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ABSTRACT

The guestion of the threshold of the ion pressure gradiént

drift mode in toroidal geometry is examined from the drift
kinetic equation retaining the grad-B and curvature drift
resonances of the ions with the mode. Analytic criteria for
the onset of the instability are derived which exhibit the
parametric dependence on toroidicity, pressure gradient and

perpendicular wavenumber.
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1. INTRODUCTION

Recently there has been renewed interest in drift modes
in toroidal geometry, both in more fully undersﬁanding linear
stability and understanding nonlinear evolution. From fluid
theory Horton et al.thave analyzed.the ballooningltbfqidal drift
méde driven by the ion pressure gradient, an instability
previously considered by Coppi and Pegoraro.2 In Ref. 1, the
surface eigenvalue problem from the ballooning mode theory of
drift waves3 is soived for the parametric dependence of the
eigenmode frequency w, and growth rate Y on the dimensionless
parameters (en,ni,giq,k) and compared with the énalytic
formulaé obtained from the strong ballooning limit. The

dimensionless parameters are (i) the toroidicity-en=rn/R,

(fI) the ion temperature-to—density gradieﬁt parameter ury
(iii) the shear £ = xq'/q, (iv) the inverse rotational trans-
form g = rBO/RBe, and (v) the perpendicular azimuthal wave
number‘ measured with respect to the ion gyroradius k = kep

. .
6/eB. In this study all frequencies are measured
q

with p = c(miTi)
in units of cs/rn where the ion-acoustic speed is cs=(Te/mi)%’
and we consider T, = Ti:for simplicity.

The eigenmode study of Horton et al.l shows that there are
two regimes for‘instability. For weak toroidicity and strong
shear, & > 2gq, the mode occurs as in the shéared slab modél

of Coppi et al.4 with a growth rate proportional to the sguare

root of the shear parameter. The nonlinear saturation and the
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anomalous thermal transport of this regime are reported in the

three dimensional fluid simulations of Horton et'al.s.

The
second regime, § <‘2q, corresponds to typical tokamak parameters.
Here the mode balloons significantly tO’thevoutside.of the

torus and can be described as the ion pressure gradient drift
mode driven by the locally unfavorable magnetic.curvature,

In the simplest limit the growth rate is proportional to the
parameter Yo = [28 (l+n.)]%. Since the magnetic curvature‘is
favorable on the 1ns1de of the torus, the 1nstab111ty of the

mode depends on the extent to which the mode balloons to the

out51de. AnalYSlS of the surface eigenvalue problem6 shows

1
]

that the condition kg = € differentiates the mode structures

which are respectively stronglydballooning and hence fluid

unstable, and weakly ballooning and fluid stable. For plasma
pressure B = 81Tp/B2 below. the magnetohydrodynamic pressure
limit B < sn/q%,the oscillations remain electrostatic in

polarization.

2. TOROIDAL DRIFT'MODE DISPERSION RELATIONS

The azimuthal phase velocity of the pressure gradient
driven toroidel mode is small compared to the ion diamagnetic
drift velocity, and thus the resonances of the ion grad-B
and curvature drift can exert an important influénce on the
stahility‘of the mode. The influence of the drift resonance

is not considered in the works of Coppi and Pegoraro2 and
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Horton et al.l We note that for generai parameters there are

D1

considered. Using the formulas for the eigenmode parametérs

fwo kinetic resonances Wy = k”v” and Wy = w.. that must be

W r Vg and E“ given in Egs. (5), (7), and (12) of Ref. 1, it .
is found that-the.breakdown of the~flgidrexpénsion occurs

f?om the‘wk = k”v” resonance in the slab reéime (€>2q) and
from the drift resonance in the toroidal regime (§<2q). Here,
we restrict consideration to the toroidal regime where for

kg > ef and & < 2g thé mode is balloohing and the dispersion
relation is approximateiy independent of both £ and g as shown
by Fig. 3 of Ref. 1. In what follows, we will study the
effects of the drift resonance on the stébility~of the -

toroidal system as a function of (eh,ni;k).

The drift kinetic equation for low freguency electrostatic
waves determines the fluctuating part of the ion distribution
function through |

fik(vl,v”) = - —= FM + hk(vl,v”) exp[l(gxz-b)/ﬂi] (1)

T,
i :

where the nonadiabatic part of the distribution satisfies

A

| kv (et
(w=v) ky ~0p) By (v, o)) = [w-u,; (B) IF, (B) T, o T ) (2)

with
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ke_cTi dni ; 3 7
w*i(E) - é Bn, dr [l+ni(E_:7'J
i77i = ~
k,cm,
- . 6741 (1 _2 2. L
wD(vl,v“) vg;gﬁ— (2 v+ v”>(cose+£es1n6)
and'k” = —i(qR)-la/ae. The background ion distribution is

taken as Maxwellian FM(E) with the local temperature gradient

n;, = arln Ti(r)/arzn ni(r) and Jo(klvl/ﬂi) is the finite
gyroradius Bessel function. The electrons. are taken as adiabatic
Dop = ne(e¢k/Te) and the dispersion relation is obtained from

quasineutrality.

- to the ion resonance is weak compared with the w

We now analyze the condition under which the v”k” contribution

p contribution. =

In the balloohing mode'study in Ref. 1, Sec. iII, the parametric
dependence of the average ,Eﬁ in the normal mode is given.

From this it follows.that the condition Yi >-k”cS - leads to the
condition 1 + ”i.> én'(é’-;/q)2 ‘[ using Eq. flé) of‘Réf. 1] . For
the toroidal regime . &€ < g the condition for neglecting the
k”v” resonance is less restrictive than‘ﬁhe reqﬁirement fbr»
neglecting the wp reSohanqe,.namely [Qk +viyk[ > 2ke . Here
we restrict atténtion to the regime W >'E”cs in~determining
the effects of the drift resonances on the stability of the

ballooning‘mode. Within this regime'the toroidal dispersion

relation is
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€
k

T, kv | w=w,. (E)
i , 2 L l) xR —
S +.1 —‘/'dz FM(E) JO ( o) [w—wD(vl,v”)] 07. (3)

e

In the following we restrict the study to Ti = Te and use the

dimensionless wavenumber kecs/ﬂi = k and frequencies wrn/cs=w.
5. N

Letting t = mivf/2T=and'u ='v”/(2T/mi)2 the full kinetic

disperSion relation in dimensionless variables becomes
=1 foo f+°°

(w) , = 2-m ™ ],Tdt j du
SR o, e

e , , S
202 e WK (l--23’—n 3+ kny (Bfuf) Lo
: w+k€n (t+2u”™) s ST

A

The full kinetic dispersion relation (4) has been evaluated

numerically and is discussed further in the Appendix. .

2.1 The Grad B Model

For modes with azimuthal phase velocities w/k greater
than drift velocity e the grad-B resonance at vf = const
selects a larger region of velocity space than the curvature
resonances at vﬁ = const. Thus we are motivated to introduce
a non-resonant approximation to the u integral in (4). We
call this approximation the grad-B model and replace Eg. (4)
with A

eXp (-t) %I:w+k_ (14n; (t-l))] Jg (kvV/2E)

. wt+2ke_t
- - Jo - n

(5)
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The grad-B model has the same fluid limit as the full kinetic
dispersion relation. The virtue of the grad-B model dispersion
relation is that it permits analytic stabilify critéria to be
derived. 'In Fig. 1 we show thefdifferences between the exact

and grad-B model dispersion relationé by plotting ek(w) and
ezd
k

note that the approximation produces a shift in the values of

(w) 'for'typical'systém parameters. - From this figure we-

w but otherwise reprodﬁcés the impoftant features of the

“function. We have.found that the shift'does not affect the
conclusions we draw from.thevNyqﬁist diagrams. HoWever, as
discﬁééed’further in the Appendix, the ﬁumerical differences

becomevappreciable for large values of - éﬁ (En»S'O.ZSJ.

2.2 The Small Wavenumber Limit

InLEqsiALALAand~45)wwefiake*kw>LDﬂandfhavegférAmﬂ%;meédes

rotating in the electron or ion diamagnetic directions respect-
ively. We perform the integration on the fluid part of the
integrand_by writing (w—wD)—l = w_;+wD[w-wD)]-l, an exact
transformation. In this section we restrict our attention to
small values of k2 so that we can make the approximation '

S z.l—kzt. In Sec. 2.3 we give results for large k. Kinetic

effects associated with the finite argument of the Bessel

J

. 2 .
function have been analyzed by Coppi and Pegoraro”, but in the
non-resonant limit only.

Defining D(w) = w€ (w) and dropping terms of higher order
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in kzsn, the simplified dispersion relation becomes

. , 5 . dt[l+ni(tfl)]t exp (-t) _
Dk(w) = - kuk+28nk T 2€nkt (6)

o]

Wﬁore the phase velocity of the clectron drift wave is-
— L2 2 -
W —.[l - 2sn k (1 +.niﬂ/(l_+}k ). For k ¥ kO =
’ L .
[ (1 -~ Zeh)/(l'+ ni)]z_ the drift wave rotates in the electron
diamagnetic direction.

It is convenient to define explicitly the fluid dispersion-
relation D (y) used in previous studies that fbllows from the
kinetic dispersion relation (6) when lw| > 2e_k. The fluid

dispersion relation is

D(w) = w-ku + k22er-l(l+ni)/w (7)

" with the unstable'wavenﬁmber bahd éiven by

1
- 2y _\2 2y_ )2 A , v
2 < , 2 _ O} « o S
B S 4V or ko:(l Iﬁ) - k Sk (“ l—2€n> ()

where Y0=(2€n)%(1+n)%. The maximum growth rate occurs for
,kﬁko and has Ym=(2z€n)1/2 which occurs in the fluid domain when
|l+nil>2€n as already noted.

We analyze the stability of the kinetic dispersion ..
relation in terms of the Nyquist diagram method. For the
Nyquist diagram, the imaginary part of D(w) is plotted against

the real part of D(w) as w ranges from -« to +w. For large
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| wl the‘iptegral. part of D(w) vanishes and D(w)%Df(@)ﬁw

Te) thét the semicircle in the upper half plane maps into the

7 same semicircle in the D plane. The number of unstable

roots of D(w)=0 is then given by the number of times the

map of D(w) for real w ehcloses the origin. Since a range

of values of k are considered 1t£; more: useful to make the map

of D (w)=D (w)+kuk and choose kuk such that the origin is

encirled when the topology of the D (w) map | permlts such an

‘orlgln enc1fcllng ch01ce of kuk The three.D maps derived here
are shown in Fig. 2.

For reai, negative w the perturbation rotates in the ion
diamagnetic direction and resonates with the local~ién drift

frequency to give-

. e , e

Ika(w) = 'lTk[l T] (2€ % + l)] (28 k) exp (E—EEE) . \(9)
Forwni>l this funétion has two. roots, one at w=0 and
one at Wy =5-2€hk(l-l/ni); Ika is positive for wl<w<0 and
negative for G6<wy. AS w > - ,'Imﬁk(w) approaches zero from
the. negative side. On the other hand, for Oé<ni=<l, the only
root occurs at w = 0. Here Imﬁk(w) is negative definite,
growing quadratically for w near zero, then decaying exponent-—
ially to zero as w -~ —e Thus, there is a critical value of
the temperature gradient e above which the Nyquist diagram

changes character. In the grad-B model the value of the

critical gradient is given by Ne = 1.

|

I
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For positive values of w where the perturbation rotates .

in the electron diamagnetic direction there are no resonances;
For-w infinitesimally above the real w axis the sign of
Imﬁk(w),changes at the minimum of the Reﬁk(w) since Imﬁk(w)=
163D, (0) /36] where w=lim(w+i8) as 6%07. Thus, the second
critical frequéncy‘for the Nyquist diagram is given by

dt[l+ni(t—l)]texp(—t)

5 = 0., (10)
(w2+2€nkt)

We now need the real parts of Bk(wj evaluated at w4 and Wo e

Evaluation of 'Bk(w) at w=wq is straight forward and gives

~

D. (w,) = k[n.-2¢_(1- 1/n3)] for n, > 1. (11) -

AN =

We also eaéily obtain that Bk(0)=k. To determine . Bk(wz)

we find it convenient to evaluate Dk(w) in terms of the

exponential integraiZEl(X? using z=w/2ken to obtain

I

~ - o _ Z. 11 o
Dk(w—Zenkz)—k  2enz+l n,z+ze El(z)[ni(z+l) l]j (12)

with the minimum of Bk(w) determined by the roots of

' Lz 2 B | '
i+ Zen—ni(2+z)+e El(z)[niz +z(3ni—l)+ni—l] = 0. (13)

With a transcendental function specifying the root

|

T




11

w,, it is useful to consider two limits. One limit

corresponds to small €, or large z for which an asymptotic ' t

1
2

éxpansion of Ef@/Zenk) in powers of € . is possible. This

n
is effectively the regime of validity of fluid theory. We
‘will find that the kinetic results, wﬁile altering the Nyquist.
topology give stability criteria which are compatible with
those of a fluid theory computed to a sufficiently high order

L ,
in the parameter’eé. The other limit is e =2 1 or z small.

In this limit it is necessary to evaluate El(z) numerically.

For small €, r we carry out the asymptotic expansion of —
bEl(z) and find that to second order the root w, is given by

-

Pt

4k€njl+2ni) a 279 . , )

l+ni ':+U(€n, )

wy = Kilee ) l+nJl

and that the value of the dispersion function at W, is
given by

- , . L (1+2n,) ST
ReD, (w,) = 2k[(2e ) (1+n,)17* - 4ke T, (14) L

From this information it is straight forward to construct
the Nyquist diagram of the dispersion relation as shown in’ :_
Fig. 2. E _ -

For the purpoée of discussion, the critical points on

the Nyquist curve are labelled A, B, and C corresponding to

the critical frequencies W= w,,w = 0, and w = Wy s respectively.

T T
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In ﬁigl 2a we show the Nyquist diagram for the fluid dispersion
relation valid for |w|> 2ken. The diagram is symmetric in w-—g¥%.
The condition that the map of s(w) éncircle'the origin gives the

instability condition

~

—DA < kuk < DA (15)

where BA = S(wA) = ZkYO in the fluid regime. Condition (15)
reproduces the unstable wave number band given in Eq. (8) and...
obtained from the negative discriminant of the quadratic eguation

(7). In Fig. 2b we show the Nyquist diagram for the case

0 < n< ”nc where ImS(w) is negative definite for modes rotating

in the ion diamagnetic direction. The diagram is no longer

svmmptric+~and_theLe—is—ggfeendition-oh~negatiﬁe”vaiﬁés of Uy
for instability. There remains an instability condition for

positive phase velocities given by

ku, < D, = 2kyo[l—C(en,ji)]' ' (16)

where C is given appréxinately by Eqg. (14) as

N 2

C(E;‘,n-)= (26 -

valid for C < 1.
Finally, for n>nc the Nyquist diagram is as shown in Fig. 2c

with the additional crossing of the Imﬁ(w) at w = Wy where
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ﬁ(wl) = 5@, which is easily,h shown to exceed Bﬁ. This Nyquist
diagram allows for the possibility of a new unstable mode at

higher positive phase velocities such that

Dp < ku < D.. (17)
2 .
For the present model with Uy =[1 - k“(1 + ni) = 28&)«1 + k2)

this condition (17) is not satisfied, and thus there remains

for n > N only the one unstable mode given by condition (16),
kuk'< BA(k,en,ni).' A change in 'uk,'howevér, can léad to
COndition (17) being satisfied. In particular, including the
upward shift in the electron drift wéve*phase velocity due to -

its coupling with the ion acoustic wave allows u to.satisfy

k

condition'(l7).

....Now.we consider the instability condition formfiniteﬁenwﬁﬁﬂwwmw

and increasing 1n. For a fixed wavenumberjk, as the temperature
gradient increases, the phase velocity of the fluctuation decreases
until instability occurs. For example, with the parameters

k =\/5; = 0.3 and € = Q.l considered by Guzdar et al.8‘in their

Fig. 8, we obtain from the approximate kinetic instability

—

T
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condition
4€n(l+2ni)

- (1)
l+hi

2 (ram V- 9 ~_
1—kv(l+ni) an < ZYO
the threshold gradient of N =1 compared with their value of
ng = 2. The fluid theory is already well into the unstable regime
at n,= 1 as shown in their Fig. 9 or given by Egs. (70 and (3).
Two factors contribute to the lower Ny value obtained from
Eg. (18) relative té‘the value of Guzdar et al. One is that
for this example k, g, and €n happen to be chosen such that
L \ vy \ :
kg v eé - This is the transition regime between strongly

ballooning wave functions and weakly ballooning wave functions.

Secondly, in this example the kinetic correction term is

already one half the'fluid term so that the asymptotic fluid
‘expansion is failing. Numerical evaluations show that for
e > 0.1 marginal stability must be computed with the full

El(z) response function. In this kinetic regime we find that

Dy = k(0.5+0.1n + Sn) (19)

is approximately valid for Dy < Dy = k or n £ 5. The instability

condition obtained from ku, < D, can now be written as

n(k*+0.1) + k% + 3e_ > 0.5 - -~ (20)

e

which ciearly shows the'deStabiliZing.effédt of increasing either

n, én’ or k2. For the parameters k2 = e = 0.1 and n = 1

T
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-condition (19) is marginally satisfied. The Nyquist diagram
corresponding to this kinetic regime is identical in topology

to that of Fig. 2b with the value of DA given in Eg. (19). We -

observe that in this regime, the second unstable domain of the
Nyquist loop in Fig. 2c is removed. |

We note that with the inclusipn of electron-wave dissipation
from trapped electrons, for example, the w térm in the dispersion
relation becomes Q(l—id;). Although the low frequency part

of the Nyquist diagram is unaffected, the high_frequency part

is rotated by 6; such,that,fluctuations with positive-phase

velocities of order unity are unstable when 6; > 0 with

Y v kukSE .

2.3 Large Wavenumber Domain

Now'wewconsidér'the higher k modes which are stable
according to fluid theory, diagram 2a and Eqg. (@), but unstable
in the kinetic theory, diagram 2b and 2c. We rewrite the

dispersion relation (6) as

_ o2 j’ (1-n+nt) te” dt
co =k - 2kten ) ST oke ©
o n

F 2 .. 20k
In the region hukl > 2y, we have w = %kuk+ {(%kuk) -(kYO)J2

< kuk in £he fluid domain. Iterating Eqg.(18) with w = kuk yields

0.

(l—TT+nt)teﬁtdt

W+ iyk = kuk -2k P 54

uk+2£nt
y nu -u u
+ irmk (l—n—n———-X——~) exp_(———) ) . (22)
2en 2sn ,’2€n

(21}

]

T
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for Uy < 0. Not too far into the fluid regime we have u

x " "%Vor
and the resonant growth rate in (19) becomes
. (1+n) (1 s |
. +n |22
¥k = 7k EEE—H— exp{:— (EEH) } . N (23)
Tn ' \ nr

Thé Nyquiéf_anélysis shdws instabilify fbi aiijpositivéubl»“
k greater than the onset Wavenumbér giVenAby Eg. (20); however,
as is evident from Figs. 3, 4 and 5, fhere.is an effective
cut-off wavenumber.kclabove which the growth fate is irrelevant.
The cut-off Wavenuﬁber can be obtained by esfimating the energy
above which there arg an insignifiéant‘numbér of resonant

ions. For the Maxwell-Boltzmann distribution we use Eg. (22)

with the estimate that max(—uk/Zen) = 5, Solving this condition _

for. the wavenumber gives

[1+12e d |
kC = TIIHI— : {(24)

for the critical wavenumber abOve'which'thevgrowth rate is
exponentially smail. |

For € 2‘0.1 thé critical wavenumber kcvgiven by Eg. (245
falls in a region where it is no longer,justifiable'to expand
the Bessel functioﬁ,iﬁ Eg. (6). While the'grthh.rate in this
regime changes in magnitude, the topology of the Nyguist
diagram and the sign of the growth rate remain the same. To

show this we note. that with the Bessel function reétained the

T
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imaginary part of D(w) becomes

v

. L W [ W 2 (. =B [ w
o = s (e e () i

for w<0. Clearly, the Bessel function does not change the
sign of ImD(w) for it enters as the square; rather it forces

ImD(w) to vanish at the roots of Jo(x)_='0«. For moderate '

values of k ( k < 1.7) the zeros occur where the exponential
falloff is already dominant and their effect is negliéible.
For higher values of k, this regime has been analyzed with
the Nyquist diagrams using the large argument asymptotic

expansion of the Bessel function while repeating the considera-

, nonresonant results for -large -k are qlven by Coppl and Pegoraro.

tions given above with the small argument expansion Some

‘Here, we note that in the nonresonant reglme the growth rate
'becomes Y = ken)2 (l+"'1/g;1_q"-i)?‘/(2;’/27r)/2 valid for l<<k<<(l+%h&)/
_S;Qéﬁ)eﬁwhere the upper limit on k follows from the condition

\ .
'Yk > 2k'€n.

The most important effect introduced by the Bessel function
(kivl/Q) is the change in the phase velocity u which enters
the marginal stablllty-crlterla in Egs. (15)-(17). For k > 1

“the phase velocity of the drift wave .is 'given by

1

| 1o (k2) +0; K2T,(62) -1 (k20| exp (-k2)

2 - I_(k%)exp(-k?)

u,_ = I ' R VAN
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which has the small k limitvused in  the fmuid}theorynanalysis
and the large k'limit given by u ® (l—%ni)/Z /fFE.‘;The fact
that for ur < 1 the phase velocity given by Eg. (25) is -
appreciably larger than the fluid phase velocity in the region

—1
of the critical wavenumber k = ko':'(l+ni) E prevents the

instability conditions in Egs. (15)-(17) from being satisfied.

' This effect is summarized in Figs. 6 and 7. Figure 6 shows

the growth rate maximized over k as a function of €, and ny

and includes the curve of marginal stability in the Y 0
plane Figure 7 shows that retention of the full Bessel
function for largerk has aniimportant effect on the value of
the growth rate. Extrapolating to- large values of k the growth

rate formula obtained from the small afgument expansion of the

‘growth rate.

Bessel function is seen to overestimate the magnitude of the

3. CONCLUSIONS

This work gives the change in the fluid theory growth.
rate due to resonant drift kinetic effects ' The conSideratioh
is analogous to that in the work of Seyler and Freid_berg9 for

the kinetic effects_on the magnetohydrodynamic modes.

Because the region of fluid marginal stability is kinetically

unstable due to resonant particle wave interactions, the unstable

domain extends to higher wavenumbers and the maximum growth

rate is shifted to higher k. As an example, we show in Fig. 3

T
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the kinetic theory frequency and growth rate obtained from
numerical solutions of Eq. (6) compared with the fluid theory
formulas. In Fig. 4 we reduce the toroidicity parameter €,
to a small value to indicate the asymptotic convergence with
€, ~ 0 to fluid theory.

In summary, our analysis of the local kinetic dispersion
relation for the ballooning ion;pressure‘gradiéﬁt drift
mode gives formulas for the marginal stabilify'conditions in
the hydrodynamié regime (en < 0.1) and thé kinetic regime
(en‘> 0.1). In the former regime, the kinetic dispersion
relation gave a Nyquist topology differing from that of the
fluid dispersion felation as shown in Fig. 2, although the

kinetic criterion for marginal stability, Eq. (18), agrees with

fluid results when computed to the next higher order in £?. For

B

€, > 0.1 thebmddé is‘fuliy.kihétic and thércriterion fdr
marginal stability is.given by Eq. (20). |

Figures 5 and 7 show the importance of the drift resonance
and finite gyrqradius effects to the basic fluid prediction of
the growth rate. Finally, we observe that by comparing the
present local results with the nonlocal bailooning theory
calculations of Ref. 1 the relative importance of ballooning;

drift-kinetic resonances at w = w. and the finite gyroradius

D
effects can be inferred. For typical toroidal regimes with £<2g
we conclude that the finite gyroradius effects and the grad-B
resonances dominate the ballooning effects in’determining

the growth rate.

TtV TIT
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APPENDIX: The Grad B Model

In this appendix we investigate the approximation .
made in reducing the two dimensional velocity integral in

Eg. (4) to the one dimensional grad-B model in Eg. (5). The

~full dispersion function in Eg. (4) requires

I(w) = <§%w'k(t,u)Ji(k/7E)|é+k(l—%ni)+kni(t+u2ﬂ:zi:>t © (al)

where A . '
-3 -u2 o ' O -
<> 2fdueu and <>t=[dte.t

and the particle-wave propagatar is

G, (tu) = 1 . o | (22)

UJ 'k 2 .
w+ke, (t+2u”) S

We deéefine a response function analogous to the plasma dispersion

function Z(¢) of infinite uniform plasma theory by

<g:w k:> j> =—»(l/k€n) W(w/ke ) where"i*‘
e = <<"’"l_2' > > (23)
\N\o+e+2u” /0 7y |

which has the fluid limit

W(g) = = (1 + 2

; z ) for |¢l >> 1. (A4)
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Recognizing that on the average vﬁ ~ %vf there are the

two following one dimensional models for W(¢) :

’ 1
<,¢_+E >t (83)

i

grad B model - Wg(¢)

curvature model- W (p) = <: 1 :> (A6)
! c : 2
v - <1)+4u.‘u

which both have the same hydrodynamic limit and fluid growth
rate as.the complete response function. IniFig. 8 we compare
the real andiimaginary parts of these dimensiénless dispersion

functions.

We note the generally"gddd’agréeméhﬁzéf'thé exact function =

W(¢) with the grad B approximation Wg(¢) and the poorer agreement

of the exact function with the éurvature approximation WC(¢).
The mosﬁ’critical'features of these functions in terms of
marginai stébility aré the value of”the imaéinéry.ﬁaifuféf
o} 50 ahd rate of fall-off of the real part for'¢> 0. The
disagreement between W(¢) and Wg(¢) near the origin 'l¢‘l<v0.5
only has an influénce on stability conditions for large values
of €+ At €, = 0.25 the difference in the Nyquist diagrams
obtained by replacing W(¢) by Wg(¢) becomes evident, with the
most marked change .occurring for the Value of n = N which is
N. = 1 in the grad B model. The‘oVerall éffect is to increase
the stability at this value of n féf these large values of thé
toroidicity parametgr.

When the mode is gfowing, the\full dispersion function

can be written exactly in terms of a one dimensiodnal’ integral.




_Both the u and the t integrations can now be performed so.
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It is obtained by.noting that for Im¢ = Im(w/enk)'> 0

00

1 5 = -i [ dy expliy (o+t+2us)] . (A7)

¢+t+2u Jo

Equation (Al) then becomes

I(w) = -1 /d‘y<<exp[iy(¢frt+2u2)] Jg(k/?E)
/o ' ” '

[cb+k(l—_%ni) + kni(t+u2)] >u>t _— - (a8)

that I(w) 'is expressed as an integral over y of a combination

of,modified‘Béssel functions I, and I, whose argument

0
K = kg/(l - iy) is a function of y:
| : (o [aaome
g - a(l-2iy
: (1-1iy) (l—2iy)3/2 o
kn.
+ = (I (k) + K((I (k¥=T( ) A9
(1-iy) yT=25y \°© RLACEND) (29)
where
o =w+ k(1-2 n,)
' 2 i

While this form is exact, it is cumbersome analytically.

T

]




23

Formula (A7) is also useful in numerically evaluating
the response function W(¢) of Eg. (A3). Substituting Eqg. (A7)

in Eg. (A3) yields

| _ / iy :
W(p) = -1i dy - — (A10)
Jo (1-iy) (1-2iy)*

the (l—iy)_l‘factor can be traced to the grad B drift while

1
—%

the (1-2iy) factor is tracable to the curvature drift.
Numerical evaluafionvof,Eq. (A10) is facilitated by two

separate transformations valid for ¢ > 0 and ¢ < 0. For

¢ > 0 we write

(o]

fad

—-bx '
e dx

- | W () =j —= - A (A11)
o e

by transforming y = ix and deforming the transformed contour

to run from 0 to ». For ¢ < O,

W(6) = -(1+i) ]{ exp [ (1+1)¢x] dx 1 v .
‘ | [1-(1+i)x] [1-2 (1+i)x] 7 |

0

where we have used the transformation y = /le-iﬂ/4 and
shifted the contoﬁr to run from 0 to «». Both these
transformations require that |Re| > |Im¢| . Both integrals
(Al1l) and_(AlZ).are rapidly convergent and convenient for

numerical evaluations.
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Captions

- The real and imaginary parts of the dispersion

relation as a function of w compared between the

~grad-B model 'ek(w) [Eg. (5)] and the full kinetic

dispersion function Eid(w) [Eq. (4)]..

The Nyquist map of the dispersion relation S(w)
sthnlin (a) for the fluid theory inlEq;_(IS)

(b) for the kinetic theory below the critical gradient,
Eq. (16), and (c) for the kinetic theory above the
critical gradient, Egs. (17) and (18).

The frequency and growth rate as a function of

Fig.

azimuthal wavenumber compared between the fluid theory
and the kinetic theory for moderate aspect ratio.

Same comparison given in Fig. 3 for small aspect ratio

Fig.

Fig.

Fig.

Fig.

where the fluid approximation is asymptotically
convergent. ’
Same comparison given in Fig. 3 for a large aspect

ratio where the fluid approximation fails.

The growth rate maximized over k for £he.grad—B

model [Eqg. (5)] showing the curve of marginal stability
in the en-ni'iplaner

The growth rate as a function of azimuthal-. wavenumber
computed from the full kinetic dispersion function,
[Eq. (4)],. the grad-¢. model, Egq. (5);‘and the gra&-B
model appoximated for small k by the Bessel

function expansion, [Eq. (6)1. .

A comparison of the dimensionless response function

_ W(é), Wg(¢), and W,(¢) defined in the Appendix.
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— FULL




(a) FLUID THEORY
UNSTABLE DOMAIN
—DA< kUk< DA

(b) KINETIC THEORY
< 77C4 |

T UNSTABLE DOMAIN
kUk< DA

(c) KINETIC THEORY
> 7,
FIRST UNSTABLE DOMAIN

SECOND UNSTABLE DOMAIN
DB < kuk+DC

N\

Fig. 2




Wy

20}

28

-1.OF

TTT

TT

€n=0.l

Mi=10

“—==KINETIC THEORY

— FLUID THEORY

0;4: f

I
N\

Fig. 3




29

€n =02 m;=10

R 3.0

—-—KINETIC THEORY
—FLUID THEORY

| L L L

T T T

4 ‘\‘

. 4




30

€n=0.25 7);i=10

[ —-—KINETIC THEORY
[ —— FLUID THEORY
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