DOE/ET/53088-37 IFSR #37

- BREAKDOWN OF ONSAGER SYMMETRY
IN NEOCLASSICAL TRANSPORT THEROY

K. Molvig*, L.M. Lidsky*,

K. Hizanidis*, and I.B. Bernsteint

Juhe 1981

*Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

fYale University
New Haven, Connecticut 06520

T




Massachusetts Instltute of Technology
Cambridge, MA 02139

and

Institute of Fusion Studies
University of Texas
Austin, TeXas ’78712‘

Massachusetts Instltute of Technology
Cambridge, MA 02139

Yale UnlverSlty
New Haven, Connecticut 06520

ABSTRACT

Neoclassical transport theory is developed in-a Lagrangian
rathér than the usual Eulerian formulation. “Wé show: that an
underlying asymmetry exists in the neoclassical pinch and bootstrap

effects and-demonstrate. .the physical basis;ofﬂthéugnsager~Symmetry

relationship. in thevpinch—bootstrap~dualiﬁy."Itvis‘SUggésted«thst

low frequency. turbulence can destrov the bootstrap current at

lpvels too low to efFect the Ware,Plnch
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Neoclassical transport théory(ll has long predicted the exis—
tence of a "bootstrap current™ driven by the radial density gradient
and a pinch effect driven by the toroidal electrical field, Both
effects have substantial practical implicatioﬁsxfor tokamak reactoxrs,
Neither, howevér;‘,has been confirmed by eﬁperiment; Inward plasma
(2 )

flow has been clearly, if indirectly,. observed, and, abeit

equivocally, explained by the neoclassical pinch,( ) The boot-
strap current(6) has not been seen even in experiments where it

should have heen easily detected.(4) The pinch effect is often ex-

‘plained as a purely kinematic, collisionless inward flow of trapped

particles}5_§) The underlyinq mechanism of the bootstrap current is
somewhat obscure, although it clearly is a collision driven phen-
omenon involving circuiating particles.(7) These two phenomena
display an Onsager symmetrv relation and have equal coefficients.
Why effects 1nvolv1ng different classes of particles should be On-
sager conjugate has never been satisfactorily explained.

This,letter considers the questions of Onsager symmetry and
the non-observance of the bootstrap current in light of a recently
developed-Lagrangian formulation of neoclassical theory.(8} This
formulation has the virtue of being a direct expression of the
elementary kinematics and colligion processes, allowing the various
flows to be identified at the microscopic level. We show the net
kinematic contributions to both pinch and bootstrap current to
be small and symmetric. However, the individual kinematic processes

involved -in the pinch are large and ‘there ig- an underlylnq asymmetry of
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collisionless processes.. Collisional processes invelyving circulating

particleS'drivefbothfthe binch;(COntrary to théﬁ&béepted'models) and

bootstrap effeetsg - These collisional processes are'mlcroscoplcally

inverse and clearly Onsager conjugate. However, they are a

result of scattering by particles in a very narrow lafer

near the trapped particle boundary. We argue that the nature of

this layer is such that the bootstrap current, but not the kinematic

Ware pinch, is‘easily destroyed by low level trﬁbuleﬁt scattering.
The physical basis of the Lagrangian formulation is that in

the lowest collisionality: (banana) regime, the distribution funo?

tion} f, relaxes in a seqﬁence of wellfordered‘time scales. The

fastest is the orbital time scele, on which f-relakes to a func-

tion of constants of motion (or acthns) alonefi The actions Jl"

2, J3 are chosen to be respectively the magnetic moment, parallel

invariant and bounce averaged poloidal’flux; These actions then

scatter under the influence of collisions to relax f'to a local

‘Maxwellian on the collisional time.scale; - The radial action.

action gradients relax to produce transport on the (lenger) dif-
fusion.time scale.

The Lagrangian formulation follows ‘this hierarchy of relaxa-

tion processes, first expressing the kinetic equation:in action

angle variables, and averaging over the orbital time scale (or
equivalehtly, the angle variables). The result is a kinetic

equation in terms of the actions alone,
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aA@VE = COE), (1)

‘where V., is the toroidal voltage, with coefficient, a(J) =

T
]636%§'9C'V§g,gand the collision operator is (for the Lorentz .
model) |
J - S, 9 _ é-, -
c (f) = ] g i 37 fd G\J(V J) (V I yv)* |

(2)

For evaluating .""oclasgiCal . fluxes in an axisymmetric system;

the angle averages are operatlonally bounce‘averages, d36+w2ds/u.
Equatlon (2) glves the bounce averaged effect of collisions, (1 eQ,A
velocity scatterlng at flxed spatlal pOSltlon) on the actlons -

The three actions, Jq, Y J3'have well orderedﬁasseciated”ﬁre—

qguencies, wl>>m2>>w3, so that the energy is principally a func-

tion of Jl and Jz, the "velocity" variables, while J3 is a "radial®

parameter. More precisely, Jq = 2—3 w+AJ3, where o, fds 3 = 0.

Note that CY contains terms of the Form ?é— S f, which give,
8J3 33 8J3

explicitly, radial diffusion due to action scattering under col-
lisions. There are also collisioﬁallcross processes of the form,

-9 R 9 - 9
53; D, 3J3 and‘BJ D32 BJZ ﬁ,_whlch ‘are ultimately respon51ble

for the pinch and Ioo_‘otS'trap_ea‘:"fec’tsv.~ fTransport equations are ob-

tained directly by the reduced moments over J, and J,. One can,
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in fact, show that the density per unit 33;,n3 =7 dJlszf, is
equal to the flux surface average spatial density times the -
specific volume, dV/dJ, é_f%g dv/dy. In Equation (1), the J,
derivatives are smaller than the'Jl/ Iy derivatives by a factor
pp/a,‘the'small parameter that, for’t¢kamaks,-measures the rela-
tive slowness of radial scattering‘to'velocity scattering. The

transport coefficients can be obtained by a straight forward ex-

pansion of (1) in powers of pp/a, using a maximal ordering where
| S 2
Vip v pp/a, 5 v (pp/a) .

The leading order consequence of Equation (1) is COJ(fO) = 0,

where COJ is the "velocity" scattering part of the full operator.

This operator has a local H—thedrem (When iike—parﬁicie collisions

are included) so that-fo is a local Maxwellian of the form
fO = N(J3) exp(—H(g)/T(J3)).

‘'The first order equationiié

: - of
e - _ 0 e ) 0 .
Colfy) = 5 Vg2, ~ 53 To = G5z 'Rres) m3 0 ‘ (3)
: —L -1 3
S T T I , .
where Eif,_'gl 531 + e, 33; , is effectively a veloc1ty”grad1ent.

" It is thus the electric field and the collisional cross processes
that drive perturbati@ns.fl.' Only the circulating particles are
effected and £; = 0 in ‘trapped space.

Wwith £, known, the particle and energy moments of Eq. (1)
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are determined to second order (Since'co(fz)»is annihilated) and
provide the transport equations. These are formalized by defin-

ing generalized forces,QAl = d%nn/dJ3,.A2~=Ad£nE/dJé;'A3.=‘VT/T

and their respective fluxes of particlee,‘heat and charge, |

Fl =T, F2 = q,F3 =T relatedeby-Fi=Z T.,Aﬁ, WithAthe trans-

4 T 1 ij
port maLrla;‘”1],-exh1b1 inc Onsager'symmetry, mlj =vTji; Des
£ m fEici Do 3 N
fining eoe E101ents, q}, in (3) such that C (fi) "E ulloAl fl

‘-—A-Q.\__ —_—

can be expressed as a sum over the thermodynamlc forces,

iTo”*

fl = % g5 Ai, with individual responses determined by Co(gi) = g.f
These relations are useful for writing the transport equations in a
compact form and for proving Onsager symmetry.

For example, the particle moment of Eg. (1), can be written,

S ke seCONd O der @S T s e s s s sy

The particle flux transport coef%iciente,‘Tij, can be inferred

from (4). Specifically, the pinch coefficient, T;;, using

. . - 2 . _ 9T '
an inner product notation, (g,h) = Jd"gigh, is Ty, = (§F ass fo)
| - e i o . . .
_.(al’ g3) = Tyt Ti3- The decomposition into explicit

\ (superscript e) and implicit (superscript. i) is a key feature of
this formulation} The fluxes that do not require'the calculation

{
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form in the original-kinetic equation (1). Thus the first flux term in
(4) , proportional to VT is an explicit, purely kinematic,
radial flow, independent of coliisions. The Ware effect appears
in this term. The implicit or indirect fluxes result from fl.
To calculafé the toroidal current,;one starts from
3

Ty = 7 @378 (x-x(3,8)) ge,v(3,8) £(3).

This contains the Pfirsch-Schluter current-in addition to the
parts, constant on a flux surface, determined from. transport
theory. We nowlweight Jp by 1/21R, flux surface average and

multiply by dV/dJ to give an angﬁlar current per unit J3,

T
- L Bf . (5)
_ 2 ds q ;. 2Trq o: :
= Jd qLué,)&—ﬁ-‘_mg.z If] (J,, w)+AJ3aJ 1+ ...

This expression is correct to~order\p§/a° _Here againvwe.have
implicit and explicit parts. The explicit piece is a toroidal
current associated with ‘the departure of the orbits from the

average flux surfaces analogous to the‘perpendicular diamagnetic
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flow associated with the departure of gyro-orbits from the guid- 1
ing center. Transport coefficients may be inferred from Eq.

(6), the bootstrap coefficients being T3l and T3l = - (u3,gl)_

| Constructlng the rest of the transport matrlxi one gets re-
identical to the conventional

ij’
- (8)
Eulerian theory, and having Onsager symmetry.~ © In the Lagran-

sults for the net coefficients, T

gian formylation, however, there are two symmetry theorems, one
for the implicit and another for the explicit piece. The former

follows immediately from the self—adjointness'of CO viz. Tij =

Hogr 95) = (Colag)igg) = (9;,C,(g;)) = (a5,9;) =,T§.Li., Explicit

()

symmetry can be demonstrated term by term. Recall that-.only

the circulating particles»contribute to the implicit fluxes.

~~—7Trapped~pafticieﬁceﬁtributiensearemaii—explicrtrf — ———— e ]

We ‘now - come - descrlblng the elementary procesqeg 1nvolved

in producing the plnch and bootstrap erfects.»v It is useful to

deflne the dlmen51onless transoort coerrlclents 113 ano I3i accord—

Vg o3 | -
1ng»to Tl3 =7 an3 13, Ty = 7 9TngTay- In the llmlt of gma;l

1) ~
e = a/R, the overall coefflclents(’) are 113 and 131 = 1.38/2¢.
In the conventional explanation, the pinch is associated pre-
dominantlvaith the kinematic flow of trapped particles, i3tr (the

Ware effect).
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Indeed, one finds, Iiétr ¥ —§ v2e, which is 62% of the full co-
efficient. The circulating partlcle contributions Il§Clr and

Ii501r~are of opposite sign and tend to cancel. .The difficulty

with this interpretation is that the process conjugate to the Ware

effect, the trapped particle banana current, 18t is negligible
31 .

3/2 e,cir _ d(€3/2),

(of crder ¢ ) in the small e limit. “Also, I31

so that I?l is negligible. The bootstrap curfent is all im-
plicit. It is a result of the collisional cross process, and
entirely a consequence of éirculating particles. This picture
does not give the physicai basis of Onsager symmetry.

To clarify the symmetry first note that the explicit sym-

metry 1. = 18, implies that to order 53/2r Ie = 0, and
31 137 = ' : e ! !

therefore, that the explicit cirpulating particle flow is éctually

radially out, at a rate which cancels entirely the Ware pinch!

" Thus, one does not have symmetry of the'eleméntary‘prOCe§Sés_’7

CL ek e, tr- e,clir e,eir
represented bY3Il§' and 131" (or 113 ; nd 131 ) but

eily of the net coefficients I13J and I31 Wonethelegs, .

1$ 2-@}v,andfthiSfléadsﬁtbganwalternate;”'

“or retation
13 B o

. of the pinch-as,aVCéZZisionaZ pr@qesswinvolvingzcirculating~partig;es.

The question is now reduced to understandlng the lmpllClt
flows. Recall that these arise from.the cross processes in the
collision operator, reflecting correlations in the scattering pro-

cess between jumps in radius and jumps in velocity.
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Figure (la) compares representative orbits for different types

of partiéles. . Consider two particles, initially well circulat-

ing, moving in opposite directions along the magnetic field. Both
have orbits lying very nearly on the flux surface Y. As these
particles scatter toward trapped space, under the influence

of collisions, thevc = ~1 particle scatters go ah orbit whose
average surface is shifted inward relative to ¥ whiie the 0 = +1
particle scatters out. This is the origin of the correlation
between velocity and radial séattering;- A radial flow will result
whenever the perturbed distribution has uﬁequal fraétionsuOf

o= =1 and o= +1§<particles, or in other words, carries a current.
The current driven by thé toroidal electric field has an excess

of o= -1 particles and'drives an inward radial flow. This

précegé,,due en£i£éiy tdwgiféﬁiétiﬁg béf%iéles, causes»thevgiﬁch
= ----affect. - -

Now. invert the process just described. That is, téke two
marginally circulating particles, oppositely directed along the
magnetic field énd scattér them back toward the well circulating
state. The o= -1(+1) particles start - on an inner (outer) average
surface and end up on Y. With a normal density gradient the re-
sult will be more o= -1 than o= + 1 patticles on the final V¢
surface, and thus an electric current. This is the mechanism be-
hind the bootstrap current. It is the precise microscopic inverse
to the process accounting for the pinch effect. The~tﬁﬁe¥®nsager 

symmetry is obvious.
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- -~ 7 Tscatter ing' from one- global co llisionless orbit—+o ano ther, in— ~~

- 10 -

A detailed calculation shows that all the circulating
particle contributions, TféCir,,Tiécir, and T%iCir arise from a
very narrow layer near the trapped particle boundary. In terms of
the pitch angle variable A (such that‘Oiﬁil—s is circulatiﬁg,,
1-e<A<l+e is trapped) the layer is much thinner than e. A layer
width(_Ai,_on the order of several percent of &, accounts for
-80% of the effect. In contrast, the'Waré effect Tiétr has equal
contributions from_all_the trapped. particles. Since the explicit
bootstrap Tgl‘is uniformiy small for ail'A,Vthe underlying asym-
metry in theexplicit processes can be brought‘out by small mod-
ifications of the boundary layer particle dynamics. This can cause
a breakdown of the symmetry when. turbulence is present.

Whereas neoclassical theory canbbe viewed as a collisionai
‘a turbulent medium the collisionless orbits are quite different.
In particular, the orbit projections for the boundary layer particies
look:like the tﬁrbulent smear of Fig..lb. The displacemént of
the orbit relative to U depends not on the VB drifts (and parallel
velocity sign) but on the turbulent radial flows which are often
larger. Withinvthe layer a particle canno£ retain its memory of
a trapped or circulating status, but only the mixture of these
properties. The turbhleht orbit has an average surface, ¥, and
this does not jump in a corvelated way depending on o.
=Therefore;;’coliisionai“”scattering"of these orbits :

will ‘not - generate the crbss processes -and
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Ti3 and Tél are eliminated. By a related argument, T§SClr is
e,tr

eliminated. The Ware effect, T]3 ; 1s more robust. It
arises from a secular accumulation of VB drifts due to poloidal
rotation of the banana tips, 'is independent of radial memory

along the orbit, and survives the turbulence. We end up with

A

e,tr z
Ti3 = Ty3 0 ¢ T3y

effects are sensitive to the detailed structure of the boundary

0. In short, the circulating particle

layef. At realistic turbulence levels they.will be eliminated,
leaving the Ware effect and broken symmetry. ,
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Fig. la. Representative orbit projections for circulating part-
icles in quiescant tokamak; ‘Well circulating particle
orbits follow the ¥ surface'Vefy closely; Marginally
‘circulating particles have very distorted orbits;v
resembling the inner'(Oute?);halE'bf-a trappedapartiéié_bmwma
orbit for the & =A—l(+l)'diréction of parallel veloéity. -
;AyerageVsurfaces;'<w>,.for marginally’circulatinq part-
- icles are displaéedvinwardifrbm ¥ for o= - i; and out-

~ward for o= + 1. R B

Fig. 1b. Boundary layer circulating particle orbits in the |

presence of turbulence. The orbits are not well

defined, but correspond to ‘& mixture of properties in a |

local region of phase space.
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