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Abstract

With the use of the general formulation developed in an earlier paper [N. Nakajima,
IFS Report No. 373], the nonlinear evolution of the resistive fast interchange mode near
the marginally stable state is obtained analytically. The nonlinear amplitude equation
of the mode is shown to be of the Landau type. It is also shown that there is a stable
equilibrium bifurcating from the initial equilibrium. Comparing this analytical result
to numerical simulations, we confirm that the saturation level and the saturation time
are well estimated by this Landau type of nonlinear amplitude equation.
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1. Introduction

In an earlier paper,' a general formulation was presented to obtain the nonlinear equation
describing the time development of the mode near the marginally stable state. It was shown
there that two different types of nonlinearity exist, depending upon the properties of the
linear operator of the mode under consideration—one leads to a Hamiltonian-type equation
for the amplitude, and the other leads to a Landau-type equation for the amplitude.? The
former type of equation (which we will call the first type) may be obtained in the case
where the linear operator is degenerate at the marginally stable state, i.e., when the linear
dispersion relation has a double root for the frequency at the marginally stable state. The
latter type of equation (or the second type) may be obtained in the case where the linear
operator is nondegenerate, i.e., when the linear dispersion relation has a single root. In
magnetohydrodynamics (MHD), the first type corresponds to nonresonant ideal modes, and
the second type corresponds to resistive modes. In Ref. 1, the nonresonant kink mode in
reversed fleld pinches (RFPs) and the quasi-interchange mode in tokamaks were examined
by means of this general formulation.! These modes are nonresonant ideal MHD modes and
the corresponding nonlinear amplitude équations are shown to be of the Hamiltonian type.
As a result, we find that both the nonresonant kink mode and the quasi-interchange mode
are nonlinearly stabilized, and new stable equilibria bifurcate from the initial equilibrium.
This is a manifestation of nonlinear saturation of those modes.

In this paper, we examine the nonlinear behavior of the resistive fast interchange mode,?
which will be shown to lead to the second type, or the Landau type, of amplitude equation, a.
different type from the one obtained for the nonresonant kink mode and the quasi-interchange
mode in Ref. 1. Although our main goal in this paper is to present an example of the second

type of amplitude equation, it should be noted that the nonlinear evolution of the resistive




interchange mode plays an important role in terms of energy confinement in current fusion
experiments.*5:6:7

The rest of the paper is organized as follows. In Sec. 2 we derive the nonlinear amplitude
equation for the resistive fast interchange mode, based upon the reduced nonlinear equations
used in Ref. 4. Comparison between the analytical results and the numerical simulation
results is made in Sec. 3, in order to show that the saturation level and the saturation time

of this mode are well estimated by the analytical theory. Section 4 contains conclusions and

discussion.

2. The Derivation of the Nonlinear Amp'litude
Equation

The general formulation in Ref. 1 is here applied to the resistive fast interchange mode in
order to obtain the nonlinear amplitude equation near the marginally stable state. The

reduced equations for the resistive fast interchange mode are as follows*:
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With equilibrium quantities denoted by the subscript 0 and perturbed quantities by the
subscript 1, the dependent variables in Egs. (2.1)-(2.3) are defined by

__ 1 _ /P
¢_rsBaoBo¢1’ ¢= ?“sBeoBoqs’

and

2
= 2.4
P Bg lo_0|3/2p17 ( )




and the independent variables are defined by

r—rs By, o 1/2
o=l 2,y =Dell ),
and
B
't = —80 IUOI T. (25)
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Here, (7,6, 2) denote the polar coordinates of the cylinder in which the plasma is contained;
7 denotes the time; r = r, is the radius of the resonant surface; By, B,o, and By indicate the
azimuthal and longitudinal components and the absolute value of the equilibrium magnetic
field By, respectively; and p; denotes the perturbed pressure. The perturbed magnetic field
B; and the perturbed velocity field v; are expressed by By = V14 xb and vi = Vi¢; X b,

where b = Bo/Bj. The parameters used here are defined by

D = —2rp,/Bioz, S = r,Bgo/1+/Pos
M = p1/rsBgor/Po, x = (' = 1)k1/7sBoor/Po, (2.6)
po = rsBz0/Bso, oo = Byopg/ Bo.

Here, a prime denotes d/dr; po and p, are the equilibrium density and the equilibrium

pressure, respectively; I' is the ratio of the specific heats; and 7, uy, and x, indicate the

resistivity, the perpendicular viscosity, and the perpendicular heat conductivity, respectively.

Note that all the equilibrium quantities are evaluated at the mode rational surface r = r,.

The parallel diffusion coefficients are ignored for simplicity. In writing Egs. (2.1)-(2.3), we

only take into account nonlinear interaction of the single helicity modes, the helicity of which
)

is given by uo. Therefore, the parallel derivatives are expressed as z< in these equations.
9 p ay

The Poisson bracket { , } and the perpendicular Laplacian are defined by

(o = O Budy
hrr = Oz Oy Oy oz’
_ 0%u G
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The domain of the mode is defined as |z] < 6, and |y| < 6, with 6, and 6, being positive
constants of order S™*/2, which represents the narrow boundary layer within which the mode
is considered to be localized. As in the case of the linear resistive fast interchange mode,?
we assume that the mode decays rapidly away from its mode rational surface z = 0 and 2,
¢, and p are periodic in y with period 26,,.

We now consider the situation where the equilibrium pressure gradient, indicated by the
parameter D, is slightly larger than its critical value D, (which will be determined later as
an eigenvalue of the linearized system) so that the plasma is linearly unstable. It is known
that this unstable mode has no real frequency and that the functions Y, ¢, and p have odd,
even, and even symmetry with respect to z, respectively.

We apply the general formulation in Ref. 1 to Egs. (2.1)-(2.3) as follows. The expanded

forms of 9, ¢, and p are given by

P Y1 (U 3
o | =X b | +X] o [ +X°| s |+, - (28)
p D1 b2 P3

where X is an ordering parameter. We introduce the following form for %; and also the

multiple-time-scale method:

Y1 = Api(z)cosky, (2.9)
n = /\t, Tg = Azt, ey (210)
) 8 ., 9

5= gt Ng e (2.11)
A = A(Tl,'?'g,.. .), (212)

where A and v (z) are real. In Eq. (2.11), we made use of the fact that the realifrequency
vanishes. Finally, we choose the mean pressure gradient D to be the parameter p in the

general formulation, so that

D =D,£)% (2.13)
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where D, denotes the critical value (or the linear stability limit) of D and the plus sign corre-
sponds to the linearly unstable situation. Substituting Egs. (2.8)-(2.13) into Egs. (2.1)—-(2.3)
yields simultaneous equations for each order of A, which we solve beginning with the lowest

order.

Order J:

This order corresponds to the marginally stable state, and we have the following linearized

equations:
28% 2 _
; [ 1 ] _ [ —Sa? TG + MAL ¢ Op1/0y o (2.14)
P1 9¢:1/0y —(x/Dc) ALpy
and
9¢1
A = —Sz—. 2.15
1% Sz By ( )
Assuming that ¢, is given by Eq. (2.9), we may have the following type of linear solutions:
Y1 1(z) cos ky
¢ | =A| d(z)sinky |. (2.16)
P1 .\ pi(z) cosky

The real functions ¢1(z), ¢1(z), pl(ﬁc), and D, are, respectively, the eigenfunctions and
eigenvalue of the following eigenvalue problem:
x
Iy [ #i() ] =0, (2.17)
ni(z)
where ¢1(z) = p1(z) = ¢i(z) =0 at |z| = &, and

(02 = ¥*) a(2) = ~Skeds(2), (2.18)

with ¥;(z) = 0 at |z| = §,. Here the linear operator L is given by the [ = 1 case of the

following operator:
S(lkz)? + M (92 — (1k)?)* Ik
L o [ Sty + 2 (02— @) | (2.19)
k —(/Do) (@ - (k)



It is seen that L; is a Hermitian operator with respect to the following inner product:

U1
(ug,uz) [ . ] = (u1v; + ugvy), (2.20)
2
where
_ 1 b ., !
) = 5 /_ _ dalu(t, ) (2.21)

We assume in what follows that the solutions of Eqs. (2.17) and (2.18) are unique.

Order )\2:

The equations in this order are given by
2

x 1,1 ,A A 4 1
I [ o ] _ [ {$1, AL} — 58 S {61, v — {th il + 5=ALr — STgiath (2.22)
P2 —& {10} + 2]
and
A= ~5a T2 +S{¢1,¢1}+sg¢1 (2.23)

From the inhomogeneous terms of Eqgs. (2.22)—(2.23), we see that ¥y, ¢o, and p, have com-

ponents with the same phase in y as the order-A solutions: g (z) cosky, ¢q1(2)sinky, and

p21(z) cos ky. Here the functions ¥21(z), ¢21(z), and poi(z) are given by

L) g [BOeE S (2.20
pa () on —p-p1(2)
with ¢21(z) = pai(z) = ¢4 () = 0 at |z = 6;, and
(02 — k?) o (2) = —Skadan () + a_A5¢1( ), (2.25)

with g1 (z) = 0 at |z| = 8. From the solvability condition of Eq. (2.24), we obtain

0A 1
5 (~ @t @) + (kr())] + [(Gr@) + (b ()] — 5#i(@)) =0. (226)
The averaged quantity (---) in Eq. (2.26) does not x;anish generally, and hence we have
0A



Then, the inhomogeneous terms of Eqs. (2.24)—(2.25) vanish, and so we have the solutions
proportional to the order-A solutions. According to the general formulation, however, these
solutions could be transferred into the order-A ones by redefinition of the coefficient A, and

therefore we put g1 (z) = ¢o1(2) = par(z) = 0. Then, from Egs. (2.22)—(2.23) we have

¥a tao(z) hoa(z) cos 2ky
¢2 = A2 ¢20($) + A2 ¢22($) sin 2ky 5 (228)
P2 pao(2) P22 () cos 2ky

where 1q;(z), ¢2;(z), and psj(z) (§ = 0,2) may be obtained from the following equations:

Lo [ Pao() ] - [ ° (2.29)

po(2) 520 ($1(z)p1(2)) |’

with ¢oo(z) = pao(z) = ¢h(z) =0 at |z| = &y,
" kS
Optbao(z) = —7&” (¢1(z)¢a(z)), (2.30)

with bgo(z) = 0 at |z| = 6, and

Iy = [ (o) ] _ [ f ] (2.3)
p2a() —55:71(2)0% (%) , |

with ¢o2(z) = paa(z) = ¢4y(z) =0 at |z| = &,

¢1(w)) , (2.32)

2 2\ 2 z) = — T T 1“_‘?_ 2z
(62— (217) bualo) = 2Skob(e) + (a0, (£

with g (z) =0 at |z| = &, where

N (R LG\ PR C10)
—ﬁ@&@%;@f@U' -

Here we note that ¢qo(z) =0.



Order )3

In order to obtain the nonlinear equation for A, we consider the solutions s;, ¢s1, and
p31 which have the same phase in y as that of the order-A solutions, i.e., 131() cos ky,
$31(z) sin ky, and pa;(z) cos ky. The functions ¥z (z), ¢a1(z), and ps (z) are the solutions of
the following equations:

I [ ¢31(z) ] _

pai(z)

A%fi + 85 1(02 — %) 41(z) + Skaipy ()]

. (2.34)
~A % — AL G(2) - B2 Bom (a)

with ¢ (z) = pa1(z) = ¢ (z) = 0 at |z| = §,, and
(82 — ¥?) thaa(z) = —Skagn (z) + A>Shy + %5%@), (2.35)
with s (z) = 0 at |¢| = 6,, where
oz B - Bbi(e) - (82— (2R)) bua(e) + dua(a) - (82— #2) (o)
— Sa(z) - B (82— (20)°) da(a) + 50eda(a) - (37 — K) da(a)
+8tpa(z) - (82 — (26)?) $aa(®) — ¥ (a) - (82 — 7) ()
+59n(e) 00 (82— (2R)) tha(z) — Z0ubn(a) - (82 — K7) th (@)

—~ 1(2)0%%a0(2) + utbao(a) - (82 — B2 1 () + sxkl} (2.36)

g1 = —k{¢1($) .' Ozp20(z) + Opd1(2)p2z() + f22(z) - Opr(2)

+ 541(0) - Bepa(0) + 50u(e) (o)} (237)

hy

—H{$1()0ut0(2) + 0ub1(2) - $a(e) + bale) - Buths(2)
+541(0) - 0bn(®) + 504m(@) (e} (239

In Eq. (2.34), the term involving the factor of +1 comes from Eq. (2.13). The solvability

condition of Eq. (2.34) yields the following nonlinear equation, as was proved in the general
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formulation® in the nondegenerate case:

0A

dog— £ A +dsA° =), | (2.39)
where
dy = (= [0hi(@) + ()] + Ceth(e)) + (bh(a))" — 5p@)), (240)
d = 32 ((Oepr(z))* + (kpa(2))%), . (2.41)
dy = <¢1(m)f1—Dicp1(x)gl>. (2.42)

Rewriting Eq. (2.39) in terms of the original variables, i.e., t = 75/A\? and A = AA, we have

the nonlinear amplitude equation:

do% +(D = D) diA+ ds A = 0, (243)

where we used Eq. (2.13). Defining

[ = %‘l—ie’, (2.45)
we obtain
2
% = 20A% — 1A% (2.46)

This equation is the Landau-type equation well known in fluid dynamics,? the solution of
which is expressed analytically as

o Ad
LA+ (1 — %Ag) =20t/

2

(2.47)

where Ag is the initial amplitude. It should be noted that o gives the linear growth rate of

the mode.
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The solution (2.47) exhibits wide classes of nonlinear phenomena, depending upon the
signs of the coefficients o and [. For example, consider the linearly unstable case, i.e., o > 0.
In this case, if the mode under consideration cannot be nonlinearly stabilized by the second
term on the right-hand side of Eq. (2.46), i.e., [ < 0, the solution becomes unbounded in
time, so that none of the higher order terms may be truncated and there is a fast transition
to turbulence. On the other hand, if the mode is nonlinearly stabilized, i.e., [ > 0, then a
new stable equilibrium bifurcating from the initial equilibrium is obtained. In this case, the

amplitude A asymptotically approaches its saturation level A, given by

PRSCI MUES U (249)

for any positive initial amplitude Ay > 0.

It is easy to show that this saturation amplitude A, is identical to the one given in Ref. 4,
which was obtained by a somewhat different nonlinear analysis. In the perturbation method
presented in this paper, however, we also obtain a nonlinear time evolution of the mode from

- the initial amplitude Ay, which was not assessed in Ref. 4. Such time evolution of the 1n0d¢
at the initial stage is characterized by the saturation time A7, or the time that elapses from

A=0.1A4, to A= 0.9A4,, which is given by

3
AT ~ —, 2.4
res (249)

3. Comparison Between Theory and Numerical
Simulations

In this section, we present sample calculations of the nonlinear evolution of the resistive
fast interchange mode, using both theory [Eq. (2.46)] and direct numerical simulations of

the nonlinear system Eqs. (2.1)-(2.3). The coeflicients o and ! in Eq. (2.46), given by
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Eqgs. (2.44) and (2.45), respectively, are calculated from the solutions of the linear equations
(2.17), (2.18), and (2.29)—(2.32). The details of the numerical simulations of Egs. (2.1)-(2.3)

may be found in Ref. 4. Following Ref. 4, we use the scale transformation
g — S8V, y — Sy,
b — S, $—57l, (3.1)
p — S,

and introduce new parameters M, = SM and y, = Sx in order to eliminate the explicit

dependence of the system on the parameter S. The following values were chosen for the

parameters in our calculations:
M,=10, x,=01, §5/2=25  and 6,5 =r. (3.2)

In the numerical simulations of the equations (2.1)-(2.3), 150 grid points in the z-direction
and 7 Fourier modes (0 < m < §) in the y-direction were employed, where the mode number
m is defined by the relation 0/0y = k = mn/6,. It was confirmed that these grid points
and the number of Fourier modes give sufficient numerical resolution to obtain correct mode
saturation in the calculation presented in this section. With these parameters, we obtain

the eigenvalue D, from Eq. (2.17) to be
D, = 0.085 (3.3)

and the parameters of Egs. (2.44) and (2.45) to be
—_— = . -1
(D =Dy 3.8 x 10

I = 1.2 x10° (3.4)

Because ! > o/ (D — D.), the mode under consideration is significantly nonlinearly stabilized

when D 2 D,.
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Figure 1 shows the time evolution of the normalized energy F for the case of D =
0.13 (> D,) as calculated from the theory [Eq. (2.46)] and as obtained from numerical sim-

ulation of the system Egs. (2.1)-(2.3), where

1 & a\*  [04\?
E= 25yA/_6md:c/_sydy ((5;> + (@) ) (3.5)

with the typical mode width A in the z-direction given by A = 7yo.* The analytical result

is in good agreement with the simulation result. The overshooting that appears in the
numerical simulation seems to manifest a higher order nonlinear correction, which is not

included in Eq. (2.46).

4. Conclusions and Discussion

Using the recently developed general formulation,! we have examined nonlinear evolution of

the resistive fast interchange mode analytically.>* In the case of the resistive fast inferchange
mode, the linear operator is nondegenerate at the marginally stable state, i.e., the linear
dispersion relation of the mode has a single root of the frequency at the marginally stable
state. Therefore, as shown in Ref. 1, the nonlinear amplitude equation of this mode turns
out to be of the Landau type. It is found that a new stable equilibrium bifurcates from the
initial equilibrium. Cémparison between the perturbation theory and numerical simulations
of the system (2.1)-(2.3) was made, from which we confirm that the saturation level and
saturation time are well estimated from this nonlinear amplitude equation.

Application of the present theory to other resistive modes is also of great interest. We
are currently investigating how the nonlinear behavior of the m = 1 tearing mode and the

m > 2 tearing modes differ.
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Figure Caption

1. Time evolution of the normalized energy F in Eq. (3.5) for D = 0.13. Both analytical

and numerical results are shown. The unit of the time ¢ is defined in Eq. (2.5).
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