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The dynamics and transport in the phase épace of Hamiltonian
systems with N+1 degrees of freedom are studied. Such systems can be
reduced to 2N-dimensional symplectic maps using Poincaré’s surface of
section method. A 2N-dimensional symplectic map which satisfies the twist
condition can be derived from a Lagrangian generating function, which
enables the action formulation for orbits. Reversible maps of this form have

2N+1 jnvariant symmetry sets. We show that orbits of reversible, symplectic,
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twist maps can be classified by frequency, symmetry, and Morse index. The
properties of orbits in each class are studied, including various bifurcations.
The structure of phase space is viewed via resonances and chaotic layers
using a four-dimensional example.” A fast and stable Newton’s algorithm for
finding periodic orbits, based on the variational method, is déyised for a -
class of Lagrangian mappings. Ilts computation time and required storage
space are shown to be linear in the period. Partial barriers in the chaotic
regions of phase space and Markov models for transport in area preserving
maps, as well as the existence of co-dimension one manifolds for higher
dimensional maps and their roles in transport are discussed. The.
characteristic function method is used to obtain the diffusion tensor' for 2N-
dimensional symplectic maps. At lowest order this method gives the
quasilinear result, and a series in higher order correlations is developed.
Comparison 6f the theory to numerical experiments, using a four-
dimensional example,  shows good agreement for moderately large -
parameters. A study of Arnol'd diffusion for the thick layer case shows that
the short time correlations in one canonical plane affect the diffusion in.the
other plane even in the limit of zero coupling. Accelerator modes exist for
doubly periodic maps, and cause enhancements in the diffusion. The long-

time behavior of the correlation function is also discussed.
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CHAPTER 1

INTRODUCTION




1.1. Overview

Many systems are known to be Hamiltonian, including the systems of
celestial bodies, magnetic field lines, geodesic flows, geometric optics,
hydrodynamics of ideal fluids, etc. A state of a Hamiltonian system is
represented by a point in even-dimensional phase space and the dynamics
of the system can be depicted by flows in phase space.

For an integrable Hamiltonian system of N+1 degrees of freedom
(d.o.f.), all motions are regular and can be described as uniform rotations on
invariant (N+1)-tori; the reason for using ‘+1’ is because the number of the
degrees of freedom can be reduced by one using Poincaré’s surface of
section method to give a 2N-dimensional symplectic map (see section 1.3).
Thus, for an integrable case, the 2N+2 dimensional phase space is foliated
by an N+1 parameter family of (N+1)-tori.

Upon small perturbations, all resonant tori are typically broken and
chaotic (stochastic) motions start to appear in some regions of phase space;
e.g., near the unstable equilibrium points of a perturbed one-dimensional
pendulum. Roughly speaking, chaotic motion implies that the trajectory
wanders on a manifold of dimension greater than N+1 in phase space.
Chaotic motion in phase space is characterized by a positive Lyapunov
exponent which is an average divergence of nearby otrbits in the chaotic
region. Namely, in a chaotic region, there exists a sensitive dependence of
the motion on its initial conditions. This sensitive dependence implies that

for a practical purpose knowledge of the history of the motion is rapidly lost




and, hence, the motion is irreversible. Consequently, it is quite plausible
that a statistical description may apply to the evolution of phase volume in
chaotic regions. A natural question is to determine to what extent the phase
space is chaotic as described above.

The Kolmogorov-Arnol'd-Moser (KAM) theorem [Arnol'd 1978] shows
that under sufficiently small perturbations most nonresonant invariant tori
(KAM tori) survive, on lwhich motions are quasiperiodic and, hence, still
regular. The theorem also implies the existence of ‘regular regions’ of finite
measure in phase space that retain the smoothness associated with motions
on the tori. Therefore, chaos is restricted to the outside of the regular
regions even though the regular regions are not perfectly bounded for the
systems of more than two degrees of freedom. Furthermore, it is seen that
within every regular region there are also chaotic regions, and inside these
chaotic regions there are again regular regions. This structure continues ad
infinitum. This determines the generically complicated structure of
Hamiltonian phase space as a mixture of regular and chaotic regions on all
scales.

For an area preserving map, which can be obtained as a Poincaré
return map for two d.o.f. Hamiltonian flows, the KAM tori are invariant circles
in two-dimensional surface of section and, therefore, they can divide phase
space into distinct regions. Thus chaotic motions are limited within each
region bounded by these invariant circles and, hence, global transport does
not occur. As nonlinearity increases, more invariant circles break up and

chaos in phase space increases. When the last invariant circle breaks up,




chaotic motions can occur across the whole phase space. Within each
chaotic region, howéver, the motions are still limited by the presence of
partial barriers. Two kinds of them are known to exist: cantorus partial
barriers and partial separatrices of resonances, which are the remnants of
invariant circles and separatrices, respectively. These also exist on every
scale.

When there are more than two degrees of freedom, the situation is
quite different from the above. In this case, the energy surface has 2N+1
dimensions and the dimensionality of invariant tori, N+1, is no longer large
enough for them to divide the energy surface. In other words, there is no
inside or outside of an invariant torus. Consequently, the chaotic regions on
all scales are connected, in what is called the Arnol’'d web. This implies that,
under any virtually non-zero perturbations, a universal instability exists over
almost the entire phase space, resulting in Arnol’d diffusion along the
chaotic web. Arnol’'d diffusion typically occurs on a very long time scale
[Nekhoroshev 1965]. The structure of phase space for these higher d.o.f.
cases is not well known yet; howevetr, a recent work shows the possibility of
existence of partial barriers which play roles similar to those for area
preserving maps (see chapter 4).

Despite rather less understanding of the phase space for Hamiltonian
systems of more than two degrees of freedom, it seems quite clear that the
geometric structure within chaotic regions acts as a barrier to chaotic
motions in phase space. In fact, this is closely related to the fundamental

problem of validation of the ergodic hypothesis in Hamiltonian dynamical



systems. A system is ergodic if a time average taken along a motion is
equivalent to the average taken over an ensemble of states with the same
energy. Generally, this hypothesis does not hold for finite d.o.f. Hamiltonian
systems since a chaotic orbit does not fill densely and uniformly the energy
surface. However, there still remains the unanswered question of whether
the hypothesis might hold as the number of degrees of freedom goes o
infinity (i.e., the thermodynamic limit).

In this work we study the dynamics of several d.o.f. Hamiltonian
systems, and the geometric structure of phase space and transport thereby.
We concentrate on symplectic maps, which allow an efficient way of studying
Hamiltonian systems in numerical calculations as well as in theoretical
analysis. The presentation is organized as follows.

In chapter 1, some preliminaries from Hamiltonian mechanics are
briefly reviewed. It is shown that the Hamiltonian flows in 2N+1 dimensional
energy surface can be studied by a Poincaré surface of section with
dimension 2N. The induced maps on the surface of section are 2N-
dimensiohal symplectic maps. Several examples of Hamiltonian systems
are shown emphasizing three d.o.f. systems. Some results from number
theory, which are relevant to studies of dynamical systems, are reviewed;
continued fraction expansion, binary Farey tree construction for the reals,
and simultaneous rational approximations for higher dimensional cases.

In chapter 2, we consider 2N-dimensional symplectic maps with
special propetties: positive definite twist and reversibility. The twist condition

guarantees the existence of a Lagrangian type generating function. A




symmetric orbit has a reflection symmetry and has points on symmetry
planes. A classification of symmetric orbits is obtained using commutation
relations between relevant operators. Symmetric periodic orbits are useful
since they are easily found and quasiperiodic orbits can be approximated by
symmetric periodic orbits. Orbits of special interests occur at minima and
minimax points of the action. Typically, these orbits coincide with symmetric
orbits for systems only slightly perturbed from the integrable case. Various
bifurcations of orbits are discussed. We also show that the generalized
Farey tree construction for three-frequency dynamical systems has a very
close contact with the dynamics of four-dimensional symplectic maps.

In chapter 3, a formal method to obtain a map by discretizing a
continuous time flow is presented. Two schemes of Newton’s method for
finding periodic orbits in Lagrangian dynamical systems are also presented.
A direct map iteration method is shown using Broyden’s quasi-Newton
algorithm. A fast and stable Newton algorithm based on the variational
method is devised for unstable periodic orbits. It is shown that the
computation time and the size of the storage space are linear in the period of
the orbit.

In chapter 4, the well-known dynamics in area preserving maps are
reviewed emphasizing the ideas of flux and partial barriers. These ideas
play a central role in constructing Markov models for transport in area
preserving maps. Three different models are discussed: Markov chain via
cantori, Markov tree via cantori and Markov chain of resonances. We

discuss the existence of normally hyperbolic invariant manifolds with their



stable and unstable manifolds of co-dimension one. For higher d.o.f. cases,
these co-dimension one manifolds play a role similar to the partial barriers in
area preserving maps.

In chapter 5, we present a statistical method to obtain an analytical
diffusion tensor for symplectic maps using the characteristic functions. In the
lowest approximation, the quasilinear result is recovered. It is shown that
the low order corrections explain the oscillation of the diffusion coefficient
around the quasilinear limit. The theoretical predictions are compared with
numerical results, and show excellent agreement when the parameters are
moderately large. We show that accelerator modes exist in doubly periodic
maps. The parameter regions of first order stable accelerators are obtained
analytically. Their effects on enhancement of diffusion are discussed using
several kinds of sfatistics, and their role in determining long time behavior of
correlations is discussed.

In chapter 6, we conclude.



1.2. Preliminaries from Hamiltonian Mechanics

A Hamiltonian system is the one describable by a Hamiltonian
function H(p,q,t). A state of the system is represented by a point (p,q) in
2N+2 dimensional phase space, where q is the N+1 dimensional
configuration coordinate vector and p is the canonical momentum vector

conjugate to ¢. The dynamics in phase space is governed by Hamilton’s

equations
dp _ _oH
at oq
da _ oH
dt op

for given initial conditions (p(0), q(0)). These equations can be also

derived from a variation principle,

Sfp-dq-Hdt =0

The variation is subject to 8¢ = 0 at the endpoints. For now, we consider
autonomous systems for convenience, whose Hamiltonians do not have
explicit time dependence. The nonautonomous case can be considered as
autonomous in an extended phase space of 2N+4 dimensions.

A completely integrable system is defined as the one which has N+1
constants of the motion (integrals), li(p,q), such that |

(1) they are pairwise in involution; by definition, the Poisson

bracket of any pair vanishes;
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 (2) The vectors of the gradients VlIi(p,q) are independent almost
everywhere.
Then, it can be shown that for a bounded system the motion for given values
of the l's is a uniform rotation on an (N+1)-dimensional torus [Berry 1978,
Arnol’d 1978]; these are called invariant tori. Thus phase space is foliated in
an N+1 parameter family of N+1 tori. The condition (2) includes integrable
systems which has separatrix motions on which the integrals cease to be
independent.
There is a standard way to coordinatize phase space which leads to
the so-called action-angle variables as follows:
(1) Consider a torus parametrized by given values of the lj's. There
are many ways to construct a set of independent Ji's from a

combinations of Ijs. We fix one set by
Ji = 4; p-dq
Wi

where 7Yi's are irreducible cycles on the torus: there are N+1
independent irreducible cycles on N+1 torus. The Ji's are éalled the
‘action’ variables.

(2) The Ji's are constants of motion. Therefore, the Hamiltonian is
now a function only of Ji's, since by Hamilton’s equations, dH/d6; = 0.
Thus the conjugate coordinates, 6, are the ‘angle’ variables for the

rotational motion on the torus, whose frequencies are given as
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de; _ oH()

i
dt oJ;

o(J)

The motion on a torus of w(J) is periodic if the wj's are commensurate;
i.e., ® - m =0 for some integer vector m # 0. We call such tori resonant tori.
Similarly, when the wi's are incommensurate, the motion is quasiperiodic
and densely covers the torus. We call such tori nonresonant tori. The
resonant tori form a countably infinite set of measure zero in phase space.
The commensurability of the frequency is very important in determining the
survival of such motions upon the introduction of small perturbations.

The KAM theorem [Arnol'd 1978, Lichtenberg 1983] deals with how
the motions are altered upon the addition of perturbations which destroy the
integrability. Roughly speaking, it states that most nonresonant tori survive
under sufficiently small perturbations, while all resonant tori are destroyed
leaving only a finite number of commensurate motions. _

The surviving invariant tori play an important role in transport for two
d.o.f. Hamiltonian systems. In this case the phase space is four dimensional
and the motion is confined to a constant energy hypersurface of three
dimensions. A surviving invariant torus is two dimensional and, hence, it
can divide the three dimensional energy surface into two distinct regions.
Thus the ‘excursion of motion on the energy surface is bounded by these
invariant tori: invariant tori are perfect barriers to transport in two d.o.f.
Hamiltoniah systems. However, the (N+1)-dimensional torus does not

divide the (2N+1)-dimensional energy surface for N > 1. Clearly, the




11

invariant tori are not perfect barriers any more in the systems of more than

two degrees of freedom.

Another feature of Hamiltonian systems is that Poincaré’s integral,
fp -dq , is conserved around any loop following the flow. The infinitesimal
; .

version of this is the preservation of the symplectic form
o( (3p, &), (3p’, 3q) ) = dp - 89" - 3p” - dq

A sequence of integral invariants can be also represented by high order
exterior products X, k = 1, =, N+1. The last invariant, oN+1, gives the

consetrvation of phase space volume (Liouville's theorem).
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1.3. Poincaré Surface of Section and Symplectic Maps

Poincaré surface of section is a technique for obtaining a description
of the motion on a phase space of reduced dimension and it is suited best
for two d.o.f. systems since the energy surface in this case is three
dimensional. The concept, however, is easily generalized to higher d.o.f.
systems even though a visualization of flows on the surface section is still
difficult. A general procedure is as follows.

Consider a Hamiltonian flow on a 2N+2 dimensional phase space
with coordinates z = ( (qo, Po), 21, Z2, ***, ZN ). The flow lies on a 2N+1
dimensional energy surface of a constant energy h. We assume that this
surface is compact so that the motion is bounded. Suppose there is a 2N+1
dimensional surface ¥ on which dqp/dt = oH/opg = O; e.g., a plane of
constant gg. This surface intersects the energy surface transversely as well
as the flow. A transversal intersection of two (2N+1)-dimensional surfaces is
2N dimensional, we denote it by >h. On Xh, one can solve H = H( qg, po, z1,

, ZN ) = h for po( h, qo, z1, *, zn ) (Implicit function theorem). Then, the

equations of motion can be written in the following form:




oH

d_pi -—
dpi _ dt __99i __9Po
ddo ddo oH  og

. 9po

oH
dgi —
dqi=dt =api=_8po fori=1, -, N
dgo dgo H op;i

dt 00

Thus pg is the reduced Hamiltonian on X, and qp takes a role of the time.
Now consider the map T induced by the flows on Xp; T: Xh — 2h. T
is obtained by following the flow starting from a particular time qg to the next
return of the flow to Xp, i.e., when qg returns to its initial value. In particular,
the return map is symplectic since a Hamiltonian flow preserves the
symplectic form. Let DT represent the Jacobian matrix, or the tangent map of

T. Then T is symplectic providing

fﬁ'JDT:J:{O 'J
10

where “~” denotes transpose of a matrix and J is the 2Nx2N anti-symplectic

matrix shown. Another important feature of the Poincaré return map is that it
is invertible since the flow is reversed under the time reversal. For N = 1
(two degrees of freedom), X is two-dimensional and the preservation of the
symplectic form implies that the return map T is area preserving (det(DT) = 1)
and orientation presetrving (det(DT) > 0).

We have seen that a Hamiltonian flow induces a symplectic map.

Despite its formal existence, it is often difficult in practice to derive a

13
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symplectic map from Hamiltonian flows since it involves an integration of the
flow for the first return to the surface of section; this is essentially equivalent
to solving Hamilton’s equations. In most cases a reasonable approximation
is obtained for the integration of the flow for the first return; however, care
must be exercized to maintain the symplecticity of the map. The resulting
symplectic map is expected to show qualitatively the same behavior as the
original Hamiltonian flow. One of the most important merits of maps is that
iterating a map is much faster and more reliable than numerically integrating

the Hamilton’s equations.




1.4. Examples
1.4.1. Restricted Three-Body Problem

The problem of three bodies is the simplest nontrivial problem in
celestial mechanics and has been a long-standing problem stimulating
many research over a hundred years, while a complete solution is out of
reach. The problem can be stated as follows [Whittaker 1964]:

“Three particles attract each other according to Newton’s law, so that
between each pair of particles there is an attractive force which is
proportiona_l to the product of the masses of the particles and the inverse
square of their distance apart. They are free to move in space, and are
initially supposed to be moving in any given manner; the problem is to
determine their subsequent motion”.

Originally, the system has nine degrees of freedom, each three
degrees-of-freedom of which are due to the motion of each body. However,
the motion of the system is more restricted since there exist several integrals
of motion. Namely, it is known that the effective number of degrees of
freedom can be reduced by the number of integrals which are pairwise in
involution (Lie’s Theorem [Hagihara 1970]). For a system of n bodies there
exist five such integrals beside the energy integral: the total linear
momentum vector, and the magnitude of the total angular momentum
together with one of its components (three components of angular

momentum are not all in involution). Therefore, for the system of three

15
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bodies, the number of degrees of freedom is reduced to four. This can be
further reduced by one using the energy integral, which would give a six-
dimensional symplectic map (see section 1.3).

Now, let us suppose that the motion of three bodies takes place in a
plane; this is the case when three initial velocity vectors are in the plane of
the bodies. The system has six degrees of freedom. Now, beside the
energy integral, there are three integrals pairwise in involution; the total
linear momentum vector in the plane of the motion, and the total angular
momentum perpendicular to the plane. Consequently, the system of three
bodies on a plane is equivalent to a system of three degrees of freedom.

The resulting reduced Hamiltonian has a form too complicated to be
analyzed completely [Whittaker 1964]. With a further assumption that three
bodies are of equal .masses, Davoust and Broucke [Davoust 1982] have
studied the stability and bifurcations of several families of periodic orbits.

We remark that several versions of restricted motions of three bodies
have been devised arid studied. The most famous one might be the ‘planar,
circular, restricted three-body problem’, which has two degrees of freedom
and has been used to study the Kirkwood gaps in the asteroid belt between
Mars and Jupiter [Berry 1978]. A more developed version due to Wisdom
includes the effect of ’ihe eccentricity of the Jupiter's motion, which results in
a four-dimensional Poincaré map [Wisdom 1982, Dermott 1983]. Another is
the problem of Sitnikov in which the third body of zero mass oscillates on the
line perpendicular to the plane of motions of the first two and going through

the center of mass [Moser 1973].




Hamiltonian systems with lower degrees of freedom is often useful to
study many body systems. One of the interesting problems in Astrophysics
is the ‘galatic dynamics’ which studies the motions and the stabilities of stars
in galaxies [Binney 1987]. Although a galaxy is composed of many stars, it
can be considered that a star feels the potential of the background mass
distribution in the galaxy rather than the interactions from other individual
stars. For instance, the potential at the inner parts of distorted triaxial
elliptical galaxies can be assumed to be the one of a three-dimensional
harmonic oscillator, hence of three degrees of freedom, with small

anharmonic perturbations [Contopoulos 1986].
1.4.2. Beam-Beam interaction in Particle Accelerator

In a particle accelerator, using two opposing beams contained in two
storage rings is accepted as a better way to achieve larger center-of-mass
energy than bombarding a target at rest with one beam. In this case, it is
necessary to have large beam densities to increase collision events.
However, it is known that the so-called ‘beam-beam interaction’ becomes
significant as beam-densities increase, which often leads to a beam
expansion or loss. To explain such phenomena, there have been attempts
from many disciplines [Month 1979].

Since the collisions between the opposing beams occur in a limited
region, the motion of a particle can be considered to be integrable along the

storage ring until the particle enters the collision region (see Fig. 1.1).
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collision
region

integrable
motion

Fig. 1.1 Particle motion in storage ring

As the particles travel around the storage ring, they oscillate
transversely about the beam center; these are called ‘betatron oscillation’

(see Fig. 1.2).

beam

Yo

betatron oscillation 0

Fig. 1.2 Betatron oscillation around the beam center



In the lowest approximation, the betatron oscillation can be considered as a
composition of two linear harmonic oscillations in the vertical and horizontal
directions, respectively. This oscillation is affected by nonlinear beam-beam
interaction at the collision region of two beams and the particle loss results
from the growth of betatron oscillation amplitude. A simple description for
this mechanism is as follows. At the collision region, the effect of beam-beam
interaction is modeled by periodic forcings, given by a delta function in 6, to
the harmonic oscillations in the vertical and horizontal positions y1 and y2

[Helleman 1979]:

2
ddg1 =- Qy1 + Y, 8(6 - 2xt) f1(y1, y2)
al |

d2
d:;z =-QBya+ Y, 8(6 - 2nt) faly1, y2)
t

Here Q1 (Q2) is the machine tune given by the ratio of vertical (horizontal)
oscillation frequency to the revolution frequency around the ring. The
functions f1 and fo represent nonlinear interactions at the collision region.
The corresponding four-dimensional map equations can be obtained exactly
by integrating over the one revolution around the ring, using momenta pj =
dyi/d0. Variables are discretized by choosing their values just before the

collisions:
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’_ b
yi=ayq+ Q1P1

p1"=-bQy1 + apq + f1(y1’, y2')

d

Yo' =CYy2 + Qs

P2

p2” = - dQays + cp2 + fa(y1', ¥2')

where a = cos(2rnQ4), b = sin(2rQ1), ¢ = cos(2ﬂ:02+f3), d = sin(2xQ2+B), and
the phase factor B is the phase difference between the horizontal and
vertical tunes.

Mostly, area preserving maps have been used to model this problem,
assuming the degree of freedom associated with the horizontal oscillation is
negligible. However, considering the fact that the required revolutions of
particles are in practice quite large (= 108 ), it may turn out that couplings

between these degrees of freedom will play a significant role.

1.4.3. Magnetic Field Line Flow and Guiding Center Motion of Charged
Particle in Time-Varying Field

The line of force described by a magnetic field can be thought of as a
conservative dynamical system due to the conservation of flux (V'-B = 0). In

fact, a variational principle for the field line flow is given by

o

SJdXAqu%=O




where A(x) is the vector potential and x = x(A) is the parametrization of the
field line with any arbitrary parameter A [Cary 1983]. The variation is subject
to the boundary condition A-6x = 0 at the endpoints. The resUIting Euler-
Lagrange equation is simply

(VxA)x3dX -0
d)

which shows that dx/dA is parallel to B (= VxA). Furthermore, using the
gauge transformation of A, it can be shown that a time-independent
magnetic field line gives a Hamiltonian flow with one and a half degrees of

freedom. Suppose
A-dx = A1(x1, X2, X3) dx1 + Az(x1, X2, X3) dx2 + Az(X1, X2, X3) dX3
Choose a gauge transformation, A’ = A + VS such that 9S/dx1 = - Aq, giving
the new vector potential
A%dx = A2’(X1, X2, X3) dx2 + A3’(X1, X2, X3) X3,
By introducing a new variable p = As’(X4, X2, X3) and solving it for x{, we
obtain the canonical form for A”-dx.
A"dx = p dxz - H(p, X2, x3) dx3
Here, H(p, x2, x3) = - A3’(x1(p, X2, X3), X2, X3) plays the role of Hamiltonian.
Thus the field line flow is a one and a half degrees-of-freedom Hamiltonian
flow, parametrized by x3. Equivalently, it is two degrees-of-freedom flow in

an extended phase space. An example is given by a vector potential such

that
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H=-As =%—L'X2 +kcosy Y, 8(z-2mn)
n

where 1’ is the constant shear of magnetic field in the x direction. One can
easily obtain the standard map by discretizing x and y variables by choosing
their values just before the value of z takes an integer mutiple of 2rn (see
section 1.4.2).

A similar conversion to a canonical Hamiltonian form does not work
for a time-dependent field case. In this case, to define the flow, we consider
the motion of a charged particle in a time-dependent magnetic field. lis
motion has three and a half degrees of freedom; gyration aound the field
line, motion along the field line, motion across the field line, and time-
dependence. By averaging out the fast gyro-motion, one can expect to
obtain a description of the guiding center motion of a charged particle which,
then, has two and a half degrees-of-freedom. This is done using Littlejohn’s
Lagrangian [Littlejohn 1983].

Littlejohn’s Lagrangian is derived from the usual Lagrangian for

particle motion by taking the gyroaverage. It is given by

Lz 2,h=1A"%+ en® - H

Here the units are chosen so that e = m = ¢ = 1, ¢ is the adiabatic ordering
parameter which represents the ratio of gyroradius to the scale length. X
represents the guiding center position, @ magnetic moment, and ® the
gyrophase. H is the Hamiltonian given by H = @ + uB + 1/2U2 + O(g), where
@ is the electric potential and U = b-X is the parallel velocity of the guiding

center. The modified vector potential A" is defined by A" = A + eUb + 0(e2),




where b is the unit vector along magnetic field. A’ is the gyroaverage of the
canonical momentum. Finally, Z represents (X, U, ©, u). The terms of the
higher order in € can be obtained systematically. The resulting Euler-
Lagrange equations give the drift equations of the guiding center up to a
desired order in e.

We now consider the Lagrangian up to the zeroth order in g, which
corresponds to taking gyroaverage. For the simplest case, we neglect the

terms of the electric potential and the magnetic moment. Namely, we have

L = (A + Ub)-X —;—UQ

We further assume that the magnetic field points predominantly along the z-

axis,

A=P(xy,z}) K+X] - B=-k xV¥ +k

b=k

where j and k are unit vectors in the y- and the z-axis directions,

respectively. Thus we obtain

L=(‘P+U)z’+xy-;—U2

The canonical momenta are obtained using the usual definitions as

pz=a—L=‘P+U and py=a—lf=x

oz oy
Finally, the Hamiltonian is obtained as

2
H(psz %y, t) =gu2 =-;— (Pz- B, Y, Z, 1))
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Note that x plays a role as a canonical momentum conjugate to y. This

Hamiltonian gives the following equations of motion.

_OH_,9¥

oy oy

_LoH o

ox oX

LT

0z 0z

z=-a—H= U

opz

Note that U is not constant, whose equation of motion is given by the pz
equation as

. o¥ 0¥, o¥. J¥. ¥
pz=U—=—%+—y+—2+—+U
0z oX oy 0z ot

Using the equations of motion for x, y and z, one can see U= -a—‘P.
ot
The above result shows that the motion of a charged patrticle in time-

dependent magnetic field has two and a half degrees of freedom when one

degree of freedom is removed by taking the gyroaverage.




1.5 Number Theory and Dynamical Systems

As will be shown in section 2.2, the frequency, or the rotation number,
of an orbit is defined through a lift of the mapping over the covering space gN

as

Thus, by definition of periodic orbits, Eq.(2.14), every periodic orbit has a
frequency w=m/n. There also exist orbits which have rational frequencies
which are, however, not periodic. These are heteroclinic orbits lying at the
intersections of stable and unstable manifolds of hyperbolic periodic points.
An orbit.is quasiperiodic if the components of w are imcommensurate, and if
it is recurrent; an orbit homoclinic to a quasiperiodic orbit has the frequency
of the quasiperiodic orbit, but it is not a quasiperiodic orbit because it is not
recurrent.

The KAM theorem states that most tori on which orbits are
quasiperiodic survive small perturbations [Arnol’d 1978]. In particular,
numerical results in area preserving maps strongly imply that the last KAM
circle is typically the one with a noble frequency; the last KAM circle has a
frequency of the goldeh mean for the standard map [Greene 1979]. Thus it
appears that persistence of an orbit is determined to some extent by number

theoretical properties of its frequency. However, the details of persistence
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as well as a possible classification of such irrational tori will depend on the
particular dynamics.

In studies of dynamical systems, many' results from number theory
have been used. In this section we review briefly some of relevant results.
The continued fraction expansion and the Farey tree construction are well
known and have established themselves as important tools in studying
dynamical systems with two relevant frequencies. There exists no such a
well-established number theory for dynamical systems with more than two
frequenéies. However, there are a few candidates and, among them, the
generalized Farey tree construction devised by Kim et al [Kim 1987] is
shown. This construction is used to find the structure of channels of
resonances in phase space for four-dimensional symplectic maps (see

section 2.6).

1.5.1 Continued Fraction Expansion

The continued fraction algorithm [Khinchin 1964] is one of the most
frequently used tools in the study of two frequency dynamical systems, e.g.
area preserving maps. It is a scheme for systematically generating a
sequence of rational approximations, m;/n; to a number w; the measure of
approximation is given by the distance || @ - m;j/n; ||, where || || denotes a.

norm which will be defined below.




The continued fraction expansion (‘simple’ continued fraction in
Khinchin’s terminology) of a positive number w is the sequence [ag, a4, ag,
-+ ] of positive integers such that

1

aq + ]
a2 + e

W=2aqg+

We call aj the j-th element. For irrationals, such a sequence is unique and
infinite. For rationals, the sequence is finite and there exist two equivalent

sequences for each rational. That is, for rationals,
[ao;"', an +1] = [5_10,"', an, 1]

The rationals obtained by truncations of the sequence at some level are

called convergents, or approximants of the number ;
m;j /nj = [ao, a1, &j]

The continued fraction expansion has many important properties
some of which we mention below.
(1) It is strongly convergent: for any € >0, there exists an integer j such

that

|mj-onj|<e Vixj

where | | indicates the ordinary Euclidean distance (Weak convergence uses
the norm | o - my/n;j| ).

(2) All the rational approximants to an irrational number are best
approximants in the strong sense: given an approximant m/n to w, there are

no m’/n” with n” < n satisfying [ m’-on” | < | m-on |.
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(3) There is a sequence of theorems which gives a classification of
irrationals in the sense of their approximability by rationals. For example,
the irrationals whose elements include large numbers admit good

approximation by rational approximants:

T A TP

n
n?(as-2) I n? ajq

Conversely, an irrational like y=[1, 1,1, =] = 1 +2 S is one of the most
poorly approximated by rational approximants. The number v is called the
golden mean. The irrationals which have aj =1 for all j larger than some
integer i are called noble numbers.

(4) Another merit of the algorithm is that the quadratic numbers (roots
of a 2nd degree monic polynomial) are characterized by the periodicity of
their continued fraction (Lagrange’s theorem). The noble numbers are the
simplest case of quadratic irrationals in that the period of the continued

fraction expansion is just one.
1.5.2 Farey Tree

The Farey tree [Hardy 1954] is well known as an alternative scheme
for approximating irrational numbers. Even though it converges more slowly
than the continued fraction, it is often more valuable due to its elegance in
organizing the real numbers. The tree generates all rational numbers
together with the irrationals as limits of paths,.and every number is

associated with a unique path.




The tree construction is basically the successive bisections of a given
interval. An interval is defined by its two end points, a pair of neighboring
rationals, m{/nq and ma/n2 ; neighboring means mqins - mongy = +1. The
bisection is the mediant operation, defined by adding the numerators and
denominators of the pair, respectively:

Mg _ My +Mp

Ng Ny + N2
The level of daughter, mg /n3, on the tree is defined to be higher by one than
its parents, mq/n1and ma /na. One can easily show that a daughter is again
a neighbor to both of its parents. Thus successive bisections can be iterated
ad infinitum, resulting in a self-similar structure on any scale. Figure 1.3
shows the Farey tree construction over the interval [0/1, 1/1] up to a few
levels.

The Farey tree construction has a close connection with the continued
fraction expansion described above. Consider the interval [0,1] and let the
level of 1/2 be 2 on the tree, then the sum of elements of the continued
fraction expansion gives the level of the corresponding rational on the tree.
Conversely, to obtain the continued fraction expansion of a rational on the
tree, first find a path from 1/1 to the rational. Starting from 1/1 = [0,1], go
down along the path, adding 1 to the last element of the previous continued
fraction expansion unless the direction of the path changes. When the

direction changes, the rule for the last element is

[0, a1, 8] = [ao0, a1, g -1, 2]
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From its construction, it is clear that the Farey tree provides a binary
coding scheme for real numbers; starting from 1/2, assign the left going
direction to ‘+ and the right going direction to ‘~'. For each path we obtain a

sequence of +'s and —'s.

/
\
/

_5.3__2
7 8

N
/
|

/
LA

Fig. 1.3 Binary Farey tree construction.
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1.5.3 Simultaneous Rational Approximation's

For the higher dimensional case, one would like to approximate an N
dimensional vector o by a set of rationals with common denominator, m/n.
For the case N=2, such a continued fraction algorithm was first given by
Jacobi (1868). His idea has been extended for general N by Perron (1907)
and the algorithm is known as the "Jacobi-Perron" algorithm [Bernstein
1971]. It is weakly convergent for any N; however, it does not generate all
the best approximants. Furthermore, the characterization of numbers for
which the Jacobi-Perron algorithm is periodic is unknown.

Many other algorithms have been devised to approximate irrationals
with simultaneous n-tuple rationals. Among these, the work of Brentjes may
be valuable for application to dynamical systems [Brentjes 1981]. His
algorithm produces all the best rational approximants for N=2. However the
sequence of approximants also contains other rationals besides the best
and, consequently, converges more slowly than optimal. The
implementation of this algorithm on the computer is straightforward except
that one must do inordinately long calculations to determine the direction of
successive approximation at each level. No algorithm has yet been shown to
be suited for the characterization of numbers analogous to Lagrange’s
theorem.

Recently, the Farey tree construction method has been successfully

extended to the N=2 case by Kim and Ostlund [Kim 1987]. Even though it
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does not generally produce the sequence of best approximants, it presents a
very elegant way of organizing simultaneous rationals.

The tree is obtained from a set of three integer vectors (a, b, ¢) in %3,
which satisfy a-bxe = 1, for example (1,0,1), (0,1,1), and (0,0,1). Each vector
represents a pair of rationals with common denominator, a — (a4/ag, as/ag) .

The vectors can be represented symbolically as the vertices of a right

~ isosceles triangle, as shown in Fig. 1.4. The level zero rational is obtained

by vector (Farey) sum of the hypotenuse vertices: a+b = (a4+b4, as+by,
az+bs), and is represented by the midpoint of the hypotenuse. The original
triangle is now divided into two right isosceles triangles, each of which can
be used to construct a new vertex on level 'one, giving four triangles for the
next level. The vertices of each Farey iriangle satisfy a-bxc = 1 by
construction. One can show that every rational pair (in the convex hull of

(a,b,c)) is obtained by a finite path on the tree; however, each pair in the

- interior of the triangle (a,b,c) is obtained by two paths. This multiplicity is

inconvenient, but not crucial in the manipulation of the algorithm.
Furthermore every rational pair is in lowest common terms. It has been also
shown that the numbers can be addressed by binary codes so that the
algorithm can be handled with the shift operation on the corresponding
address. This coding scheme makes the computational implementation of

the algorithm very convenient.




J
f
N

original triangle ) level 0 level 1

Fig. 1.4 Generalized Farey tree construction. At each level a new
vertex is obtained from the Farey sum of vertices of the
hypotenuse of the preceding triangle. This gives two isosceles
triangles for which the tree can be continued.
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CHAPTER 2

PERIODIC ORBITS FOR REVERSIBLE,
SYMPLECTIC MAPS
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2.1. Introduction

Symplectic maps are useful for the description of many physical
problems, including the motion of the asteroids, particle accelerators,
plasma wave heating, and the restricted three-body problem. In particular
any system described by a time independent Hamiltonian with N+1 degrees
of freedom generates a 2N dimensional symplectic map by the Poincaré
surface of section. Similarly an N degree of freedom, periodically time
dependent Hamiltonian flow generates a symplectic map of the phase space
by strobing at the forcing period.

A great deal is known about the periodic orbits of two-dimensional
symplectic maps (area preserving maps). Poincaré proposed, in his “last
geometric theorem” that a map on the annulus which rotates the upper and
lower boundaries of the annulus in opposite directions must have a fixéd
point. This was later proved by Birkhoff, and implies the existence of at least
two periodic orbits for each period. For the case of twist maps on a cylinder,
Mather and Aubry proved the existence of periodic orbits for any rotation
frequency [Mather 1982, Aubry 1983]. The mapping preserves the cyclic
order of points on these orbits; this implies that a limit of frequencies
approaching an irrational gives a quasiperiodic orbit.

The quasiperiodic orbits either densely cover invariant circles, or
invariant Cantor sets. If the frequency is sufficiently irrational, the

Kolmogorov-Arnold-Moser (KAM) theorem [Arnold 1978] guarantees the
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former occurs for small enough perturbations from the integrable case. The
invariant Cantor sets, called cantori [Percival 1979], are the remnants of the
invariant circles after they have been destroyed. Knowledge of the
propetties of such orbits is extremely useful in understanding the break-up of
invariant circles [Greene 1979, MacKay 1983], and the transport of orbits in
the chaotic region of phase space [MacKay 1984]. In particular, cantori are
the dominant barriers for the flow of trajectories through phase space.

For higher dimensional mappings, much less is known. Recently,
Bernstein and Katok [Bernstein 1987] have shown that for C1 perturbations

from the integrable case there exist at least N+1 periodic orbits in a

- neighborhood of the unperturbed torus for any given commensurate

frequency. However, the properties of incommensurate frequency orbits are
less clear. For many systems it can be shown that the KAM tori are destroyed

for strong enough perturbations [MacKay 1988], and it seems reasonable

- that, by analogy with the area preserving case, they will be replaced by

remnant quasiperiodic orbits. In some cases these do exist and can be
shown to be cantori [Chen 19839]; however, whether this typically occurs and
how the transition from the KAM regime occurs remain to be understood.

In this chapter we consider symplectic maps with special properties:
positive definite twist, and reversibility. In section 2.2 we introduce our
notation and the twist condition, which guarantees the existence of a
Lagrangian type generating function. Positive definite twist is the analogue

of the Legendre condition for continuous time systems. Orbital stability is




discussed in section 2.3, and in section 2.4 we review the notion of
reversibility: a system is reversible if each orbit is related to its time reverse
by a symmetry transformation. Symmetric orbits must have points on N
dimensional symmetry planes, and can be classified by which of these
planes they intersect. This property is especially useful to reduce
computational effort. An invariant torus must be invariant under the time
reversal symmetry, and can be studied by considering nearby periodic otbits
which are also symmetric.

Orbits of special interests occur at minima and minimax points of the
action. For the area preserving case Aubry and Mather have shown the
existence of global minima for each frequency. In our computations we
easily find orbits which are locally minimizing for any rational frequency.
Minimizing orbits are not always symmetric: we discuss symmetry breaking
bifurcations in section 2.5.

As an illustration we use a four dimensional generafization of the
standard map due to Froeschlé [Froeschlé 1971]. The configuration space is
the two dimensional torus, and we use coordinates (q4, go) with unit periods.
The momenta are designated (p4, po), and the map is given by

T:{p'=p-W<q)
q=q+p (2.1)

Viar, g2) = (; 2 {kicos(2nqy) + kecos(2nap) + hcos2n(qy, G2)])
T
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When.only one of the three parameters (kq,ko,h) is non-zero this map has a
global invariant: for example, if only h is non-zero then p4-p» is conserved. If
h = 0 then the map is separable into uncoupled two dimensional standard
maps for (q4,p4) and (gs,p2). When h and at least one of ky or ks is non-zero
it appears neither to have global invariants, nor to be separable.

For the four dimensional case, the symmetry planes are two
dimensional, and thus in section 2.6 we construct the orbital skeleton by
plotting symmetric orbits which intersect a given symmetry plane. We find
two distinct structures: resonances and channels. Corresponding to each
periodic orbit with frequency o = (my/n, mo/n) is a resonance; its intersection
with the symmetry plane is a two dimensional neighborhood in which there
are no other rotational periodic orbits. Points initially in this region oscillate
about the resonance for long periods. Corresponding to each
commensurability, w4jy + wsjo + j3 = 0, for integers j4, jo, j3, we find a channel
on the symmetry plane. These channels are the directions along which
orbits “diffuse” by Arnold diffusion. Resonancés occur at the intersection of
an infinite number of channels. Outside the resonances and channels are

closely packed periodic orbits, as well as the invariant tori or their remnants.




2.2. Symplectic Twist Maps

Consider a dynamical system represented by a Lagrangian L(q, 4, 1).
Here q is a point in some N-dimensional configuration space and  is the
velocity. The action of a path q(t), tg <t <14 is defined as

1

Wla(t)] = f L(g, g, 1) dt
t (2.2)
Stationary paths, determined by setting the first variation, 8W to zero for q(tg)
and q(tq) fixed, satisfy the Euler-Lagrange equétions of motion. If L is
periodic in t with period one, then these equations can be formally converted
into a mapping of the configuration space onto itself. A discrete Lagrangian
can be defined by ihtegrating L along a stationary orbit segment, q(t), which

begins at the point q at t=0, and ends at (' at t=1

1
F(d, q) Ef L(a, g, ) dt
0

q(t) stationary (2.3)

The action of an orbit segment from t=i to t=] can now be written

j-1

W(qi div1, =, ) = Z F(as, dirt)
i (2.4)

Variation of W with respect to the intermediate points yields the mapping

equations
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-0

—[F(a-1, a9 + F(a te1)] = 0

ot (2.5)
This equation locally defines a unique mapping, T, from (qi-1, Qt) to (O, At+1)
providing det(02F/0qaq’) is never zero. We make a stronger assumption, the
twist condition: the mixed partial derivative matrix is assumed to be uniformly

negative definite, i.e. there exists a B>0 such that for any 9, q, ¢’

3q - b(a, q') - 3q = B |8q[2

b(d, g') =-02F(q, q') / 0 oq' = F12(q, q') (2.6)

It can be seen that this globally implies the ex‘istence of T [MacKay 1988].
The twist condition is the analogue of the Legendre condition in continuous
time.

Equation (2.5) can be converted to Hamiltonian form by noting that
F(q.,d') can be taken to be a canonical generating function where the

momenta are defined by

p= O Fyqg q)
oq'

p =-F@d) __Fq q) (2.7)
aq

where the subscripts Fy{ and F» represent the partial derivatives of F with
respect to its first and second arguments, respectively. These equations are
implicit, but Eq. (2.6) implies they can be inverted to obtain an explicit

mapping ' = T(z) where z = (p,q) represents a phase space point. In phase

.




space, the twist condition has a simple geometrical interpretation: an
increment, dp, in momentum results in a position change in the same half

space:
op-oq |8q=0 >0
A mapping is symplectic if it preserves the symplectic form w, which is
defined for two tangent vectors 8z = (8p,d¢) and 32 as

® (82, 82) = 8zl wij 82 =38p-5 - 59-3p (2.8)

so that in canonical coordinates wjj is the 2Nx2N matrix

ol
. ,
10 (2.9)

Thus if (DT)ij = 0z2'/0zi represents the Jacobian matrix, or tangent map; then
T is symplectic providing

DT @DT=w , (2.10)
where ‘™’ designates transpose. If T is obtained from a canonical generating
function, F, then it is automatically symplectic.

The symplectic form can also be expressed in terms of configuration

space tangent vectors (8q,6q'), upon noting that op = -F118q - F120q' :

(82, 8Z) = 3q°b-3q' — 3q-b-5q' (2.11)

where b is b(q,q’) defined by Eq. (2.6)
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We will assume that the configuration variables represent physical
ang!es with period one (q + m — g, where m is an integer vector); thus the
configuration space is the N-torus, 7N, and the phase space is RNx7N. This
implies that the map commutes with translations by any integer vector m.

Defining the translation operator Ry, by
Bmd = q-m, (2.12)
then TRm = RmT. This implies that the generating function satisfies
F(g+m,q'+m) = F(q.d) + m

where Fm is a constant. To interpret #m let ¢ be a curve in the phase space
which connects (p,q) to (p,q+m), and ¢' = T¢ be its iterate. Parameterize
these curves by Ae [0,1], so that q(0)=q, q(1) = g+m, etc. Using Eq. (2.7) we

can show that the Poincaré invariant between ¢' and ¢ gives #m:

f p'-dq'—f p-dq =f Eqg,a@) d =
- : o dA

or that #m is the sum of the areas which move through the projections of the
curve ¢ onto the canonical planes; i.e. the net flux of symplectic area. The
net flux clearly depends only on the homotopy class, m, of ¢; since there are
N independent loops on 7N the net flux has N independent components. We
will assume, as in example (2.1), that the net flux is zero.

An orbit is a doubly infinite sequence of configurations { -, dt, qt+1,

dt+2,* } such that every finite segment { d, At+1, ", dg } is a stationary point




of the action W(qt,dt+1,...ds) for given gt and gg. It is convenient to think of
these orbits as occurring on the covering space of the N-torus, ®N. Then the

frequency (if it exists) is defined through a lift of the mapping as
m= ”m M
f-1iee 1—1 (213)
(and is unique up to an integer vector).

An orbit is periodic with period n if
dt+n = Rm0t. Ptin =Pt (2.14)

for some integer vector m. Thus, every periodic orbit has a frequency o =

m/n, which we also write as @ = (m,n). The action for a periodic orbit is

W(D(q()5 q1,, Qn) W(qO’ a4, dn-1, q0+m) (215)

Equation (2.15) gives a variational principle for periodic orbits: a periodic
orbit of frequency o is a critical point of W, where all points qg, q1,"**, dn-1
are varied freely. This is true because criticality of Wy, implies Eq.(2.5) for
O<t<n, and variation with respect to qq implies F4(dg,q1) + Fo(dn-1,q0+M) =
0, or by Eq.(2.7) pg = pn. |
An important class of symplectic maps are those with constant twist,
i.e. b is a constant matrix. Such maps are of physical relevance because
nonlinear maps typically have twist at least locally, and furthermore because
an arbitrary twist map can locally be approximated by a map with constant
twist. This is discussed extensively by Chirikov for the area preserving case

[Chirikov 1979].
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For the special case of constant twist, and zero net flux we show in

- Appendix A that the most general form for the generating function is

F=%M“QHH¢'m—VM)

(2.16)
where b is a symmetric matrix. The mapping generated by Eq.(2.16) is
p'=p—VV(q)
T:
q=q+blp (2.17)

For N=1 the twist, b, can be scaled to unity by a (non-canonical) change of
coordinates; however, this cannot be done in general for N>1. The example

(2.1) is of the form (2.17) with b chosen to be the identity matrix.




2.3. Bifurcations and Loss of Stability

The stability of an orbit is determined by the tangent map DTN =
0Zp/0zg, which is a symplectic matrix. As is well known [Arnol'd 1978], if A is
an eigenvalue of a symplectic matrix then so are A1 and A", where “*
denotes complex conjugate. This implies that the A’s come either in
reciprocal pairs which are real or of modulus unity, or in a quadruplet with
M= 1Ay =45 = 1/4,". We will call the eigenvalues of DTN the multipliers, to
distinguish them from a later use of “eigenvalue™. Let Ay, 1/A4, -, AN, 1/AN
represent the complete set of multipliers and define the iraces, pj, and

residues, R, as

pPi= 7\.i + 1/%,

Ri =1/4 (2-p) . (218)

The orbit is stable only when all the traces are real and fall in the interval
[-2, 2], or equivalently the residues are real and in [0,1]. An orbit with a
quadruplet of complex multipliers has.a pair of complex conjugate residues;
the residues are otherwise real.

In terms of the traces, characteristic polynomial is

N
A" det (DT -M)=]] (p-pi)=0
i1 (2.19)
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In general the coefficients of pj, j=0,1,.., N-1 in this polynomial give N
parameters which determine the stability of the orbit. For N=2, the

polynomial is quadratic

p2-Ap+B-2=0

({{tr O™ —tr (DT} = p1 p2 +2 (2.20)

Consequently, the two independent real quantities A and B determine the
stability of the periodic orbit [Broucke 1969]. There are seven different
regions in the orbit stability diagram in the A-B plane, as shown in Fig. 2.1.
The only stable region is the central area labelled “£E%”; it is bounded by the
period-doubling bifurcation line (B = -2A - 2), the saddle-node bifurcation
line (B = 2A - 2) and the complex instability parabola (B = A2/4 + 2). All the
A’s have modulus one in the stable region, thus the orbit is doubly elliptic.
The other stability regions are labelled using £ for an elliptic multiplier pair,
H for regular hyperbolic, I for inversion hyperbolic (a pair of negative
multipliers). The final region, cQ, corresponds to a complex quadruplet of
multipliers. These seven regions can be mapped onto the parameter space
for a given orbit, as shown in Fig. 2.2 for Eq. (2.1).

An alternative construction of the multipliers can be given in terms of
the configuration space representation of the linearized mapping DT, which

is obtained by linearizing Eq. (2.5):




Fig. 2.1 Stability regions in the A-B plane. Stability type for each
region is determined by two multiplier pairs whose natures are
represented with symbols;  for elliptic, # for regular hyperbolic, r
for inversion hyperbolic and ¢qQ for complex quadruplet.

-bt:1 80l 1 + 8; 8 - by 84 = O

bt=- F12(dt.1 ,0)
ai = F11(qt ;qt+1) + F22(q'[-1’q'[) (221)

giving a linear second difference equation. The multipliers of a period n orbit

are determined by the eigenvalue problem

8q'[+n =2 Sqt

which closes the recurrence relation (2.21).
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Fig. 2.2 (a) Stability diagram for the fixed pointat p=0andq =0
as a function of kq and h for ko = 0. Diagrams for the three other
fixed points are obtained by flipping this vertically and/or
horizontally. No region of complex instability (cQ) occurs. The
Krein signature in the region £z is negative definite.




sl /\ 4 6 h
EE2

Fig. 2.2 (b) Stability of the orbit with frequency (1,1,2) on the
Fix(S) plane for ko=0. The diagram is symmetric under k{ — -kj.
To obtain the corresponding diagram for the orbit on Fix(SR,q))
let h — -h. There are three elliptic regions; the Krein signature in
the ££1 region is negative definite and in ££2 and ££3 is mixed.
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In matrix form, this can be rewritten as M 8Q = 0 where 8Q = (3qq, =, 3qn-1)
and the (Nn)x(Nn) dimensional matrix M(A) is

ao -b1 0 . b
:51 aq -bo .. 0
MA)=| o
an-2 bn-1
Abo . .. -1 an-1

(2.22)

Thus the multipliers are obtained by solving det M = 0. This equation is an
Nth order polynomial in A and in 1/A; and since the mapping is symplectic we
know this polynomial must be reflexive. lis roots are the multipliers, which

are given by Eq. (2.19); thus it must have the form
N
detM(A) = C [ T (pi-

where C is a constant independent of A. In fact, C is precisely the coefficient
of (-A)N which is easily obtained from Eq. (2.22) by inspection, thus we

obtain

n-1 N
(L) = det M(A) = [ ] det(by [T (pi (2.23)
t=0 i=1 .

We will discuss these relationships further in section 2.5.



When #£(1) = 0, the orbit has a pair of multipliers at +1. If, upon
variation of parameters, a periodic orbit reaches a point where a multiplier is
unity, then one of two things can happen. The orbit may collide with another
.orbit of the same period in which case the two orbits could be annihilated in
a saddle-node bifurcation or they could pass through each other. Secondly,
there may be a new pair of orbits created (or annihilated); this is the Rimmer

“bifurcation (see section 2.4). It is commonly observed (i.e. co-dimension
one) in the reversible case.

When a{-1) = 0 the orbit has a pair of multipliers at -1. Upon variation
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of parameters such an orbit typically undergoes a period doubling -

bifurcation. These bifurcations have been studied for the four dimensional

case by Mao and co-workers [Mao 1986, 1987].

The set M(A) = 0 for real p is a one parameter family of co-dimension
one surfaces in the N dimensional stability parameter space. The envelope
of this fémily, given by # = Mp= 0, is the co-dimension one complex
instability surface, since these equations imply that 4/ has a double root. For
the four dimensional case this surface is the parabola B = A2/4 + 2.

On one side of the complex instability surface there is a complex
quadruplet of A’s. This boundary contains both the case of collision of two
pairs of unit modulus multipliers (Krein collision), and of real multipliers (Fig.
2.3). Loss of stability by ‘passing through this surface can occur only when
the “Krein signature” of the two multiplier pairs on the unit circle is mixed

[Moser 1958]. Conversely, when the signature is definite, such a collision




cannot lead to the complex instability: such an orbit is strongly stable under
small perturbations. In the case of mixed signature, collision leading to the
loss of stability typically occurs in one parameter families of maps, while for
definite signature, collisions are less common (co-dimension three) [Howard
1986]. However, for the case of the “in-phase” orbits of a coupled quadratic
map, definite signature collisions without splitting off the unit circle naturally
occur in the successive stable regions of the period doubling bifurcation

sequence [Mao 1987].

/:i /—}*‘
N NI
(a

Fig. 2.3 Collision of multiplier pairs on complex plane. The
multipliers of mixed Krein signatures split off to form a quadruplet
after collision. (a) Collision on the unit circle causes the stability to
change from £z to cQ (b) Collision on the real axis causes a
transition from #AH to cQ for the positive axis and from IT to cqQ for
the negative axis.

For example (2.1), there are four fixed points, all at p = 0, and

corresponding to g = m/2. Stability is easily determined analytically; for the
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fixed point at p = ¢ = 0, when k, = 0, the three curves in the A-B plane (see

Figure 2.1) are mapped to the k4-h plane as follows:

det M(-1) = (ky-8) (h-4) - 16 = 0
det M(+1) = kyh = 0

B-A2/4-2=-(ki2+4h2)/4=0

Figure 2.2(a) is the stability diagram when k, = 0 for the point q = 0. The
stability diagrams for the other three points are obtained from this by flipping

the signs of kq and/or h:

q " (0,0) (0,1%2) (1/2,0) (1/2,1/2)
signs " (k1,h) (k1,-h) (-k1,-h) (-k1,h)

The stable region is labelled £E. For any given parameters only one fixed
point can be £; when k4 and h are positive, this is the point q=(0,0). In this
case the point (1/5, 0) is always hyperbolic. The other two fixed points have
one hyperbolic direction (negative residue) and one direction which is either
elliptic or inversion hyperbolic (positive residue). Complex instability does
not occur since the signature of the stable region is definite.

There are also four period two orbits with frequency (1,1,2). The

stability of the period two orbits can be analytically determined for the two
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orbits at q = (0,0)—(1/5,1/5) and at (1/5,0)—(0,1/5); for the first orbit, the three

curves in the A-B plane are mapped to the k¢-h plane as follows:

det M(-1) = 16 (1-h)2 - k2 (2-h)2 = 0
det M(+1) = - k12h (h-4) = 0

B-A2/4-2=-k{¥4+ki2h2- 4 {(h-1)2-1}2=0

The diagram for the orbit at g = (0,0)—(1/5,1/5) is given by Figure 2.2 (b); for
the orbit at q = (1/5,0)—(0,1/,), reverse the signs of both k4 and h. In region
EE4 the mullipliers have definite signatures, and there are no collisions
except at A = =1, hence there is no complex instability boundary. HoweVer
there are two more stable regions for the period 2 case (region E££, and EZ3
of (b)) for which the signatures are mixed, and for which there is a boundary
leading to region ¢Q, Note that a bifurcation to ¢Q can not only occur from an
EE region, as sketched in Fig. 2.3 (a), but also from ##, as in Fig. 2.3 (b), or
II.

In numerical computations for higher periods, we commonly observe
(upon the variation of a single parameter) the collision of two muiltiplier pairs
either on the unit circle or the real axis leading to the cQ region. We will

discuss this further below.




2.4. Reversibility

The flow generated by the simple Hamiltonian H = 1/5p2 + V(q) is time
reversible: for every orbit [p(t),q(t)] there is another orbit [- p(-t),q(-t)], which is
its time reverse. Time reversal is accomplished by reversing the momentum.
In general a map is reversible if there is an anti-symplectic involution, S,

which reverses time [DeVogelaere 1958, MacKay 1982]:
STS =T-1 (2.24)

S is anti-symplectic if DS w DS =- w, and an involution if $2 = I. Equation

2

(2.24) implies that the map can be factored as
T=(TS)S

showing that TS is also an anti-symplectic involution. Since it satisfies
(2.24), it is also a reversor for T, called the complementary symmetry to S. In
fact, each operator TKS is also a symmetry of T, with complementary
symmetry TK+1S,

A set invariant under the symmetry operator is called a symmetry set.
Near a fixed point of S, symplectic coordinates (€, n) can always be found
such that S(&, n) = (-&, n) [Ginzberg 1988]. Thus the symmetry sets are N-
dimensional submanifolds, which we will call symmetry planes. In fact they
are Lagrangian manifolds, since if 8z and 8Z are tangent vectors at a point
zg in Fix(S), then 8z = DS8z, and therefore 52DS o DSSZ = 5z w 62; the anti-

symplectic condition implies this is equal to its negative and therefore Sz082
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= 0. We will assume that these manifolds are graphs over the momentum
plane.
As an example, the map generated by eq. (2.16) is easily shown to be

reversible if V(q) = V(-q); a pair of symmetry operators is

s [P=p-VV@
\Q'='q
TS: P=p
q=-q+blp (2.25)

The fixed sets of these symmetries are the N-planes, Fix(S) = {q = 0}, and
Fix(TS) = {p = 2b-q}. This applies to the Froeshle example (2.1).

Due to the periodicity of T, there are other symmetries obtained from
the above by translation: the translation of a symmetry by an integer vector
m, the operator SRy,, is also a symmetry. It is easy to see that upon
translation the fixed sets are translated by half integral vectors; for the

example (2.25) this gives

Fix(SRm) ={ (p,a) |q = 1/om}

Fix(TSRm) = { (p,0) | P = 2b-(q - 1/om) } (2.26)

These fixed sets are indeed Lagrangian manifolds since b is symmetric.
On the torus, there are 2N symmetry planes for S, obtained by letting

the elements of m be either 0 or 1, and the same number generated by TS.
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Of course each symmetry family (TiS,Ti+1S) has such a set of symmetry
planes.
There exist very useful commutation relations between operations T,
S and R (iranslation) as follows:
RT=TR
SR =R18
ST=T18

Symmetric orbits are those invariant with respect to time reversal,

which means that for the symmetry S and an orbit { z; } each point z; has a
symmetric counterpart: there exists a j such that z; = Sz;. ‘

The importance of symmetric orbits arises from three facts. Firstly, it is
easy to see that every symmetric orbit must have a point on a symmetry

plane [MacKay 1982]. If ;= Sz; and k =] —iis even, then Eq. (2.24) implies

Zisk2 = T-k/2 Zj = Tk/2 SZi = STk/2 Z;

or that zj,k/» is a fixed point of S. On the other hand, if k is odd, then
Zi (k+1)/2 IS @ fixed point of TS. This greatly simplifies finding symmetric
orbits by limiting the search to the symmetry planes.

Secondly, each symmetric periodic orbit of frequency (m,n) has a
second point on another symmetry plane. Suppose z;j is a fixed point of

some symmetry, S'. Eq. (2.24) implies
zj,j= S zjj (2.27)

Applying the periodicity condition, Eqg. (2.14), to this yields
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zji,j=Ry TN S zij= Ry S' Zn4ij

= SR Zn4iij (2.28)

Now pick j = k = [(n+1)/2], where [ ] represents integer part. Equation (2.28)
implies that zj.k is a fixed point of S'Ry, for n even and of TS'Ryy, for n odd.

Conversely, suppose we have an orbit segment {zg, 24, **, 2} such
that zg e Fix(S"), and zx e Fix(S'Rm) for some symmetry S'. A petiodic orbit
of period n=2k is obtained by using Eq. (2.28) with i=0 to define the zj for
je[k+1,n]. This implies that zn = S'/Rmzg = R-m 2z, so that the orbit is indeed
periodic and has frequency (m, n). A similar construction applies to the odd
period case, for which zxe FiX(TS'Rm), and n = 2k+1. Thus a symmetric orbit
of period n can be obtained by searching for a segment of length k which
has end points on two symmetry planes (see section 3.3).

The final reason for the studying symmetric orbits is that every
invariant torus which is homotopic to p=0 and which has a dense orbit,
must be symmetric, since it must intersect the symmetry planes. Thus it
seems reasonable to use symmetric periodic orbits to approximate

quasiperiodic orbits.

Classification of the symmetric orbits is attained by considering the
the phase space &RNx7N where there are 2N+1 distinct symmetry planes
generated by S and TS. Each symmaetric orbit as a point on two of these
planes, and so there are 2N types (with one exception, see below). Using the
above relation, the classes can be easily obtained for each (m,n); they



Table 2.1

Symmetry planes for the four symmetric orbits with frequency
(mq,mo,n) of a 4D reversible map. There are eight classes of frequencies
depending on whether the frequency components are even “e” or odd “0”.
Each orbit has its first point on the plane in the column (qg,pg) and its kth
point on the plane in the column (gk, pk).- Here k = [(n+1)/2].

(mymg,n)  (do.Po) (Ak> Pk)
(0,0,€) S SR(1,1) (0,e,0) S TSR(1,0)
SR(1,0) SR(0,1) SR(1,0) TS
TS TSR(1,1) SR(0,1) TSR(1,1)
TSR(1,0) TSR(0,1) SR(1,1) TSR(0,1)
(e,0,e) S SR(0,1) (e,e,0) S TS
SR(1,0) SR(1,1) SR(1,0) TSR(1,‘0)
TS TSR(0,1) SR(0,1) TSR(0,1) -
TSR(1,0) TSR(1,1) SR(1,1) TSR(1,1)
(0,e,e) S SR(1,0) (e,e.e) S S
SRo,1) SR(1,1) SR(1,0) SR(1,0)
TS TSR(1,0) SR(0,1) SR(0,1)
TSR(0,1) TSR(1,1) SR(1,1) SR@1,1)
TS TS
(0,0,Q) S TSR(1,1) TSR(1,0) TSR(1,0)
SR(1,0) TSR(0,1) TSR(0,1) TSR(0,1)
SR(o,1) TSR(1,0) TSR(1,1) TSR(1,1)
SR(1,1) TS
(e,0,0) S TSR(0,1)
SR(1,0) TSR(1,1)
SRyo,1) TS
SR(1,1) TSR(1,0)
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depend only on the evenness or oddness of the components of the
frequency. In Table 2.1 the classification is given for N=2 where there are
eight frequency types. For example when the frequency is of the type
(even,odd,odd), then the symmetric orbit with a point on the Fix(S) plane,

also has a point on the Fix(TSRg,1)) plane. These two symmetric points are

Xp Xy !li?iiiiii 1 ~——————t——t—1
S TSR(U,I) Xo Xk 4x0 ‘ Xﬁ
SR(1,0) TSR(y,1) Mo Xy 4Xg Yy
Pl P2
SR(O,]) TS lhxo xk xk "Xo
SR1,1) TSR(y,0) Xob Py Ky by
:
0 qf 0 Q2 1

Fig. 2.4 Symmetry planes projected onto the canonical p4-g4 and
P2-gz planes. For example, Fix(TSR4 o)) is projected onto p1=2qy-
1 on the py-gq4 plane and ps=2Qs on the ps-qo plane. The
symmetric points for the four cases of an orbit with frequency type
(e,0,0) are shown. Each orbit intersects two symmetric planes.
The orbit on Fix(S) has one point(zg) on Fix(S) and its kth iterate
(2k) on Fix(TSR 1)) '



indicated by open circles on each canonical plane in Fig. 2.4. The other
three symmetric orbits are also shown in the figure. The case
(even,even,even) in Table 2.1 refers to an orbit which has a minimal period
which is even, and yet the elements of m are also even; such orbits arise, for
example, from period doubling bifurcations.

In Appendix B we show that there will be at least one orbit of each
symmetry class for each frequency. Therefore a reversible, symplectic twist
map has at least 2N symmetric periodic orbits for each frequency (m,n).

For the four dimensional example (2.1) we routinely find all four
symmettric periodic orbits for any given frequency. The simplest technique is
to begin with a point in the first symmetry plane in Table 2.1 and vary p until
the orbit returns to the second symmetry plane in Table 2.1 after k iterations.
This requires a 2D root finding routine; we use Broyden’s method (see
section 3.3), which is a generalization of the secant method. This method
fails to converge when the parameters (kq,ko,h) are large because the orbits
are strongly unstable, but reasonably large parameters can be obtained by
using extrapolation from small parameter values to give good initial
guesses.

A more sophisticated technique is based on Newton’s method for
extremizing the action Wy,. We use this method when the orbits are strongly
unstable; however, it also requires good initial guesses. The details of this

method are discussed in section 3.4.
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Fig. 2.5 Configuration space projection of the four symmetric
orbits with frequency (12,21,49) when k4=0.4, k»=0.3, h=0.65.
Each orbit is represented with symbols; “0” for the orbit on Fix(S),
“o” on Fix(SRp,1)), “A” on Fix(SR(1 o)) and “= ” on Fix(SR1,1)).




Figure 2.5 displays a projection of the four symmetric orbits of
frequency (12,21,49) onto the g-plane. Note that, except for the point at q
=(0,0), the orbits tend to avoid the region near the origin. This phenomena
will be be explained in terms of the action function in the next section.

Typically, when the parameters (kq,ko,h) are not too large, one of the
symmetric orbits is of type £z, another is 47, and the remaining two are £E#
(we observed this already for period one and two in section 2.3). This is the
analogue of the familiar island chain formed by an elliptic-hyperbolic pair for
the area preserving map. As the parameters increase various bifurcations

can occur as shown in Fig. 2.6. For example in Fig. 2.6(a), the (2,3,4) orbit on
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Fix(S) first undergoes a period doubling bifurcation, then regains stability by

its inverse (thus the period eight orbit only exists for a limited range, forming
a “bubble”), only to loose it again by a complex bifurcation. The multipliers

coalesce on the real axis in an inverse Krein collision. The resulting ## orbit

then undergoes a symmetry breaking bifurcation.to £# when a pair of -

multipliers passes through +1 [Rimmer 1978]. When this occurs a pair of
non-symmetric orbits with the the same period is created, as shown in Fig.
2.7 (b), and the residue corresponding to the original orbit changes sign.
There is a corresponding change in sign of #4(1) . Finally the orbit reaches
the #I region. Similarly the orbit on Fix(SR(y,0)) undergoes the normal
symmetry breaking bifurcation shown in Fig. 7(a). Spiraling in the A-B plane
like that shown in Fig. 2.6 is common, and becomes more rapid for longer

period orbits.
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Symmetry breaking bifurcations of the ordered periodic orbits do not
appear to occur for the standard map (the minimizing orbit always appears
to be symmetric), but can occur for a more generally, for example, when the

potential is V(q) = a4cos(2nq) + a»cos(4nq) and ao is large enough.

*p)’i ’

(b)

Fig. 2.6 Sketch of the evolution of the stability of two symmetric
orbits with @ = (2,3,4) (a) on the Fix(S) and (b) on the Fix(SR1,0))
plane as the parameters vary on the path ky=10h, k,=0.
Bifurcations occur each time a stability curve is crossed.
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-t
E3d “~

@) (b)

Fig. 2.7 Symmetry breaking bifurcations. Bifurcating orbits are of
the same frequency as their progenitor. The example shown is for
the transition between £ and #¥{ (a) direct process. (b) inverse
process.
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2.5. Minimizing Orbits

For area preserving twist maps, existence theorems for periodic and
quasiperiodic orbits are based to a large extent on the properties of the
action. Aubry and Mather prove, for example, that an area preserving twist
map has a minimizing orbit for each (m,n) [Mather 1982, Aubry 1983]. An
orbit is defined to be minimizing if the action of every finite segment of the

orbit is not larger than that of any variation with fixed end points:

W(Qj,...,ak) < W(Qj, Gj41 + AQjy1, ™, Ok-1 + AGk-1, Ok)

for all j<k. Aubry shows that an (m,n) minimizing configuration is ordered on
the circle in the same way as a simple rotation with frequency m/n. This
implies that there also exists a second periodic orbit of frequency (m,n)
because if the the orbit of o is minimizing, then so is that of Tlgq. If we
choose t so that Tlqg is the nearest point on the orbit to the right of qg, then
between these neighbors there occurs a point which is minimum in all
directions except one; this is the minimax configuration.

For N>1 the straightforward generalization of Aubry’s minimizing
condition does not appear to be fruitful. We use a weaker definition: a
periodic orbit { gt } is a minimizing if its periodic action (2.15) is not larger

than any other periodic configuration

Wo(dt) < We(dt + Adi) (2.29)

This does not in general imply that the orbit is minimizing in Aubry’s sense: a

counter-example is given by Hedlund for geodesics on a three torus




[Hedlund 1932]. He shows that a geodesic of giVen winding number ®
which minimizes the analogue of W, may not be a minimum of the periodic
action for some multiple of the winding number: Wijg. In this case minimizing
orbits (in Aubry’s sense) do not exist for each w.

A periodic orbit is locally minimizing if the second variation of the
periodic action about the orbit is positive definite. This latter concept is all
that we can check numerically. |

The Morse index of the action is defined as the number of convéx

directions at its extremum, i.e. the number of the negative eigenvalues of the
quadratic form 32W, [Milnor 1963]. A minimizing orbit has index zero.

In Appendix B we show that there exist min'imizing periodic orbits for
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each frequency. This result follows from a bound on the growth of the -

generating function with [q - g'| entirely analogous to the area preserving
case. Furthermore, there exist orbits with non-zero indices as well (also in
Appendix B). The minimum of the petiodic action for a given .value of q
exists, and gives a function on the N-torus. Each critical point of this function
gives a periodic oribit. Generically the critical points of such a function are
non-degenerate, and in this case Morse theory implies that there are at least
2N, Thus there are typically at least 2N orbits for each frequency (m,n). The
indices of these orbits range from 0 to N, and there will typically be at least
NI /il (N-i)! orbits with index i.

There is a close relationship between the stability matrix (2.22) and

the second variation of the action (2.15) about the periodic orbit:

Walsq =1 58 M(1) 50 (2.30)
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where 6Q represents an arbitrary variation. Thus M(1) is the Hessian matrix
corresponding to the quadratic form 82W,,. For the area presetving case the
stability type of a periodic orbit is characterized solely by the determinant of
M(1) [MacKay 1983], however when N>1, this is no longer true. We can
combine (2.23) and (2.30) to obtain a relation which generalizes the area

preserving case:

oW _M(1)
IR = (-4 Maet by (2.31)

where the R;are the residues (2.18). Since b is assumed positive definite,
Eqg. (2.31) gives a relationship between the sign of the product of the

residues, and of the determinant of the second variation of the action:

If the index is odd (even) then there must be an odd (even) number of

residues which are real and positive.

For the area preserving case, a non-degenerate minimizing orbit must be
regular hyperbolic. For four dimensions a minimizing orbit falls in the region
B>2A-2, i.e. above the saddle node line in Fig. 2.1; this does not completely
determine its stability type, excluding only the cases £#and #r.

We often find that as the parameters (k{,ko,h) are increased from zero
one of the symmetric orbits is minimizing and of type ##. This orbit can
undergo a symmetry breaking bifurcation, however, and its index will

become one. The action as a function of a configuration variable will




undergo an evolution like that shown in Fig. 2.8. The two newly created non-
symmettic otbits are now minimizing, and of type ##, as indicated in Fig.
2.7(b). Similarly, the non-zero index, symmetric orbits can also spawn non-
symmetric otrbits.

W(Q) W(q)

(@) (b)

Fig. 2.8 Inflection of the action function upon a symmetry breaking
bifurcation. Here “g” represents one of the configuration
coordinates of the orbit, and the dotted line represents the
symmetry plane. Prior to bifurcation (a), the orbit minimizes the
action and its index is zero. After the bifurcation (b), the action
acquires one convex direction at the extremum point on the
symmetry plane. The index of the symmetric orbit becomes one,
and the two new minimizing orbits are not symmetric.

The symmetry plane which goes through the maximum of F(q,q) plays
a special role, and we will call this plane the dominant symmetry plane
[MacKay 1982]. In particular the index N fixed point occurs on the dominant
symmetry plane. Furthermore F(q,q) has critical points on each of the other

symmetry planes Fix(SRpy), and so there are fixed points on each. In
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general there may also be other critical points of F, which give non-
symmetric fixed points.

Now consider periodic orbits of other frequencies w. For large enough
potential V(q), a minimizing orbit should have most of its points near the
minimum of -V, since the potential dominates the action, Eq. (2.16). An orbit
with dominant symmetry, however, must have a point on the plane where -V
is maximum, and thus ought to have an action larger than those without
points on this plane. It certainly seems reasonable that the minimizing orbit
will not have a point on the dominant symmetry plane, and we conjecture
that the minimizing orbit never has the dominant symmetry. For the case
N=1 this conjecture is supported by extensive numerical evidence [MacKay
1982, MacKay 1984].

Our scans of parameter space for the example (2.1) have never given
a minimizing orbit on the dominant plane. For most cases the index two orbit
has the dominant symmetry for small parameter values; however, as the
parameters increase the orbit on the dominant plane can undergo a
symmetry breaking bifurcation, and then will no longer have index 2. We
also see, as in Fig. 2.5, that the minimizing and index one orbits tend to

avoid the dominant plane, leaving a hole inside of which sits a single point

of the index two orbit. As the parameters are increased this hole grows in

size until it encircles the torus producing a stripe which is seen in Fig. 2.5.
We suspect that a similar phenomena for quasiperiodic orbits is responsible

for the destruction of an invariant torus.




2.6. Resonance Zones, Channels, and Chaotic Layers

of Four-dimensional Maps

The symmetry and the self-similar structure inherited from the binary
construction of the generalized Farey tree, introduced in section 1.5, is
shown in Fig. 2.9. The figure displays the rationals w=(w4,w2) in the range
[-1/2,175] x [-1/2,1/2] produced by the generalized Farey tree algorithm up to
level 13. On the » plane each triangle is not actually right isosceles; for
example, one of the level two triangles has vertices (0/1,0/1), (1/2,0/2) and

(1/3,1/3). Notice that the sampling is extremely non-uniform, with sparse
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regions around every rational pair. These of course will be densely filled by ‘

higher level rationals, and in the limit of infinite level, by incommensurate
pairs.

Our numerical results suggest the close contact of the generalized
Farey tree construction to the dynamics of the maps given by Eq (2.1). The
points in Fig. 2.9 are equivalent to the intersections of periodic orbits with
frequency ® on a constant angle plane for the integrable map: for example
(1) with k4= ko= h= 0, a periodic orbit with frequency w occurs at p=w. This
symmetry is broken as soon as the parameters are non-zero, as shown in
Fig. 2.10 for the same set of periodic orbits. The orbits are obtained by using
Broyden’s method (see seoﬁon 3.8), and are all symmetric since they are on
the symmetry planes: (a) on the Fix(S) plane, (b) on the Fix(SR(1,1)) plane,
and (c) on the Fix(SR(q,1)) plane. Now the sparse regions are larger, and are

not filled in by higher level orbits.
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Fig. 2.9 Pairs of rationals (w{,w») generated by the Kim-Ostlund
tree up to level 13. Equivalently, each point represents the
intersection point p of a petiodic orbit with frequency p = (w4,w>)
on a plane d = constant for the integrable system.




0.5

Fig. 2.10(a) Periodic orbits with the frequencies in Fig. 2.9 for
k1=0.5, k»=0.3, h=0.2, on q = (0,0) plane. Higher period orbits are
expelled from the vicinity of shorter period orbits creating
resonance regions. Furthermore, commensurability lines are
expanded into channels which connect the resonances.
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0.5

Fig. 2.10(b) Periodic orbits with the frequencies in Fig. 2.9 for
k4=0.5, ko=0.3, h=0.2, on g = (1/5,1/5) plane.
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Fig. 2.10(c) Periodic orbits with the frequencies in Fig. 2.9 for

k4=0.5, ko=0.3, h=0.2, on q = (0,1/5) plane.
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The structure is analogous to that for area preserving maps. Figure
2.10(a) corresponds to the dominant symmetry line of the standard map.
Every ordered minimax orbit of the standard map seems to have a point on
this line, and each corresponds to the center of a resonance [MacKay 1987].
There are no other ordered orbits for some interval around the minimax
periodic orbit. These intervals are bounded by the minimax orbits which are
homoclinic to the minimizing orbit of the resonance. Sequences of
symmetric periodic otbits which limit to a rational, for example the
sequences *1/n, limit to homoclinic orbits as n — «, and not to the minimax
periodic orbit. In the full two dimensional phase space, we define a
resonance as an area bounded by segments of the stable and unstable
manifolds of the minimizing orbit (see section 4.2). Thus the structure on the
symmetry line reflects this partition of phase space. If there are rotational
invariant tori, they must exist outside the vacant intervals on the symmetry
line.

For the four dimensional mapping, higher period orbits also tend to be
expelled from the vicinity of shorter periodic orbits o‘n the symmetry plane to
form resonance zones around each periodic orbit. Orbits in the resonance
zone tend to remain trapped in the zone for long periods. The resonances
occupy four dimensional volumes, which cut the symmetry plane in two
dimensional regions. In Fig. 2.10, we associate the empty region
surrounding the (0,0,1) orbit, with the (0,0,1) resonance. Many other such
regions are visible in the figure. The boundaries of the resonances, which

should be three dimensional, are not easy to define; they do not consist




solely of stable and unstable manifolds of the ## orbit, since these are
merely two dimensional (see section 4.4), but appear to include many other
orbits, as we will discuss below.

There appear to be channels which connect the resonances, each
corresponds to a commensurability relation, w4j; + @ojo +j3 = 0, or
equivalently w'j = O for the representation o= (mjy, mg,n). For example the
horizontal and vertical channels corresponding to j = (0,1,0) and (1,0,0)
have widths controlled by the parameters ko and k4, respectively. Similarly,

the major diagonal channel, with j= (1,1,0), corresponds to the coupling
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term, h, in Eq. (2.1). Other channels are generated by higher order -

commensurabilities, and their widths could be obtained from perturbation
theory [Chirikov 1979]. Along the channels there are an infinity of
resonances which satisfy the commensurability relation; in fact, as we will
see below the channels seem to be composed of these resonances. |

Orbits initially in a resonance zone may eventually leave the zone,
even if they are started arbitrarily close to the central £ orbit; this is the
process called Arnol’d diffusion [Lichtenberg 1983, Chirikov 1979]. Similarly
an orbit in the chaotic region outside a resonance can wander into
resonances since invariant tori do not separate the phase space. The
. transitions from resonance to resonance occur along the commensurability
channels, which form the so called Arnol’d web.

However, central portions of the resonances are difficult to enter. This

is shown in Fig. 2.11, which is a thin slice of the phase space near the
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Fig. 2.11 Sectional view of two chaotic orbits on the q = 0 plane.
Parameters are the same as in Fig. 2.10. The initial points are
(P1,p2,91,92) = £(0.10,0.34,0.0,0.0) and the orbit is plotted
whenever it falls inside the slice; -.005 < 4,92 < .005 up to a time
2x108.




dominant symmetry plane. Two initial conditions were iterated for 2x108
iterations, and only those points which fall in the slice are plotted (an
equivalent figure is given by Kaneko [Kaneko 1985]). Many of the
resonance zones shown in Fig. 2.10 are inaccessible on this time scale. The
inaccessible regions appear to have fairly sharp, but irregular boundaries.
On these there are many sticky points, corresponding to dark spots on the
figure: these points correspond to invariant tori trapped in the resonance.
Figure 2.12 shows one such torus in the primary resonance. There are many
irrational tori around each resonance; however, they do not form a complete
barrier: transition ,into a resonance occurs through the gaps between tori.

To attempt to delineate the resonance boundaries more precisely we

could consider the homoclinic orbits. However, there appear to be only a few
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(perhaps four) homoclinic orbits on the dominant symmetry plane. For the

(0,0,1) resonance these correspond, to the limits of the sequences (m4,ma,n)
with mj= %1 and n — . In Fig. 2.10 these sequences are visible as the
traces down the middle of the diagonal channels. Other sequences of
periodic orbits, for example those in the vertical and horizontal channels
given by (0, +1, n) or (1, 0, n), seem to limit to these four primary homoclinic
orbits, or sums of these orbits.

A frequency analysis can also be used to find the resonance
boundaries. All orbits trapped forever inside a resonance will have the same
frequency, Eq. (2.13), as the resonance. So we can approximately delineate
the resonance region by computing the frequency for some finite period of

time; let p be this finite time frequency. Since, as Fig. 2.11 shows, Arnol’d
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Flg. 2.12 Projections of one of the irrational tori surrounding
resonance zones with frequency (0,0). The initial point, (0.1271,
0.1672, 0.0, 0.0 ) is selected from one of the stuck points at the
edge of the primary resonance in Fig. 2.11.




diffusion is quite slow from the resonances, we can expect to obtain
reasonable results even for modestly long times; we choose a time interval
so that it would be shorter than an Arnol’d diffusion time scale but long
enough to give statistical average. Typically: we use t=103 with the
parameter values we present. Figure 2.13 shows p4 calculated for a set of
initial conditions on the line py=-p, and gq;=q,=0. A similar figure is obtained
for po, except with negative slope. These initial conditions lie in the diagonal
channel corresponding to j=(1,1,0) which is seen in Figs. 2.10(a) and 2.11.
There are flat steps in p(p) corresponding to resonances of the form (m,-m,n)
showing that the channel is actually a collection of many resonances
stacked closely together. The scattering of points near the edges of each
resonance correspond to highly chaotic orbits.

Similarly, Figure 2.14 shows regions which have frequenciés
corresponding to low order resonances; it is a complementary view to that in
Fig. 2.11. To construct Fig. 2.14 we conéider initial conditions on a grid on
the q=0 plane. Each is iterated 103 times, and points are filled in only if [p(p)
-w| < & for @ on the generalized Farey tree up to level five. The size of each
resonance area on this plane depends weakly on the time scale we use to
define the rotation number, but they correspond closely to the avoided
regions in Fig. 2.11. The boundary of a resonance is not smooth, due to the
chaotic orbits near its edge. The closer an orbit is to the boundary, the faster

it escapes out of the resonance [Kueny 1989].
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Fig. 2.13 Staircase of rotation numbers for initial conditions on the
line (p1,-p4, 0,0). Shown is the frequency p4 versus pq. An
iteration time of 103 is used to define p.
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Fig. 2.14 Resonance zones for rotation numbers up to level 5 on
the Farey tree (where (1,1,2) is level 0). A grid of 200200 initial
conditions is taken on the ¢ = 0 plane. Points are filled in if they
give a rotation number in one of the 81 resonances on the tree

within a tolerance € = 0.01.
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2.7. Conclusions

We have shown that reversible, symplectic, twist mappings of a 2N
dimensional phase space have periodic orbits which can be classified by
frequency, symmetry, and Morse index. Such mappings have 2N different
types of symmetric orbits for each rational frequency vector w. For each
frequency we also find 2N orbits for which the action function has indices
ranging from O to N. For small deviations from the trivial twist map
(ky=ko=h=0) these two sets of orbits often coincide; however the symmetric
orbits commonly undergo symmetry breaking bifurcations which change
their indices.

The existence of symmetric orbits is helpful for several reasons. It
allows classification of orbits by symmetry properties. Furthermore symmetric
orbits have points on the fixed planes of the symmetry; this reduces the
numetical computations needed to find the orbits. Symmetric periodic orbits
give useful information on the structure of phase space since they form the
centers and edges of resonances, and can be used as approximations to
quasiperiodic orbits such as the KAM tori.

Orbits which are local minima of the action appear to often be
hyperbolic, though counter-examples can be constructed. Equation (2.31)
implies only that the product of —R; must be positive for a non-degenerate
minihum. In the area preserving case, this implies hyperbolicity.

A projection of periodic orbits onto the configuration space (e.g. Fig.

2.5) shows that as the system becomes more nonlinear (e.g. the potential




energy becomes larger), the orbits with index less than N tend to avoid the
symmetry plane on which =V is maximum. This is the same mechanism
which gives rise to the formation of cantori in the area preéerving map, so it
seems reasonable to speculate that something similar happens here. When
an avoided region is formed around the dominant plane, other such regions
are formed by iteration. The index N orbit seems to have a single point in the
center of each of these regions. The resulting picture, for an
incommensurate orbit, would seem to be a set which is connected, but has
an infinity of deleted holes. This is not a Cantor set, but probably a Sierpinski
carpet [Sierpinski 1916]. We hope to present evidence for Sierpinski
carpets in a later work.

A cross section of the phase space structure is obtained by plotting
the intersection of symmetric periodic orbits with the symmetry plane, Fig.
2.10. This shows that the region around a periodic orbit is avoided by orbits
with different frequencies. We interpret this region as the cross section of a
resonance. Orbits in a resonance can remain trapped for long periods,' and
while they are trapped have the same frequency as the resonance.
Collections of resonances which obey a commensurability relation, w-j = 0,
form channels on the symmetry plane. Chaotic motion appears to take place
along the edges of these channels. The collection of channels gives the
Arold web. A description of Arnold diffusion in terms of transitions from one
resonance to another would require a better understanding of the resonance
boundaries, and a definition for escaping flux like that for area preserving

mappings [MacKay 1984, 1987].
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CHAPTER 3

LAGRANGIAN FORMULATION AND
NEWTON’S METHODS
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3.1. Introduction

A Lagrangian system is one whose dynamics is described by a
Lagrangian function L(q, ¢, t) through a variational principle. Many systems
are Lagrangian including magnetic field lines, geodesic flows, geometrical
optics, hydrodynamics of ideél fluids, etc. A state of the system is
represented by a point q in an N-dimensional configuration manifold 4,
together with a velocity in the tangent space Tq#.

The Lagrangian formulation can be converted into a Hamiltonian one
by Legendre transformation, introducing canonical momenta,
p=0L(q,d,t)/0q. The dynamics is given by flow of the one .parameter group
of diffeomorphisms in the phase space (p,q). Ilis behavior can be
equivalently viewed by looking at successive intersections on a sectional
surface in the phase space which is transverse to the flow (Poincaré surface
of section). For conservative systems with a compact energy surface (i.e.,
the motion is bounded) the existence of such a section is guaranteed by
Poincaré’s recurrence theorem [Arnol'd 1978]. The induced map on the
surface of section is symplectic since a Hamiltonian phase flow preserves
symplectic structure. A formal conversion of a continuous time system to a
discrete one by introducing a map is possible for autonomous systems and
periodically time dependent systems. In the Lagrangian representation, the
mapping takes a point (q,9') to (q',q") so that its domain is a subset of axaL.

Much of the analysis of dynamical systems relies on periodic orbits

and the behavior of flows in their neighborhood. For example, quasiperiodic

87




88

orbits can be obtained by interpolating nearby periodic orbits, the
frequencies of which constitute the sequence of approximants to the
frequency of the quasiperiodic orbit [Greene 1979, MacKay 1984].

Finding an orbit of a map T for given period and parameters is
equivalent to solving a system of nonlinear simultaneous equations. By
definition, an orbit of period n is obtained by finding a point z, such that its n-
th iterate returns to itself: zo=(po,do) for symplectic mapsyor Z,=(00,q4) for a
map of configuration space. Namely, the system to be solved is f(z,) = T"z, -
Z, = 0. This requires a 2N-dimensional root ‘finder for 2N-dimensional
mappings. Note that the evaluation of the f(z,) iﬁvolves iterating the map n
times, the period of the orbit; this scheme of finding orbits will be referred to
as ‘direct map iteration method’. When the desired orbit_is unstable, an
initial numerical error grows exponentially upon iteration of the map: |8z =
exp(ot) | 8z5| where o > 0 is the Lyapunov exponent. Thus the desired
precision on z; is lost along the orbit. For moderate periods the numerical
error |8z;| can easily become of order one; therefore, any scheme based on
iteration becomes impractical for long enough, highly unstable, periodic
o-rbits.

Alternatively, one can search for stationary configurations of the
action function according to the variationalvprinciple for periodic orbits. This
scheme is suitable for finding unstable orbits since numerical errors on the
orbit do not evolve under direct mappings. In this case the set of equations
to be solved is g(do, q1,*, n-1) = VWp = 0, where W, is the action function

of the orbit and g is a Nxn dimensional vector function; this scheme will be




referred to as ‘variational method’. The number of equations to be
simultaneously solved increases linearly with n, the period of an orbit.
Accordingly, the main disadvantage of this method is that the computation
time grows rapidly as n is increased. With straightforward Newton or quasi-
Newton methods, the computation time grows as o(n3) [Press 1986, Polak
1971, Dennis 1977, Broyden 1965].

For the fixed point and period two orbits, either system of equations
can be solved analytically as shown in section 2.3. For longer orbits, i.e. the
typical case, one must rely on numerical computations. There are many
methods in the literature for iterative solution of a set of nonlinear equations.

However, for iterative algorithms of this kind, there is no sufficient test for
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existence of solutions. Convergence of an algorithm to a solution is

guaranteed only when the solution exists and the initial trial solution is within
the basin of attraction for the desired solution [Ortega 1970]. This basin
typically has a very complicated structure; however, if a trial solution is
chosen sufficiently close to the actual solution, certain algorithms which will
be discussed in the following sections have been shown to exhibit excellent
convergence.

In our case, the orbits are known to exist (see Appendix B). However,
the equations are so complicated that it is hopeless to analyze the behavior
of the function in the neighborhood of a solution. Thus the best procedure is
to try several methods to find the most suitable one to the particular problem.

In this chapter we present two schemes employing Newton’s method

to find periodic orbits of Lagrangian systems whose configuration space is
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N-dimensional. As a preliminary, the Lagrangian dynamical system is
introduced in section 3.2 with a derivation of a map as discretization of a
continuous time flow. Section 3.3 presents a direct map iteration scheme to
find periodic otbits. The algorithm is based on Broyden’s method which is
one of quasi-Newton methods. We find that the direct map iteration method
works well as long .as the orbit is not too unstable. Section 3.4 presents the
linear algorithm for Newton’s method based on the variational method. It is
shown that the computation time of the resulting algorithm is proportional to
n, the period of the orbit. It is also shown that the algorithm occupies storage
space of size 0(n). Section 3.5 is devoted to discussions on the variational
method presented in section 3.4, which includes discussions on the
problems of obtaining a good initial guess and numerical overflow stemming
from the determinant of the Jacobian matrix becoming small. The relation of
the index of the action function to orbital stability is also discussed. We
illustrate the method for the case N=2. The subroutines are provided in

Appendix C.



3.2. Lagrangian Dynamical Systems

Consider a dynamical system represented by a Lagrangian L(q,q,7).
Here ¢ is a point in some N-dimensional configuration manifold 4. The

action of a path q(z), T9 < T < 1, is defined as

Tn

Wia(z)] = f L(a, g, 7) dt (3.1)

To

Stationary paths, determined by setting the first variation W to zero for (7o)
and q(tn) fixed, satisfy the Euler-Lagrange equations of motion.

Conversion to a discrete time mapping can be done formally for

autonomous and periodically time dependent systems. To this end,
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introduce a partition of the time interval, [to, T1, =, Tnl; each’step corresponds

to successive return of a flow to the Poincaré surface of section for
autonomous systems, or the strobing period for periodically time dependent
systems. The discrete Lagrangian can be defined by integrating L along an
stationary orbit segment, ¢(t), which begins at the point q; at t=1;, and ends
at qiy1 at T=Ti,1

Tied

F(di Qi1) Ef L{(q, g, 7) dt

T
q(t) stationary

(3.2)

The action of an orbit segment from 1=7; to 1=t can now be written
j-1
W(qi, Qi+t " CIJ) = 2 F(qt, qt+1) ‘ (33)

t=i
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where t is an integer index. Variation of W with respect to the intermediate
points yields the mapping equations

2 [F(d1, 49 + F(ly Gret)] = O

4 (3.4)
This equation locally defines a unique mapping, T, from (qi-1, dt) to (dt, At+1)
providing de‘t(a2F/aqaq') is never zero. We make a stronger assumption, the

iwist condition: the mixed partial derivative matrix is assumed to be uniformly

negative definite, i.e. there exists a B>0 such that for any 8q, q, ('

3q - b(q, q') - 5q = B [3q[2

b(d, q') =-92F(q, q') / 9g o' = F12(q, q') (3.5)

Here we use the subscripts “1” and “2” to indicate derivaﬁves with respect to
first and second arguments, respectively. It can be seen that (3.5) globally
implies the existence of T [MacKay 1988]. The twist condition is the
analogue of the Legendre condition in continuous time.

An orbit is a doubly infinite sequence of configurations { -, qt, Qt+1,
Ot+2, } such that every finite segment { q, gt.1,", tg } is a stationary point of
the action W(qt,qt+1,..-dsg) 'for given qt and gs. An orbit is periodic with

period n if
Ot+n = Ot (3.6)

such that n is the least integer satisfying Eq. (3.6). The action for a periodic

orbit is

Wn(qO’q1s~~‘qn-1) = W(qqu1 7~~°qn-1 ,qn=q0) (37)



Equation (3.7) gives a variational principle for periodic orbits: a periodic orbit
of period n is a ctitical point of Wy, where all points qo, q1,***, . are varied
freely. This is true because criticality of Wy implies Eq. (3.4) for O<t<n, and
variation with respect to o implies F1(go0,91) + F2(dn-1,d0) = 0, which
implies (3.6) when (3.5) is satisfied.

The linear stability of an orbit is determined by considering its tangent

map, which is obtained by linearizing Eq. (3.4):

-bty1 81 + 8 80 - bt 8¢ = 0

bt =- F12(dt-1 .01)
ar= F11(dt ,dty1) + F22(qlt-1,G1) (3.8)

giving a linear second difference equation. Here ‘~’ designates transpose‘-of
a matrix. The multipliers of a period n orbit are determined by the

eigernvalue  problem

0ft4n= 1 80 (3.9)

which closes the recurrence relation (3.8).

When the system represented by the Lagrangian (3.2) is periodic, that
is, F(q+m,q'+m)=F(q,q'), where m is an arbitrary integer vector, the
configuration manifold a4 can be thought of as an N-torus. In such é case, as
shown in section 2.2, it is often convenient to consider a lift of the original
map over the covering space of the N-torus, ®N. Then the rotation frequency

of an orbit, if it exists, can be defined as
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o= lim At-at)
ttisee -1
and the periodicity condition for a periodic orbit, Eq.(3.6), can be generalized

to

Gisn=0dt+ M m is an integer vector. (3.10)

Therefore, every periodic orbit has a frequency o = m/n.
We often adopt the definition (3.10) when we apply the Newton’s
methods to the periodic reversible maps since, for these maps, the symmetry

properties shown in section 2.4 can be used to reduce computational effort.
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3.3. Direct Map Iteration using Broyden’s Method

Using the definition (3.10) for the periodicity, a periodic orbit of
frequency (m,n) is obtained by finding a point z, such that its n-th iterate is
R.mZo, where R is the translation operator defined in Eq. (2.12). Namely, the
system to be solved is f(z,) = RmT"2o - 2o = 0, where T is the map. This
requires a 2N-dimensional root finder for the 2N dimensional mapping.
However, as will be shown below, it is possible to reduce the search to N
dimensions, providing we consider only symmetric orbits.

Broyden’s method [Broyden 1965], is a quasi-Newton or variable

- metric method. Briefly, the algorithm is
problem: Solve f(x*)=0
Define fx=f(Xk), Sk=Xx-Xk-1 and yy=Tk-fx-1

Input: Xo, Bo

Do loop for k from k=1

Sk = - Bilt it

- ~ -1 ~
B = By - Bl Bhct o gy gy TSk
Sk Bi1 Yk | skl (3.11)

Continue until | sk | <-given tolerance
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Here the vector sy is the correction to the approximate root x, and the matrix
By is an approximation of the exact Jacobian at x.
It has been shown that this algorithm converges superlinearly to the

solution x*, if a converging sequence {xy} exists [Broyden 1973]. That is,

- *
jim Xeet =X _ g
koseo | Xk - X

The By's are uniquely determined by the following two conditions:

Bk.sk_-_-yk (312)

Bk-z=By1+-2z foranyzsuchthatsk+z=0 (3.13)

Equation (3.12) implies that By is an approximate Jacobian at xx. For the
one dimensional case, the approximate Jacobian corresponds to using the
secant line to determine sy at each stage. For the multi-dimensional case the
first condition does not uniquely determine By. There are various ways td fix
By; for Broyden’s method the approximate Jacobian is determined using Eq.
(38.13). This condition together with Eq. (8.12) uniquely fixes By. The
resulting Bi's satisfy the recursion formula (3.11). This recursive relation
offers significant reduction in the work involved in the calculation of the
Jacobian, which usually requires o(n2) function evaluations at each stage.
There are also several alternatives to (3.13) which give a symmetric By
[Dennis 1977, Polak 1971]. In our case, we observe that the latter methods
involve more computations and do not give any improvement in

convergence.




We employ Broyden’s method to find periodic orbits by solving f(z,) =
RmT 2, - Zo = 0. As mentioned above, the required four dimensional search
for z, can be reduced to a two dimensional one for symmetric periodic orbits.
This is done by utillizing the properties of the symmetric orbits discussed in
section 2.4 as follows.

For a given frequency, the symmetry plane of z, determines the
symmetry plane of zx by Eq. (2.28). Choose a symmetry plane of z, and let
po be, say, the momentum of a point z, on the plane. The function f depends
only on p, i.e., f = f(po). Its value is determined by the equations for the
symmetry plane of zx; for example, f = qx - 1/om for zx on Fix(SRm) or f = pk -
2qx + m for zx on Fix(TSRm) (See Eq.(2.26)). Therefore the function fis a
two dimensional vector. The explicit form of f varies depending on the
frequencies and the symmeitry plane of z, as shown in Table 2.1 of chapter

2. All cases can be neatly combined into one formula as follows.
f(Po) =pPk-C-(m+R-20k.1) (3.14)

where C = 1/gg -TS'OE/5. Here OE=1 for odd n and OE=2 for even n, and
TS=1 when z, is on the syhmetry plane of TS symmetry family (TS,
TSR(0,1), etc.) and TS=0 otherwise. R represents the translation of the
symmetry plane of z, , i.e., R=(1,0) for SR(1,0) or TSR1,0), R=(0,1) for SRyo,1)
or TSRyo,1) etc. Finally, the other half of the orbit is obtained by using the
symmetry relation (27). Numerically this method can converge to the half
orbit for cases when iteration of z fails to converge to the second half of the

orbit.
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Choosing a good initial trial, p,, is critical for the performance of any
iterative solution technique. In the small parameter range, we choose p, =
m/,, i.e., the rotation number of the orbit. This works well as long as the orbit
is not far from the uniform rotation configuration. For an orbit with larger
parameter, p, can be chosen by exirapolating the orbits obtained with
smaller parameters. We use the identity matrix for B,. Using a Jacobian for
B, usually does not give any improvement in convergence. The recursion
relation for By rather than for its inverse (see Eq. (3.13)) is used because the
former involves less computations and the step (3.12) can be easily done for
a 2x2 matrix By.

The mapping iteration scheme becomes impractical for a strongly
unstable orbit because upon iterations of the map an initial numerical error .
grows exponentially. However, as long as the magnitude of the smallest
multiplier is sufficiently large compared to the computer precision, this

scheme works and is the simplest to implement.
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3.4. Linear Newton’s Algorithm for Variational Method

The algorithm for Newton’s method can be written briefly as follows.

problem : Solve g(x*) =0 where g: &' — &’
Definition : gk = g(Xk), Sk = Xk - Xk-1 and J is Jacobian of g
Input : X
Do while | sk | > given tolerance
evaluate Jg (step 1)

solve Ji Sk+1 = - Ok (step 2)

The vector si is the correction to the approximate solution Xy.

Newton’s method is well known for its rapid quadratic convergence

[Ortega 1970). Thatis,

lim M =

ko= | Xie - X* [P
where C is a bounded constant and {xx} is a converging sequence to a
solution x*. One of its disadvantages is that it usually requires o(n2) function
evaluations to calculate the Jacobian matrix J in step 1 above. Furthermore, -

in step 2, one has to solve a linear system requiring o(ns) arithmetic
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operations at each stage of the iteration; this can be reduced to o(rnz) for the
case that J is a sparse matrix with band width r [Atkinson 1978].

We want to employ Newton’s method to solve g(q) = VWn(do, g1,
On-1) = 0. The NnxNn Jacobian mattix, J = VVW, is given by Eq. (3.8) with
the periodicity condition Eq. (3.6):

ap -b1q 0 .. 0 -bg

~

b1 af -bo 0 . 0

J=VVW, =
0 -bpz ap3 -bp2 0

~

0 .. 0 -bn.o  an2  -bp-q

-bo 0 . 0 b1 an-1 (8.17)

In the following we present an analytic inversion of J. The explicit
form of J! is used to calculate s. Namely, instead of solving the linear
system J s. = -g, one obtains s directly by calculating s =-J'g. The
resulting algorithm requires o(n) computation time at each iterative stage
while retaining the quadratic convergence of Newton’s method.

The presentation of this method is divided into two parts; (A) inversion
of J via block-diagonalization and (B) calculation of s. Below, we will denote
the components of Nxn dimensional vectors by X=(Xo, X1, ..., Xn1 ) such
that each xjis N dimensional. Similarly, each entry of an NnxNn matrix is

denoted by an NxN submatrix, as in (3.17). The index k denoting k-th stage
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of iterative Newton algorithm is dropped to avoid confusion with subscripts
for vectorial components. Uppercase characters are used for matrices with

the exception of the given matrices aj and b;.
(A) Inversion of J

The primary goal of this part is to obtain a decomposition of J into a
product of easily invertible matrices (see Eq.(3.22)). We first show that J can
be block-diagonalized using a non-orthogonal transformation U, which is
upper-triangular with unit diagonal entries. Inversion of a triangular matrix is
straightforward. Finally J' is obtained as a product of the inverses of the
decomposing matrices (Eq.(3.25)).

First, consider the quadratic form XJ x where x is an arbitrary vector.

Successively completing the squares yields

XJ x =(Xo - AE)1 by x1 - BE)1 Xn_-[) Ag (Xo - Ab1 b{ x4 - BE)1 Xn-1)

+(X1 - A7 by X2 - BY Xn-1) A, (X1 - Ay by X2 - BY Xn-1)

1 - - -1
+ (Xn-z - An2 bpog Xpoq - Bn1-2 xn-1) Ao (Xn-z - An1~2 bn-1 Xn-1 - Bpaa xn-1)

& 3.18
+ Xn-1 An-1 Xn-1 ( )

where the A and B; are defined recursively by
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Ap = ag
A =ai-b; Al b, 1 <i<n-1
An1=anq-bnt Ao by -Dg- Dy

B.=I
B =B.1b'Ai 0<i<n-1
Bh.1=1

and we have introduced matrices D; defined by
Dp.y = Sn-1 BF11-2
Di =Di1+B; AB' n1>i20

Note that A; and D;- D,.1 are symmettric.

Thus Eq. (3.18) can be re-expressed as

XJdx=yDy

(3.19a)

(3.19b)

(3.19¢)

(3.20)

where D is a block-diagonal matrix with the submatrices A; along the

diagonal. The vector y is obtained from x by a non-orthogonal

transformation, y = Ux, where U is the upper triangular matrix

I -Ad'by 0 ... -Bj
0 I -A'by 0 -B
U=
0 1 -Ajsbyo -Bi-3
0o 1 -Af2bni-Bnz
0o ... 0 I

(3.21)



103

Since x is arbitrary in Eq. (3.20), we obtain the desired decomposition of J;

J=UopuU (3.22)

The inverse of U is obtained by solving for x; in terms of y;;
Xn-1 = Yn-1 (3.23a)
Xi = Yi+ A" b X1 + BiT ynq n22i20 (3.23b)

=yi+ A by (Vi+1 + Ail bia X2 + Bify yn-1) + B! yn-1

= Vi+ Al bist Vist + A7 bipy At biyo Yz + = + Ai'bit -+ At bao Yo

+(Bi'1 + A1 b Bily + -+ A biyg Aily by - Aflp by 361-1‘) Yn-1

Each coefficient of y; corresponds to (U'% That is, after straightforward

matrix manipulations by using (3.19),

(U-1)ij = bf1§i-1§f-11bj 0<igj<n-2
(U-1)in-1 = bi-1§i-1Bj 0<i<n-1
(U)j=0 > (3.24)

Now J' is obtained from the inverses of D and U:

(J-1)ij= Z (U'1)i|»°q'1 (6-1)11- (3.25)
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Inserting Eq.(3.24) into Eq.(3.25) and using Eq.(3.19), we obtain the final

expression for J':

| 1B 3. A- -1
(J 1)ij = bﬂ Bi.1 ( Dmax(i,j)' Dn.1 + D; An1-1 Dj) Bj-1 bj (3.26)

Thus J°! has been obtained in analytic form. It is explicitly symmetric.
The matrices A;, B; and D; are obtained recursively as shown in Eq.(3.19).
However, we do not evaluate J°! because this would require O(n2) arithmetic

operations and o(n2) storage space for entries of the J'.

(B) Calculation of s=-J" g

By virtue of Eq.(3.26), the analytic form of s can be directly

obtained.
- Si=(J'1)ij di
—~ ~_1 ~ n-1
=Qi X By b gj+bi' Bit 2.0; g5+ § Ay 2P g (3.27)

<l jZi ]=O

where the matrices P;, Q; are defined as follows:

Pn.1 =1
Pi= Py Si+1 A+ F\BJI‘| n-22i20
Qi=P; - Dy B b}’ n-1>i>0 (3.28)

Equation (3.27) can be further simplified by introducing two vectors u; and d;;
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Llo = dn-'] = O
Uj= U1 + Bis by g1 1<i<n-1

(3.29)
di=diy1 + Qg n-2=i=>20

so that the recursive relations determine u; upwardly from up and d;
downwardly from dn.1. The final expression for s is
n-1
-s;= Qi uj+ bi'Bi1 dj + 5{A;ﬂ.1 D P gj:l (3.30)
j=0
Once the i-independent term inside the bracket of Eq.(3.30) is
obtained, the evaluation of each component s; involves only two additions
and four multiplications of N dimensional vectors and/or NxN matrices. As |
shown in Eq.(3.19), (3.28) and (3.29), all matrices and vectors are obtained
recursively. To obtain D; from D, ¢ for example, one addition and two
multiplications of matrices are required. Thus 3n-2 matrix operations are
required to obtain D; for all i. Therefore, the total number of arithmetic
operations involved in calculating s at each stage of Newton method is
proportional to n, which is the period of the orbit, neglécting the fabtor
involving N. The function evaluations are involved only in calculating a; and
b; as well as g;. Furthermore, the number of NxN matrices and N-
dimensional vectors which need to be stored is proportional to n.
Consequently, the size of storage space for this algorithm, which could have

been o(n2), is reduced to o(n).
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3.5. Discussion

In this section we mainly discuss the variational 'method which we
presented in section 3.4 since the direct map iteration method seems rather
straightforward. We remark, however, that there are cases in which iterative
techniques are 'superior to variational methods; for example, when the
desired orbits are stable or only slightly unstable. In fact, most of orbits
studied in chapter 2 has been obtained by the method presented in section
3.8. Since the applicability of any numerical schemes finding orbits is not
precisely defined one should always try several methods to find the one
most suitable to any particular problem.

The method presented in section 3.4 is suitable for finding strongly
unstable periodic orbits for a wide range of Lagrangian systems. lts main
advantages are that the storage space and computation time are
proportional to the period of the orbit. When N=1 (i.e., for area preserving
maps ), our method is equivalent in its efficiency to the Green function
method proposed by B. Mestel and 1.C. Percival [Mestel 1987, Chen 1987].

The main disadvantage of any method for the iterative solution of a
set of nonlinear simultaneous equations is the critical choice of a good initial
trial solution [Press 1986]. Convergence of an algorithm to a solution is
guaranteed only when the solution exists, and the initial trial is within its
basin of attraction. This basin typically has a very complicated, fractal
structure. In general, for systems of nonlinear equations there is no sufficient

test for the existence of solutions; however, for the case of twist mappings,
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periodic solutions can be shown to exist for any period (see Appendix B of
chapter 2).

Though existence of a solution is guaranteed, our method is by no
means immune to the problem of finding a good initial trial. This choice is
further complicated because it is necessary to guess values for all NxN
variables of an orbit, unlike methods based on iteration for which only 2N
initial conditions are required. Even though there have been various
techniques devised to supply a good initial trial [Mestel 1987, Chen 1987],
this is still a difficult problem. In our applications, as discussed below, we
use extrapolation from solvable cases to obtain a trial.

Beside the linear dependence on the period of the orbit, another
benefit of the present method is that the Aj’s give information on the index of
the action function of the orbit : the index of a function is defined as the
number of downward directions at a stationary point [Milnor 1963]. The
index has been shown to be closely related to the orbital stability even
though it is not a sufficient test for stability for general N (see section 2.5).

That is,

N n-1
TR - (1t 2A (3.31)
i=1 4/ 1
Il det bt
=0

where R; is the residue associated with the corresponding reciprocal pair of
multipliers, i.e., Ry = 1/4 (2 - A; - 1/A; ). Since the bi's have been assumed to
be positive definite (Eqg. (3.5)), Eq. (3.31) implies that an action minimizing
orbit is hyperbolic for N=1 [MacKay 1983].



108

Implementation of the method can be confronted with an overflow
problem when J is neatly singular. That is, det(J) can become extremely
small, which could result in overflow when computing J™!, even though s = -
J g is finite. Indeed this is the situation when the action is near an inflection
point: as can be seen from Eq. (3.31), one of residues is very close to zero.
A typical example is when an orbit is about to undergo tangent bifurcation
where it has a pair of multipliers at +1. Another case is when the
perturbation is so small that orbits are very close to the configurations of
uniform rotation.

This problem cannot be resolved without loss of efficiency. However,
its effect seems to be greatly lessened in our method by using det(A))
instead of det(J). Némely, each det(A;) can be finite even when det(J) would
underflow. ‘In examples we observe that det(A;) indeed tends to be finite
with the exception of det(A,.1) which becomes very small for the nearly
integrable case. However, A,.1 is not involved in determining the other
matrices so that the algorithm less often encounters such a problem. Thus
our method works for the orbits whose residues are fairly close to zero as
well as for strongly unstable orbits.

We illustrate the present method with an N=2 example for which the

generating function is
(3.32)

Fla, 9) =1 (@ - ayb(a’- ) - V(@)

where b=1and
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V(a1, 42) = (;t)z (kicos(2nq1) + kecos(2nqz) + heos(2m(as, g2)])

The resulting map for the system (3.32) is equivalent to two coupled
standard maps. Since the system is periodic in q, the orbits can be depicted
on atorus. Figure 3.1 shows the symmetric orbit of frequency o = (12,16)/21
with qo=(1/2,0) along the path in parameter space: ki=¢, ko=.6¢, h=.4e and ¢
varies from 0 to 8.0 with a step size Ae=.16 (for definition of symmetric orbits,
see section 2.2). For e=0 the configuration corresponds to a uniform rotation,
gj= jo + qo. The multipliers of the orbit at e=8.0 are Ay = 108 and Ao = 102,
The orbit at € is used as the initial trial to find the orbit at e+Ae. The required
number of iterations of the Newton routine for each & ranges from 3to 5. As
can be noticed from the figure, the points on the orbit tend to cluster together
as & becomes larger. Analogous clustering occurs for the area preserving
case and leads to the formation of cantori.

The construction of our method relies only on the band structure of J.
The particular structure of J with band width r=3N in Eq.(3.17) originates
from the nature of the second difference equation (3.8) or the equation of
motion (3.4), for general Lagrangian systems introduced in section 3.2.
Therefore the method presented in section 3.4 is expected to be applicable

to a wide range of dynamical systems.
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9

Fig. 3.1. Evolution of the points on a periodic orbit for the mapping
Eqg. (3.32). The box represents (q1, go, €) space which is 72 x g,
The parameter € varies from 0 to 8.0 in the vertical direction. The
unperturbed orbit at the bottom of the box has a point at each
intersection of the tilted grid lines whose slopes are determined
from the frequency w=(12,16)/21.



CHAPTER 4

GEOMETRICAL STRUCTURE AND TRANSPORT
IN PHASE SPACE
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4.1 Introduction

The structure of phase space of Hamiltonian systems is generically a
mixture of regular and chaotic (stochastic) motions. Chaotic regions are
defined as the collection of orbits with a positive Lyapunov exponent :
Birkhoff called such regions ‘irregular components’. As the nonlinearity of
the system is increased the stochasticity of phase space is generally
increased. In the stochastic region of phase space, the motion is in practice
random on a long time scale due to exponentially growing initial numerical
errors. Thus, to an extent, transport in phase space can be modelled as a
random process. However, the extent of randomness should depend on the
details of the structure of phase space which is determined by the dynamics
of a given map. This chapter aims at a study of geometrical structure of
phase space and its application to possible descriptions of transport in
phase space. Naturally, such a study is heavily based on an understanding
of the dynamics of a given map. |

Many of the properties of area preserving maps are well known.
Some of these are reviewed in section 4.2, emphasizing the existence of
partial barriers. Partial barriers are the remnants of invariant circles or
separatrices and they can be constructed from segments of stable and
unstable manifolds of hyperbolic invariant orbits. The action formulation for
orbits, as introduced in section 2.2, turns out to play a central role in the
analysis: existence of minimizing orbits and their ordering property, areas

under partial barriers, flux through partial barriers, etc.
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The results from section 4.2 are directly applicable to construction of
Markov models for transport in phase space, as shown in section 4.3. A
Markov process is defined by a set of states and transition probabilities
between states. A region in phase space bounded by partial barriers is
associated with a state of a Markov process. The transition probability is
determined by the flux across the partial barrier between adjacent regions.
The validation of the models and their results are discussed without showing
the details on how to solve the corresponding master equations.

An extension of ideas employed in area preserving maps to the case
of 2N dimensional symplectic maps is not trivial when N > 1. The main
reason is that stable and unstable manifolds of minimizing hyperbolic orbits
are N dimensional and, hence, do not divide phase space when N > 1. In
fact, even an invariant torus does not divide phase space, resulting in the
Arnol’d diffusion. Recently, howevet, it has been shown that in such systems
| under certain special conditions there exists a normally hyperbolic invariant
manifold which has stable and unstable manifolds of co-dimension one.
Such a normally hyperbolic invariant manifold is a set analogous to the
hyperbolic periodic orbit in area preéewing maps, and segments of its stable
and unstable manifolds can be used to bound phase space since they are
co-dimension one in the ambient phase space. In section 4.4 wevshow,
without proofs, two propositions which state the existence and the
persistence of such manifolds. An application to transport and the
practicality of the theory are also discussed. In section 4.5 we close this

chapter with some discussions.
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4.2 Dynamics in Area Preserving maps

Many properties of area presetving maps have been determined by
extensive research over the past decade [MacKay 1987 and references
therein]. This section is devoted to a brief review of some of these results,
emphasizing the structure of phase space in terms of periodic and
quasiperiodic orbits together with their stable and unstable manifolds. It will
be shown that the segments of stable and unstable manifolds can be used to
construct pantial barriers in phase space. There exist homoclinic orbits at
intersections of stable and unstable manifolds. It will also be shown that
action functions of homoclinic orbits can be used to define flux through the
partial barriers. These ideas will be directly used to study transport in area
preserving maps in section 4.3.

We will consider area presetving maps on the cylinder of the form
Pt+1 = Pt - K f(xp), Xt+1 = Xt + Pts1 (4.1)

where x is the configuration variable of period 1, p is the canonical
momentum, K is the nonlinearity parameter, and f(x+1) = f(x). Furthermore,
we assume that the map is reversible: f(-x) = - f(x) (See the section 2.4). In
the following sections, the theories are illustrated with the standard map and
the sawtooth map; Corresponding to f(x) = 1/2% sin (2nx) and f(x) = x with

discontinuities at x = £1/2, respectively.

4.2.1 Area, flux and action difference of homoclinic orbits
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Let us suppose there is a curve ¢(A) in phase space which is
parametrized by A € [0,1]. The area A under Cis the integrated area under
the curve; A = fcp dx. The integration can give a negative area if the curve is
below p = 0; the area is algebraic. Let ¢’ be the image of ¢ under the map
and A’ be the area under ¢’. Then using the generating function F(x,x’) of
the map as given by Eq. (2.7),

dF _ oF dx’ +8_F%
di ox’ dA  ox dA

, dx’ -—p%
dA dA

=P
By integrating both sides with respect to A,

AF

FIx(1),x’(1)] - F[x(0),x(0)]

1
p’ dx dA-{ p ax dr
dA s dA

= A-A
(4.2)

Now suppose that two orbits { Yt} and { Zt} are homoclinic to each
other. Namely,

lim | Yi-Z| =0

t— foo
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Then, there exists a stable (unstable) segment between Y; and Z; which
contracts (stretches) in forward (backward) time. Let ¢§ (c{ ) be the stable

(unstable) segment between Yy and Z;. The area Af ( AY ) under ¢ (ct')

is obtained using Eq. (4.2) recursively:

A} = Al - AFi=Af2 - AFyq - AFp= -

1

-, AFj  (since lim A}=0)
j=t

(4.3)
Similarly,
t-1
J=eo (4.4)

By combining Eq. (4.3) and (4.4), we obtain the algebraic area below the

unstable segment c{ and above the stable segment c¥.

A -Af = AFj=AW
oo (4.5)
That is, the area is given és the difference in actions of two orbits, { Yt} and
{ Zt}. Note that it is independent of the reference time t. This is because the
map is area preserving. Equation (4.5) is used to calculate the turnstile area
of partial barriers as will be shown in the n‘ext sectioné.
Another quantity of interest (see below) is the sum of areas, denoted

by At, under the all forward iterates of the stable segment ¢§ and all
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backward iterates of the unstable segment c{. Using Eq. (4.3) and (4.4) and

reordering the summations, we obtain

°° 0
A = z Ak + Z Atk
k=1

k=-co

° 0
- 2 KAFuk- X, K AF
k=1 Koo

= - Y, KAF

K=o (4.6)
Notice that Af was not included in the summation. In the case that AW
vanisheé one can use A instead of A{' since they have the same area by Eq.
(4.5). On the other hand when AW = 0, the right hand side of Eq. (4.6) is not
independent of the time t; in fact, At+1 .= At + AW. When the action
difference between the two relevant orbits vanishes, At does not depend on
the choice of origin of time. Assuming this, we will drop the subscript t’
below. As we will see below, these two equations, (4.5) and (4.6), play a

central role in the transport theory.
4.2.2 Cantori and Partial Barriers
The existence of a quasiperiodic minimizing orbit for any irrational

frequency w in any twist map given by Eqg. (4.1) is guaranteed by the Aubry-

Mather theorem (see section 2.5). When the map is nearly integrable, these
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orbits lie on invariant tori, KAM tori (the KAM theorem). In area preserving
maps, an invariant torus is a perfect barrier to transport since its co-
dimenision is one in the ambient phase space: it has topology of a circle in
the plane. An invariant torus may cease to exist above some critical value of
the nonlinearity, however, there still exists a quasiperiodic orbit which now
densely covers an invariant Cantor set. A Cantor set is a perfect, totally
disconnected and compact set. An orbit whose projection to the
configuration coordinates forms a Cantor set is called a ‘cantorus’ [Percival
1979]. The complement of a cantorus is a countably infinite set of gaps. A
phase area element can cross the gaps by the mapping dynamics; thus
cantori are not perfect barriers. But they still play a role as partial barriers
because the leakage rate per iteration of the map can be quite small. |

We can visualize this leakage as occurring through a special region,
the so-called ‘turnstile’. To construct a turnstile consider a gap on a
cantorus. Denote the left endpoint by Xy and the right by Zg. The action
difference between the orbits { X; } and { Z; } vanishes as proved by
Mather[Mather 1986]. The iterates of the gap never overlap since { X;} and
{ Zi } are ordered: every minimizing orbit is ordered [Aubry 1983]. Since the
length of the union of all iterates of a gap should be finite, the gap length
goes to zero ast — + o. Thus the orbits { Xt } and { Z; } are homoclinic to
each other (actually to the cantorus) and, hence, there exist a stable and an
unstable segment between the endpoih"ts of the gap as discussed in the
previous section. Furthermore, a cantorus typically has zero length: it can be

proven that hyperbolic cantori have zero length [MacKay 1987]. Thus the
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union of gaps has length one. The cantorus partial barrier is then formed by
the forward iterates of a stable segment together with the backward iterates

of an unstable segment (see Fig. 4.1).

A ~"N
\21/\5? _______ ><1/

Fig. 4.1 Cantorus partial barrier. { X; } is the orbit of the left gap
endpoint and { Z; } of the right gap endpoint.

The existence of a minimax orbit, denoted by { Yt } , inside the gap is
guaranteed by the fact that { X; } and { Z; } are minimizing and ordered.
Since the orbit { Y; } is also homoclinic to the cantorus, it should lie on the
intersection point of the stable and the unstable segments of each gap,
which forms the center of turnstile. It is also possible that there are several
minimax orbits, but the resulting structure can still be treated as one turnstile
with an effective area. The area of the left (right) lobe of turnstile gives the

upward (downward) flux per iteration through the cantorus partial barrier.
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Using Eqg. (4.5), the flux is directly obtained from the action difference
between the orbits { Yi} and { Zi }. The area under a cantorus partial barrier
is the sum of areas under the gaps since the area under the cantorus itself is
zero. It is obtained from the orbits { X; } and { Z; } by using Eq. (4.6). The
lobes have the same areas since AW between the orbits { Xt } and { Z; }
vanishes. This also follows from zero net flux (see section 2.2).

A set of cantorus partial barriers in phase space partitions phase
space into separated regions; transitions between these regions occur
through the turnstiles of the partial barriers. This is discussed in section

4.3.2 and 4.3.3.
4.2.3 Partial Separatrices and Resonances

For integrable Hamiltonian systems, the stable manifold of a
hyperbolic periodic point joins smoothly with the unstable manifold of a
nearby hyperbolic periodic point, forming a separatrix. The motion on the
separatrix, therefore, is heteroclinic between the two fixed points. Thus a
separatrix is an invariant set. The simplest example is the separatrix which
divides the phase space of a one-dimensional pendulum into vibrational
and rotational motions.

Upon a small non-integrable perturbation, the stable and unstable
manifolds typically intersect transversely and the smooth separatrix is lost.
The transversality dramatically changes the structure of phase space near

the broken separatrix, forming a heteroclinic tangle. In this section we
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describe a way to construct a partial separatrix, which is almost invariant in
the sense of transport, from pieces of stable and unstable manifolds of
minimizing hyperbolic periodic points. |

For the maps given by Eq. (4.1) with k = 0, there exists at least a pair
of minimizing and minimax periodic orbits of a given frequency m/n. The
minimizing orbit is always hyperbolic (see section 2.5) and, hence, it has
stable and unstable manifolds. The minimax orbit is typically elliptic but it
can be hyperbolic with reflection: the following construction holds for either

case. A partial separatrix for an m/n resonance is constructed in the

following way:

(1) Between two neighboring points of a given m/n minimizing orbit,
M! and Mr, there exists a m/n.. minimizing heteroclinic orbit whose frequency
limits to m/n from above. Such an orbit lies at the intersections of the right-
going branch of the unstable manffold of Ml and right-going branch of the
stable manifold of MF. Choose any such intersection point, Mf.

(2) Connect Mf to M! along the unstable manifold of Ml and to Mr
along the stable manifold of M.

(8) The upper partial separatrix is obtained by connecting the (n-1)
successive images of the curve of step (2) together with itself.

| (4) The n-th image of the curve of step (2) must intersect with the

original curve, forming a turnstile. The right endpoint of the turnstile is M, ,.

The turnstile center, S{, is a point of the minimax heteroclinic orbit .
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The lower partial separatrix is obtained similarly with the heteroclinic
orbit, m/n., which slides to the left. For the existence of such heteroclinic
orbits, see the original paper by MacKay et al [MacKay 1987]. A resonance
is defined as the region bounded by the upper and lower separatrices. As
an example, Fig. 4.2 shows the resonance of frequency 1/3 for the standard
map in symmetry coordinates.

To find the area under the upper partial separatrix of a resonance,
choose the orbits { M{ } and { M{,, } and apply the Eq. (4.6). The action
difference between these orbits is zero since two orbits are essentially the

same.

A* == 3 tF (i, Xinat) - FOG, X))

tees 47)

The convergence of the series is guaranteed since the orbit { Mf } is ordered
and, hence, the iterates of a gap between Mi and M., never overlap. To
get a more practical form of Eq. (4.7), one can rearrange the summation. But
it should be done carefully to maintain the convergence. By adding and
subtracting the action of the periodic orbit of period n, and shifting t by n in

the last term, one can obtain

A =0 Y Y [F(hin iiner) - FOX Xtu1)]
oo t=1 (4.8)

The expression for A~ is identical except for signs. The area of resonance is,

therefore, given by the difference, A+ — A-.
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Fig. 4.2 Resonance of frequency 1/3 for the standard map in
symmetry coordinates. The resonance boundary is indicated by
solid lines. Dashed lines represent the other boundaries forming
the turnstiles in the partial separatrices. [MacKay 1987]
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The turnstiles in the upper and lower separatrices play the same role
as the one in a cantorus partial barrier. The flux exchanged through the
upper separatrix is, using Eq. (4.5), the action difference between the orbits
{Mf }and { St }. Similarly, the flux through the lower separatrix is obtained
from the orbits { M; } and { S;}. Sum of these two fluxes gives the total flux
which a single resonance exchanges with the rest of phase space per
iteration of the map.

The resonances defined as above unlikely overlap one another since
unstable (stable) manifolds never intersect with unstable (stable) manifolds.
Importantly, it has been observed that the total area of resonances fills
phase space when there exists no invariant circle. This enables us to
partition phase space completely into resonances for supercritical map
cases where no (rotational) invariant circle exists. This idea is discussed in

section 4.3.4.
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4.3 Markov Models for Transport in Area Preserving Maps

Chaotic motion is characterized by positive Lyapunov exponents.
This implies that the history of such motion is rapidly lost and, hence, that the
motion could be modelled to some extent as a random process. To
accomplish this we first consider only the chaos of orbits in a connected
chaotic region. For area preserving maps, an orbit cannot pass through
invariant circles. Thus, such a connected region is bounded by invariant
circles if they exist (Birkhoff's theorem). Inside such a region, however, the
dynamics is more complicated than just purely random. In fact, we have
seen in the previous section that there still exist partial barriers formed by
cantori and broken separatrices. Furthermore, these exist even after the last
invariant circle of the map is broken up, which makes the role of partial
barriers even more important. _

In this section, we describe several methods which attempt to partition
such chaotic regions using the partial barriers developed in the previous
section. Transitions between these regions will be modelled as a Markov
processes. Quantities relevant to transport are obtained by solving the
master equation for the probability distribution, which we do not attempt

here.
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4.3.1 Markov Approximation for Stochastic Motions

Consider a random motion of a particle or a phase space point,
through a sequence of states labeled by an index i : for our present purpose,
the index i ranges over a countable set; however, more generally one could
treat i as a continuous random variable [Balescu 1975]. A random process
is completely characterized by the knowledge of an infinite sequence of joint
probability distribution functions, Pn(in, in-1, **, i1; tn, tn-1, ==, t1): Pp is the
probability that a particle is in state ik at time tk, 1 < k < n. In spite of this
intractable infinity, in many practical cases high order joint probabilities can
be fortunately expressed as a combination of lower order ones. For
instance, if the process is completely uncorrelated in time (purely random),
all order P with n = 2 are just the n-fold product of P¢’s each time. A Markov
process is the next simplest process; here the second order joint probability
generates all higher ones.

To proceed further it is convenient to introduce the transition
probability, pa(i1; 11 — i2; t2), which is the conditional probability that a
particle is in state io at time tp given that it was in state i4 at time t1. Clearly,

this satisfies the relation
Pao(ig, i1; to, t1) = P1(i1; t1) p2(i1; t1 — ig; t2) (4.9)

Higher order transition probabilities are denoted as pn(i1; t1 = *** = in-1; th-1

— in; tn). A Markov process is defined by

pnit;ty = = = in-1; th1 = in; tn) = pa(in-1; tn-1 = injtn)  (4.10)
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The essence of the Markov approximation is that upon transition from tp.1 to
tn, all influence of the history of the state fort < ty.1 is lost. It should be then
clear that all higher order joint probability functions are generated from the
second order ones using Eq. (4.10); e.g., Ps(iz, ig, i1; 13, 2, t1) = Po(iz, io; 13,
t2) Pa(iz, i1; t2, t1) / P (i2; to).

Thus, a Markov process is defined by transition probabilities together
with a countable set of accessible states. The master equation governing
the evolution of the probability density, P(i; t), is

P(;t) =, PG V) pl; ¥ = ;1)

i (4.11)
which is obtained by summation over i1 on both sides of Eq. (4.9). Here we
drop the subscripts without confusion.

In the following sections we show three approaches to construct
Markov models for transport in area preserving maps. We have already
seen that the segments of stable and unstable manifolds of cantori and
minimizing periodic orbits form partial barriers to transport. Basically these
barriers are used to partition phasé space. Thus the first step of each model
construction will be to find an appropriate partition of phase space, each
region of which is associated with a state. The next step is to determine the
transition probability between states. These two steps define a Markov

model.
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4.3.2 Markov Chain via Cantori

The set of cantori is an uncountable infinite set since the irrationals
are dense in the reals. Suppose there exists a countable set of cantori for
which AW as a function of frequency has sharp local minima. Then, since
AW gives the flux through a cantorus partial barrier, transport through such a
minimizing cantorus would be much slower than through cantori with larger
AW. Thus the minimizing cantori tend to be limiting barriers and the cantori
with large AW between minimizing cantori can be ignored. If, furthermore,
one assumes that the motion in the region bounded by two adjacent
minimizing cantori is purely random, then successive transitions through
minimizing cantoti are uncorrelated.

This model gives a Markov partition of phase space. The regions
bounded by adjacent minimizing cantori are labeled by an index i. Using
the result of section 4.2.2, the transition probability from state i to state j per

iteration is
pij = AW / Aj

where Aj is the area accessible to state i; that is, the area of the connected
chaotic region between adjacent minimizing cantori ( Eq. (4.6)). Therefore
the dynamics is desctibed by pj; over a chain consisting of all countable
states i. This defines the Markov chain. .

When pjj is small for i # j, i.e., pji = 1, the Markov chain can be taken to

have continuous time:




129

%—?—j= Z Pipj
i (4.12)
where Pj(t) is the particle density in state i. When we set Pj(0) = 0 for j # 1,
Pi(t)/P;i(0) gives the fraction of particles remaining in state i at time t, which is
called the survival probability.

Now let’s consider a region near an invariant circle which bounds a
chaotic region; suppose that this is the only invariant circle in some region of
interest. Since it bounds the stochastic motion, we are especially interested
in the dynamics in the one side of the boundary circle, let say, below the
circle. Assume that this boundary circle is noble. Then the scaling results
from the renormalization transformation analysis are applicable in its
neighborhood. Numerical results done with standard map shows that AW
has sharp local minimum at the frequencies of noble cantori [MacKay 1984].
Therefore, to an extent, it is a reasonable approximation to neglect all cantori
but the locally minimizing ones.

Below the boundary circle there is an infinity of elliptic periodic orbits
which limit to the boundary circle. Let the frequency of the boundary circle
be v. The frequencies of the periodic orbits, v;, are the even convergents of v
in its continued fraction expansion. The level i periodic orbit defines the
state i in the following way. Between successive levels there are an infinity
of cantori corresponding to irrationals in the range vj < ® < vj;1. We choose
the cantorus, wj, which has minimum AW in the range. Then the area
bounded by the adjacent cantori ©j and wj.4 corresponds to state i. This

situation is depicted in Fig. 4.3.
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AWpy AWy,

Fig. 4.3 Markov chain near a boundary' circle

Using the results from the renormalization analysis, Hanson et al.
show that the survival probability F(t) (= P(t) / P(0)) of Eq. (4.12) decays
algebraically [.Hanson 1985]: F(t) ~ t-Z with z ~ 3.05. The decay of this result
is rather faster compared to the numerical result, z ~ 1.5, obtained by Karney
and Chirikov et al. [Karney 1983, Chirikov 1984]. The most important reason
for this discrepancy might be due to the approximation that the motion inside
each stafe is random. In fact, the dynémics between two minimizing cantori

is more complicated than we have assumed.
4.3.3 Markov Tree Model

The most important dynamics heretofore neglected inside a state
might be the dynamics near stable islands. In fact, the structure of phase
space is an infinity of self-similar structures on every scale; islands around

islands ad infinitum. To include such complications, it is essential to employ
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the renormalization transformation analysis, in this case called the class
renormalization [Meiss 1986].

The hierarchy of orbits is associated with the ‘classes’ of orbits; we
define a class C orbit as an ordered orbit which encircles a class C-1 elliptic
periodic orbit. The class zero orbits are the rotational ordered orbits, for
example the rotational cantori of Fig. 4.3. Between any two adjacent class
zero cantori, there is an infinity of class zero elliptic periodic orbits. Every
elliptic orbit is enclosed by class one boundary circle and the inside is
inaccessible from outside just as the region above the class zero boundary
circle is inaccessible from below. For simplicity, only one significant island
chain between two adjacent minimizing cantori is considered. Outside the
class one boundary circle v4, there is also an infinity of cantori in the range 0
<< V4. Inthe same way we constructed class zero cantori, we retain only
a countable set of minimizing cantori: these tori are of class one. Between
any two adjacent class one cantori, there exists a most significant class one
elliptic periodic orbit. The construction of minimizing cantori and boundary
circles encircling significant resonances is continued ad infinitum (see Fig.
4.4).

A connected region between two adjacent class j cantori and outside
the outermost class j+1 cantorus is defined to be a state. The dynamics is
again assumed to be purely random inside such regions. Transition from
one region then occurs either by a change in level through the turnstiles of
adjacent class j cantorus or to higher class through the turnstile of the

adjacent class j+1 cantorus. The transition rate is again obtained from the

———
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Fig. 4.4 Schematic of the connected chaotic region of an area
preserving map near a boundary circle. Inaccessible areas are
shaded. Boundaries of the labeled states are minimizing cantori,
with their turnstiles shown. FEach class one island shown
represents one member of an island chain [Meiss 1986].
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turnstile area through which transition occurs divided by the area of the
state.
In particular, a state, S, is specified by a sequence of two symbols,

say, {L,C}:

S={o1, 02, -, oN}

Starting from the region between level zero and level one cantori of class
zero and outside the level zero cantorus of class one, denoted by @ (null), o4
is L (C) if transition occurs in the direction increasing level (class) by one.
Coding proceeds in the same way until we stop transition when we reach
the state to be labeled. Thus the dynamics is depicted as random transitions
on a binary tree. The transition probabilities are determined from AW of the
cantorus between two regions divided by the area of the base state. This
defines the Markov tree.

The result of Meiss and Ott gives an evident improvement compared
to the Markov chain model [Meiss 1985, 1986]: z ~ 1.96. This model clearly
takes account of the trapping behavior of an orbit near boundary circles.
The rhodel is quite valuable in that the trapping behavior seems to domin‘ate

the long time behavior of Hamiltonian systems.

The models described in section 4.3.2, 4.3.3 rely on the assumption
that there exists such a countable set of flux minimizing cantori. Numerical
evidence from the critical standard map implies that this is a reasonable
approximation. However, these models are not generalized to the cases all

fluxes are of the same order of magnitude In particular, Mather proved that
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AW is a continuous function of irrationals so that nearby cantori have nearly

the same value of AW [Mather 1986].
~ 4.3.4 Markov Chain of Resonances

A resonance is the region bounded by the upper and lower
separatrices of an ordered hyperbolic periodic orbit. It has been shown that
for supercritical cases the collection of resonances for all frequencies fill
phase space [MacKay 1987, Chen 1987]. This fact allows a partition of
phase space into a set of resonances. This partition should be more
practical compared to one using cantori since a set of resonances is always
countable.

The total flux exchanged per iteration by a resonance with the rest of
phase space is determined by the turnstiles in the upper and lower
separatrices. Transition between two resonances occurs through the
overlap of the turnstiles of each resonance (see Fig. 4.5). When turnstiles
overlap, the unstable manifold of lower turnstile of upper resonance m/n
intersects with the stable manifold of upper turnstile of lower resonance
m’/n’. Typically there are two intersection points, Hy and HE, which are
homoclinic to each other. They are heteroclinic orbits which are asymptotic
to the m/n minimizing orbit in the backward time and to the m’/n’ orbit in the
forward time: existence of such heteroclinic connection gives a precise
criterion for resonance overlap. Using Eq. (4.5), the action difference

between these two orbits gives the flux between the two resonances.
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M m/n

Fig. 4.5 Overlap of turnstiles [MacKay 1987]

Each resonance is a chain of islands (see Fig. 4.2). The picture
described in section 4.2.3 shows that flux from a resonance with the rest of
phase space occurs only through its upper and lower turnstiles of the main
island: we will call the island which has turnstiles the main island. That is,
no flux exchange is allowed in the other islands of the chain until its iterate is
mapbed to the main island. This gives a picture of flux through a resonance
as far as a single isolated resonance is concerned. One should, however,
be reminded that this is not the only one choice for locating a resonance. In
fact, becaus/e of the area preservation, any iterate of such a resonance is a

resonance with the same turnstile area as well. Thus one should be careful
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in the co‘nstruction of a partition of phase space with resonances to ensure
that they never overlap. This kind of construction is rather simple for the
‘reversible maps 'giveh by Eq.' (4.1) because all minimax orbits appear to lie
on the dominant symmetry line [MacKay 1982]. Namely, in this case the
main island with turnstile is placed on the dominant line for all resonances.

A map of the form given by Eq. (4.1) is periodic in the momentum. We
denote by & a unit cell in the range | < p < I+1 for integer | and choose in Qg
a set of R resonances with frequencies my/ny, r =1, -+, R. The corresponding
resonances in Q are the translates of resonances in Qg, the frequencies of
which are given by my/n; + 1. For a resonance my/ny, ny islands are labeled by‘
s,s=0,1, -, nr -1, where island s is the s-th iterate of the main island s = 0.
Each island is called a state, labeled by (r, s; ). The transition probabilities
are obtained as follows.

Let Ar be the area of the one of the island for resonance r. Denote by
O(r, r';1-1) the area of overlap of the turnstiles between islands (r, 0; |) and
(r", 0;I'), where r = 1. lts translational invariance is due to periodicity of the
map. Define Oft, r; 0) as the area of island (r, 0; I) without its upper and
lower turnstiles, and Krsz,ﬂ’ r O(r, r’; I'). For supercritical cases the partition
by resonances becomes complete and, hence, A; — Aras R — oo

Then the following statements should be clear.
(1) A transition from (r, s; 1) to (" =1, ”; I) is possible only when s=0 and s’=1.
(2) The remaining area of (r, 0; ) in (1), O(r, r; 0), is always mapped to (r, 1; ).

(3) A transition from (r, s = 0; ) occurs only to (r, s + 1; ).




137

Thus the transition probability from a state (r, s; I) to a state (v, s’; I) is

determined as

p(r,s =>r,s;1-1) =M83,0 d¢,1 (1-6 ¢
r

+O(r+;°l 86,0851 81 ¢+ (1 - 86.0) Be.sn1 8, ¢

r

This defines the Markov model for dynamics as a random prbcess on a
chain of resonances. Note that A, was used instead of A, even though the

former is a disconnected area contrary to the Markov approximation. This is

to obtain more consistent results for practical cases where only a finite set of

resonances (finite R) is considered. A

Refinements of the above partition can be defined as follows: Under
n-th iteration of the map the turnstile of a period n resonance is evolved
along the direction of stable manifold, forming another turnstile. It is
noticeable that the incoming lobe of this n-th turnstile decreases the effective
area of the predefined resonance. Thus we see that there is a mechanism
that the transition rate is modified every n-th iteration. This mechanism
seems to be very complicated since it acts on every resonance of different
period and the iterates of incoming lobe can even be outside the predefined
resonance. This mechanism, however, would decrease the survival
probability when we retain the Markov approximation in each refined
resonance. |

This model was first solved by Dana et al [Dana 1989]. They applied

the model to the sawtooth map example for which all heteroclinic orbits can
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be obtained analytically. The scaling of diffusion coefficient in k around
criticality (k¢ = 0) was shown to be in good agreement with numerical
experiment. For large k, the prediction of the theory is visibly below the
result of Cary and Meiss (see chapter 5) as well as numerical results.
However, they found a significant improvement when they considered the
refined partition of resonance after n iterations.

Practical implementation of this method to the general maps might
have difficulties because one has to provide the areas of overlapping
turnstiles. To determine them analytically, one has to find all heteroclinic
orbits which lie at the intersections of stable and unstable manifolds of
minimizing periodic orbits in consideration, for which there is no generalIAy

reliable method as yet [Chen 1988].
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4.4 Invariant Manifolds of N+1 d.o.f Hamiltonian Systems

The models developed in section 4.3 rely much on the underlying
orbit dynamics; existence of minimizing orbits and their ordering properties,
and existence of cantori, etc. The most important distinctive feature of area
preserving maps might be that minimizing hyperbolic orbits have stable and
unstable manifolds of co-dimension one and therefore it is possible to
partition phase space with their seéments. In general, however, for 2N-
dimensional symplectic maps stable and unstable manifolds of hyperbolic
fixed points are N-dimensional and, hence, are not of co-dimension one.

Consequently, their segments don’t divide phase space. In fact, even KAM

tori are not of co-dimension one; an (N+1)-dimensional torus cannot divide a -

(2N+1)-dimensiona| energy surface. Hence they are not perfect barriers to
transport any more. Furthermore, as pointed out in section 2.5, the
minimizing condition should be weakened and generally the ordering
property is not guaranteed. Therefore, it seems unlikely that the ideas
established in area preserving maps would extend to higher dimensional
cases.

Nevertheless, it is possible that there might exist some invariant
manifolds of co-dimension one in higher dimensional phase space so that
the phase space could be partitioned with their segments. Recently it has
been shoWn that a formulation for transport similar to the area preserving
case is possible for higher dimensional systems under certain special

conditions [Rom-Kedar 1988, Wiggins 1989]. Namely, they showed that in
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systems satisfying some conditions, there exists a set analogous to
hyperbolic fixed points in area preserving maps with stable and unstable
manifolds of co-dimension one. Proofs of the existence and persistence of
such manifolds rely on preceding sophisticated theorems. However, once
such manifolds are shown to exist, the transport theory will be constructed in
the very similar way as in area preserving maps. We remark that the

practicality of this theory is still not determined.
4.4.1 Nearly Integrable Hamiltonian Systems of N+1 degrees of freedom

Let us consider N+1 d.o.f Hamiltonian systems of the form

Hx, 1, 6 1, €) = Ho(x, 1) + & Fi(x, I, 6; 1, €) (4.13)

where (x, I, 8) e 82 x gN x 7N, and u e %P is a vector parameter. J is the
antisymplectic matrix as given in Eqg. (2.9). H represents a small
nonintegrable perturbations to the integrable Hamiltonian Hg; O <€e « 1.
Further, we assume that the Hamiltonian functions, H, and ﬁ, are Cr+1, r>1.
First, let us consider the motions in the unperturbed system of

Eq.(4.13)

X =J DyHo(x, 1)

=0

8 = DHo(x, 1) (4.14)
The motion has one degree-of-freedom in x with trivial rotation in (I, ) and,

hence, is totally integrable. We will have two more assumptions as follows.
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(1) There exists an open set U € gN such that for each | € U the x
component of the motion has a hyperbolic fixed point which varies
smoothly with I, denoted by y(I), which has an orbit x!(t) homoclinic to
v(I): that is,

DiHo(y(1), ) =0 and lim x{t)y=y() for le U

t—otoo

" (2) DiHg(x, ) 0

Now consider the set of points #in 82 x RN x 7N defined by

M={(x,1,0) e xaNxTN| x=1(l), e U, 0e 7N}

The unperturbed vector field restricted to #ris given by

=0

0=DHov(), ), (LO)e UxT"
So # has the structure of an N-parameter family of N-tori with the flow on the
tori being either commensurate or incommensurate depending on DjHq(y(1),

[); Chirikov calls these “whiskered tori” [Chirikov 1979]. The corresponding

torus for a fixed | = I’ is denoted as

W) ={(x1,0)e BxUxIN| x=4(), 1=V, 0e N

From the above first assumption of the homoclinic motion in x, it is clear that

each torus has N+1 dimensional stable and unstable manifolds.
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4.4.2 Existence and Persistence of Invariant Manifolds

The proposition given below accounts for the existence of relevant
invariant manifolds for the unperturbed system given in Eq. (4.14). It is

followed by several remarks on its implications.

Proposition A. [Wiggins 1988] 4/ is a C' 2N dimensional normally
hyperbolic invariant manifold of (4.14). Moreover, ¢ has Cr' 2N+1
dimensional stable and unstable manifolds denoted by WS(#) and WU(a1),
respectively, which intersect in the 2N+1 dimensional manifold of homoclinic

orbits

I'={(Xl(tg), I, 00) € R2x RNx TN | (to, I, 8g) € ®! x Ux 7N }

Proof: The proof is trivial from the previous section. About the normal
hyperbolicity of a4, see Wiggins [1988].
Remarks:

(1) Roughly speaking, the normal hyperbolicity means that the
directions normal to o are expanded or contracted more sharply than the
directions tangent to 4/ . It is characterized by the generalized Lyapunov
type numbers [Wiggins 1988]. It will turn out that in their role to transport the
normally hyperbolic invariant manifolds are higher dimensional analog of

hyperbolic fixed points in area preserving maps. Importantly, normally
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hyperbolic invariant manifolds persist under perturbation as invariant
manifolds.

(2) The stable and unstable manifolds have co-dimension one. So an
assembly of the segments of such manifolds can separate the ambient 2N+2
dimensional phase space.

(3) WS(a4), WU(4), ¢ and, hence, I' = WS(s) ~ WU() - 4/ intersect
transversely the constant energy levels Hy(x, 1) = h provided DjHq(x,I) # O.
Furthermore, # n h is diffeomorphic to S2N-1 which is compact and
boundaryless; these two are the lemmas proven by Wiggins [Wiggins 1989].
This implies that (I' " h) U ( N h) divides the energy level surface Hy(x, I) =
h into an inside and an outside.

(4) In the standard way (see section 1.3), one can construct the
Poincaré surface section, X, which is transverse to the constant energy
levels. Let the intersection £ N h be £y and the return map restricted to =y,
be Ph. Zh is 2N dimensional and, thus, Py is a 2N dimensional symplectic
map. The invariant manifolds in (3) are also transverse to . Then we have

M Zh is 2N-2 dimensional

Ws(a) N Zy is 2N-1 dimensional

WU(a1) N Xy is 2N-1 dimensional.
Likewise, & N Zp is compact and boundaryless and (I' N Zp) U (M N Zp)
divides X into inside and an outside. Thus (I' N Zp) U (M N Zp) is a barrier
to transport. For N = 1 (area preserving maps), M N Iy is a hyperb_olic fixed
point. For N = 2 ( four-dimensional maps), # N Zy, is a one parameter family

of one tori, i.e., two-dimensional cylinder.
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Now we go back to the perturbed system, Eq. (4.13). The question is
whether those invariant manifolds of the integrable system, Eq. (4.14), still

exist under perturbation. The answer is given by the proposition below.

Proposition B. [Wiggins 1988] There exists g5 > 0 such that for 0 < ¢
< go the perturbed system (4.13) possesses a Cr 2N dimensional normally

hyperbolic locally invariant manifold

ME={(X., Lo)e Rex RNx 7N | X=?(I, 0; e) =¥(l) + Oe),

le UCUCQ{N,GeqN}

where UC U is a compact, connected N dimensional set. Moreover, #f has
local C' stable and unstable manifolds, Wi,(#M;) and Wibe(94), which are of

the same dimension and C' close to Wi(44) and Wis(9), respectively.

Proof: The proof of the proposition uses 'Fenichel’s theorem on the
existence and persistence of the overflowing and inflowing invariant

manifolds under the C' vector field. See Wiggins [1988].

Remarks:

(1) Transversal intersections are structually stable under
perturbations. Therefore, h, intersects WS(a/;) and WU(41,) transversely, =
intersects WS(a4;) and WU(s4) transversely, and X intersects h, transversely.

Then we have
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Mg N Zhe = 5\\48 is 2N-2 dimensional

WS(96;) N Zh, = WS(34) is 2N-1 dimensional
WU(s) A Zhe = WU(AE) is 2N-1 dimensional.

(2) Dynamics on ’m\fg might be quite complicated [Graff 1974]. In fact

the KAM theorem applies to the survival of most nonresonant tori of Eq.

(4.14) on ﬁs.
4.4.3 Transversal Homoclinic Manifold and Homoclinic Tangle

Suppose Ws(i\fe) and Wu(ﬁg) intersect transversely. Then the
intersection, Ws(a4.) N Wu(az,), is 2N-2 dimensional: transversality means
that dim (ToWS(a) + ToWU(4,)) = dim (ToWS(342)) + dim (TpWU(a)) - dim
(TpWS(2e) N TpWU(3L,)), where ToWS(az) is the tangent space of WS(4z;) at p
e WS(31;) » WU(a,) and similarly for WU(az,). An additional requirement for
the transversal intersection of stable and unstable manifolds in N > 2 cases

‘is that the intersection should be homotopic to 3\\/[8. This is because the
intersection for our purpose should be the one which is asymptotic to %g,
rather than to just a part of ‘5\\45- An intersection satisfying these two
requirements of transversality and homotopy is referred to as a ‘transversal
homoclinic manifold’.

To determine the existence of a transversal intersection of WS(@S) and
WU(%_), a Melnikov type method can be used [Wiggins 1988]; he shows that
the distance function of the usual Melnikov method for planar homoclinic

orbits generalizes to N > 2 cases. Furthermore, the method results in criteria
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for the existence of a transversal homoclinic manifold satisfying homotopy
condition.

Once such a transversal homoclinic manifold exists, the existence of
homoclinic tangle similar to the oné in planar maps is guaranteed by the
invariance of WS(a\fg) and WU(EQS); the A-lemma is also extendable to N > 2
cases [Guckenheimer 1983] [Wiggins 1988]. Thus we obtain a picture of
lobes and turnstiles constructed with segments of stable and unstable
manifolds, which is very similar to the area preserving map case.

A region in phase space now can be defined as a phase volume
bounded by segments of WS(%S) and Wu(ﬂg). In the same way as for area
preserving maps, the transition rate between regions per iteration might be
given as the ratio of lobe volume to the volume of the region, if they are )
known. Rom-Kedar and Wiggins have presented a transport theory based
on the lobe dynamics, which we don’t attempt show in detail [Rom-Kedar
1989, Wigginé 1989]. Their theory is slightly different from the ones shown
in section 4.3 in that their theory takes account of the entire geometry of
homoclinic orbits in terms of all iterates of turnstiles. However, how to
calculate them along infinite time seems to be an intractable task. They
show several numerical techniques for area preserving maps, to which the

action function method of section 4.3 is also applicable.
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4.5 Discussion

The Markov. models for transport described in section 4.3 are fairly
successful in describing transport for area preserving maps. Their
construction of the models relies much on the details of underlying
dynamics. Howev'ér, they still have some limits in that the dynamics in some
region of phase space, depending on the choice of partitions, is blurred out
in terms of the Markov approximation. In fact, the geometry of Hamiltonian
phase space is infinitely complicated at least in two respects: the self-similar

structure on every scale and the endless stretching of unstable manifolds

due to symplecticity. Thus the deviation of the theoretical predictions from

experimental results seems due to neglect of geometric structure on finer
scales. In this sense, despite its several weakness, the Markov tree model
has a more transparent connection than the others to the actual dynamics
since it takes in consideration an infinity of classes each of which is again an
infinity of levels. |

An extension of the ideas employed in area preserving maps to
higher dimensional cases is not yet possible since the orbit dynamics are
quite different in each case. The theory described in section 4.4 suggests a
rather natural generalization of the idea of partitioning phase space with
segments of co-dimension one manifolds. However, their transport theory
based on the lobe dynamics has difficulties in practical implementation and
it seems questionable whether the existence of such normally hyperbolic

invariant manifolds is typical in more general systems; for instance, such
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manifolds do not seem to exist in Freoschle’s example (eq. 2.1) with any
finite coupling parameter h (see figures 2.10 and 2.11). Furthermore, their
theory does not have a transparent connection to the symplectic nature of
dynamics which is expected to be the most important restriction to the
motions in phase space; preservation of the phase volume is fhe
consequence of preservation of the symplectic form (see section 1.2 and

also 2.2).




CHAPTER 5

STATISTICAL METHOD FOR DIFFUSION IN
SYMPLECTIC MAPS
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5.1. Introduction

We have seen in the previous chapters that symplectic maps are
generically not integrable, but also not ergodic. The rigorous treatment of
the subset of apparently chaotic orbits by statistical methods is a long
sought, but elusive goal. One statistical property of interest is the diffusion
coefficient. This has been extensively studied for area preserving maps.
Notably, for the standard map, Chirikov showed numerically that the
momentum diffusion of an ensemble of particles approaches the

“‘quasilinear ” value as the nonlinearity parameter increases [Chirikov 1979].

Quasilinear diffusion results if the force is a delta correlated random process. .

For the standard map, the approach to quasilinearity is not monotonic: the
oscillations of the diffusion coefficient were explained by Rechester et al
using an expansion called the Fourier path method [Rechester 1980, 1981].
This was extended and modified to apply to many maps using the
characteristic function formalism [Cary 1981, Meiss 1983]. Here it was -
shown that the oscillations are due to short time cotrelations. The
characteristic function method allows the exact calculation of the diffusion
coefficient for Arnol’d’s “cat maps” [Cary 1981, Antonsen 1981], and can be
used for maps with nonlinear twist terms [Murray 1985, Hatori 1985,
Lichtenberg 1987].

In general these expressions for the diffusion coefficient agree well

with numerical experiments, providing the measurement time is moderate.
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As the time is increased, long time talls in the correlation functions become
increasingly important [Karney 1983, Meiss 1986], and the diffusion
coefficient de’velops‘sharp peaks [Karney 1982, Ichikawa 1987]. The height
of the peaks grows with the computation time; thus the series expressions for
D are not convergent. These anomalies are due to the presence of stable
“accelerator modes” in the standard map. We will discuss these further in
5.6 for the four dimensional case.

In this paper we generalize the characteristic function formalism for

mappings of the form

Xte1 - 2Xt + Xt-1=-VV(xy) , - (5.1)

Here x is an N-dimensional configuration vector, and V(x) is an arbitrary
periodic function of x: V(x + 2zm) = V(x), for any integer vector m. Defining

the momentum coordinate by

Yt = Xt - X1 ' (5.2)

this map is easily shown to be symplectic (it preserves the area fﬁy-dx )
Since V is periodic, the configuration space can be taken to be the N-torus.
We allow arbitrary values for y, thus the phase space is RNxaN,

For an example we again use a four-dimensional (two degree-of-

freedom) map first studied by Froeschlé [ Froeschlé 1972, 1973].

V(x) = -a cos(x1) - b cos(x2) - ¢ cos(x1+x2) (5.3)
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where ‘a’ and ‘b’ represent the strengths of standard maps for each degree
of freedom, and ‘c’ couples these together. The map appears not to have
any global invariants unless all but one of the three parameters are zero.
Many of the expressions we will give below will be for the simple case b=0,

but this case does not appear to be special in any way.
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5.2. Diffusion tensor

A statistical analysis describes the behavior of an ensemble of initial
conditions. We choose a uniform distribution over some invariant region in
phase space, denoted as R. It is convenient to use the Lagrangian form of
the map, eq. (5.1), and to average over an ensemble of initial conditions (o,
x1). Averages over this set of initial conditions are denoted ¢ ) . Typically
we will assume the configuration is arbitrary, so that R is TN x N, Ideally,
one would like to use a uniform distribution on the set of chaotic initial
conditions for the ensemble, since the regular initial conditions do not
diffuse. However, we know of no analytical techniques to determine this
ensemble (which in the two dimensional case is a fat fractal [Umberger \
1985]), nor even to show that it occupies a set of positive measure for a
typical map.

The momentum diffusion tensor is defined to be the asymptotic rate of

spread of the second moment of the momentum distribution
D =lim LAy A
il 2,[( Yt y1>91 : (5.4)

where Ayt(xo,x1) is the momentum change in t iterations for an initial

condition (xg,X1). The factor of two is due to the definition of diffusion in the
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Fokker-Planck equation [Lichtenberg 1987]. Using (1) and (2), this can be
easily rewtitten as
D =1C(0)+ Zc
Ct) =(VWVxQWV(x))y (5.5)

where C, the force correlation tensor, has been assumed to decay more
rapidly than t'. Finally, the correlation function can be expressed in terms of

the Fourier transform of VV

W= Y fne™™
M= - o0 (5.6)
where fm =f.m, so that
Z ff <exp|m Xerin: xo)>SK 5.7)

M,N=-c0

Since the region R is invariant under the mapping and the mapping is
volume preserving, Eq. (5.7) implies the time reversal symmetry C(t) = 6(-’[),
where “~” designates transpose.

For the example of eq. (5.3) the nonzero fiy are

f1,00= (a/2i,0), f0,1)= (0,b/20), f(1,1)= (c/2i,c/2i), (5.8)
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plus their complex conjugates.
The task is now to obtain expressions for the ensemble average of the

exponential appearing in eq. (5.7).
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5.3. Characteristic Function Method

Any statistical property of the ensemble can be obtained from the joint
probability distribution P(xg,X1,X2,.....X{) which is the probability' that the
trajectory lands at the points xk for k=0,1,...,t. The tth-characteristic function is
defined to be the Fourier transform of this distribution [Cary 1981, Meiss

1983]:

t
XNt Mg, g, N = exp(i Y njx )
0 R (5.9)
where the nt are arbitrary integer vectors. In particular, the correlation
function depends only on the set of characteristic functions with the first and

last arguments nonzero. Thus it is convenient to define the reduced function

Xt(ng,no) = Xy(ny, 0,...,0, Nnp) (5.10)

Using eq. (5.7) with this, the correlation function is

C(t)= z fmfnxt(m: n)
mn=-e (5.11)

For the potential (5.3), one can form linear combinations of the components
of the correlation tensor to separate the contributions explicitly due to each
term in (5.3) independently, and those due to coupling between them. For

example, when b=0 we define




157

Caa(t) =C11-2C12 4+ C22 = -1/3a2 {X(1,0), (1,0)] - Xt[(-1,0), (1,0)]}

Cac(t)=C12-C22 = -1/ ac {X{(1,0), (1,1)] - xt[(-1,0), (1,1)]}
Coolt) = C?2 = -1/5 ¢ (X (1,1), (1,1)] - X%4[(-1,-1), (1,1}
(5.12)

Note, however, that each of the Xt in (5.12) depends implicitly on both
parameters ‘a’ and ‘c.

Evaluation of X;requires knowledge of the exact orbit beginning at
an arbitrary poinf (X0, X1), and is impossible in general. However, a
remarkably simple recursion relation can be obtained, using eq. (1), which

relates Xt to Xt.q:

%Nt Mgy Ny N = Y Il Apg (N +2N4-M, Ny - Ny, Nig..Ny, Np)

m
(5.13)
Here we have defined the Fourier transform of the exponential of VV:
2n
Om(n) = 1 Nf de exp{i(m X - n-VV(x))]

for an integer vector m. For the Froeschlé example, gm can be evaluated in

terms of Bessel functions:
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Imin) = 3 dis(n @) Jpzy(n®h) o(n+n?)d]
e (5.15a)

When b=0 the infinite sum in eq. (5.15a) collapses to a single term

Im(n) = Ip'm3(n @) sz[(n””z)C} (b=0) (5.15b)

The recursion relation (5.13) is easily formally iterated to obtain X in
terms of X1. In particular for the class of eq. (5.10) we obtain the exact, if

somewhat formal, expression:

t
x{N, Ng) = Z I19m, (k) x4(n1,ng-n5)
l"|1 ..... nt_-[ k=2 (5-168)

where the mg for k = 2,3,...t are defined by

My = -82Nk = - Nk41 +2NK - Nk-1 (5.16b)

with ni.1 = 0. Equation (5.16) is exactly the same as for the area preserving
case [Cary 1981] except that the integers mi and nt have been replaced by
integer vectors, and we have reversed the sign of m and the ordering of the
index “K” for later convenience.

If we assume that R is 7Nx7N, then the first characteristic function is

simply a Kronnecker delta
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X1 (M, n) = 8m,0 8n,0 (5.17)

Using this in eq. (5.16) gives the symmetry property Xi(m, n) = Xt(n, m). The
definition (5.11) then implies that the correlation matrix is symmetric, C(t) =
(N:(t), and therefore so is the diffusion matrix.

When we set b=0 in the Froeschlé map and use %t = TNxzN , the first

three Xt can be written explicitly:

1
XAM, 1) =8 Joptaa(an’) Janelo(n’+ n?)]
1
Xg(m, n) = sz-m1+2(n1-n2)(an1) JnZn'r2m'm?(@m ) x

St ol +1%)) gz om s 1)) (5.18)

The next characteristic function, X4, is an infinite sum over an intermediate
index of a product of six Bessel functions. In general when all three
parameters a,b,c are non-zero, each Xt contains sums over products of 3t
Bessel functions, though it is possible that some of these could turn out to be
Jo(0) =1. In fact, as we will see below, terms with a maximal number of such

factors dominate when the parameters are large.
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5.4 Principal Terms

Each term in the sum of eq (5.16) can be viewed as a particular path
in the space (n k). Once the path is chosen, then the my are determined by
the second differences through eq (5.13); thus my is effectively the curvature
of the nk - path. The sum is over every path in this space which begins as
(0,1), (no,2), and ends as (ny, t), (0, t+1).

In the area preserving case, the most important terms in this sum are
those which have the minimum number of Bessel functions of nonzero
argument and index. These are the so-called “principal terms”. These

appear to dominate for large values of the parameter ‘@’ since Jm(na) <

(a)-1/2 [Cary 1981].

The same argument can-be given in this case, namely gm(n) < 1 with
equality only when m =n = 0. For the later case the path must have a
straight segment which passes through the origin of the n plane. The
principal terms are those with the maximum number of such segments.

Consider the case of X{(1,1),s(1,1)] where s = #1, which is needed to
compute Cqc. When t is even the principal path is given by the sequence, -
- (1,1) = (0,0) = (-1,-1) - (0,0) — **-, as shown in Fig. 5.1(a) by the solid

line. The resulting contribution to X; for t>2 is

%f [(1,1) 801,11 =[Jo (&) 2 (20)E Bs,()5*"  teven (5.19)
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For odd t, the paths necesgarily include at least one defect (i.e. an extra point
with m, n %0) in order to satisfy the boundary conditions at k=0 and t. Paths
with a single defect, such as those shown by dashed lines in Fig. 5.1(a) will
have the minimum number of Bessel functions. The defect can occur at any

of (t-1)/2 positions. Each term gives the same result, so we obtain (fort>3)

% 1(1,1),8(1,1)] =%([J3 (20)7 8s,(-1yst +[ J1 (20)F 8s ()& |
[Jo (2)2[Jo (a) Ja (20)]5

fortodd (5.20)

The paths contributing to the pﬁncipal terms for X{[(1,0), s(1,0)] are -

shown in Fig. 5.1(b). When t is even the solid path is dominant, and when t is

odd, both.the dashed paths must be included. The results are equivalent to

the above upon making the substitutions 2c—a and a—ec.

Finally one would like to compute the ‘principajl terms for

X4{(1,1),(x1,0)]. Such paths must also have at least one defect. However, it is
not difficult to see that for each path with one defect contributing to
Xi(1,1),(1,0)] , there is one which gives the identical result for X{(1,1),(-1,0)].
Equation (5.15) implies that these terms cancel from Cac. In order to compute
the effect of Ca¢ on the diffusion it is necessary to include paths with two or

more defects. Thus Cgac = 0 in the principal term approximation.
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n? ) \

A e

(b)

Fig. 5.1 Principal terms represented by paths in (n,k) space (a) for
Xi{(1,1),%(1,1)] and (b) X{(1,0),£(1,0)]. The solid paths are for even
t; the dashed paths for odd t cases.
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5.5. Quasilinear Diffusion and Corrections

Combining eq. (5.5) and (5.11) with eq. (5.16) gives an explicit, formal
expression for the diffusion tensor. As was the case for area preserving
maps, the convergence of these series is doubtful due to the long-time
correlations induced by regular regions in the phase space (in particular, the
accelerator modes, see below). Such effects have not been studied when
the number of degrees of freedom (N+1) is larger than two. However,
moderate time and finite precision numerical experiments can be expected
to give results close to those given by eq. (5.5) if a finite number of terms in t
are retained. | |

The first term in the series for the diffusion tensor is the so-calie_d

quasilinear term:

Dyi=1C0)=1) fmfm
2 2'm (5.21)

where-we have set R to the entire torus. For the Froeschlé example this is

. al2+c2 c2
Dq] = 1—( +C )

2 b2+c? (5.22)

The series in force correlations gives corrections to this which, because of
the Bessel functions, tend to oscillate as the parameter values change. The

first few terms are easy to write out (with b=0):
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Caa(1) = Cee(1) =0

Caa(2) = -1/2a2 Jo(a)Jo(c) ,  Cee(2) = -1/262 Jo(a)Jz(2c)

Caa(8) =-1/2a2 [ J12(a) - J32(a) | Jo?(c),

Cec(8) = -1/2c2 [ J12(2c) - J32(2c) | Jo2(a) (5.23)
The coupling correlation, Cag(t), vanishes ide’ntically fort < 4.

Using the principal terms (5.19) and (5.20) for the longer time

correlations we can do the sum in eq. (5.5) to obtain:

21- [2J12(a) +J(a) - 2J32(a)J J2(0)

P a
D gq= = >
[1+J2@)J0)]
Pl [2J12(20) +J5(20) - 2J32(20)} JZa)
ccT g

[ +Jo @), @0)] (5.24)

Note that these are not separable into terms due to the first degree of
freedom, and terms due to the second. In the principal terms approximation,
Dac =0, 0r Dy = Doy = D22. We expect these results to be a good
approximation when both a and ¢ are not too small.

An interesting limit is that of a»1, implying that the first degree of
freedom is highly stochastic and c«1, implying that the coupling is weak. In
this case the self-diffusion of the first dégree-of-freedom is approximately

quasilinear. This degree of freedom drives the diffusion in the second, this is
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called “thick-layer diffusion” [Tennyson 1979]. Tennyson et al compute such
diffusion by treating the second degree of freedom as though it was
stochastically driven by the first. This technique yields only the lowest order,
quasilinear term, in Dgc. The principal terms expression implies that
Deec—Dgq in the limit c—0; however, this is not exact because there are an
infinite number of terms which contribute to D at o(c#) which have been
neglected.

Another limit of interest, isa < 1, ¢ « 1, where the initial conditions are
chosen with the first degree of freedom in a narrow stochastic layer. This
leads to “thin layer diffusion”, or what we think of as Arnol'd diffusion
[Lichtenberg 1983]. Our method does not give an effective technique for -~

computing this.
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5.6. Accelerator Modes

Maps of the form (5.1) are also periodic in the momentum direction: if
(Y, Xt) is an orbit on &NxZN then (y; + 2rj, x;) is also an orbit for any integer
vector J. This suggests looking for generalized “periodic” orbits satisfying the

conditions

Vi =VYo + 27}, Xt=Xo (5.25)

If }0 then these orbits are called tth order accelerator modes.
The condition for the first order accelerator modes, t=1, for eq. (1) is
that -VV(X) = 2rj = 2r (r,s) where r and s are integers, and y = 0. Using the -

potential (5.3), with b=0 implies that

27n(s-r)
a

sin(x') = sin(x! +x2) = - 228 (5.26)

Thus these can exist only if |c| = 2x|s| and [a| = 2x|r-s|. In general there are
four such fixed points for each (r,s), of which only one is stable. The
requirement for stability (all four eigenvalues of modulus unity) is determined

by linearizing the map about the accelerator orbit:

ay 20, (-8)(y-4)=216 and 0<a+2y<8

where a=acos(x!) =x4/g2- 452(s-r)?
vY=cC cos(x! +x2) ==+ ch - 472g2 (5.27)

The regions of parameters where the stable first order accelerator modes

exist are shown in Fig. 5.2.




1 0,1)
I\
Z,C_MX__________\___

(1,1

Fig. 5.2 Accelerator mode stability regions. Parameter regions for
the existence of the first order accelerator modes with various j are
shown. An orbit trapped in the j=(r,s) mode propagates by 27xr in y?

direction and by 2rs in y2 direction upon each iteration of the map. -

The mode j=(0,0), the fixed point, does not contribute to
acceleration.
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In the case of area preserving maps, the existence of a stable
accelerator mode causes the series for the diffusion coefficient to diverge.
This is due to two effects: first, if the region %R is chosen to be entire phase
space, then initial conditions trapped in an accelerator mode (which by the
KAM theorem have finite measure) are included in the average [lchikawa
1983]. Since Ay increases in proportion to t for such initial conditions, D
necessarily diverges. The characteristic functions must include this effect:
however, extracting it from the formulae appears difficult.

Second, even if initial conditions trapped in an accelerator mode are
not included in the average, numericél evidence indicates that the
correlation function decays as t Z for large time where z is in the range 0.3 - .
0.5 [Karney 1983, Meiss 1986]. This is due to long time trapping of
stochastic orbits near “sticky” islands. Consequently, the series (6.5) must be
divergent even if R is chosen to be the connected stochastic region.

This divergence might be expected to be less severe in higher
dimensional maps because initial conditions in the neighborhood of an
elliptic orbit can still escape by the mechanism of Arnol’d diffusion. However,
this escape can be slow [Nekhoroshev 1965], and may still give an algebraic

decay of the correlation function.
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5.7. Numerical Experiments

The diffusion tensor can be computed directly from eq. (5.4),
interpreting the average as a sum over a grid of initial conditions in phase
space. We iterate each initial condition for a time T, and estimate the
statistical errors in D by the RMS deviation of the results for the different
initial conditions. The RMS deviation is seen to decrease as inverse of the
square root of the ensemble size.

Comparison of the numerical results with the principal term theory is

shown in Figs. 5.3 for a=3.0, as ¢ varies from 0.0 to 5.0. Here we chose a

‘grid of 104 initial conditions, and iterated each T=50 times. The plots (a) and

(b) show the values of Dgg and D¢c normalized to their quasilinear values,
respectively. The contribution of Dy to D12 is comparable to Dge when ¢ is
small (Fig. 5.3c). For larger c, Dag is consistent with zero (statistical errors
due to the finite ensemble prevent an accurate measurement). Results for
various ranges of parameters show that providing a and ¢ are larger than 2
the principal term results agree extremely well with the numerical

experiments.

In the region of parameter space where a first order accelerator mode -

is stable, the diffusion coefficient is enhanced when the ensemble is
TNx7N. As in the case of the standard map, the peak in the diffusion
coefficient grows as T is increased, indicating that convergence has not

been obtained. To exhibit the role of the accelerator mode, we choose initial
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Fig. 5.3 (a) Comparison of numerical diffusion coefficients with
theoretical results. The dotted curves represent the theory which
includes up to the third order correction to the quasilinear result.
The principal term results are drawn with the solid curves. The
statistical ensemble consists of 104 orbits of length T=50 with their
initial conditions chosen from an uniform grid over the whole
phase space. The error bars give the RMS deviation from the
average values. (a) Daa is normalized to its quasilinear value.
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Fig. 5.3 (b) Comparison of numerical diffusion coefficients with
theoretical results. D¢c is normalized to its quasilinear value.
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Fig. 5.3 (¢) Comparison of numerical diffusion coefficients with
‘theoretical results. Dac is normalized to Dgc. lts fluctuation for ¢ >
2.0 is of order of Dag; however, considering its contribution to Dqo,
it is still consistent to zero.
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conditions at y = 0, with x chosen on a 102 by 102 grid: the location as well
as the size of stable islands varies as parameters vary; however, first order
accelerator modes are always at y = 0. Figs. 5.4(a)-(c) demonstrate
divergent behavior of Daa in T due to the first order accelerator mode with j =
(1,0).

To attempt to eliminate orbits trapped on invariant tori encircling the
stable accelerator mode, we choose an initial condition near the unstable
fixed point y =0, and x = (0.5,0.5), iterate it a large number of iterations,

and break the orbit into n segments of length T to obtain statistics:

1 v 1
th_T Yir-Y ey (Y=Y

The result is shown in Fig. 5.4(d) with n=108, T=104 for the same paramefers
as Fig: 5.4(c). In contrast to the area preserving case, these results show
little dependence of the diffusion coefficients on T. This can be interpreted
that the trapping time distribution of a stochastic orbit near the accelerator
mode decays rapidly enough that the diffusion series converges. We will
study the decay of correlations for this situation in a future paper. |

When either of parameters is small, the effect of trapping is
conceivably important. Thus, to study the small ¢ regime we use the singl'e,
long orbit statistics introduced above. Our numerical results imply that as ¢
approaches zero, Dag limits to the diffusion of the standard map for the given
value of a, as would be expected. On the other hand, D¢¢ appears to scale

like c2 as ¢ goes to zero, but does not seem to converge to its quasilinear

(5.28)
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Fig. 5.4 Enhancement of diffusion coefficient Daa due to the
presence of the stable accelerator mode with j=(1,0). lts divergent
behavior in time is shown; (a) T=102, (b) T=103 and (c) T=104 The
statistical ensemble consists of 104 orbits whose initial conditions
are uniformly disttibuted on the y=0 plane. (d) shows that the
effect of accelerator modes can be avoided for moderately long
times by choosing the ensemble in a connected stochastic region.
The ensemble consists of 103 suborbits of length T=104, obtained
by breaking a single stochastic orbit of length T=107 into pieces.
The initial condition is chosen near the unstable fixed point;
x1=0.5, y1=0.01, x2=0.5 and y2=0.02,
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value consistently for all values of a, as would be expected on the basis of
Eqg. (5.24). Rather, it is observed that (]:j_f{loDcc/Dq] depends on a in an
oscillatory fashion, only approaching one as a—ee. This is shown in Fig. 5.5,
setting ¢ = 10> (which is small enough to be considered as the c—0 limit),
n=103 and T=103. Note that the oscillations in Doc/Dgl are in phase with
those of Daa/Dq which is also shown in Fig. 5.5. The relative behavior of
Das and Dgg give an insight to correlations between the motion in the two
canonical planes in the parameter regime of small ¢ and large a: the short
time correlations in one plane affect even the zero coupling limit of the

_ diffusion in the other plane.
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Fig. 5.5 Oscillatory dependence of cliLno Dcc/Dq] on a. Actually c=
10-5, which is small enough for D¢e to approach its limiting
behavior. Both D¢c (squares) and Dag (circles) normalized to their
quasilinear values are shown. Only D¢ is plotted with its RMS
deviations. The same statistics as for Figs. 4 is used except a

different length for suborbits (T=103). :
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5.8. Conclusions

We have derived a formal series for the momentum diffusion tensor of
a symplectic map with the second difference (or Lagrangian) form (5.1), in
terms of the characteristic functions. The lowest order terms in this series
give the quasilinear results for the diffusion tensor. Higher order terms
provide oscillations about Dg as a function of the mép parameters, showing
that the oscillatory behavior of D is due to short time correlations. The force
correlation tensor, C(t) can be obtained analytically for t <3 using the
characteristic function method. For larger t, the expressions for the
correlations involve infinite sums. The dominant terms in these sums for
large parameters, the principal terms, have an easily calculable form, and an |
approximate summation of the diffusion series retaining only these terms
gives a good approximation to D as long as the correlation function decays
rapidly.

We show that stable accelerator modes enhance the diffusion. For the
area presetrving case these cause the divergence of D; however, for higher
dimensions this appears to be no longer true when the ensemble of orbits
does not include the accelerating invariant tori. The long time behavior of
the correlation function for a stochastic orbit is still under investigation.

The thick-layer model of diffusion is appropriate when a is large and ¢
is small. In the limit c—0, the motion in the two canonical planes is

separable, and when b=0 the (x2,y2) motion is integrable. The transport in
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this limit is described by the quantity Er_)nODCC/Dq]. While this function
approaches one as a increases, it oscillates with a due to short time

correlations in the (x1,y1) plane.




CHAPTER 6

SUMMARY AND CONCLUSIONS
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The dynamics of a Hamiltonian system with N+1 degrees-of-freedom
is represented by a flow on the 2N+1-dimensional constant energy surfacé
in phase space. The successive returns of a flow to the Poincaré surface of
section induce a 2N-dimensional symplectic map. Symplectic maps give an
efficient way to study Hamiltonian systems since the qualitative behavior of
the flows is preserved on the surface of section.

For an integrable mapping, the dynamics is described by uniform
rotations on N-dimensional tori. Upon a generic perturbation, all resonant
tori are broken up, but a finite number of periodic motions on each resonant
torus are still retained. We have shown that reversible, symplectic, twist
maps of a 2N-dimensional phase space have petiodic orbits which can be
classified by frequency, symmetry, and Morse index. There are 2N different'
types of symmetric orbits for each frequency. For each frequency, we also
find 2N orbits whose action functions have indices ranging from 0 to N. For
small perturbations, these two sets of orbits often coincide; however, the
symmetric orbits commonly undergo symmetry breaking bifurcations which
change their indices. Orbital stability is closely related to the index of the
orbit even though the index is not a sufficient test for stability fqr general N;
an action minimizing orbit (index zero) is typically hyperbolic, though there
are possible counter examples. Orbits with index less than N tend to avoid
the dominant symmetry plane, which gives rise to the formation of a
Sierpinski-carpet-like set in the configuration plane. ' This is analogous to the

formation of cantori in area preserving maps.
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The structure of phase space is viewed via resonances and a chaotic
layer. Orbits in a resonance can remain trapped for long periods, and while
they are trapped have the same frequency as the resonance. Collections of
resonances which obey a commensurability relation form channels on the
symmetry plane. Chaotic transport from resonance to resonance appears to
take place along the edges of these channels. The collection of channels
gives the Arnol'd web.

Finding an orbit of a map for a given period and parameters is
equivalent to solving a system of nonlinear simultaneous equations. This

becomes a difficult task for unstable orbits since in the neighborhood of such

orbits, numetrical errors grow exponentially upon iteration of the map. -

Therefore, any mapping iteration scheme becomes impractical for strohgly
unstable orbits. We have obtained a stable and efficient Newton’s algorithm
based on the variational method. The computation time and the size of the
storage space in this algorithm is linear in the period of the orbit. Another
benefit of the algorithm is that the index of the orbit, which is closely related
to the orbital stability, is obtained during execution of the algorithm. Finally,
the construction of the algorithm relies only on the particular structure of the
Hessian matrix of the action function. Since the structure of the Hessian
matrix is due to the general form of the Lagrangian generating function, the
method is expected to be applicable to a wide range of dynamical systems.
The action formulation gives an analytical way to tackle the geometric
structure of phase space. In area preserving maps, partial barriers and

turnstiles are constructed from the segments of stable and unstable
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manifolds of minimizing orbits. Flux ac,:ross a partial barrier occurs only
through the turnstile. This flux as well as the area under the partial barrier is
obtained from the action difference between relevant homoclinic orbits.
These results are directly used to study transport in phase space for area
preserving maps. Phase space is partitioned with partial barriers into
separate regions; each region is associated with a state of a Markov
process. The transition probability between states is determined by the flux
between the regions. This defines a Markov model for transport. The
Markov models are fairly successful in describing transport for area
preserving maps; however, their applicability is limited due to the
assumption that the dynamics in each region associated with a state is
purely random. An extension of the ideas employed in area preserving
maps to the higher dimensional cases has not yet been accomplished since
the topology of the phase space structures are quite different in each case.
The characteristic function method provides another way to study
transport for systems with an arbitrary number of degrees-of-freedom.
Though this method does not rely much on the underlying dynamics, it is
easily applicable to various maps (satisfying a periodicity condition) and its
predictions give excellent agreement with numerical experiments for
moderately large parameters. A formal series for the diffusion tensor is
obtained in terms of the characteristic functions. The lowest order term in the
series gives the quasilinear result for the diffusion tensor. High order terms
provide oscillations about the quasilinear value as a function of the

parameters, showing that the oscillétory behavior of the diffusion tensor is
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mainly due to the short time correlations. The correlation tensor C(t) is
obtained analytically for t < 3. For larger t, the principal terms give an
approximation, which is in good agreement with numerical experiments for
moderately large parameters. Accelerator modes exist for doubly periodic
maps. For area preserving maps these have been shown to cause the
divergence of D; however, for higher dimensional maps this appears to be
no longer true when the ensemble of orbits does not include the
accelerating invariant tori.

Understanding the long-time behavior of Hamiltonian systems is
extremely important for examining transport processes, especially since
phase space is generically a mixture of regular and chaotic regions on all
scales. For the area preserving case, it has been shown that the resonant
islands (regular regions) trap a chaotic orbit for a long periods and that this
trapping dominates the long-time behavior of the correlation function,
causing it_ to decay more slowly than t-1. This implies that a statistical
description of transport as diffusive is inappropriate for area preserving
maps. It is still an open question whether the transport in the chaotic region
of higher degree-of-freedom systems is normally diffusive. To better
understand t'ransport in this case, further investigation is needed on the
details of dynamics and the undeniably complicated structure of phase
space.

In the subject of the present work, there still seem to be many

unanswered questions. We list some as follows:
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— How does a KAM torus break up? Which is the last (perhaps it has the
frequency of spiral mean)? After the break-up, does it form a Sierpinski
set, and eventually become a cantor sét?

— Do minimizing quasiperiodic orbits exist (generalization of Aubry-Mather
theory)?.

— What is the role of symplectic flux in transport? Is there some relation of
N-dimensional Lagrangian manifolds such as invariant tori to transport?

— How can partial barriers be constructed?

— How can the resonance boundary be constructed? Do the orbits of index
less than N play a role?

— Can Arnol'd diffusion be calculated in terms of transport along channels?
Is it truly diffusion?

— What dominates the long-time behavior of transport? Does the

correlation function fall off faster than t-1?




Appendix A: Constant Twist Case

Lemma: A mapping with constant twist and zero net flux has a

generating function
=l -a)b(a-aq) -V
F=2(a-arb( -a)- V() A1)

where b is a symmetric matrix, and V is a periodic function.

Proof: If the twist is constant then the generating function can be

written as

F=;—[—q" B-q+f(q)+9(@)]

where B is a constant matrix and f and g are arbitrary functions. Periodicity
of the mapping implies that the net flux, Fm=F(g+m,q'+m)- F(q.q") is

independent of q and q' for all integer vectors m, or
Fm =1(d+m) - f(a) + g(q'+m) - g(q') - q'B'm - m'B-q' - m-B-m (A2)

This implies that f and g can have arbitrary periodic parts, call them vand ¢

respectively, and that the remainder must be at most quadratic, thus

fa) =1a) +a-C-q+qD

9(q') = u(q) + q"E-q' + q"F
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for matrices C and E and vectors D and F. Substitution into (A2) implies that
B=C+C =E+ E, and that m-(D+F) = 7. Therefore for a solution to exist,
the matrix B must be symmetric. Furthermore, if the net flux is zero, D+F = 0,

and the generating function takes the form

F=%[ (@-aq)B(q'-q)+(q-q)-D-Uq)- ua)] (A3)

Equation (A3) can be simplified by the canonical coordinate change 0 =q,
p=p + /5D + 1/5Vu(q) which gives Eq. (A1) in the new coordinates, with

V() = 1[v(a) + u(q)]. =




~ Appendix B: Existence of Periodic Orbits

The existence of a minimum for the periodic action W,, is guaranteed

by the following:

Lemma [MacKay 1988]: Let F(q,q’) have zerb net flux and suppose
F4o is uniformly negative definite, i.e. 3 B>0 such that x-F15(0,9')x < -B |x|2.

Then 3 o, and positive [3 and vy such that

Fld.d)>a -Blg-q'|+v]q-q'[2 (B1)

Proof:

F(d. 9') = F(q, q) +f d\ Fa(g, &) (q' - q)

where &, = (1-A)q + Aq'. Similarly applying this to F» yields

Fa, 9) = F(a, q) + j dA Fo(&n S0 (a'— )
- f dA f du (9"~ a)-F12(8u, &) (9 — )
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2o-B|q-q|+ [g-q[°

where o = min F(q, q) and = max | F5(q, q) | exist since F(q, q) is periodic

for zero net flux, and y=1/5B. &
Corollary 1: There exists a minimum of W, for each w = (m,n).

Proof: Equation (B1) implies that F has a lower bound, thus W, does
as well. Furthermore, the set { q, q'| ge 7N, g'e *N, F(q,q') < C} is compact
since (B1) implies that F < C corresponds to bounded | q - q'[. Similarly the

set

S= { o, 41, ***,dn-1 l Ao € TN, (q-], ., 0n-1 ) e Kgn-'l)N,
WO)( qO, q11 "';qn-'[ ) < C' } :

is compact. W, is continuous and bounded on §, thus a minimum exists.o

Corollary 2: There exist at least N+1 (and generically at least 2N)

periodic orbits for each @ = (m,n).

Proof: Consider the constrained minimization of W, for fixed qq.
Such a minimum exists by virtue of the preceding considerations. Define the

function

Fao) =, min W (do, d1,---, dn-1)
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to be this minimum. Of course a critical point of Wy, for fixed ¢ gives an orbit
segment, but not generally a periodic orbit. However, zero net flux implies F
is a function on 7N; such a function has at least N+1 critical poiﬁts. In fact,
Morse theory [Milnor 1963] implies that if the critical points are non-
degenerate, there must be at least 2N; furthermore, non-degeneracy is
generic. In this case there are at least N! /il (N-i)! orbits with index i. Each

critical point of F gives a periodic orbit.o

Corollary 3: There exist at least 2N symmetric periodic orbits for each

® = (M, n), one for each symmetry class.

Proof: Consider the minimum of the half orbit action:

Wk(d1, d2, -, k1) = W(do, q1, ***, Ok-1, k)loeFix(s)

axsFix(S")

where S is a symmetry and S' is SRm or TSR for n even or odd,
respectively, according to Eq. (2.28). Critical points of Wk give a periodic
orbit of period n by using Eg. (2.28) with i=0 to define the zj for je [k+1,n].
Such critical points exist because Wy is bounded from below and the set W

< Cis compact.n

The symmetric periodic orbits of Corollary 3 do not necessarily

coincide with the orbits of Corollary 2.




Appendix C: Subroutines for Finding Periodic Orbits

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

THE PURPOSE OF THE ROUTINES ARE TO FIND PERIODIC ORBITS

OF GIVEN FREQUENCY (M1,M2,N) AND GIVEN NONLINEARITY PARAMETERS
AK,AK2,AH OF A 4D SYMPLECTIC MAP.

THE SUBROUTINES BROYDEN AND NEWTON ARE OF GENERAL PURPOSE.
THE SUBROUTINES FROESCHLE, HESS, GRAD ARE WRITTEN FOR

THE FREOSCHLE'S EXAMPLE, A COUPLED STANDARD MAPS.

THE PRESENT INTERESTS ARE ON SYMMETRIC ORBITS

WHICH ARE INVARIANT UNDER TIME REVERSAL OPERATION.

EACH SYMMETRIC ORBIT HAS TWO POINTS ON SYMMETRY PLANES
SPECIFIED BY A COMBINATION OF SR1,SR2,TSON.

OO0 0 0 0 0 0 0 0o o 0 0

GCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
CGCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCT
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SUBROUTINE BROYDEN(Y1,Y2,N,ITMAX,ERRY,ERRF,DNRMY,DNRMF,ITER)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

RECEIVES Y1,Y2, THE INITIAL GUESS OF MOMENTA ON SYMM PLANE
SOLVES ANONLINEAR SYSTEM OF 2 UNKNOWNS USING NEWTON'S METHOD
B IS THE JACOBIAN MATRIX FOR (F1,F2) '

B ORITS INVERSE IS OBTAINED ITERATIVELY BY BROYDEN'S SCHEME
INITIAL B=IDENTITY, DY1= -INV(B0)*FO

O 0O O O O O O

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

IMPLICIT REAL*8(A-H,0-Z)
REAL*8 B(2,2)

CALL FROESCHLE(Y1,Y2,F1,F2,N)

c INITIAL JACOBIAN B IS GIVEN AS AN IDENTITY
B(1,1)=1.0
B(2,1)=0.0
B(1,2)=0.0

B(2,2)=1.0

SERRY=ERRY**2
SERRF=ERRF**2

ITER=0
20 ITER=ITER+1
C UPDATE Y; DY=-INVB*F

DETB=B(1,1)*B(2,2)-B(2,1)*B(1,2)
DY1=(-B(2,2)*F1+B(1,2)*F2)/DETB
DY2=(B(2,1)*F1-B(1,1)*F2)/DETB
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Y1=Y1+DY1
Y2=Y2+DY2

CALL FROESCHLE(Y1,Y2,F1,F2,N)

DNRMY=DY1**2+DY2**2
DNRMF=F1**24+F2**2

c EXIT WHEN CRITERIA FULFILLED OR BAD CONVERGENGE
IF(DNRMY.LE.SERRY) GO TO 40
IF(ITER.GT.ITMAX) GO TO 40

c BROYDEN UPDATE OF JACOBIAN B
DY1=DY1/DNRMY
DY2=DY2/DNRMY
B(1,1)=B(1,1)+F1*DY1
B(2,1)=B(2,1)+F2*DY1
B(1,2)=B(1,2)+F1*DY2
B(2,2)=B(2,2)+F2*DY2

GOTO20
40 DNRMY=SQRT(DNRMY)
DNRMF=SQRT(DNRMF)

RETURN
END
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SUBROUTINE NEWTON(X,DETA,TRA,N,ITMAX,EPS,IERR,CRIT1,CRIT2,ITER)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCt

RECEIVES THE INITIAL ANGLES X, 2N-DIM VECTOR

X(N) IS FIXED ON THE SYMMETRY PLANE

ITERATES THE NEWTON LOOP ITER TIMES

DETERMINES FINAL ANGLES X WITHIN THE ACCURACY EPS
DETERMINANTS OF DIAGONAL SUBMATRICES A ARE STORED IN DETA(N)
TRACES OF DIAGONAL SUBMATRICES A ARE STORED IN TRA(N)

O 0 OO0 00 o o

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCQCCCCCCCCCCCCCCCCCCCCCCCCCCC

PARAMETER (NMAX=13580)
REAL*8 DETA(N), TRA(N)

REAL*8 X(2,N),G(2,NMAX),DELX(2,NMAX)

REAL*8 H(2,2,NMAX+1),A(2,2),INVA(2,2,NMAX)

REAL*8 B(2,2,NMAX),INVB(2,2,NMAX)

REAL*8 C(2,2,NMAX),UP(2,NMAX),DN(2,NMAX), TEMP(2,2)
REAL*8 EPS,DEPS,CRIT1,CRIT2,DNORM

NM=N-1
NONINV=0
IERR=0
ITER=0

DO 5 I=1,NM
DO 5 K=1,2
DELX(K,1)=0.D0
5 CONTINUE
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10

15

20

CONTINUE
ITER=ITER+1

DO 15 |=1,NM
DO 15 K=1,2

X(K,)=X(K,1)-DELX (K, })
CONTINUE

CALL HESS(X,H,N)
CALL GRAD(X,G,N)

DO 20 L=1,2
DO 20 K=1,2

A(K,L)=H(K,L,1)
CONTINUE

DETA(1)=A(1,1)*A(2,2)-A(1,2)**2
IF(DETA(1).EQ.0.D0) THEN
NONINV=1
RETURN
ENDIF
TRA(1)=A(1,1)+A(2,2)

INVA(1,1,1)=A(2,2)/DETA(1)
INVA(2,1,1)=-A(2,1)/DETA(1)
INVA(1,2,1)=INVA(2,1,1)

INVA(2,2,1)=A(1,1/DETA(1)

B(1,1,1)=1.D0
B(2,1,1)=0.D0 "
B(1,2,1)=0.D0
B(2,2,1)=1.D0




30

40

50

60

INVB(1,1,1)=1.D0
INVB(2,1,1)=0.D0
INVB(1,2,1)=0.D0
INVB(2,2,1)=1.D0
DO 30 K=1,2

UP(K,1)=G(K,1)
CONTINUE

DO70 I=2,NM
IM=]-1

DO 40 L=1,2
DO 40 K=1,2

B(K,L,)=B(K,1,IM)*A(1,L)+B(K,2,IM)*A(2,L)
CONTINUE

DO 50 K=1,2
UP(K,)=UP(K,IM)+B(K,1,1)*G(1,1)+B(K,2,))*G(2,])
CONTINUE

DO 60 L=1,2
DO 60 K=1,2

A(K,L)=H(K,L,1)-INVA(K,L,IM)
CONTINUE

DETA(I)=A(1,1)*A(2,2)-A(1,2)**2
IF(DETA(I).EQ.0.D0) THEN
NONINV=I
RETURN
END IF
TRA()=A(1,1)+A(2,2)
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70

80

90

100

INVA(1,1,1)=A(2,2)/DETA(])
INVA@2,1,)=-A(2,1)/DETA()
INVA(1,2,)=INVA(2,1,1)
INVA@2,2,1)=A(1,1)/DETA()

DO 70 L=1,2
DO 70 K=1,2
INVB(K,L,1)=INVA(K, 1,IM)*INVB(1,L,IM)+INVA(K,2, IM)*INVB (2,L, IM)
CONTINUE

DO 80 L=1,2
DO 80 K=1,2

C(K,L,NM)=INVB(1,K,NM* INVA(1,L, NM)+INVB(2,K,NM)*INVA(2, L,NM)
CONTINUE

DN(1,NM)=0.D0
DN(2,NM)=0.D0

DO 90 K=1,2
DELX(K,NM)=C(1,K,NM)*UP(1,NM)+C(2,K,NM)*UP(2,NM)
CONTINUE

DO 120 i=N-2,1,-1
IP=1+1

DO 100 L=1,2
DO 100 K=1,2

C(K,L,=C(K,1,IP)*INVA(1,L, I+ C(K,2,IP)*INVA(2,L, )+ INVB(L,K,IP)
CONTINUE

DO 110K=1,2



110

120

130

140

DN(K,)=DN(K,IP)+C(K,1,IP)*G(1,IP)+C(K,2,IP)*G(2,IP)
CONTINUE

DO 120 K=1,2
DELX(K,)=C(1,K,1)*UP(1,1)+C(2,K,)*UP(2,1)+
B(1,K,1)*DN(1,1)+B(2,K,)*DN(2, )
CONTINUE

CRIT1=DNORM(G,N})
CRIT2=DNORM(DELX,N)

IF(CRIT2.LE.EPS) THEN

DO 130 L=1,2
DO 130 K=1,2

TEMP(K,L)=INVA(K,1,NM)*INVB(1,L,NM)+INVA(K,2, NM)*INVB(2,L,NM)
CONTINUE

DO 140 L=1,2
DO 140 K=1,2

A(K,L)=H(K,L,N)-INVA(K,L,NM)-C(K,L,1)-TEMP(K,L)-TEMP(L,K)
CONTINUE

DETA(N)=A(1,1)*A(2,2)-A(1,2)**2
IF (DETA(N).EQ.0.D0) THEN
NONINV=N
RETURN
END IF
TRAN)=A(1,1)+A(2,2)
IERR=1
RETURN
END IF
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IF(ITER.GE.ITMAX) RETURN

GOTO 10

END

SUBROUTINE FROESCHLE(Y1,Y2,F1,F2,N)

CCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee

O 0 0 0 0 O 0 0 0 0 0 O 0 0 0 O 0 o

RECEIVES Y1,Y2(MOMENTA ON SYMM PLANE)

Y IS NOT DESTROYED ‘

ITERATES 4D FROESCHLE MAP HALFWISE AROUND THE PERIOD N ORBIT
EVALUATES DEVIATION OF (N1+1)ST ITERATE FROM SYMM PLANE

FOR X(0) ON FIX(S)
X(N1+1)=5*(M+SR)  FOREVENN
M+SR-X(N1) FORODDN
FOR X(0) ON FIX(TS)
X(N1+1)=M+TSR-X(N1) FOREVEN N
5*M+TSR) FORODD N
ALL CASES CAN BE COMBINED AS
Y(N1+1)=X(N1+1)-X(N1)
=FACTOR*(M+(T)SR-2*X(N1))
(T)SR=1 IF X(0) IS ON THE TRANSLATED PLANE OF (T)S
EXAMPLE) X(0)=(.5,.5) IF SR1=SR2=1 AND TSON=0

CGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
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IMPLICIT REAL*8 (A-H,0-Z)
COMMON/PARAM/TPI,AHO,AK0,AK02,AH,AK,AK2
COMMON/PERIOD/AM1,AM2
COMMON/SYMM/SR1,SR2,TSON

N1=(N-1)/2
ONETWO=FLOAT(N-2*N1)

ONETWO=1 FOR ODD N, =2 FOR EVEN N ‘
FACTOR=(1.E0-TSON)/ONETWO+TSON*ONETWO/2.E0

X1=(SR1+TSON*Y1)/2.D0
X2=(SR2+TSON*Y2)/2.D0

YT1=Y1
YT2=Y2

DO 10 NP=1,N1
COUPLE=AH*DSIN(TPI*(X1+X2))
YT1=YT1-AK*DSIN(TPI*X1)-COUPLE
YT2=YT2-AK2*DSIN(TPI*X2)-COUPLE
X1=X1+YT1
X2=X2+YT2

CONTINUE

COUPLE=AH*DSIN(TPI*(X1+X2))
YT1=YT1-AK*DSIN(TPI*X1)-COUPLE
YT2=YT2-AK2*DSIN(TPI*X2)-COUPLE

F1=YT1-FACTOR*(AM1+SR1-2.E0*X1)
F2=YT2-FACTOR*(AM2+SR2-2.E0*X2)

RETURN
END
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SUBROUTINE HESS(X,H,N)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

C
c
c
Cc

RECEIVES ANGLES X RETURNS THE DIAGONAL BLOCKS IN H
OF THE HESSIAN MATRIX OF THE ACTION FUNCTION

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

10

REAL*8 X(2,N),H(2,2,N)
REAL*8 COUPLE, TPI,AH0,AK0,AK02,AH, AK, AK2

COMMON/PARAM/TPI,AHO,AK0,AK02,AH,AK,AK2

DO 10 I=1,N
COUPLE=AHO*DCOS(TPI*(X(1,)+X(2,1)))
H(1,1,)=2.D0-AK0*DCOS(TPI*X(1,1))-COUPLE
H(2,1,1)=-COUPLE
H(1,2,))=-COUPLE
H(2,2,1)=2.D0-AK02*DCOS(TPI*X(2,1))-COUPLE

CONTINUE

RETURN
END




SUBROUTINE GRAD(X,G,N)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCT
C RECEIVES ANGLES AND RETURNS THE GRADIANT OF ACTION FUNCTION
GCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

PARAMETER (NMAX=13580)
REAL*8 X(2,N),G(2,N-1),P(2,NMAX+1),COUPLE
REAL*8 TPI,AH0,AKO,AK02,AH,AK,AK2,AM1,AM2

COMMON/PARAM/TPI,AH0,AK0,AK02,AH,AK,AK2
COMMON/PERIOD/AM1,AM2

P(1,1)=X(1,1)-X(1,N)
P(2,1)=X(2,1)-X(2N)

DO 10 |=2,N-1
P(1,1)=X(1,1)-X(1,1-1)
P(2,1)=X(2,))-X(2,1-1)

10 CONTINUE

P(1,N)=AM1-X(1,N-1)+X(1,N)
P(2,N)=AM2-X(2,N-1)+X(2,N)

DO 20 I=1,N-1
COUPLE=AH*DSIN(TPI*(X(1,)+X(2,)))
G(1,1)=P(1,1)-P(1,1+1)-AK*DSIN(TPI*X(1,1))-COUPLE
G(2,1)=P(2,)-P(2,1+1)-AK2*DSIN(TPI*X(2,1))-COUPLE

20 CONTINUE

RETURN
END
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