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Abstract

The ion temperature gradient driven mode or 7;-mode turbulence is reinvestigated
based on two component comp;’essible fluid équations with the polarization drift veloc- .
ity and adiabatic electrons. The scaling of the anomalous ion heat conductivity with
rﬁagnetic shear s = L, /L, and the excess of 7; over the critical value 7; . for marginal
stability is found to vary as X; = g(ps/Ln)(cTi/eB)(ni —ni,c) exp(—as), where g = O(1)

and o ~ 5.




I. Introduction

Recent experimental studies in tokamaks both with regard to the ion thermal confinement
properties’ ™ and with respect to the fluctuation spectrum? indicate that the ion temperature
gradient driven drift mode or n;-mode®® is probably a determining part of the thermal con-
finement properties in tokamaks. In view of these experimental developments we reconsider
some of the theoretical differences”=!° that are found in the earlier formulas for the n;-mode
turbulence and the associated anomalous ion heat conductivity X;. In particular we inves-
tigate the magnetic shear s = L, /L, dependence of the anomalous heat conductivity X;(s).
Here L,, and L, denote the scaling lengths of the density gradient and the magnetic shear, re-
spectively. The early 3D nonlinear study of Horton-Estes-Biskamp’ reports that X; decreases
weakly as s~*/2 with increasing shear, whereas the subsequent theoretical works of Connor,®
Lee and Diamond,? and Terry, et al.'® indicate the opposite tendency with X; increasing lin-
early with the shear s. In the work of Connor,® such scaling of X; was derived using the dimen-
sional analysis of a system further simplified from the original sheared slab model of the 7;-
mode. In the work of Lee and Diamond® and the work of Terry et al.!® the authors essentially
attempt to explain the shear dependence of X; with the linear growth rate increasing linearly
with the shear s under the assumption of small poloidal mode numbers (k2 p?(m; + 1) < 1
with k, being the ion poloidal wavenumber, p being the ion Larmor radius, 7; = L,/Lr
and Lr being the scale length of the ion temperature gradient) and fixed radial eigenmode
numbers {. The dependence of X; on the ion temperature gradient 7; is also of basic im-
portance. In these previous works the n;-dependence of X; scales as X; « (n; + 1)* with
1/2 S o < 2. Since the model equations of the 7;-mode on which all these previous results

are based are the same,!! the correct scaling of the ion anomalous heat transport X; due to

the slab n;-mode turbulence has not been established yet.



In order to settle this discrepancy, we reinvestigate the problem using more rigorous
analyses and numerical simulations based on the same two component compressible fluid
equations with adiabatic electrons. The parameter regime of interest is s < 1 and finite
L,, a typical parameter regime of high temperature tokamak plasmas. We solve the linear
eigenvalue problem analytically with perturbation theory and numerically with the shooting
code and the initial-value code. Based on the space-time scale obtained from the linear
analysis, mixing length theory is applied to estimate theladnoma,lous ion heat conductivity,
which is then compared to the results of the amplitude expansion method and numerical
simulations. In the amplitude expansion method, the set of nonlinear equations of the 7;-
mode is solved rigorously near the marginally stable state, and the dependence of X; on

the ion temperature gradient 7; is obtained. The nonlinear initial-value code is used to

solve the 2D and 3D equations for the finite amplitude fluctuations. In the stead‘y'-st-a;t'e’

of turbulence the scaling of the anomalous ion heat conductivity X;(s,n;) is obtained for

a wide range of the parameter space. The simulations use a second order finite difference

formula in the radial direction z and Fourier component representations in the perpendicular

y- and z-directions. This numerical method contrasts with the finite difference formulas in
the three-space directions with up-wind derivatives in the E x B - V nonlinearity used by
Horton, Estes and Biskamp.”

An important feature of the stability analysis is that the linear mode is most strongly
excited when k, ps =~ (14n;)"%/2? and (2£+1)s ~ const. It then follows that the growth rate of
the fastest growing mode ~,, is a weakly decreasing function of the shear while localization
‘of the mode around the mode rational surface becomes stronger with increasing shear s.
Suppose such strongly excited linear modes. are responsible for the nonlinearly saturated
turbulent state, the associated anomalous ion heat transport is expected to decrease with
increasing shear, unlike the X;-scalings reported in Refs. 8-10. While numerical simulations

show that the peak of energy spectrum is downshifted from the wavenumber giving the fastest



growing linear mode, the mixing length estimate based on the most unstable linear mode
provides tl‘le general tendency of the X;-scaling that agrees reasonably well with the numerical
results. Physically, this is expected since the fastest growing linear mode is the energy input
to the turbulence. Based on a more rigorous nonlinear analysis and parameterization of the

numerical results, we find that the anomalous ion heat conductivity is given by

P cTi) . _
ri=o g () (e mont-ao 2

with ¢ = O(1), @ =5 and 7, denoting the critical 7;-value. In deriving the shear dependence
X;(s) in Eq. (1), we consider both power law s” and exponential fits. With the alternative
power law parameterization of X;(s) we obtain f = —2 for s R 0.5, as in resistive g-mode

turbulence, and 8 = —1/2 for s ~ 0.1. As shown in Sec. V, the exponential dependence fits

well the entire range of shear. It is found that the scaling obtained by Horton, Estes and.

Biskamp” agreeé reasonably well with the scaling above in the limited range of the shear

parameter 0.05 S s < 0.1 while it underestimates the strength of the shear dependence for.

larger shear. On the other hand, the scalings of Connor,® Lee and Diamond® and Terry
et al® (8 = 1) give the wrong qualitative .dependence on the shear with X; increasing with
-increasing shear.

For smaller shear, the locally unfavorable toroidal curvature e, = L,/R effects are
dominant!?~® and the sheared slab model of the n;-mode becomes no longer applicable.
The anomalous ion heat conductivity X; calculated by Horton, Choi and Tang!? from the
toroidal n;-mode, however, also shows that X; is a decreasing function of shear, scaling as
X; o< 1/s. In the work of Hong and Horton,'” the limit s — 0 of the toroidal n;-mode is
reexamined. For sufficiently small shear, the radial profile of the electron diamagnetic fre-
quency wx(r) and the ion temperature gradient 7;(r) must be taken into account over the
mode width Ar.

The present work is organized as follows.- In Sec. II we give the non-dimensional field
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variables and the dynamical equations along with their conservation properties. In Sec. Il
the linear analysis is presented, in particular, assessing the shear stabilization effect due to
the parallel compressibility and the parallel diffusion. In Sec. III we also present the mixing
length estimate, deriving as a reference formula the anomalous ion heat conductivity X;(s, ;)
of the n;-mode turbulence. In Sec. IV, the amplitude expansion method is used to solve the
nonlinear equations and the m—dependence of X; is obtained. The results of the 2D and 3D
numerical simulations are shown in Sec. V and the scaling of X; is derived therein. The

conclusions and brief critiques to the previoﬁs results are given in Sec. VI

II. Dynamical Equations

In this section we present the dynamical equations of the ion temperature gradient driven

mode and review their basic properties. The fluid model of the electrostatic ion temperature - -

gradient driven mode in a sheared slab is derived” from the two-component fluid equations

(Braginskii equations)'® with the finite ion Larmor radius stress tensor and the ion heat
balance equation. Assuming charge neutrality, constant electron temperature and zero elec-
tron inertia, the parallel component of the electron momentum balance equations is used to

derive a Boltzman distribution of electrons

n = n; = ne = ng(z) (1+§£> , (2)

where n; and n. are the ion and electron densities, respectively, no(z) is the unperturbed
density, ® = ®(z,y, z,1) is the electric potential, e(e > 0) is the magnitude of the electron
charge and T is the (constant) electron temperature. In Eq. (2) we assumed that |e®/T.| <
1. The coordinate system (z,y, z) is the usual orthogonal coordinate system represented by
three unit vectors %,y and Z. Here X represents the radial direction of a plasma cylinder, 2
represents the direction of the magnetic field B at a rational surface, the positioh of which

is indicated by z = z. To the lowest order, the ion fluid velocity v may be written as the




sum of the E x B drift velocity vz and the ion diamagnetic drift velocity vp, where

ExB
VE=¢C B2
and
: z X Vp;
VD= T B

Here E = —V® is the electric field, ¢ is the light velocity, B = |B| is the magnitude of the
magnetic field at z = z¢ and p; is the ion pressure. To the next order of v, we have the

polarization drift velocity

—cm; (0 '
Vo= B (§+(VE+VD)-V> V., - (3)

* where m; is the ion mass and V, is the gradient perpendicular to the direction of the

magnetic field B. Denoting the parallel velocity by v), we write

e o no(m) _{_;’iz:;m_}_ noeé/T; e
pi = pio(x) + P
o= 6 and Y| = '17” 5

where the subscript 0 denotes the unperturbed quantities which are assumed to be functions

- of only z, and the tilde denotes the fluctuating quantities. Here we assume that the unper-

turbed parts of the velocity field v and the potential ® are zero. In order to write down
the dynamical equations in a nondimensional form, we define the following characteristic

velocity and space scales,

T\ /2 ¢ c(m; T,)Y?
Cs = <—> , Ps = — = —————

m; Wes eB ’

d - d -
Ln=—(%f7‘&no) ) LT=—<%K7’¢Tio) >
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and the nondimensional parameters
1T

L, : T
===, = ), = . 4
=z K Te(l“_L") r i (4)

Here ~ denotes the ratio of the specific heats, w,; is the ion cyclotron frequency and all the

unperturbed quantities are again evaluated at £ = zo. In the present work, we assume that

O(n;) = 1 so that Ly(~ L) is the typical macroscopic length of the system. It is known®?

that, in the case of the flat density profile (L, > L), the n;-mode has different properties.

The appropriate nondimensional space-time variables are

~ T—xg - Y - P4 te,
T = y Yy=— 5, 2== , T=F.

Ps Ps L,

Assuming that the fluctuation level is small in the sense that the ratios 7i/ng, 9)/cs,
Pi/pio and e® /T. are of order of ps/L,, and the fluctuating quantities vary more rapidly in
space than the corresponding unperturbed quantities, the nonlinear evolution equations: of

the fluctuations are given by

P 9 |
-V =-(1+KVE) LT+ 4 Vid - mVie  ©)

ov o 2

7= = =Vi(¢+p) — {$,0} + L Viv +uy Vi (6)

5 5

a—f = —Ka—; —TVjv —{é,p} + X0 Vip+ X, Vip, (7

where only the E x B convective nonlinear terms are retained as nonlinearity for simplicity.
It is shown in Ref. 7 that the other nonlinearities arising from v Vv and v Vp are negligible

if ps/a < 1. Here the dependent variables are defined by

ed L
¢ — T . _n
e Ps
5” L,
VD= — ¢« —
Cs Ps
Do Ps




all of which are of order of unity, the Poisson bracket {f, ¢} and the perpendicular gradient
V. are defined by

_3 _9f9% 9f %
0. 0 _

In deriving Eqgs. (5)~(7), the magnetic field is assumed to take the form

~ T — o
B=2-
(” I. y)’

where L is the shear length. With the definition of the shear parameter s = L,/L;, the
parallel derivative V)| in Eqgs. (5)(7) may be written as

0 .0

" The constants 1, and X, ) in Egs. (5)-(7) are appropriately chosen dissipation rates. For
collisional plasma the values of 4 and X may be taken from Coulomb transport theory.'* For
the high temperature tokamak plasmas of interest the appropriate choice of g and X); is to
model the collisionless ion Landau effect.

The domain on which Eqé. (5)-(7) are solved is given by the cubic box |Z| < Ly, 0 <
y<Lyand 0 <z <L, L, and L, being constants of order unity. The size of the box in
the z direction L is taken to be large enough, so that when there is magnetic shear (s # 0),
single helicity modves localized at & = 0 decay sufficiently as |Z| — L,. In the case of zero
shear 2L, represents the width of the constant background ion pressure gradient and/or the
constant background density gradient. For the boundary conditions of Egs. (5)-(7), all the
dependent variables are assumed to vanish at |Z| = L, and to be periodic in the § and #
directions.

We define the space average ( ) by

( )= 2in:y I, /_LL di/oLy dg/oLz 9, (10)
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and we introduce the averaged fluctuation energy densities

By= (#+V.9P)
E,=~ <v2> and E,= % <p2> .

The energy transfer rates between the three energy densities are given by the compressional

work Weemp done by Vv
Weomp = <p V“'U> ,

and the j) £ work done on the parallel ion current jj = ey

Wig = ~ <vV||¢> :

It follows from Egs. (5)-(7) that the energy transfer equations are given by

dE ‘
d_td’ = =W g — KL <|Vﬁ_¢|2>
iE, |
dt = Wig + Weomp — p1. <IV’L¢|2> A <(V”U)2>
and
dE, 2 2
—F = KQ —T Weomp — X1 (IVipl*) =x (Vip)*) 5
where
_ [0\ _ (ps Tepo\TH
0=(rg)=-(FHE) @ o

is the anomalous ion heat flux across the magnetic flux surface and ¥g, = vg - Vr. These

anomalous transfers W;gp and Weom, take energy out of the thermal ions and produce a

growth of E,, E,, and E4. The source of the turbulence arises from the unperturbed ion

pressure gradient
dpio Ln

K== dz ngT,

T;
—E(1+771)



which drives the total fluctuation energy density

1

ET=E¢+EU+I‘

E, (12)

with

dBr  KQ

W‘T-;Pa (13)

where P, are the dissipation rates given by
Pi=py <(Vi¢)2> y Pr=py <|V.LU|2>
Py = p{|Vaol?) , Pa= XL (Vapl)

Py =X {(Vyp)?) -

In the turbulent steady state the free-energy production K@/T' is balanced by the energy

absorption given by 3, P, in Eq. (13).

III. Linear Stability Theory and Mixing Length
Theory

Having presented the dynamical equations of the ;-mode in the preceding section, we exam- -

ine the linear properties of the system, especially focusing on the shear stabilization effect
associated with plasma compressibility and parallel diffusion. We also attempt to clarify
the physical meaning of the 7;-mode using the local approximation of the linearized system,

which will serve as the basis of physical interpretation of our conclusions discussed in Sec. VI.

10



A. Local Stability Theory

In the local approximation, in which §/0% and V) are replaced by constants ik, and z%”,

respectively, the linear dynamics of Eqs. (5)—(7) is given by the dispersion relation

. o R(-ER)
Q+R)@ - F,50 - KB) -~ L =0, (14)
-

Here 7, Z and 7 dependence of the independent variables are assumed to be exp z('l;y 7+ k, 5+
&7)and k2 = k2 + %5 All the diffusion coefficients in Eqgs. (5)—(7) are ignored in Eq. (14)
for simplicity in the weakly dissipative, long wave length region. In the local approximation,
the constant '75“ models V|| with the relation 75” = 8/\, %y + %z, where A, denotes a typical
mode width in the z-direction. When the shear s is small, the parallel derivative V) is
_approximatély given by the constant %, and the dispersion relation of the linearized system
of Eqs. (5)-(7) is also approximately given by Eq. (14). In this case, the parallel dynamics
is dominated by the effect of the periodicity in the Z-direction rather than the g”j—directioﬁ.
In the case of zero-shear, Eq. (14) becomes the exact dispersion relation of the linea,rized.
system of Egs. (5)-(7) with the relation &y = ,.

In the dimensional form, Eq. (14) may be written as

B (1_22'2)
(1+k2¢,’)§)w2—ww:(1—Kkipz)— T k2 o2 =0, (15)
_ e
where

x_ cle ky

“e =B L’

*__CTz'_kl Nk

Wp; = eB Ln(1+772)_ LUBI{,

ky=Fki/ps, ky=Hj/Ln, w=co®/Ln .

11



Ba,la,nc:ing the first term and the second term in Eq. (15) gives the dispersion of the drift

wave, the frequency of which is downshifted from w¥ to
W = wi (1= KK p2)/(1+ k2 p2) (16)

for |wie| > [i/2 kjcs. The downshift of the local frequency in Eq. (16) is due to the
perpendicular compressibility in the continuity equation. When the ion pressure gradient
effect K k% p? is small, the wave traveling perpendicular to the field line propagates in the
electron diamagnetic direction. The third term of Eq. (15) represents the ion acoustic wave
coupled with the thermal mode arising from w;. The modified sound velocity ¢, is given
by
Com = Cs (1 - w;';./w)l/z ,

where the finite I effect or the parallel compressibility in Eq. (15) is ignored. Since the local
modes (16) are low frequency mode (|w| < |w;;- ) for |w;';-| ~ w¥, the modified sound velocity |
becomes complex as w becomes complex, which is the manifestation of the n;-mode. We l’lOW.
estimate the growth rate from Eq. (15). For the mode with small perpendicular WaventlmBer
k1 ps| < K~1/% and low frequency |w| < w¥ ~ Iw;';- , the second and third terms become

dominant, which give the complex eigenfrequencies
wﬁik”cs\/ff. (17)

However, by choosing the wavenumber k; in such a way that the first term becomes more
dominant than the second term in Eq. (15), i.e., ki p, = K~'/2, we obtain the complex
frequencies

2 2)1/3 —1+iv3

w (w;; ki| <5 , 5 (w; klzl 02)1/3 - (18)

by balancing the first term with the third term in Eq. (15). Since modes with small parallel

wavenumbers (k)| ¢, < w) are of interest, Eq. (18) gives larger growth rate than Eq. (17).

12



The parallel and perpendicular diffusion coefficients in Eqs. (5)—(7) significantly stabilize
the modes with high wavenumbers. Taking into account the finite diffusion coefficients, we
now solve numerically the more complicated dispersion relation obtained from Eqs. (5)-
(7) under the local approximation. Figure 1 shows the contours of constant growth rate
7 = Imw as a function of k, and k) with finite diffusion coefficients. Since the maximum
growth rate generally occurs for finite k, k; is chosen in such a way that v = y(ky, k) takes
its maximum value or v = max, Y(kz, ky, k)). In Fig. 1(a), where only the parallel diffusion
coefficients x| and X)| are taken to be finite, growth rate distribution on the (k,, %) plane
is more widespread in the ky-direction than the growth rate in Fig. 1(b). In Fig. 1(b) the

perpendicular diffusion coefficients ) and X are also taken into account.

B. Eigenmode Stability Theory

Now we consider the eigenvalue problem in more detail without using the local approxima-
tion. The solutions of the linearized equations of the system (5)—(7) with the following forms

are considered:
¢ = §(&) exp i(kj ~ &) ,
v ="79(%) exp i(k§ — &7) ,
p=p(&) exp i(k§ — &) ,

where w,g(:c), 9(z) and p(z) are assumed to take complex values and k denotes the real
wavenumber k = %y. The Z-dependence of the solutions is ignored since, in the case of a
finite shear s, the Z-dependence of the linear solutions only shifts the position of their mode

rational surfaces in the z-direction. Assuming that g, = X; = 0 in the system (5)—(7) for

simplicity, the linearized equations of this system are reduced to the following eigenvalue
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problem

P [, 1-0 B+K &2 -
Zﬁ"“’(“,k +Q+K+Q+K'AB—'325,~'ZP>¢"O’ (19)

where

A=0Q+ iu”k 3252 |
B=Q+ Z'X”k s27?

and Q = &/k = w/w¥*. The relations of ¥ and § to é are given by

s#(K + B) ~
AB — 27T

U=

and

_ AI{+32:’EI‘$
P=AB_—szr ¥

In this subsection B, we only consider an ideal sheared slab or L, = co. As discussed in
Sec. II, therefore, the boundary condition of Eq. (19) is such that Id(z)] — 0 as || — oo.
It is known* that, in the case where g = X = ' = 0, Eq. (19) gives the following

eigenvalue {2 and the eigenfunction ¢:

1 . ; .
Q= m[ (1 — k2K —is(20 + 1)) i\/(l — k2K — ?3(26 + 1)) —4is(1 + £2)(20+ 1)K
(20)
and
$=e " H (oM7), (21)

where 0 = 1s/Q, £ (£ > 0) is the radial mode number associated with the £th eigenvalue of
Weber equation, and Hy(z) is the £th-order Hermitian function of the complex variable z.
Since the shear parameter s is generally a small number, we are able to reduce the

expression of ) of Eq. (20) to somewhat simpler forms in the following two limiting case.
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First we consider the case where
[5/(1 - #K)| < 1 (22)

with § = (2¢+1)s. Although we do not take any specific ordering of k2, the condition above
is in practice satisfied when |£? K| < 1, so we assume 1 — k? K > 0 under this condition.
We note that the mode under consideration is not the fastest growing mode. We also note
that, in the local approximation, the condition (22) causes the balance between the second
term and the third term of Eq. (14) or, in other words, strong coupling of the drift wave
with the ion acoustic wave. In this case, the term given as the square root in the right-hand
side of Eq. (20) is analytic at s = 0. Therefore we expand  in terms of €; = §/(1 — k2K

around e; = 0. Taking up to the third order of €;, we obtain

B 1+ k2 (2¢+1)s\? .
ReQ=—K (1 + mf{) (m +0(eb) (23)

and

(2 +1)sK 1+ Kk 1+k2\ [(20+1)s)°
m=—ar K12 X 1t i—wr) \Topr

+ O(E) . (24)

A stabilizing effect of a larger shear s, appears as the O(e3) correction in Eq. (24). It follows
from Eqgs. (23) and (24) that, to the lowest order in ;, the fundamental mode (£ = 0) with

a small wavenumber £ is a purely growing mode with the complex eigenfrequency

Q=isK (25)
orw=—twrs  (wk<0).

- The maximum growth rate is, however, attained when |1 — k?K| < 1, as also seen in the

local analysis. Unlike the condition (22), under the condition -

N1-#K|S5l<1, (26)
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the square root term of the right-hand side of Eq. (20) is no longer analytic at s = 0. We
therefore expand the square root term in terms of (1 — k%K +43)%/:3(K +1) and obtain both

maximum Im ) and maximum growth rate 7,

K [ [2(2041)s  (28+1)s 3/2
Img_?(v 71~ tolE) 27

. VE [ [2(20+1)s (204 1)s 3/2
y=kImQ =2 TR +0 (e ) o (28)

at

2 1
k* = ITe + 0(52) . (29)

The real frequency at this wavenumber % is given by

K P@It1)s 3020+1)s 3/2
Reﬂ"z(" K+1  K+1 +o(")) . (30)

Here e; = (20 + 1)s/(K + 1). For the fundamental mode (¢ = 0) with large K, we obtain

the familiar formulas*

ImQ ~+/sK/2

and Re) >~ —/sK/2 (31)

to the lowest order of s. In the dimensional form, the complex eigenfrequency is given by
w = (-1+71) \/m (¢s/Ln), i.e., independent of K to the lowest order of s. Under the
condition (26) the instability obtained here is more due to the balance between the first
term and the third term of Eq. (14) or the destabilization of the ion acoustic wave by the
thermal mode, rather than the coupling of the drift wave with the destabilized ion acoustic
wave.

So far we have considered the case where the radial number £ is small enough so that
either Eq. (22) or Eq. (26) holds. However, as shown in Eqgs. (24) and (27), larger radial

eigenmode number £ tends to increase the growth rate when the shear s is small. Since the
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dependence of Q in Eq. (20) on £ is given by its dependence on § = (2/+ 1)s, we plot the
growth rate v = Im® = kIm as a function of § and % in Fig. 2. Here k£ = 0.2m and
K = 3.0. The maximum of vy = 0.753 is obtained at § = 8y = 0.75 and £ = 1.4 (or
m = T). As a function of small shear s (s < 1), the growth rate v remains constant at its
Maximum Ymay since, as s (not §) decreases, the radial eigenmode number £ increases so as to
keep 3= (2/+ 1)s at the constant value s = 8,y Figufe 3 shows the dependence of «y on s
(not 3) calculated from Eq. (20) when K = 3.0. Here £ and m (or k) are chosen to maximize
the growth rate . It is shown that the £ = 0 mode is dominant when s > 4.1 and the £ =1
mode is dominant when 1.8 < s < 4.1. For s = 0.1, which is a typical shear parameter of
a tokamak plasma, the radial eigenmode number is given by £ = 38 when K = 3. We note
that this unrealistically high radial eigenmode number / is reduced when the effect of finite
T' and finite diffusion are taken into account, as will bé shown later.

Returning to the original eigenvalue problem of Eq. (19), we now seek the stabilizing
effects of the compressibﬂity of the parallel flow (i.e., I' # 0) and the parallel diffusion .(i.é.,
ps X #0). It shoﬁld be ﬁoted that by using non-zero values of y) and X, we are able to
avoid the singularity of the last term of Eq. (19) arising from the finite value of T'. Assuming
that s?T, |y ks®| and |X|jks?| are small, we expand the last term of the left-hand side of
Eq. (19) as Taylor series in z. Here we also assume that the mode is localized near z = 0,
or more precisely, we solve Eq. (19) on a finite domain of z (|z| < L,) with the boundary
conditions that |§| = 0 at |z| = L,. Therefore, by taking the values of 52T, R a,nd
[X|/ks?| to be small enough, the Taylor expansion is uniformly convergent. The size of the
domain L,, however, is taken to be large enough, so that the lowest order solution of Eq. (19)
is well approximated by Eq. (21) with the eigenvalue Eq. (20).

Writing () as the sum of the lowest order growth rate {Jo given by the right-hand side

of Eq. (20) and the remainder €y, where [Q21/Qo| is also assumed to be small, we expand
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Eq. (19) in terms of these small parameters. Retaining up to the term of z4,

d? 5 e~
d,ﬁj + (Bo+ By — Vo(3) - Va(3)) § =
where
1 -0
_ 2
Bo=-F+o7%
K+1
B TR ™
3272
% = — Qg ]
_ 1 7204 5.9 4 )
i o <Qo 8“z“ — Ds ,
and
D— L B i(ﬂ“ + X”)k‘ iX”k
03 Qo QD+ K

To the lowest order, Eq. (32) becomes Eq. (19) or

d¢0 Eo—%(w))$o=0,

where we expand ¢ as
¢ = o+ 1 +

The fth eigenvalue 2y = Qc(f) and the fth eigenfunction bo = %e)

we obtain

(32)

(33)

(34)

(35)

of Eq. (34) are given by

Egs. (20) and (21), respectively. From the next order equation and using the selvability

condition of the inhomogeneous equation, we obtain the following relation,

B= [ i@/ [~ s,

where the integral is taken over the total domain (i.e.,
domain). Using Eq. (21) as qb((f),

34 232Q1
930_2 Af +

we rewrite Eq. (36) as

B

E,=-D -Q—SO'— 25
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(36)

7| < L, in the case of the finite

(37)




where

A= /_Z ¢t e“EZHE(ﬁ)dﬁ/\/EZ"’K! = % (202 + 20 + 1)

and

B= [ @ mie) [yrate = S@e+1).

Equating Eq. (33) and (37) and solving the resulting equation for €, yields

(38)

-1
(E)__z I(-’-l . ,SBg
Ql — S DA[ ((QO+I{)2 27/ Q% 3

which is the first order correction to the /th eigenvalue ng).

In order to observe the stabilizing effects arising from finite values of g, X and T', we -

further simplify Eq. (38) under the assumption (22) or |e1| < 1. Since Eq. (38) gives a |s|?

order correction to the unperturbed eigenvalue Qéf) , we need the expression of Im Qc(,c) correct

up to O(&?);
(2 +1)sK

o _
" ==—4%

+ O(€3) .
Substituting this expression to Eq. (38) and keeping the terms up to O(£?), Eq. (38) becomes

(K +1)T s

—K)e Oer)

Re Q¥ =2 (202 4+ 20+ 1)

I

and

320 + 20 +1) (20 + 1)Ks
0l _ _ S S Anint 3.
tm & Rlry) (F+k(""+x”) —wxr ) T

Therefore the growth rate of the mode ImQ® = Im Q((f) +Im ng) is given to O(e?) by

K 3 (20+20+1) (20 + 1)K
) = _K 3 (e+2+1) (2t+ DKs
@7 = @0+ 1)s <1—k2K 1Ty (F+k(“"+xl') —wr ) - &Y

It follows that in the case of £ = 0 and small k?, Eq. (39) is reduced to
ImOW =g K — Z T — Z k(,u” + X”)I{S (40)
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to the lowest order in k2. We thus find from Eq. (40) that the growth rate is reduced by
the compressibility of the parallel flow (i.e., nonzero I') and parallel diffusions (i.e., nonzero
p and X)|). We, however, note that Egs. (39) and (40) are valid only for a specific & that
may vary in the small range 0 < k? <« 1/K. Therefore, the expressions of the growth
rate given in these equations do not represent the general k-dependence of the growth rate.
We also note that the radial eigenmode number ¢ and the wavenumber k are fixed in the
above calculations. Figures 4(a) and (b) show ImQ of Eq. (40) as a function of K and s,
respectively, and cbmpare this analytic expression to the exact eigenvalue Im ) obtained
from a shooting code, solving Eq. (19).

Although Egs. (39) and (40) are derived under the assumption that the stabilizing terms
associated with I', y); and X be small, we extrapolate the result to the case where the second
and third terms in the parentheses of Eq. (40) are comparablé to the first term K in order to
estimate the critical value K9 (k) of K for a given small wavenumber k. Setting ImQ©® =0

—— ————-in Eq.(40), the critical value K ©O)(k)-is-approximately given by

KO (k) = %I‘ <1 + 7 k(u + Xn)S) ) (41)

or, in terms of n;, the equation above may be rewritten as

mc(yps)—ﬂ 1+16 wkws@f) _ (42)
Here v and & are the parallel viscosity and the parallel heat conductivity in the dimensional
form, defined by v = mino csLn ) and k) = ¢; Ly, X, and T; = T, is assumed. For example,
in the case where v = 2, y = X = 2, k = kyp, = 0.5 and s = L,/L, = 0.3, we have
nfg)(k = 0.5) ~ 1.2. The critical value 7; of the mode, denoted by 7, is the minimum
value of 77( NE) i.e. y Mi,e = Ming 771 : (L) As we noted, however, Eqs. (39) and (40) are valid
only for a limited range of k& and not appropriate to estimate 7;.. The critical value ;.
may be obtained with the use of the unperturbed eigenvalue Qg evaluated near k& = K~1/2

given in Eqgs. (27) and (30) with an appropriate choice of £. However, we do not proceed

\
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to this calculation here since our objective in the perturbation analysis presented here is to:

demonstrate the stabilizing effects arising from T', y|, and X, which are shown in Eq. (39).

C. Mixing Length Estimates

We now estimate the nonlinear saturation level of the 7;-mode turbulence using the linear
properties obtained in this section. By means of the mixing length theory, the anomalous

diffusion coefficient D is estimated as
(43)

where A, is the typical mode width in the Z-direction. We here use the following definition
of A,
AZ? =

Re (((08/031) [ ()] (44)

For the lowest order solution ¢ = ¢ of Eq. (34), we obtain

A2 = |Re ()\ - %a(%—l— 1)> , (45)
where
., 1-0
A=K+ o X (46)

k* K| < 1), we estimate

Choosing the fundamental mode (¢ = 0) with a small wavenumber (

the anomalous diffusion coeflicient D using Eq. (25) in Eqgs. (45) and (46) as
D =2ksK*? ' : (47)

to the loWest order of s. In this case, the mode width A, = /2K estimated from Eq. (45)
does not depend on the shear s.

If we use, however, the most strongly excited mode to evaluate Eq. (45), we obtain
a different scaling of D. To the lowest order of s, the ‘fastest growing mode is obtained

when k£ ~ K~Y/% and (2£ + 1)s = Smax, the growth rate of which is given by Eqs. (27) or
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ImQ ~ /(204 1)s K/2 if K is large. Here, as before, Symax denotes the value of 3= (2¢+1)s
that maximizes Im O given by Eq. (20). With the use of this growth rate, the anomalous

mixing length diffusion coefficient D is evaluated by
D=2VEK , (48)

which is independent of the shear s. In this case, the mode width A, of the fastest growing
mode is given by
1 [(20+1)s

-2 _ =
8o =3\ or (49)

to the lowest order of s. For the fixed radial mode number £, A, scales as s~/* while with
the choice of £ such that (2£ + 1)s = Smax, Ay is independent of shear.

In more realistic cases of finite I' and finite diffusion, we use the linear initial value
code to obtain the growth rate of the faéfest growing mode. Figure 5 shows the growth rate
~v = kIm{ calculated from the initial value code as a function of the shear s, where K = 3.0,
I'=2,uy=X)=10and p; =X, =0.01. The linear initial value code used here is thé
same code as the nonlinear initial value code used in Sec. V except for the nonlinear terms
dropped in these calculations. In Fig. 5, it is shown that the growth rate v is approximately
a decreasing function of s in contrast to 4 in Fig. 3 which is almost constant when s S 1.

Figure 6 shows the anomalous diffusion coefficients D calculated from the mixing length

estimate D = 5 A2 as a function of s. Here ¥ = y L,,/c, and

A7 =((dg/da)?) [ (#)

are evaluated by the linear initial value code with the real-valued function ¢ and the same
parameters used in Fig. 5. With the effects of finite I' and finite diffusion, Fig. 6 shows weak
dependence of D on s as D « s~%/2 in contrast to Eq. (48). Taking into account this shear

dependence of D forces the modification of Eq. (48) to become
D o (K/s)? . B (50)
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The previous work by Lee and Diamond® reports the scaling of the anomalous ion heat
conductivity X; essentially identical to Eq. (47) while the previous work by Horton, Estes
and Biskamp” reports the scaling of X; similar to Eq. (50). As shown in this section and also
as will be discussed in Sec. VI, the disagreement between these two previous results arises
from the choice of the linear mode used to evaluate the nonlinear saturation levels; in Ref. 9,
the fundamental mode with small &, p, (i.e., £ = 0, |k*K| < 1) is taken to be responsible
for the nonlinear process while in Ref. 7 the most strongly excited mode is considered to
be important. Since the mixing length theory does not provide information about such a-
priori choice of linear modes important in the nonlinear process, we neeci to proceed to more

rigorous analyses and numerical simulations.

IV. Nonlinear Theory: Bifurcation Near the
Threshold

We now derive the saturation amplitude of the nonlinear 7;-mode and the associated anoma-
lous heat flux as a function of the ion temperature gradient or 7; near its critical value 7; .
The method used here is the amplitude expansion method,??? in which we regard the non-
linearly saturated mode with small amplitude as the bifurcation from a marginally stable
state and expand the dynamical equations with respect to the small amplitude around the
linear solutions.

For convenience, we rewrite the dynamical equations (5)—(7) as follows:
9]
M oS-+ LUK+ N(b,) = 0, NG

where
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The nonlinear vector term N(v,) is defined as

~{f1,Vig:}
N(f,g)= ( {f1,9:} )
' {f1, 93}

for f = (f1, f2, f3)F and ¢ = (g1, 92, g3)T, where the superscript T' denotes the traﬁspose of
the matrix. The linear ap_alysis in Sec. IT shows that Eq. (51) generally has a time peri_odic
solution in the zero amplitude limit. We therefore expect that there also exists a time
periodic solution at the marginally stable state to the nonlinear system (51), the period of
which is generally a function of the amplitude. For a sufficiently small amplitude € we search
for the nonlinear solution ¢ of Eq. (51.) by expansion in €. We therefore introduce the new

variables

Y =cu(x,s)

s =w(e)r

(52)

such that v is 27-periodic in s or u(x, s +27) = u(x, s). Here ¢ is the amplitude of the mode

defined by

2
| = / ds / dx [ »(53)
where x = (Z,7,%), V is the total volume of the domain defined in Sec. II and [|* =

|¢|> + [v]* + |p|>. Considering a set of functions H = {f(x,s) = (fl,f2,f3)T}, where f; =
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fi(x,8) (1 <4 <3) is 27 periodic in s and satisfies the boundary conditions given' in Sec. II

(and has appropriate regularities in (x,s)), we define the inner product of f,g € H as

(f,g)=—2—-7i—v—/02ﬂdsfvdxf-g*.

Here g* denotes the complex conjugate of g and f-¢* = 5, fig¥ (1 < ¢ < 3). Clearly u(x, s)
defined in Eq. (52) is an element of H. Using Eqs. (51)-(53), we have

w(e)M g—z + L(K)u+¢eN(u,u) =0 (54)
|lul| =1 ueH ,
where ||u]] = (u, u)l/ 2. The goal of the analysis in this section is to solve Eq. (54) in the

limit of small e.

In the case of ¢ = 0, Eq. (54) is reduces to the linear system discussed in Sec. III, the
solution of which ekists only when K satisfies the dispersion relation, i.e., K = Ko(w). We
therefore expect that, also for nonzero €, Eq. (54) has a solution only when K and w(e)
satisfy a certain relation or K is a certain function of e. Assuming that w, K aﬁd u. are

analytic functions of €, we expand them as follows:

w:wo—l—w16+w262+"'
K = Ko+ Kye + Kope? + - - (55)

U == Uy + UrE Fuge? -

H
bi

Substituting Egs. (55) to Eq. (54), we obtain the linear equations to the lowest order

where

T’LLO =0 3 (56)

Nwo|| =1 and  ueeH , (57)
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where T = wo M % + Lo and Ly = Ly + Ky Ly. Since we are interested in a saturated state

near the marginally stable state, we have

Imw;=0 (¢20)

and

Ky=K..

It should be noted that, as discussed in Sec. III, the real frequency Re wy does not vanish
generally at the marginally stable state, and the growth rate Im wy changes from negative

to positive as K passes K. from below, i.e.,

d(Im wo)

- >0. | (58)
The two independent solutions of Eq. (56) are given by up = €*¢ and e~**¢*, where ¢ satisfies

iwoME+ Lo =1 .
€l =1.

For simplicity we assume that there is. a unique solution ¢ of this system at the marginal

(59) -

stable state. Since a real-valued solution of Eq. (56) at the marginally stable state is of our
interest, we may choose uo = Re(e**¢) = 1 (eisf +eTio¢ *) without loss of generality.

To the next order of €, we obtain from Egs. (54) and (55)

T’U,l =b ) (60)

where

b= —wlM% —I{1L2U0 —N(UO,Uo) ;

(ug,u) =0 and ureH .
In order to write the solvability condition of Eq. (59), we need the solutions u' of the equation
Ttul =0, (61)
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where 71 is the adjoint operator of 7. Since M is a Hermitian operator, 71 is given by

9
TE—%M$+Q,

where £] is the adjoint operator of Lo. The two independent solutions of (60) are given by
e’ ¢t and e~ ¢t where ¢1 satisfies
—wo M ¢+ Lhet =0,
Writing the two solutions “21) = e ¢t and uzrz) = e~¥¢*t, the solvability condition of Eq. (60)
is
(ufg:0y =0  (i=1,2). (62)

From the s-dependence of the term N(vg,vp), it is easy to show that
<’ML-),N(UO,U‘))> =0 (7’ = 1)2) :

Therefore Eq. (61) becomes

<u1(Li)’w1Maa—SUo + K, L, Uo> =0 (:=1,2), (63)

which determines w; and K;. Writing Eq. (63) in terms of ¢, we obtain

dor (€1, M) + K, (€1, 12€) = 0 | (64)

and its complex conjugate. Since the solution ¢ of Eq. (59) exists only when wy satisfies the
dispersion relation with K i.e., wy = wo(K) for the parameter K, differentiating Eq. (59) in

terms of K yields

. dwo . ¢
(ZE}?M‘I'L?)é'*'(ZwOA{‘]'»CO)E—O (65)
Evaluating Eq. (63) at X = K, and taking the inner product of ¢t and Eq. (65), we obtain
[ dw
i (W) (e, M)+ (e, L¢) =0, (66)
K=K,

where we used
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<§T)(iwoM+ Lo) %> = <% : (—iwoM+£$) §T> =0.

From Egs. (64) and (66), we obtain

dw
wy — Ky | —= tMe)=0. 67
( ( dK ) K:Kc> <£ €> ( )

Since <§T, M £> # 0 and w; is a real number, it follows from Eqgs. (58) and (67) that

L(J1=I(1:0.

To the order of ¢?, we derive from Egs. (54) and (55)

T’U,Q = —Wsy ]\J%UO —1{2 Lg Ug — F2 N (68)

where

F2 = N(’U,o,’u,l) + N(’U,]_, Uo) .

The solvability condition of Eq. (68) then becomes

wo <UIZ-),M %> + K, <UL-),L2 Uo> + <UI,F2> =0,

which may be further reduced to
' dwo t i -
? (L()Z - I{Q (E)K=Kc> <£ ,M£> + 2 <u(1),F2> =0

and its complex conjugate, where we used Eq. (66). Separating this equation into the real

and complex parts, we obtain

K; = —Re (M) / [d(Im wo)

<£T7 Mf) dK ]I(=I(c

and

_ . | d(Re wo) 2 (uly, Fz)
o[, = ()
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Using K3 obtained above and the linear marginally-stable solutions, we calculate the anoma-
lous heat flux (p &¢/dy) to its lowest order. Assuming that K # 0, we have K — K, = Kje?

to the lowest order. Therefore,

) 8 0 |
<P _6%> = g’ <Po %Q> = %2 <Po ai;> (K - Kc) > (69)

where py and ¢ are the linear marginally-stable solutions. We note that the coefficient
(po 00/ 07) | K, of (K — K.) is a function of K. and s but does ﬁot depend on K.

Thus we have derived the dependence of the anomalous heat flux (po 0¢o/07) on the
ion pressure gradient K in the limit of small amplitude. The dependence of the anomalous
heat flux on the shear parameter s is not clear from Eq. (69) since the linear solutions po
and ¢y as well as K, are generally complicated functions of s. The shear dependence of the
coefficient (po ddo/0¥) in Eq. (69) may be obtained by solving the linear equations (56) and
(57) numerically. However, we now proceed to direct numerical simulations of Eqs. (5)-(6),
rather than studying the shear dependence of Eq. (69) in detail. The numerical simulations
of the original dynamical system presented in the next section give the dependence of the.
anomalous heat flux on the shear s as well as the ion pressure gradient K under much Wider
range of parameters than the method used in this section and check the validity of the

analytical result given in Eq. (69).

V. Numerical Simulations

In this section we report the results of numerical simulations of the n;-modes and compare
the results with the analytical predictions presented in the previous sections. The initial
value code used to solve the nonlinear partial differential equations (5)—(7) is developed
from the HIB code.?®?* In the initial value code, Fourier representation for the § and Z
variables and a finite difference scheme for the Z variable are employed. At éach time step

the dependent variables are advanced by means of the predictor-corrector method. The
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boundary condition is that all the physical variables are periodic in § and Z with periods L,
and L,, respectively, and they vanish at |Z] = L, as discussed in Sec. II. We refer to the
(m,n)-mode of the Fourier representation as the mode whose i and z-dependence is given by
the phase 2r(my/L, —nZ/L,). The wave numbers Ey and %, are thus given by Ey = 2xm/L,
and Ez = 27rn/L,. In the 2D ;:alcula,tions of the nonlinear single helicity modes, the z-
dependence of the mode is ignored and the relation V) = s 0/97 is used, which induces
single helicity modes localized at Z = 0. In the 3D calculations, the rational surface of the
(m,n)-mode is at & = nL,/ms L, since V|j < (msz/L, —n/L,) = (ms/L,)(z —nLy,/msL,)
for the (m,n)-mode. For the initial condition, small perturbations are given to each (m,n)-
mode at 7 = 0.

The typical parameters used in the simulations are y = X, = 1.0, . = X, = 0.01 to 0.1,
I'=2,5s=01%00.3 and K = 0.4 to 3.0. As noted in Sec. II, the parallel diffusion parameters
y) and X are chosen so as to model the collisionless ion Landau effect for high temperature
plasmas. .The perpendicular diffusion coefficients i, and X , on the other hand, may be taken
from the classical collisional transport theory.!* Using the classical viscosity v ~ nT;/w? ;
and the classical heat conductivity &, ~ T;/m; w% 7;, the normalized pefpendicular diffusion
coefficients y, and X, of Egs. (5)—(7) are given by
vily, (Tl) L,

m:mmcspz_ T.) ¢
and
k1 Ly T\ Ln
X_L = > ~ -—) 3
Cs p T.) ¢s7;

where 7; denotes the ion collision time. For a hydrogen plasma with L, = 1m, T; = T, =
3.5keV, n = 6.6 x 10°m~2 and Z.g = 2, we have yuy ~ X, ~ 0.012. The shear parameter
s may be related to the safety factor ¢ of a toroidal plasma by s = —e, n¢'/n’q?, where ¢,
is the inverse aspect ratio. Therefore, the parameters chosen for the following simulation

results are in an appropriate range of the parameter space of current tokamak experiments.
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We first present the results of 2D simulations of nonlinear single-helicity modes. The
size of the domain used for the 2D simulations is L, = 20 ~ 40 and L, = 107, so that the
smallest finite wavenumber k, of the m = 1-mode is given by &, p; = 0.2. The equally spaced
150 mesh points in the case of L, = 20 and 300 mesh points in the case of L, = 40 are used
for discretization of the interval —L, < Z < L,. We also employ the Fourier components
of 0 <m <6~ 12, Wilich is confirmed to give enough resolution of the saturated state.
Figure 7 shows the time evolution of the total energy Er [Eq. (12)] for K = 3 and s = 0.1,
where the saturation of the modes is observed at 7 ~ 50. The contours of constant potential
at 7 = 500 under the same conditions are shown in Fig.8. The constant potential contours
are the streamlines of the E x B flow. For comparison the contours of cons’gant potential
at saturation with a larger shear s = 0.5 is also shown in Fig. 9. If is obser\ved that the
modes are more localized to the rational surface £ = 0 in the case of strong‘shear while the
modes are spread over a wide range of # in Fig. 8 for weak shear. The saturation in the 2D
simulations presented in this section is mainly due to the flattening of the mean ion pressure
gradient or the quasilinear saturation. Although the background ion pressure gradient K is
kept as a constant parameter during each numerical simulation, the m = n = 0-mode of the
perturbed pressure p evolves to cancel the background ion pressure gradient K, as shown
in Fig. 10. Since the system (5)-(7) with the boundary conditions employed here does not
have any external heat source nor allow cooling at |Z| = L, the mean ion pressure gradient
cannot be maintained as a constant during the time evolution. Therefore the quasilinear
saturation is the intrinsic saturation mechanism in this system.

The anomalous ion heat conductivity X; is defined by

xi=@=-”i<cﬂ>@/& (70)

—Pho L, \eB

Here the time average ¢(t) of a time-dependent function g(t) is defined by

g(t) = lim %/OTg(t)dt

T—c0
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and the space average ( ), which is somewhat different from Eq. (10), is defined by

Crsplafefe @

In practice, the time average is taken over a reasonably long time period of T' after the
saturation is attained. The size of the mode width in the #-direction is denoted by A and
used as a normalization factor of Eq. (71) so that averaged values calculated from Eqgs. (70) do
not depend on choice of L, when the modes are localized. In our simulations, the definition
of A is given as follows; for a function f(Z) representing a physical quantity averaged over ¥

and Z, we define

o [1 @2 fan/ 10
’ ~‘{o if |£(&)] < fax/10 ,

where fiax is the maximum value of |f(Z)| on |Z| < L. Then the mode width A is defined

_~/;L:c (3:) z,

which gives a good estimate of the “support” of the localized mode. The fluctuation level of

' the space-averaged anomalous ion heat conductivity X;(¢) = (p; U1.) /(—plo) is then given by

e 1/2 :
AX; = { 0G{E) = X:)? | . (72)
which is shown by error bars in the following figures for X;.
The anomalous ion heat conductivity X; calculated from Eq. (70) is shown in Fig. 11
as a function of shear. As expected from the linear analysis of Sec. IlI, the strong shear
stabilization of the mode is observed for s & 0.2, where X; decreases approximately as X;

s72. On the other hand, X; seems to become an independent function of s as s approaches

zero, which agrees with the conjecture based on the mixing length theory discussed in Sec. IIL.

" In the intermediate range 0.05 < s S 0.2, which is of practical importance for current

tokamak experiments, X; is a weakly decreasing function of s given by X; o< s™# with 1/2 S
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B S 1. The shear dependence of X; is fond to be well parameterized by X; = Xy exp(—as)
with Xo = 5.34 x 1072 and « = 7.2 for the entire range of s.

Figure 12 shows the anomalous ion heat conductivity X; as a function of K — K, =
(i — mic) T;/T., where K, = 0.4. As K — K, or the system approaches the marginally
stable state, the dependence of X; on K is given by X; o< (K — K,), which verifies the result
of the nonlinear analysis given in Eq. (69). For larger K, X; shows a slight deviation from
the linear dependence on K — K,. In Figs. 11 and 12 the magnitude of the numerically
obtained X;/(cT;/eB)(p/Ly) is, however, significantly small (order of 107?) and would have
a weak effect on the global transport of confined plasmas. This small magnitude X; is due to
the quasilinear saturation mechanism which saturates the modes with small amplitude. In
confinement experiments, however, the mean ion pressure gradient is maintained constant
for a signiﬁcént period of time in each discharge since the plasma is continuously heated
from some external heat sources and cooled at the edge. This situation, which leads to
turbulent saturation rather than quasilinear saturation, is simulated in the 3D calculations
presented in the rest of this section. We, however, emphasize the importance of the results of
2D nonlinear simulations presented above despite their small saturation amplitudes for the
following two reasons. First, the results presented here are nonlinea,f solutions of the system
(5)-(7) (together with the boundary conditions given in Sec. II), which is widely used as a
simple fluid model of the n;-mode in the literature. We note that this system intrinsically
saturates the mode quasilinearly. Secondly, and more importantly, 2D solutions of many
nonlinear fluid problems often show a qualitative resemblance to their corresponding 3D
(turbulent) solutions. We particularly expect the dependence of X; on s and K — K, shown
in Figs. 11 and 12, respectively, to be similar to that of the 3D turbulent system.

We now proceed to the 3D simulations. The size of the domain used throughout the
following calculations is given by L, = 20, L, = 10r and L, = 7.571'; so that the smallest finite

wavenumbers are kyps = 0.2 and k, L, = 0.286 and the distance between the two rational
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surfaces of the m = 1/n = 0 mode and the m = 1/n = 1 mode in the case of shear s = 0.1
is about 13p,. The equally spaced 150 mesh points are used for descritization of the interval
—L, <% < L, and 58 ~ 130 modes are chosen for the Fourier representation that cover
at least all the (m,n) modes having positive linear growth rates. In all the 3D simulations
presented in this section, we use the perpendicular diffusion parameters p;, = X; = 0.1,
which are larger than those used in the 2D simulations presented above. These diffusion
coefficients significantly reduce numerical instabilities without requiring higher resolution.
To model the confinement experiments without local quasilinear saturation, we add the
following auxiliary heat ¢ = ¢(z,7) to Eq. (7) in order to induce turbulent saturation or fhe
saturation of modes due to the balance between the free-energy source and high-k diffusion,
rather than the quasilinear saturation observed in the 2D simulations. Equation (7) then

becomes

5 o - |
a_f=—1{53—FVv—{¢,p}+q+X¢ViP+XI!VﬁP (73)

where
Ly L. '
0= U P mermo = o f) 9, A AE0)

It now follows that the m = n = 0 component pog = (p),,—,—o Of p satisfies the diffusion
equation
9poo

B = X1 V3 poo ,

which leads to pgp = 0 in the steady state. The iahysical meaning of ¢(z) is the additional
heat which prevents the flattening of the mean-ion pressure gradient (i.e‘., the sum of the
constant background ion pressure gradient K and the m = n = 0 component of the perturbed
pressure p) by carrying the thermal ehergy from the region ¥ < 0 to the region ?c' > 0. Our
simulations show that, without the heat ¢(z,7), the flattening of the mean ion pressure

gradient occurs even in the multi-helicity calculations. We note that the energy equation
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(13) still holds for the system (5), (6), and (73) since

(pg) = (Poogq) =0 .

Introducing ¢ in the pressure equation, therefore, does not introduce any additional free
energy source or sink to the system but simply readjust's the plasma in such a way that the
mean ion pressure gradient remains as constant K in the evolution of time. The artificial heat
flux ¢ thus models both the heating mechanism of the core plasma and the cooling mechanism
of the edge plasma which maintain a finite mean ion pressure gradient for a significant period
of time in a confined plasma. Numerically, adding ¢ to the pressure equation is equivalent
to setting poo = 0 at each time step.

The turbulent saturation of the total energy Er is shown in Fig. 13 for K = 3 and s = 0.1.
In this 3D simulation, 130 modes (0 < m < 9 and —6 < n < 6) are included. Figure 14
shows the time evolution of the perpendicular kinetic energy E |, of a few sampled ques

under the same conditions. Here E| ., = (|V1 ¢mn(Z, 7,7, 7)|?) with

Gmn(Z,7,%,7) = ¢7n(Z, ) €08 mn + G (T, T) 810 Y

and
Ymn = 20 (my /Ly —nZ/L,) .

In this case, the m = 4 modes are the linearly most unstable. However, after saturation,
the other modes with m < 4 also reach the energy levels similar to that of the m = 4
modes. Integrating the perpendicular kinetic energy in Z or Ein, = 3o, E | ,.n we show in
Fig. 15 the perpendicular kinetic energy spectrum obtained by time-averaging Y=, ELmn,
over 60 < t¢s/L, < 100. It is shown that the m = 3 mode (k, ps = 0.6) has the peak
and the other modes with m < 4 have also relatively high energy levels. The modes with
m 2> 5 or ky ps > 1.0 decays significantly. The constant potential contours at 7 = 100 of

the simulation are shown in Fig. 16. There are three rational surfaces in this domain, with

35




one being at z/p; = 0 and each being separated by distance about 13p,. Some convection
cells are, however, widespread from the rational surfaces, indicating that strong nonlinear
interaction is taking place.

The dependence of the anomalous ion heat conductivity X; on the shear s obtained from
the 3D simulations is shown in Fig. 17 for K = 3.0. Comparing Fig. 17 to Fig. 11, we now
find that X; = Xgexp(—as) with Xy = 1.58 and « = 3.7. The peak of X; as a function of
s is obtained at s = 0 as expected from the mixing length estimates (Sec. III) and from
the 2D simulations. In 3D, however, the magnitude of X; is significantly larger than that
of the quasilinearly saturated single-helicity modes shown in Fig. 11. Figure 18 shows the
dependence of X; on K — K. = (n; —n.)T;/Te, obtained from the 3D simulations for s = 0.1
and K, = 1.3. As in the case of Fig. 12, X; is almost linear in (K — K,) although the X;
deviates from the linear dependence when K — K, is small. This is due to transition:or
successive bifurcation?! from the coherent nonlinear modes near the marginally stable state
(K ~ K,) to turbulence (K > K.). |

Summarizing the analyses in Secs. IIT and IV and the numerical results in this section,

we obtain the scaling of the anomalous ion heat transport given by

R & CTB> _ —as __ & (CT;) . —~as
Xi—gLn <eB (K — K,)e —gLn ") (: — Mic)e ) (74)

As suggested by the mixing length formula (Eq. (50)), the numerical simulations shown in

Figs. 11 and 17 and the numerical result§ in Ref. 4, X; seems to scale as X; o« s~/2 near
s = 0.1. Taking this into account, we obtain o ~ 5 since e~% ~ 0.2 s~/2 numerically near
s = 0.1. From the magnitudes of X; presented in Figs. 17 and 18, the constant ¢ is of order
unity when turbulent saturation occurs. Equation (74) with g = O(1) and o ~ 5 thus gives

the scaling of X; in a wide range of the parameter space.
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V1. Discussion and Conclusions

We have analyzed the nonlinear ion temperature gradient driven mode or 7;-mode of the
sheared slab model based on rigorous analyses and numerical simulations of the reduced
fluid Egs. (5)-(7). A new formula for the anomalous ion heat conductivity due to the n;-
mode turbulence is derived, which differs significantly from some of the previously reported
results.®~1°. It is found from the linear analysis that the finite magnetic shear s has the
stabilizing effect reducing the growth rate of the fastest growing linear n;-mode as the shear
3 becomes larger. Consequently, the fluctuation levels and the associated anomalous ion
heat conductivity X; are decreasing functions of the shear s.

It is also shown with the use of the amplitude expansion method?! that X; depends
on (7; — ni.) linearly near the marginally stable state. The theoretical dependence éf X;
on (7; — Mic) is confirmed numerically in the fully developed turbulent state. Numerical
simulations demonstrate the turbulent saturation of the n;-mode, as well as the quasﬂinear
saturation under certain conditions, and confirm the analytically predicted results. A good
parametrization summarizing the analytic and numerical results for the anomalous ion heat

conductivity X;(s,n;) is given by

Ps CTi)
Xi=g— i — Nie - )
g 2= (55) (=m0 exp(~as) (75)

where o &~ 5 and g = O(1). For typical plasma parameters of the TFTR supershot® at the
half-minor radius, the formula (75) gives X; = 5.1 m?/s, where T; = 10KeV, B = 4.6 T,
ps = 1.2 x10™%*m, L, = 0.52m, n; = 2.7, ;. = 1 aﬁd 8 = 0.1 are used. This gives a

comparable magnitude of the ion heat conductivity measured in the experiments.>

Horton, Estes and Biskamp obtained”

Ps CTz') (1 4 p;)L/2+e
X, = gL AV
i=9 L, (eB st/2 (76)

basically from numerical simulations of the system (5)—(7) giving g ~ 0.3 and |¢| 5 0.5. The
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numerical code used in Ref. 7 employs a finite difference method in z,y and z with up-wind
derivatives in the E x B convection, which is a different algorithm from the one used in the
present work. Considering the fact that e~5° =~ 0.2 s71/2 numerically near s = 0.1 and taking
e = 0.5, the X;-scaling of Eq. (76) is somewhat similar to Eq. (75). However, the scaling of
Eq. (75) obtained in the present work represents X; under a much wider range of the shear
parameter s. We also note that the X;-scaling of Eq. (75) has an explicit dependence on the

critical ion temperature gradient 7;. that is missed by the incompressible theory formulas

varying as (1 + n;).
Some of the previously reported scalings of the anomalous ion heat conductivity® 10 X;
significantly differ from Eq. (75), although they are feported to be based on the same system

of equations (5)-(7). The main difference between these previously reported scaling and

"Eq. (75) is the shear dependence of X;: in Refs. 8-10, X; is asserted to be an increasing

. function of the shear s and X; vanishes as s — 0. Also the scalings of X; derived in those

references have a different dependence on K = (1 + n;)7;/Te. In order to clarify what leads

to this contradiction between the previously reported results and the new result derived in

the present work, we here present brief critiques to Refs. 8-10.

A. Critiques of Earlier Theories

The difference between the results of Refs. 8-10, and from Eq. (75) essentially originates from

the inconsistent treatment of the linear properties of the 7;-mode in Refs. 8-10, not from

the nonlinear analyses. The problem arises either from oversimplification of the nonlinear-

system that leads to a system having qualitatively different linear properties or from the
ad-hoc choice of “typical” linear properties on which the nonlinear analyses of the mode
is based. To make this point clearer, we here repeat three important linear properties of
the m;-mode in Egs. (5)—(7), which seem not to be given sufficient attention in the previous

works.
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(1) The fastest growing linear mode occurs when the wavenumber is chosen in such a
way that the drift wave source term (1 + K V%) in the right-hand side of Eq. (5) (or the
second term in the left-hand side of Eq. (14)) becomes small, i.e., k, p, =~ K~4/2. Since the
case where K = (1 + n,)T;/T. = O(1) is of most interest, it is important to realize that, as
long as the system (5)—(7) is concerned, the modes with &, p;, = O(1) play an important role
in the nonlinear system. In reality, the dynamics of such modes may be modified by kinetic
effects®2%26 to some extent, but this is another question.

(2) The largest growth rate 7 of the 7-mode spectrum is a decreasing function of
the magnetic shear s and 4 approaches its maximum value as s — 0, although the shear
dependence of v is weak when s < 1. This shear dependence is due to the fact that the
radial eigenmode number £ that gives the largest growth ra,té increases as s decreases, so
as to keep § = (2¢ + 1)s approximately constant. It may be, therefore, misleading to state
that the shear dependence of the growth rate Im is given by Im) « (2(+ 1)s K when
k2p? K < 1 and by Im§) \/m when k2 p2 K ~ 1. We must ‘understand that’ the
radial mode number £ giving the largest growth rate is also a function of the shear s.

(3) There is the shear stabilization effect reducing the linear growth rate for larger shear
s 2 0.1. This stabilization effect is due to the compression of the parallel velocity field and
to parallel diffusion.

Keeping these linear properties of the n;-mode in mind, we proceed to critiques Qf the

previous works.
(A) The work by Connor [Ref. §]

Connor derived the formula of the anomalous heat conductivity

N £> 3/2
Y=gt (eB K% s (77)

in the limit of s K < 1 (Eq. (44) in Ref. 8), where ¢ is a constant. In deriving Eq. (77), the

following terms are dropped from the system (5)—(7) as ignorable; the parallel compression
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I'p V) v, the inertia of the vorticity (1 — V})04/07 and the parallel electric field —V¢.
No diffusion terms are included, either, which we, however, do not question at this point
since it is generally considered that the turbulent states have a weak dependence on the
~ diffusion coeflicients. Inclusion of the nonlinearity due to the finite Larmor radius effect or
{0p/0z,0¢/0z} + {0p/Dy,d¢/0y} in the vorticity equation (Eq. (35) of Ref. 8) does not
change the argument presented here. Dropping the parallel compression I'p V|| v, the inertia
of the vorticity due to the polarization drift —V  8¢/87 and the parallel electric field —V ¢
causes, in fact, less significant problems. After ignoring these three linear terms from the

system (5)—(7), the linear eigenvalue is now given by the following quadratic equation
0 —(1-FK)Q+i5=0, (78)

where § = (2¢ + 1)s. We note that ImQ obtained from this equation becomes co as 8 =
(2¢ + 1)s — oo, unlike the case of Eq. (20). This éuggests that the fastest growing mode
of this simplified system has the infinite growth rate with £ = co. We, however, do not
worry about this point here, either, assuming that such high-radial eigenmodes be damped
in reality by some perpendicular diffusion that is not explicitly included in the system of
Ref. 8. In addition to these assumptions, however, Connor assumed that the inertia O¢/07
of Eq. (5) be dropped, which is crucial to obtain the expiicit form of X; given by Eq. (77).
This assumption is equivalent to ignoring the first term of Eq. (78) and the linear growth

rate is now given by
' K
C1-RK

It is clear that, as k% = kZp? — 1/K, the linear growth rate approaches oo while the

(79)

coefficient of the second term of Eq. (78) approaches 0. It follows that dropping the first
term of Eq. (78) or dropping the inertia 0¢/07 from Eq. (5) may not be justified. In fact,
eliminating the first term Q2 of Eq. (78) prevents the thermal mode from being excited,

which is the main mechanism of the n;-mode, as discussed in Sec. III. We thus conclude that
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the assumption made in Ref. 8 leads to oversimplification of the original system, and this
oversimplified system no longer possesses the qualitatively correct linear properties of the

n;-mode.

(B) The work by Lee and Diamond [Ref. 9]

In Ref. 9, Lee and Diamond derive from the system (5)—(7)

_ P cTe) 9 :
Xi= g4 <eB K25(ky ps)emns » (80)

where (k, ps)ms =~ 0.4 and ¢ is a weak function of ;. The essence of this work is well
represented in their subsection A “Heuristic description” of Sec. III of Ref. 9. In this sub-
section, based on the so-called one-point renormalized equation, they derived the following
two relations (Eqs. (36) and (38) in Ref. 9)

Dy ~ K'/? k| A3

Ay o~ (Dk//cﬁ)l/“ |
by balancing certain key terms of the system. Here Dy, is the k-dependent anomalous diffusion
coefficient arising from the 11on1inearity {$,p}, or the E x B convection of- the pressure
fluctuation, A is the k-dependent radial correlation length and k|| = ky/Ls. These relations
lead to the decorrelation rate Awy(= D;/A%) associated with E x B turbulent convection

and the radial correlation length A; given by

Awgp x s K ' (81)

A ~VEK (82)

which basically corresponds to the choice made to derive Eq. (47) in Sec. III; This balancing of
certain linear terms of the system is essentially equivalent to the approximation that Connor
made in Ref. 8, leading to the linear growth rate of Eq. (79) with the extra assumption
BPK <1, ie,

Q~isK . (83)
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Thus, it is not just a coincidence that the shear dependence of X; given in Refs. 8 and
9 are the same. Since the one-point renormalized equations, in which all the nonlinear
convection terms are simply replaced by linear diffusion terms with diffusion coefRicients to
be determined, give a linear system, one must use the linear properties of the system one
way or another at some point if he wishes to evaluate fluctuation levels and anomalous
transport coefficients from the one-point renormalized equations. In this sense, it is not
clarified nor justified in Ref. 9 why these authors choose the particular way of balancing
the terms that lead to the linear growth rate of Eq. (83) (which was subsequently used as
the decorrelation rafe Awy of Eq. (81) and rule out the possibility of balancing different
terms in such a way that a larger growth rate ImQ o« /s K with k2 p? ~ 1/K is obtained.
Although it is observed in numerical simulations that the modes with smaller &, p; have
larger amplitude in the turbulent state, these modes are produced by nonlinear interactions
of higher-k, primary modes and not by the strong linear instability. In fact, these nonlinearly
excited low-k, modes have different mode properties from the linearly excited low-k, modes.
Therefore, detailed justification is needed if one attempts to associate the properties given in
Eqgs. (81) and (82) of the long wavelength linear eigenmodes k* K < 1 with the nonlinearly
excited low-k, modes. We also note that Lee and Diamond relate the pressure fluctuation

Pr to the electrostatic potential fluctuation & as
B i K we G/ Awy, (84)

(Eq. (35) of Ref. 9) by balancing the anomalous diffusion term to the ion-temperature gra-
dient driven term in their one-point renormalized equations. Using the relation Eq. (84) is
in fact crucial to obtain an explicit form of the anomalous diffusion coefficients from their
two-point renormalization technique presented in their subsection B of Sec. III of Ref. 9.
Despite their elaboration of the two-point renormalization technique, therefore, the final re-

sults derived therein (such as Eq. (85) and Eq. (97) of Ref. 9) heavily depend on the choice
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of the unjustified linear-like relation Eq. (84) taken from the one-point equations. This ap-
proximation makes obscure the accuracy of the conclusions of the two-point renormalization

technique in Ref. 9.
(C) The work by Terry [Ref. 10]

Terry et al. derive the anomalous diffusion coefficient given by
Dy ~wx p2(20 + 1) K?s (85)

(Eq. (10) of Ref. 10) to the lowest order of s, from the system (5)—(7), using the mixing
length estimate and the one-point renormalization technique. It is claimed that the larger
radial eigenmode number £ (1 < £ < 10) significantly increases Dy over the Dy obtained by
Lee and Diamond in Ref. 9 as the higher-order radial eigenmodes are more strongly excited
and bear a broader mode structure. Since the method used to obtain the scaling of Eq. (85)
is similar to that of Ref. 9, the critique to Ref. 9 presented above also applies to Ref. 10.
In addition, it seems inconsistent that the authors of Ref. 10 maximize the growth rate by |
varying the radial mode number £ while keeping k, (or the poloicial mode number m) small
ie., k; p?2 K < 1. Also, as noted before, the radial eigenmode number £ that gives the largest
growth rate is also a strong function of s. Therefore, the scaling of Eq. (85) does not show -
the shear dependence of Dj, explicitly.

These critiques and the fact that none of these previous works®~1° provide nonlinear
simulations supporting their results indicate that these previously reportéd X;-scalings are
not justified. Given the more rigorous analyses and direct numerical simulations of the
system (5)—(7) presented in the present work, therefore, we conclude that, in the parameter
range s K S 1 of interest for tokamak plasmas, the X;-scalings reported in Refs. 8-10 are
erroneous and that the correct scaling of X; due to the n;-mode turbulence in a sheared
slab geometry is given by Eq. (75). Other properties of the n;-mode in tokamaks due to

toroidicity and kinetic effects are, of course, beyond the scope of the present work.
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Figure Captions

1. The contours of constant linear growth rate v as functions of k, and k) obtained
from Eqgs. (5)—(7) under the local assumption. Here k, is chosen.so as to maximize
v = 4(kz, ky, k). The solid lines represent v > 0 and the dotted lines represent v < 0.
In (a), K = 3.0, = 2.0,uy = X = 1.0 and py = X, = 0. The maximum of
v = 0.28 ¢;/ L, is obtained at k, p, = 0.82 and kyL, = 0.41. The difference between
the two contour lines indicates Ay = 1.2 X 1072 ¢;/L,. In (b), all the parameters are
the same as those in (a) except gy = X, = 0.1. The maximum of v = 0.22¢,/L, is
obtained at k) L, = 0.34 and k, p;, = 0.73. The diffefence between the two contour

lines indicates Ay = 0.90 x 1072 ¢,/ Ly,.

2. The growth rate v (normalized by ¢,/L,) as a function of 3 = (2 + 1)s and k = k, p,
calculated from Eq. (20). The parameters are K = 3.0, £k = 0.2m (1 < m < 10),
and T' =y = X| :p_]_ = X, = 0. The growth rate v attains its maximum value

0.753¢s/L,, at §=7.65 and K = 1.4.

3. The largest growth rate ymay (normalized by c;/L,) as a function of the shear s,
calculated from Eq. (20). All the parameters used here are the same as those in Fig. 2.
The mode numbers £ and m are chosen so as to maximize 4. For s > 4.1, the £ = 0

mode is dominant and for 1.8 < s < 4.1, the £ = 1 mode is dominant.

4. The growth rates expressed by ImQ for the fundamental (¢{ = 0) mode with u; =
X1 = 0. The solid lines are obtained from the shooting code solving Eq. (19) and the
broken lines from the theory [Eq. (39)]. The two cases, I' = 0 and I' = 2, are presented.
(@) =X = 1.0, s =01 and k = kyp, = 0.5. (b) gy = X; = 2.0, K = 2.0 a,nd.
k=0.2.
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10.

11.

. The largest growth rate ymax (normalized by ¢;/L,) as a function of s, calculated by the

linear initial value code. The parameters used here are K = 3.0, I' =2, y = X, = 1.0
and p) = X, = 0.01. The wavenumber ¥ = 0.2m are chosen so as to maximize «. For
s > 0.15, the m = 3 mode is most strongly excited while for s < 0.15 the m = 4 mode

is most strongly excited.

The anomalous diffusion coefficients D as a function of s, calculated from the mixing
length theory or 4 AZ. The linear growth rate 5 and the mode width A, are evaluated
from the most unstable linear mode obtained from the linear initial value code. The

mode width A, is defined by A% = ((d¢/dz)?) / (¢?). Near s = 0.1, D scales as s~%/2.

Time evolution of the total energy E7 obtained from the single-helicity calculation,
where K = 3.0,s = 0.1,I' = 2,y = X = 1.0 and p; = X, = 0.01. The domain
is |z/ps| < Ly = 40 and L, = 107. Seven modes (0 < m < 6) are included in this

calculation with k, p, = 0.2 for the m = 1 mode.

The contours of constant ¢ at 7 = ¢t ¢;/ L, = 500, obtained from the long-time extension

of the simulation shown in Fig. 7.

The contours of constant ¢ at saturation with larger shear s = 0.5 obtained from

the single-helicity calculation. The other parameters are the same as those used in

Figs. 7 and 8, except for L, = 20. The nonlinearly saturated modes are more strongly

localized to the mode rational surface at z/p, = 0.

Fourier cosine components of the perturbed pressure p; at 7 = 500 of the same cal-
culation as Fig. 8. The dominant m = 0 (or k, = 0) mode that locally cancels the

background constant ion pressure gradient K.

The anomalous ion heat conductivity X; as a function of s, obtained from the single-

helicity simulations. The parameters used in the simulations are K = 3.0, I' = 2,
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12.

13.

14.

15.

16.

17.

=Xy =10and p; =X, =0.01. The domain is L, = 40 for A, L, = 20 for e, and
Ly = 107 for both. The solid curve indicates the scaling of X; = Xy exp(—as) with
Xo = 5.34 x 1072 and o = 7.2. The error bars represent the fluctuation level defined

by Eq. (72).

The anomalous ion heat conductivity X; as a function of K — K, obtained from the
single-helicity simulations. The parameters used in the simulations are s = 0.1, I'=
2, y=X;=10, py =X, =0.1, and K, = 0.4. The domain is given by L, = 20

and L, = 10m. The solid line is the curve proportional to (K — K).

Time evolution of the total energy E; obtained from the 3D calculation with 130
modes (0 <m <9 and —6 <n <6). The para,metefs used here are K = 3.0, s = 0.1,
I'=2,pu =X =10,and p, =X, = 0.1. The turbulent saturation is observed at
T =tes/ L, > 50.

Time evolutions of the perpendicular kinetic energy E|.,, of four sampled (m,n)-
modes are plotted under the same conditions as in Fig. 13. In this case, the m = 4
modes are linearly most unstable. However, after saturation, the modes with m < 3

reach the energy levels similar to those of the m = 4 modes.

The perpendicular kinetic energy spectrum £,,, obtained from the time average of
Yon Eimy over 60 < tes/L, <100 under the same conditions as in Fig. 13. The modes
with m < 4 have relatively high energy levels with the peak at m = 3 (or %, p; = 0.6)

while the modes with m > 5 are significantly weaker.
The contours of constant ¢ at 7 = t ¢,/ L, = 100 from the simulation shown in Fig. 13.

The anomalous ion heat conductivity X; as a function of s, obtained from the 3D

simulations. The parameters used in the simulations are K = 3.0,T' = 2, y| = X); = 10,
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18.

and p; = X, = 0.1. The domain is L, = 20, L, = 107, and L, = 7.57. The solid

curve indicates the scaling of X; = Xy exp(—as) with Xo = 1.58 and a = 3.7.

The anomalous ion heat conductivity X; as a function of K — K., obtained from the 3D
simulations. The parameters used in the simulations are s = 0.1, I" = 2, yj; = X}, = 1.0,

w1 =X, =0.1, and K, = 1.3. The domain is the same as in Fig. 17. The solid line is

the curve proportional to (K — K,).
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