—-+2s+1. (47)

Figure 11(b) compares the analytic result, Eq. (47), with the numerical result. The agreement

is very good.

V. Nonlocal Theory

In the preceding sections, we only consider the local theory of high-n TAE modes, which
determines local frequency Q or w = w(%, ;) as a function of flux surface and radial wave
number §;. Recall that the local ballooning mode equation given by Eq. (18) is obtained by
expanding the high-n ideal MHD equation to the lowest order of small parameter 6 = 1/n.

This lowest order equation only determines the local fast variation along v, and 6. In order
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to determine the slow variation of the radial envelope for these local modes, i.e., the radial
dependence of ¢ on 1, we need to expand high-n MHD equatioﬁ to higher order.® To obtain

radially bounded solutions, the following WKB quantization condition!! must be satisfied,

w0y dg = (24 -;-)w (48)

where £ is zero or positive integer, and we have assumed that the constant w curves in v, 6,
space are closed.

Now we consider the dependence of local frequency w as a function of 6. Since Eq. (20)
has a symmetry in 8 (due to the up-down symmetry of tokamak geometry considered in this

paper), we have
w(d),_ak) = w(d})ak) : (49)

We also have the obvious periodicity constraint:

w(¢a0k -{-27[‘) = w(¢’0k) ’ (50)

Figures 12(a) and (b) show typical variations of the normalized frequencies = w/wy as a
function of ; in the ballooning first stability region for (a) s = 0.8, & =0, € = 0.2, and (b)
a = 0.15, s = 0.8 and £ = 0.2. We observe that in both cases

a0 2*Q

00 lg,=0 an 59% fx=0

<0. (51)
Thus, whether the constant w contours are closed or open in the (¢, 8;) space depends on
the radial variations of the local frequency w(v,6}). For realistic tokamak equilibrium, the
shear Alfvén frequency wy = va/gR is nonuniform. Figure 13(a) shows a possible w profile
as a function of flux surfa.,ce which possesses a local maximum with 6, = 0. The dotted
lines in Fig. 13(a) represent the upper bound and the lower bound of the continuum gap.

The corresponding w contour is shown schematically in Fig. 13(b). We observe that the

contour is closed around the local maximum 3 = %¥o. In this case, the global frequency for
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the TAE mode is determined by the quantization condition given by Eq. (48) and the mode
is bounded between the two turning points. On the other hand, Figs. 14(a) and (b) show
a case in which w(%, 6;) does not have a local maximum in % and the constant w-contours
are open. Then, the TAE mode structure can not be bounded and it could be damped by
phase mixing associated with the shear Alfvén continuum. We thus conclude that damping-
free radially bounded TAE modes exist only if the local mode frequency has a maximum in

radius.

V1. Conclusion

In this paper, high-n toroidicity-induced Alfvén eigenmodes are studied systematically
for arbitrary shear and pressure gradient. We found that discrete local TAE modes exist
with frequencies inside the continuum gap only for bands of & value. In particular, the local
TAE modes exist only for o less than some critical value o, = a.(s) in the ballooning mode
first stability region. The global envelope for these local modes .ca,n be determined by.the
higher-order equation. The envelope is bounded radially if the local TAE mode frequency
has a maximum in radius. Otherwise, the envelope is not localized and Alfvén resonant
absorption associated with shear Alfvén continuum could occur. Thus, whether a damping-
free discrete TAE mode exists depends on the realistic tokamak profiles, in particular, the

shear Alfvén frequency wy = v4/qR profile and pressure profile.
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Figure Captions

1.

10.

11.

TAE mode with parameters of s = 0.8, a =0, € = 0.2, and §; = 0.

Eigenfrequency ) of TAE mode as a function of o for ¢ = 0.2 and s = 0.8. The
dotted lines indicate the upper bound (2 = Q) and the lower bound (2 = Q) of the

continuum gap.

TAE mode structure for a sequence of a values with ¢ = 2.0, 8 = 0, and s = 0.8.

(a) a=0.15 (b) @ = 0.25 (c) « = 0.321.

Critical a. (solid line) relative to the ballooning mode first stability boundary (dotted

line).
Potential v(4): (a) =0, (b) @ = 0.34 with e = 0.2, 6, =0, and s = 0.8.

(a) potential v(8) and (b) TAE modes for o = 2.9; (c) eigenfrequency for second «

band with € = 0.2, 6, = 0, and s = 0.8.

Potential v(f) for a sequence of a value with ¢ = 0.2 and s = 0.3: (a) a = 2.0,

(b) @ = 2.95, and (c) & = 4.5.
TAE modes corresponding to parameters of Fig. 7.

Eigenfrequency as a function of « in the ballooning second stability region with ¢ = 0.2

and s = 0.3.

Existence region for TAE modes for the parameters of € = 0.2 and 8, = 0; the dotted

lines show the ballooning stability boundaries.

Analytic critical o, (dotted line) and the numerical a, (solid line) as a function of shear

s for the parameter of € = 0.2 and 6, = 0: (a) s < 1, (b) s > 1.
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12.

13.

14.

Frequency Q) as a function of 6 for (a) s = 0.8, @ = 0.0 and € = 0.2, and (b) S = 0.8,
a=0.15, and ¢ = 0.2.

(a) w(z,0;) profile as a function of ¥ at 6 = 0, (b) w contour in (¢, ;) space.

(a) w(z, Bx) profile as a function of ¢ at 6y =0, (b) w contour in (¢, 6x) space.
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