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I. Introduction
The properties of a magnetized plasma such as density and

temperature are typically nonuniform in space. The presence of

_give rise to a motion of the charged particles across the

magnetic field. The excursion of the particle across the magnetic

the spatial gradients across thegﬁagneticffield léads to the
so-called diamagnetic drift currents of the particles in the
direction mutually perpendicular to the gradient of the plasma

and the direction of the magnetié field. In such nonuniform,
magnetized plasmas there arise collective oscillations propagating

along the diamagnetic currents called drift waves. Drift waves

field can be many times greater than its gyroradius. Through
the particle dynamics in the coilectiVe modes of the system a
net plasma transport occurs along the macfoscopic‘plasma

grédient. As reviewed in this chapter, the mechanisms fof the

transport are varied, depending on the regime of the magnetized

[pu—————

plasma and the details of thgz drift modes. Quite .
generally, however, the effect éf the plasma oscillations on

the macroscopiq scale is to produce a collective dissipation in
the form of anomaioﬁs diffusion of particles and thermal energy
aloﬁg the gradients of the plasma density and temperature.

The collective transport is independent of the binary particle
collisions and may exceed the collisional transport by several
orders of magnitude. . For this reason, the transport is called
anbmalous, although it is the general mechanism of transport in
high temperature plasmas and obeys the general thermodynamic

laws of transport processes.

T
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I. Introduction
The properties of a magnetized plasma such as density and

temperature are typically nonuniform in space. The presence of

the spatial gradients across the magnetic field leads to the
so-called diamagnetic drift.currents in the direction mutually
ﬁerpendicular to the gradient of the plasma and the direction
of the magnetic field. 1In such nonuniform, magnetized plasmas
there arise collective oscillations propagating along the

diamagnetic currents called drift waves. Drift waves give rise-

The excursion of the particle across the magnetic field can

be many times greater than its gyroradius. Through the particle
dynamics in the collective modes of the system a net plasma
transport occurs along the macroscopic.plasma gradient.

As reviewed in this chapter, the mechanisms for the
transport are varied, depending on the regime of the magnetized
Plasma and the details of the drift modes. ‘Quite generaliy,
however, the macroscopic effect of the plasma oscillations is
to produce a collective dissipation ih the form of anomalous
diffusion of particles and thermal energy along the gradients
of the plasma density and temperature. The collective transport
is independent of the binary particle colliéions and may exceed
the collisional transport by several orders'of magnitﬁde. For
this reason, the transport is called anomalous, even though
it is the general mechanism of‘transport in high temperature
plasmas and obeys the general thermodynamic laws of transport

processes.
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The subject of linear drift wave instabilities arising from
macroscopic inhomogeneities in magnetized plasma is:reviewed by

Mikhailovskii in Chapter III.4 of thé‘Handbook. The drift wave

instabilites—occur as low frequency oscillations propagating
along the diamagnetic particle currents required to support the
cross—fiela plasma gradients as first explained by Rudakov and
Sagdeev (1961). The oscillation frequencies are well below the
ion gyrofrequency when the plasma gradients are weak on the scale
of the average ion gyroradius. The electric field vector in the

wave is nearly perpendicular to the magnetic field. The collective

electric field produces E x B drifts of the charged particle —~

guiding centers across the magnetic field which leads to the princi-

pal mechanism for the anomalous transport. The small electric
field component aligned along.the ambient magnetic field produces
an oscillating plasma cufrent which, in turn, generates a small
oscillating magnetic field component perpendicular to theiAaﬁbienf
magnetic field. The motion of the particleS'along the micro-
scopically fluctuating magnetic field leads to the second mechanism
for anomalous tranport. |

The plasma transport at low plasma pressure is dominated by
the collective elecﬁric field, since the magnetic fluctuation

due to oscillating currents is a negligible perturbation to the

ambient magnetic field. . The electrostatic charactér of these

low frequency electric fieldsfintroduces a substantial simpli-
fication to the self-consistent field problem. The theory of
anomalous transport in the low plasma-to-magnetic pressure regime

is developed in Secs. 2 and 3. At low plasma pressure there are
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laboratory experiments which measure the anomalous flux and . .
correlate.the flux to the amplitudes and phase relationships in

the drift waves. In the low pressure regime there are also non-

linear"theories—fortthetseifﬁconsistentteiectrostatic*waves.
In simple geometries with discrete wavenumber spectra a small

amplitude expansion of the nonlinear wave equations leads to form-
ulas for the amplitude and the spectrum of the nonlinear oscilla-="

tions. Single nonlinear waves are reviewed in Sections 2.3 to

- 2.5, and the drift wave soliton is described in Sec. 2.6. For

'typlcal system parameters the most important mode coupling process

-in nonlinear drift waves arises from the E % B convection of the ~— -

hydrodynamic fields. The convective mode coupling produces a
conservative, long range coupling in the wavenumber spectrum. In
the presence of particle-wave resonances the conservative hydro-
dynamic coupling leads to stochastic fluctuations in the electric

field in the presence of three or more interacting modes. Well

- past the threshold for instability the system is described by a

broad spectrum of weakly correlated oscillations that form a tur-
bulent plasma state. The nonlinear theories and the fluctuation
measurements of drift wave turbulence are summarized in Sec. 3.
The anomalous transport depends on both the amplitude and - the
spectral propertles of the collective electrlc fleld The s1mplest
calculatlons for transport solve the guldlng center equatlon of

motion for test partlcles in the low frequency drift modes. For

51mple models of the wave spectrum the partlcle motion may be de-

scrlbed by two-d1mens1onal area—preseerng maps The partlcle ,3

ftrajectorles are known +to change from confined orbits to stochastlc )
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orbits at the critical wave amplitude that causes neighboring
particle-wave resonances to overlap (Chirikov, 1979). Once the

resonance overlap condition is satisfied, the stochastic trajector-

ies are well described statistically by quasilinearrtheory, which is
reviewed by Sagdeev in Chapter IV. Iﬁ the quasiiinear regime the
net plasma transport is proportional to the sum'oﬁer all particles
and all waves with the strength of each conﬁribution weighted by

the correlation of the particlesiwith eaéh spectral component. of

the fluctuating fields. The calculation of the correlation time

of the particle=wave interaction requires the use of renormalized-—-———

particle propagators in regimes of fully developed drift wave
tu;bulenceCKrommes in-Chapter.5.4) and (Hoftoh and Choi, 1979).
After closure of the microscopic turbulence thebry by ‘a suitable
truncation of high order correlations a closed system of equations
for the spectral distribution function and the renormalized
response function are obtained in Sec. 3.2. The.

macroscopic transport formulas for the turbulent-plasma are

analyzed for thermodynamic consistency; for ambipolérity, as

san anomalous energy transfer mechanism, and for entropy production

due to electrostatic fluctuations in Sec. 2.2 and due to

electromagnetic fluctuations in Sec. 4.1.
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In plasmas where the thermal energy density of the particles
is a significant fraction of the magnetic field energy density,

the collective drift wave oscillations produce substantial magnetic

fluctuations due to the oscillating particle currents calculatedda

in Sec. 4.1. Theipolarization of the perpendicular and the parallel
components of the magnetic fluctuations are reviewed in Sec. 4.2.
The component of the fluctuating magnetic field perpendicular to

the average magnetic field vector permits the rapid parallel

motion of the particles to contribute to the cross-field trénsport.

As a result, the magnetic fluctuations are more important as a

mechanism for anomalous electron transport due to theihigh speed of
#he electron motion along the magﬁetic field.‘In addition,.the magnetic
| fluctuations due to drift modes lead to the concept of thévmicro—.

scopic destruction of the magnetic surfaces, as discussed in

Sec. 4.3, and the occurrence of a component of the anomalous

electron thermal transport due to the small scaie magnetic turbu- . ...

‘lence as analyzed in Secs. 4.3 through 4.6. A central aspect of

this theory is:thé'calculation of the correlation time, or length,

of the particle motion within the stochastic magnetic field.

Presently, there are no controlled plasma experiments

measuring the anomalous trahsport produced by electromagnetic

drift wave fluctuations. There are measurements, however, of

significant electric and magnetic fluctuations in the drift wave

frequency range in both tokamaks and tandem mirrors that clearly

have the potential tqiméomigg;é>£he'radial transport of' |

plasma. The problem of establishing under what circumstance the

theoretical formulas reviewed in this chapter can explain the

T




measured transport rates remains a multi-faceted problem for .
future studies. Finally, it is to be noted that due to the non-

linear and self-consistent field nature of the problem, a definitive

mathematical theory of anomalous transport has not been, and most
likely, éannot be given. Instead, different approximate physical
theories that explain certain features of an observed plasma
behavior must provide the basis for an understanding of the phenom-

ena of anomalous transport in plasmas.

T1T T




2. Anomalous Transport Due to Drift Modes at Low Plasma °

Pressure -

The collective modes of oscillation in a plasma confined

by a uniform magnetic field give rise to the drift wave instabil=.-

ity. The linear theory of drift wave instabilities is developed
in Chapter III.4 by Mikhailovskii. The drift wave instabilities

are driven by the radial gradients of the plasma density and

temperature. In spatial structure the unstable drift

waves are highly elongated parallel to the magnetic field. The

perpendiéular wavelengths 2ﬂ/kl afe shorter than the density

and temperature gradient scale lengths ry and T defined by

1 dn 1 _ 14T | )

but may be either longer or shorter than the ion gyroradius
L :
pi = c(miTi)é/eiB. The parallel wavelength 2w/k” scales with

the gradient scale lengths r, and rTf, and the longest parallel

wavelengths may exceed fifty to one hundred times the smaller

of r_ or r Forvplasma gradients that are weak on the scale

n T
of the ion gyroradius (r  >> pi) the drift wave oscillations

occur at frequencies Wy that are well below the ion cyclotron

~

frequency Wy = eiB/mic. Depending on the details of the system

parameter, the osbiilation frequencies are characterized by the

diamagnetic drift frequencies W,

. and-w*j defined. by

’
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cT. dn. : . dp.

s R _ c  P;
- and w*j ky ejan T (2)

w .'= k =
.Bn. dr
1] ¥ e] J

in a right-handed coordinate system with the axial magnetic field

Theudiamagnetic—drift~frequeneyfw;j=klyaj~ariseS@from~ihe

diamagnetic drift velocity zdj=cBXij/ejnjB2 due to the pressure

Bz

gradient of the charged particle species J in the non-uniform
plasma [Chapter I.2]. It is conventional to define the ratib of
as n=V2nT/V£nn=rn/rT and hence w*j=wnj(l+nj).

rn to rT

The most important of the drift waves is perhaps the electron

drift wave with the long wavélength (klpi‘< 1) frequency w = Wy
given 5&@, ) T T T 'i“i t_fif;f?ffff?f?fifffifv'1ff”i*:ifiii“*
1-k{o? (14n,)
= i i’ (3)
Yr nel™ - ..2. 2 .
: l+klp

Here, p = c(miTe)%/eiB.describes the wave dispersion due
to;fhe,ionuinerfia;thatwprOducesnthe;polarization;cuyfenﬁ

and p,; = c(miTi)%/ciBf‘givés the wave dispersidn due to the
finite ien gyroradius effects. The cledhivn LT WA ﬂnll

Eg. (3) occurs when the electrons adjust adiabatically in the
slowly varying electric field of the wave, as in an ion-acoustic
wave. Due to the diamagnetic drift, however, the drift wave
decouples from the ion-acoustic wave by propagating nearly
perpendicular to the magnetic field such that k”cs < Wy < k”ve.
At finite plasma pressure B = 81rp/B2 the drift wave decouples

from the Alfvén wave by propagating in the parallel phase

1
- { %
< wk/k" < v where Vv _'B/(4ﬂnimi)

velocity interval Cq A A




. ) 1 . ’
is the Alfvén speed and cg.=v(Te/mi)6 is ‘the ion-acoustic

speéd.v At higher plasma pressure where B =48ﬂp/Bz > 1/10

‘to 1/5 the unstable domain of the electron drift -wave disappears

M

except for some exceptional values of the temperatdre to'denSity

gradient ratio nj- found by Mikhailovskii and Fridman (1967).

Since the oscillation frequencies are well below the
ion cyclotron frequency the principal motion of the electrons

and the ions across the magnetic field is given by the E x B

guiding center drift velocity

cE x B cz X V¢(§ﬁ)

Vg T = = _— . (&)
Y 52 ‘ B o
‘where the last formula applies for electrostatic E(xt) = -V (xt)

motions. The leading order correction to the velocity (4) is’
proportional to wk/wci arising from the ion polarization drift..
The oscillating E X B drifts of the plasma particles give rise to

the local fluctuating flux of particles'njzE and thermal energy

Py

moments of the particle distribution function fﬁ(zxt). To the

X where nj(§t) and pj(§t) are the density and pressure

first order in the amplitude of the oscillations these fluxes
produce no net transpoft. At the second order in the amplitude
there is, however, in general a net particle flux Zj and a net
thermal flux gj produced by the drift wave oscillations. The
fluxes are called anomalous since they occur independently,

and often greatly exceed the fluxes produced by the Coulomb

collisions between the charged particles, as given in Chapter I.6

=TT 1
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by Hinton.

The fluétﬁating thermodynamic fields nj(xﬁ), pj(xt), the

electric field E(xt), and the electrostatic potential ¢ (Xt) in
a turbulent plasma are most appropriately represented in
terms of their Fourier. components k = ky. We write the

fluctuating fields as

n.(xt) =7 n.(k)exp(ik - x-iwt) (5)
S g e T B 7= SR
s SIS . |
p(xt) = )¢ (k)exp(ik -rx-iwt), (7)
k

and likewise for.the othei fields such as E(xt), Sg(gt) and
XE(Et)' Reality of the fields requires that nj(—k) = njf(k).'
The k summation in Egs. (5)-(6) is an abbreviated notation

for the sum overall wavenumbers k and the}integration

f:m dw/2m - ovefall frequencies.

- Although maﬁy correlation functions‘occur in plasma turbulence
theory, a particularly important function is the Ew“spectfum

of the two-point potential correlation function. It is con-
ventional to write I(Ew), or equivalently ij for the pétential

fluctuation spectrum where

(¢ (R,T) ¢ (Rtx, T+))

Il
~1

I(kw)exp(ik r-iwt)

+oo
92 1 (wexp(ik-r-iwt) (8)

-0 ~

AR
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which is equivalent to the statement that

<so (%'w')«ﬂ(]iw)> = Ik(w)6k+k,2ﬂ6(w+w"). (9)

The space-time averages in Egs. (8) and (9) are defined over :
the fiuctuations on the drift—wave'space-time'scales which
are well separated from the macroscopic space scales r s
and the anomalous transport time scale: T o ri/D; Here

D is the typical maximum anomalous drift wéve diffusion rate

estimated.byr D = (p[;n)igg/eB). The correlation functions

defined by averaging over an intermediate space-time volume
retain a parametric dependence given by Ik(RT) on the

macroscopic space-time scalesv.BT';Of»the transport. processes.

2.1 Particle and Thermal Flux Due to Electrostatic Drift

Waves

General formulas for the anomalous flows in terms of
the particle and field fluctuation spectra are obtained by
extracting the average part of the local fluxes. Computing
the sﬁace—ﬁime average of njvE and % pjvE, we obtain the

anomalous flux formulas

I. =-n SEE Eg'k T |22 (K) nj(k)
| jl\e BJ 4 7y T n.
k © J

and

(10)

PSS SESRTS (TS SN,
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4 cT | p;(k) '
Q== 2 e z kyIm ep* (k) *j (11)
k

P —=§
J 2 7] eB Te pj

where an appropriate normalization is_ introduced in_ the

amplitude of fluctuating fields. The coefficient DB==cTe/eB
is sixteen times the so~called Bohm diffusion coefficient.
In early confinement work, the Bohm diffusion coefficient
(l/l6)(cTe/eB) was used as a reference diffusion rate,

although now no particular theoretical or experimental

importance is attached to this .formula.

In writing Egs. (2), (10) and (11) the standard
coordinate system in drift wave studies is adopted. Namely,
Zz is taken in ﬁhe direction of the local magnetic field B,

% is taken in the direction of Vn(r)” VT (r), and §'is theA
direction mutually perpendicular to B and Vn(r), i.e.
Yy =2 X X. ihe components of Ej and gj in Bgs. (10) and (11)

are the X components. Subsequently, we shall find that in

general this is the only nonvanishing component.

The formulaslfor the particle flux Fj and the thermal
flux Qj show that;only the part of the density or”" - |
pressure fluctuation that is out-of-phase with the potential
fluctuation makes a éOntribﬁfion to the‘nef flo%;i o
Figure 1 sﬁbws how this dependence on the phase difference

arises. At a given instant of time tO and position z,

along the magnetic field, the contours of constant potential

TT TIr
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w(x,y,zo,to) = const are the stream lines for the guiding
center drift velocity across the magnetic field, Eq. (4).

As the field oscillates at the frequency w, the guiding

TTT

centers move along a fraction of the stream line given by
XE/('iw)' At a sufficiéntly large amplitude of the electric

field, k * v, ~ w, the guiding center circumnavigates the

~E

entire circumference in one oscillation period.

~_since the flow is'inCOmpréssible' Vevn = 0, the -

~initially nonuniform parEicle'fieldS“nj(r) and - p. (r)

J

“are convected along the stream limes by the oscillating

'E;& B drift. When the variations, Gﬁj(gt) and Gpj(§t), of

fhe particle fields are in phase with the potential field
¢(§t),bas shown in Fig. lc by the concentric level contours
of ¢ and an, the flux in #h?qai&and-direction exactly
compensates that in the anan¢\diréétion. On the other

hand, if the maximum of the density variation is shifted

in phase by wan 0 with respect to the maximum of the poténtial
7

fluctuation, as shown in Fig. 14, the fluxes no longer balance

since in one direction the flow occurs with-a higher density
than in the other direction. For example, the electron
drift wave, which by Eg. (3) propagates in the direction

Vie = (cTe/eBrn)§, has an excess particle flux in the
direction —Vne(r) when the density oscillation leads the

potential oscillation in phase. The ion temperature gradient




14

driven drift wave propagates in the'direction”zdi=f(cTi/eBrT)§

and has an excess thermél flux in the direction —Vpi(r) when

thé potential osciiiation leads the ion pressure fluctuation.

The general deﬁermination of the phéée differences in
the saturatedlnonlinear state is a difficulf‘probiem. In
‘practice, however, one particle species develops the dominant
nonlinear dynamics producing saturation of the;linear growth.
The other species remain well described by the gquasilinear

equations, which then determine the phase relations. In the

T~ ———electron-drift-wave, for example, it Tis usualthat—the~ion

dynamics becomes nonlinear,and the phase relations are computed
from the quasilineér electron'response;ly.Thus, when it is
established that.the.species 3 respdnds quasilinearly, the
fluctuating therﬁodynamic fields nj(k), pj(k), etc. are calculated
directly from the low frequency-(w,< wdj).fluctﬁating distribution
function Sfj(k,z) given by (Mikhailovskii, Chapter III.4,

Egs. (29)-(36))

ey |as, I N AT LAY |

/

lrnis situation is understood from the fact that the
electron-wave correlation time 1/Ak,v_ is short
compared to the ion-wave correlation Eime 1/Aw
Consequently, as the amplitude of the electric

field increases, the first interaction to be
strongly nonlinear is that of the ions with

the waves.
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where fj(x,e,t) is the background distribution function

that varies on the macroscopiclscales of transport r, and

ri/D andiwhere € = %-vz is the kinetic energy per unit of mass.

{ S e o S

In Eqg. (léyithexﬁiﬁe Hiétbr&iiﬁtegfairdfﬁéﬁé fiﬁctuating fiéld

over the trajectory of the particle is gi(z). In the

simplest case of a collisionless nonuniform plasma slab
gﬂ(z) = (w - k"v” + io)~1, however, many different forms
of g%(v) are required for practical problems. In much of

_ i
the following analysis, we only need two general properties of the

___particle propagator which follow from the conditions of

realityandcausalityofthéfields{ ngmely
I (V) = g5 () (13)
and
—Imgk(z) = 0. (14)

These conditions on gk(z) are satisfied by the propagators
in complicated geometries'and in the presence of either
collisional or turbulent broadening . of the wave-particle
resonance. |

From the fluctuating distribution (12) and property (13) ‘it
is straightforwérd to compute the fluctuating thermodynamic fields
nj(k), p. (k) and the anomalous flux in Eg. (10) or Eq. (11’

J
using, for example,

T
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ol w Pk

| eju Of, ok Of, [k, v .
mie* (k)ny (k)1 = e k)] fdv( 4 X J);Z(_i_%_)rlmga(v),;,..

. B 9 .
m] de X 3

(15)

TTT

We also define the dimensionless dissipative centribUtion

§. (k) by
5 : y

ey -/;. cky af§ ' ejw ij— 2 5
Tj 6j(-k) = J& 5 5% +.mj o€ f JoImgk(Z)'

The phase shift produced in the electron response in a

arlftnwave “Fluctuation has. Van 1mp"rtant llmltlng form. T

Since the electron transit time over a parallel wavelength
is short compared to the oscillation period, the general form

of the density fluctuation is

L. ey (k)
ng (k) = neE} - lée(kﬂ T, (16)

where the first correction to the in-phase response is of
order (w/k”ve)2 < 1. A similar equation applies to the
pressure fluctuation pe(k). With‘the quasilinear ne(k)-w(k)

releﬁionship known, formula (10) for the anomelous flux becomes ‘
, l . .

r= ne(eB)zk 8o (K)

(17)

ecp(k)4|2 .

A similar formula for Q. is readllv derlved us1nq Eg. (ll) and

the pressure moment of Eq. (12). The phase Shlft shown ln Flg -1

is related to Ge(k) by wén,¢ si [6 /(l + 8 )%]
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In Egs. (16) and (17) the function Ge(k) is .determined
by the dissipative part of the electron propagator, Im gi(v).

When the electron mean-free-path‘kev= vé/ve is long compared

fg,A*;m_uftofihefparallelmwavelengthT_the,resonant;partﬁof_theAelec+rnn
propagator is Im gi(z) = —ﬂd(w—k”v“). .On the .other hand}b

when the electron mean-free-path is shorter than the parallel

2

wavelength, the electrons diffuse in space with D, = v A~ =
- | e’e

vi/ve, rather than free streaming over the wavelength 2ﬂ/k”.
The electron dissipation is now determined bvam_gE =

Im (w—k”v“ + iCe.)—l where iCe is the Coulomb dQllision operato

. . . e .. 2.2 -
1Cé the result is approximately that Im<gk;>.Q = Im(w+1k”v /ve)

e ‘ ‘
for ye>>k Ve and Im <§k:>9 = ﬂ/(2k”v) for Vo < k”ve. Here,

I
<g§(zx>9 is the pitch-angle Q averaged responsé function
aﬁdAve = 2ﬂnee4zeffln A/mivi. Koch and Horton (1975) give
the general form of the electron response with the Lorenfz
collision operator. _Othér results for Im gi(z)‘including VB
and curvature guiding center drifts andvparticle trapping by
the magnetic ﬁirrdrleffect must be included for confinement
problems as found in Horton (1976a)and Tangv(l978). From-:
these results it is straightforward to compute the electron
velocity integrals which determine'se(k). For the wvalues of

Im <§§;>given in the preceeding, the out~of-phase component

is approximately:

. _For the LoTentz -approXimation. toé the.collision OPeTator . . .

r.

1

T1 T
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[weg (1 =5 ne) - w]

%y v Balie ACR
e

M

(18)

v
e ' 3

2 Z[w*e(l—fne) _“{| for kyvy <V
I

\ e

in the case of a local Maxwell-Boltzmann electron distribution

f (x g) = F [e ng (x) T, (x)1. Here, the temperature -to- den51ty

~*mgradlent ratio- Ng is glven by

-9, znT /a znn

T

A reduced descriptioh-of'drift—wavejphenomena that is

more tractable for nonlinear problems than thetVlasov

equation is the two-component fluid description. Introducing
the first order cross-field flows YE'é_chg/Bz
zdj = cBxVp, /ejnszﬁ and q. = (5p./2m.mﬁ.)(BXVTL/B )y due

to plasma gradients and the electrlc field, the fluid conservation

equatlons are

on . '
e ) (z+4 |
m,n. {——= + V. -Vv + VeI. = e.n., |E + =xBj - . + R
jTi\et ~j "~ ~] J 3\~ ¢C ~> ij ~3J
3 (f_a_ ) (19)
= n,. + ' v.eVT. | + p.Vev, = =Veg. - I.:Vv. + 19
2 7 \oat ~] J Py¥ods L T A& °
where the traceless part of the pressure tensor I is due

~

to the finite-gyroradius transport of momentum given by

I
i
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S 2w - \ 3y ax 5w Y R P:4
C B C il
R Ty = Tyx = B (SVX S (aqx s Oy —
Y Y 2wc X oy 5w X oy 'l
: c g
1 = BBy, . \
Lz = u ™ |
. _ , : i
For drift waves the electron inertia is negligible and the i
ion inertial acceleration is calculated perturbatively (Hinton
B R ja_ﬁd:ﬁ:é% 61_{;7_:15-7:1,)‘:'*_&7711‘]}6'&_911?11—,":*“V' T "'jj":“ S D A P .f;ji ‘
- - T e e =T _ o R N }
Sy
]

V(3) = _____c__};x m.n . —déi -+ V"H (V )
i ~e,n.B i i i

and
F
. . (3)) . nl . .CML
v (niZi v [wci 0y + (Vg + Vgi) V) 5~

where.cancellations occur in the divergence of the inertial

(20)

acceleration and the finitefgyroradius stress tensorvto yield Eqg. (20).

A similar cancellation occurs in the thermal balance

equation with ‘énv VT + pVev, + Veg = 3 nv_+ VT
. 2 ,\,J- . N-L ~y A 2 N/E

ion-thermal balance reduces to

3 (BT. ' : )

so that the

TT 10
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The electrons, behave adiabatically with . k”ve >> w

which implies an infinite parallel thermal conductivity,

B'VTe = 0, in the collisionless plasma. For electrostatic

motion - the constraint VT, = 0 implies 6T = 0, and

for electromagnetic modes the constraint becomes

ik 0T, + b 3T /9% = 0 where. b = 6B,/B, as analyzed in Sec.4.
Linearization of the fluid eqﬁations for small

amplitude. oscillations in the inhomogeneous plasma is

straightforward, althéugh tediousﬁ\ and yields

R :_th, —}qng . que,legg}tl}iii (k_[_f?if 'f’f‘ vl’)"li;',flg rEH :Q ?i _i:hle—'dji ,S,Egir;siop LTI -,' TIIDTTIZIITIZUT |

- relation:given in Eg. (3). Numerous nonlinear studies are .

based on the fluid description of drift waves.
A particularly simple regime. occurs in: the non-.

isothermal plasma with T_ >> T, where'iohAthérmal |

motion is entifely negligible. The fluctuatipg component

of the ion continuity equétion{gijeS'that

fong (k) = ¥p-Vn, (1) + V- (nyy)) = ing (o, - k70%0) (ep (k) /T)

where g@ = (czmi/eiBZ)(dEi/dt). -Now‘demanding.quési—

neutrality 'ni(k).='ne(k) in the fluctuating state with

Eq. (16) for . ne(k) determines thé‘cqmplex frequency

W= Wy + iy£ =,wne/[l + kfp2 - iﬁe] with p,

~

Wha and
Ge defined previously in this section. From this
derivation it is evident that the energy density Wk in

the drift wave consists of the electrostatic potehtial

energy of the floating electrons %nee2¢§/Te and the .

kinetic energy %nimivé(k) of - the "EXB motibn of the ions.
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Combining the two contributions, the wave energy density

Wk expressed as a fraction of n'I'e is

W(k) _ 1 2 2
aT_ ~ 20t t ket

2 .

ey (k .
e

a result used in the gquasilinear and nonlinear analysis.

The total fluctuation energy density is
. - 1

ZW(k =-~ e]dr[np ‘+ (Vlw) %
T T T ,,,,7hk B — E ) - / . o T T IT.o - dr

~T T
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2.2 Thermodynamics of Anomalous Transport

The anomalous transport of particles and energy due to
drift wave fluctuations leads to a positive definite
functional for the rate of internal entropy production as
shown by Horton (1980). The entropy production
functional is important for understanding the thermodynamiés

and the stability of the transport system. In thermodynamic

stability theory, (Glandsdorff and Prigogine, 1974), the

‘positive definite Entropy'production ﬁundtiqnal serves as

the Lyapounov function that determines the stability of

the steady state to thermal excursions.

In the general case, the particle and thermal fluxes
afe driven by complicated combinations of the density and
temperature gradients, especially in the presence of
significant ion temperature gradients. Coppi (1978) gives
examples in tokamak geometry where the particle flux is
inward, that is up the density gradient, while the thermal
flux is outward or down the temperature gradient. The
infinite plasma slab with reversed temperature and density
gradients as produced, for example, in the skin current

phase of heating contains complicated particle and thermal

S S —
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In these situations it is necessary to show that the particle

and thermal flows satisfy the second law of thermodynamics.

flows in opposite directions as analyzed by Liu et al. (1972).

Ahy other behavior would lead to physlgél contradictions. a -
The physical basis for the anomalous entropy production is

the long range particle-particle interactions that occur }

through the collective electric field.

The transport equations for the macroscopic system are

_ _obtained by taking space-time averages of the microscopic o

transport equations. The ahomalbusmparticle flux Ej and

the anomalous thermal flux gj are written as vectors with
nonvanishing components in the direction of the macroscopic
gradients. The charged particle sources from atomic reactions
are Sj(i’t) and the thermal sources from atomic reactions,

auxiliary heating and radiative cooling are Pj(r,t). The

macroscopic transport equation are

on

3 . T = |
el \% Ej Sj(£,t)’ . 522)
and
i(-3- n.T.) + 9V + Q. = P. - W., (23)
ot’2 7377 ~J J J
where the macroscopic flows are given by
rj = <njc§ x B/B Y, (24)

11T
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3 ' 2 3
.= =n.T. cE B/B = =T.I', + . 25
and
9P
- - _ R \‘,.'. - j
Wy =-=<25" E G -2, (26)

Here, gq. is .the thermal flux relative to the convective

~

energy flux % szj’ The flow of energy between the fluctuation

fields and the thermal energy of the jth species is given by

, Wj, _The collective electric field is electrostatic,E = -Vo(r,t).

Section 4.1 treats the case of electromagnetic fluctuations.

Drift wave fluctuations are charge neutral to the order
2.2

klxﬁe in both the linear and nonlinear states. From the
condition of guasineutrality, pQ = % ejnj = 0; it follows
J

that the particle flux is ambipolar and that the net power

flow vanishes, that is

e.l. =0 and ZW. =0 . ' (27)
J

In order that the thermodynamic fields in nj(£,t), Tj(g,t)
provide a well defined contracted description of the plasma
we must restrict consideration toAregimes where the Coulomb
collisions between the charge particles are sufficiently
frequent to maintain local Maxwell-Boltzmann velocity

distributions F?(vz)-on the transport time scale. Let us

T 1T
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define this regime by Vo > Vi where v, is the critical
collision frequency determined by the analysis of the back-

ground distribution function in Sec. 2.7. This critical

collision frequency is a function of the fluctuation level.
A..consequence of the Maxwell-Boltzmann distribution F?(Vz)

is that the characteristic microscopic diamagnetic frequency

is given by

2 ch N > > mjv2
w*j (v™) =_ejfB ’]‘\(’ X b - Xl + X2 L - (28)
where
an , VTj

- -
We assume that X, and X, are parallel and define their ratio
as n. = X.,/X.,.
Ny = X52/%g1
The microscopic fluctuating particle distributions must
be obtained from the kinetic equation. In general, the
fluctuation amplitudes are SUfficiently large that the
summation of high order secular contributions to the given
fluctuation component Sfjk(v) is required to describe the
particle-fluctuation interactions as shown by Horton and
Choi (1979), Introducing the general particle

propagator gi(v), the fluctuating distribution is given by
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M
£ (g)=-—ddee 1 = [u - w*j(vz)]gﬂ(g) ¢ (k). (30)

For example, the renormaliged propagator in slab geometry is
| . . . .

2
Jo(klvl/wcj)

Vi T fyVpg

] -
gk(z) T w -k

where VDj'= (mjcvf/ZejB)(dJJ1B/dx) is the guiding center drift

and ivk the resonance broadening frequency. Transport analysis

with the particle propagator'g%fspecified for toroidal geometry, o

including a Lorentz collision operator broadening of the

wave-particle resonances, is given in Horton and Estes‘(l979).

The general properties of gi(z) that follow from the conditions

of reality and causality of the collective fields,

gi(z) = —ga*(x) and —Imgﬂ = 0, are given in Egs. (13) and (14).
From the formulas (10), (11) and (24)-(30) we obtain the

formulas for the particle flux and the thermal flux

’ ' cT. k x b . 1
[ M 2 J ~ _ 2 J i
Ej“ pjjék/asz(k)Fj(v,)Egg 2 [w w*j(v )1Im gj (v) (31)

~ 2
T. k xb /m.v™ -
_ o M, 2.€¢ j o~ I _3
g] = —anjfdkfdz Ij (k)F] (v )ejB/ B2 (2Tj j)

[w - w*j(vz)]Im gg(x) (32)
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and the energy transfer flux

= ;J M, 2 _ 2 3
Wy = n,m farfav; G FS (v elu - w,y (v2) 1Tng) (v) . (33)

'

In Egs. (31)-(33) " the normalized spectral distribution Ij(k) is
defined <e§¢2(£,t)/T§) = fdej(k). Formulas (31)-(33) state
that the anomalous flows are given by a Suﬁ over all ’i
particles and all fluctuations weighted by_the strength of

the particle-fluctuation interaction given by -Im giw(z).

~~ The anomalous_flowswzj, g\'éﬁd”ﬁi are ‘driven by the

) J
. _ I R
three forces.xlj —K7lnrH, X2j = V]JlTj and X3j' Tj Tw .

Here, Tw is the effective temperature of the fluctuation
field energy density W = nWTW where n. is the number of
fluctuation modes per unit volume. In the regimes of
interest the fluctuation temperature TW greatly exceeds the
1 -1

particle temperature Tj so that the driving force TEH - T,

reduces to X3 = l/Tj.

Each component of the entropy change, such as that
produced by the flow of particles along the density gradient,
may be either positive or negative. The total entropy

production, o = —g J e Xd, however, is positive definite.

Combining the entropy:production; caused by the particle flow

Ogp = =T - zl’ due to the thermal conduction Ogp = =9 * §2/T,

and the energy transfer Ow = —WjXB = —Wj/Tj, it is straight-
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forward to show that the total rate of internal entropy

production is given by

A~ mjv . 3 .
. . . R - >
kx b fx + x(H—x, -3 0. 30

A minimum entropy production principle follows by
observing that for a frozen fluctuation spectrum I (k) the
entropy production functional Oj(Xz) acts as a potential

for the flows. Namely, from Eg. (17) it follows that

d, =L =- % g%i
L-yr--RAL ey
J3=W4g-§2——%—§}%.

From these canonical forms for the flows, Ja = - % BG/BXQ,

it follows that the state of absolute minimum O(Xa) is one

with no macroscopic flow.

In terms of the generalized flows Ja the transport

equations (22) and (23) become

on

_J - _y.
5t - TV 2t 8y (36)
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oT

3 . j o_ _ 3
-fant—— ij g5 J3+Pj 5 T.5,. (37)

[ I o B thé]f’ffl’éd?flémié" stability theory (Glansdorff and —

Prigogine, 1974), the stability of the transport system is

analyzed by using the positive definité prépefty of the ertropy
8. - = s

production ¢ to construct the Lyapounov functional

PI(t) = 3 [dro(X) . | (38)

'The*timefrate*of‘change‘of’?ftf‘duevtO‘a*perturbation*of*the

steady state follows from the transport egquations (36) and

(37) and is given by

ar _ [1(35:)2 3 n (BT)Z:I dP)
— = —fdr|=(==]° + = (== + == (39)
at /~,n 5E 2 o2 5t <dt ext |

where

.dp) | Y N [ n _ P 3 :
(&) ext —/dE[S 3t 1“( 3/2> T 3€ T]

Since P(t) is a positive—definite form, the condition for
asymptotic stability is that dP/dt < 0. Equation (30).states
that thermal instability can occur only through the influence
of the sources and sinks. Sufficient conditions for thermal
stability on the parametric dependerice of the particle

source S{(n,T) and the thermal source P(n,T) can be derived

from Eg. (39).
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2.3 Experiments on the Anomalous Transport Produced by

Drift Waves

W Ba81c plasma phy51cs experimentsrinrquiescentrsteady7
state plasmas show the presence of drift wave oscillations.
The oscillations are identified as drift waves through
studies of the parametric variation of the frequency and
;the wavelength as functions of the physical parameters in
the linear dispersion relation. Two studies of particular
interest with regard to the anomalous transport are the

collisional drift wave experiments of Hendel, éﬁféi}’<iééi);
(1968) and the collisionless drift wave experiments of
Brossier et al. (1973), (1978) In both experiments the

' measured den51ty to potential phase shifts are shown to agree

with those given by the quasilinear electron response.

The collisional drift wave experiments are in a Q-mathine
with Ng = d]JlTe/dljlne ¥ 0. The electron-wave dissipation
is determined by the .resistivityi and the electron thermal
conductivity along the.magnetic field. The dlSSlpatlon is
given by Eg. (18) to within a constant factor that depends on
the coefflclents in the re31stlv1ty and thermal conduct1v1ty |

transport formulas

Figure 2a shows the mean density profile in the stable
state nos(r) and in the presence of the drift wave nOW(r).

The amplitudes of the density and potential osciallations are

shown in Fig. 2b along with the phase angle wén 0 by which
4

T
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the density wave leads the potential wave in Fig. 2c.

Figure 3.shows the particle flux I'(r) = Fwave = (nevx)

computed from the amplitude and phase in Fig. 2. The

particle flux is approximately one order of magnitude

larger than the collisional flux Fo_y also shown in

Fig. 3. Here F and F are the collisional fluxes

e~i,s e~i,w

}computed from the density profile with the stable profile
nos(r) and the mean profile nOW(r) with a wave present,
respectively. The anomalous parficle flux shown in Fig.

‘v3a, along with the anomalous diffgsien coefficient D(x)

Aﬁﬁefined by

dn(r)
dr

and shown in Fig. 3b,

T(r) = -D(r)

is necessary and sufficient to explain particle balance in

the experiment.

Collisionless drift wave experiments by Brossier, et al.
(1973), (1978) in a quiescent"steedy state hydrogen plasma
have established the nature of the anomalous partiele and
electron thermal flux in the collisionless regime. In
these experiments the electron temperature profile Te(r) is
varied over the range Ng = d]JlTe/dJJ1ne = 0.2 to 1.0. The
resulting change in the density-to-potential phase shift,
given approximately by Eg. (18), dictates the reduction of
-the growth rate and the‘particle transport as Ng increases.

The measured wave amplitude and phase shift decreases with

T




increasing ne,as predicted. The measured density oscillation and

electron temperature oscillation are shown in Fig. 4,and the phase
o

Shifts Ven,p 304 Vgp 5y are shown in Fig. 5. Both the

density and the electron temperature oscillations lead the

'potential oscillation by 30° to 50°. Calculation of the

linear electron response with the self-consistent value of

w/k”ve explains these two measured’phase shifts.

The anomalous flux in this experiment is three orders

of magnitude greater than the COIliSiOh&l'flUX;' The - anomalous

particle flux and the anomalous thermal flux obtained from

the amplitudes and phases of the oscillations account for
particle and energy balance in the experiment. The particle
and energy confinement:. timeS‘ip, TE'are obtained from the
decay rates of n, and Te after switchfoff of the plasma and
heating sources. The observed decay rates are consistent

with the anomalous particle flux I' and thermal flux dg-
2.4 Finite Amplitude Drift Waves in Weakly Unstable Systems

For system parametets that are not far past the
threshold condition for the onset of instability, there is
a straightforward procedure to calculate the amplitude of
the saturated modes. The method is based'on the Landau
picture for the transition to turbulence in which at a

small degree of excess over the threshold only a few

TT 1
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interacting modes need to be taken into account. In this
regime the nonlinear partial differential equations for the

fields ¢(§t), an(gt) and GTj(Et)_are solved by a perturbation

Véxpansibn in the small parameter A that measures the excess
‘from threshold of the system. Expanding in powers of Al/2

both the fields Ta = A%ng) + AW&Z) + A3/2Wéé) and the nonlinear
operators Ou'= Oéo) + Aoéz), the resulting system of equations
determines the harmonic production and the change in the
background distributions at second order, and at third order,

£

the nonlinear dispersion relation esz(wk +-&f£','lg(l)f2,'A)'= 0.

~

The vanishing of the complex noniinear dispersion relation
determines the amplitude of oscillation EW‘I)IZ = f£(A) and-
the nonlinear frequency shift Sw££'= g(A). .This calculation B
for the amplitude of the drift waves has been carried out for
several problems. In the case of the collisional drift wave
in the experiments of Hendel, et al. (1967), (1968) the

principle mechanism for the amplitude limit is well

understood.
2.5 Amplitudé Limit for the Collisional Drift Wave

In the experiments of Hendel, et al. (1968) the critical
parameter that'is varied to destabilize the sysﬁem is the
magnetic field, A = (B-Bc)/Bc. The threshold condition is
determined by the balance of the growth rate

Yi = vew*e(kfpz)/kﬁvi arising from the cross-field ion

TTTIr
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inertia compared with the damping Yi = —uovi(klpi)4 from
the ion viscosity where Mg = 0.3. In the Q-machine experiment

the electron temperature gradient is negligible, Ng = 0.

For By > B > B, the growth rate exceeds the damping for a

1
single low order azimuthal mode Myr Wye At second order

in the wave amplitude the harmonic 2 L 2 Weyr which is not
a normal mode due to the wave dispersion, absorbs energy
from the fundamental by the nonlinear coupling to the strong
viscous damping at 2mo. There is also a small change in

- the background density érqfile‘QS'ghqwn~@xperimentally,in
Fig. 2 a, but this change in the density is subdominant to

the harmonic damping. The calculations are given by Hinton

and Horton (1971), Monticello and Simon (1974) and Nishikawa.et

al (l978?7——The—resuits—yieid—formulas—for—the;amp}itude—ak;

the frequency wﬁﬁ of the three dimensional drift mode ﬁ'a/nP =

aE?in(kXx)sin(kzz)cos(k§¥ - wﬁzt).énd the ano¢albus flux.

The calculationé vield amplitudes, ffequencies and fluxes

that are cohéistent with the experiments. This agreement in

the amplitude is in contrast to the excessively large amplitudes
obtained in a simpler one dimensional mode coupling theory

by Stix (1969) in which limit cycles are found for drift

waves of»the form ne/ne = F(kyy + kzz - wt).
2.6 Drift Wave Solitons

There are simple, nondissipative models for coherent

large amplitude periodic traveling drift waves and localized

TT 1T
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drift wave solitons. These models must take the electron
response asg adiabatic n, = Noexp(ew/Te), and thus give no

net transport.

The one dimensional drift wave equation contains the
hydrodynamic type of wave Steepening term newaw/ay as pointed
out by Tasso (1967). Including the finite ion inertia

2

produces wave dispersion Wy = w*e(l - kypz) which allows

a soliton drift wave solution to develop as shown by

Oraevskii et al. (1969). Petviashivili (1977) gives the _

one dimensional drift wave soliton as

e (xt) _ _ 3un“ . 2T a V (
= —F—= =~ =—— sech’ | & (v + kz ~ ut o (40)

where A is the real constant related to azimuthal speed u

2 _ ;2 o 2 2,,°2
through A® = (u UVge — K cs)/u,,

The drift wave soliton (40) is a solution of the model

equations
22,30 50 30 . 2V
(L= PV 3+ Vae 5y " MeVae 25y "5z = O
(41)
AN T
ot s oz °

Eetviashiviiiishgws that the one-dimensional drift wave
soliton is unstable to a finite kX filamentétion instability-
More recently two-~dimensional solitons and their interactions
are investigated by Manakov et al. (1977) and Petviashivili -

(1978) .

T
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2.7 Quasilinear Limit of the Anomalous Flux

The anomalous flux depends on the particle distributions

~and the fluctuations spectrum. In the presence of a low

level of drift wave turbulence the collision frequency,
although low compared to the wave frequency, is still
sufficient to maintain the local Maxwell~Boltzmann velocity
distribution. The critical collision frequency Vo = Vi

above which the velocity distribution is collisionally
dominated is determined by the balance of the wave induced
parallel velocity‘diffusion given by . -

D, = m(e/m )ZEIE'(k)|26(w - kyvy) and the collisional
Il e’ I k Il

. . _ 4 2.3 .
diffusion due to Vo = 2ﬂnee Zeff]J1A/méve. In analyzing

+he_vw=diiiusi@nv—it—must—be—neted—that—the—resenaﬂ%;eieetrens :
which determine the growth rate have V] Y Vg = (2Te/me)1/2
aﬁd"ﬂv”1n<;vé E‘mex@wk/k”}=<~ve;.»The resonant electrons

are scattered in pitch angle out of this 'sector of velocity
space at the rate v eff = Vg (v /v )2 ~When thé competltlon
between the qua31llnear diffusion and the colllslonal
resteratlon of the Maxwell Boltzmann is expressed in terms

of the fractional turbulence level W/nTe glven in Eg. (21)

and the maximum parallel velocity Ve the critical collision

frequency is

ve = 228 2 (42)
n C e

T
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as shown by Galeev and Rudakov (1963) in the first quasi-

linear analysis of drift wave turbulence.

' Tnmfhé'iégiméfﬁém>”v;7the”éfbwtﬁ”féﬁe'kaéﬁahifahépérff'”'"“

are determined by the local Maxwell-Boltzmann distribution
as analyzed in Secs. 2.1 and 2.2. At lower collision

frequencies Vo < v, the background electron distribution

ife(x,vl,v”,t) changes form under the influence of the

turbulence.

Quasilinear theory, as developed by Galeev and Rudakov
(1963) and Sagdeev and Galeev (1969), for the change in the

background distribution function fj(x,vl,v”,t) gives

_of e,.,_2 -

ok

_J - o 3y2 9 LY 94, - _J, ¥y 3
ot 1T(m.) k(k“ wve T o Bx)lJowkl d(wk k”v”)(k” vy 6. 3%
j k i cj ~ I “ej
‘where
2
dlsor]sl 2
3t~ thlwkl

with Jg = Jo(klvl/wcj)' The dispersion relation for the

unstable part of the spectrum in the resonant velocity

i = < el
interval Cg < v mE/k” S v yields
T 3F k. OF
_ ke e Yy e
Ve (B) = (kH v, @ ax)
~ I ce

melk“]w*efo

Affvffzﬁﬂgﬁﬁfffﬁffﬁ77-777f,&f4777k7773f4ﬁ77777777777777
(43)

(44)

TT 11




38
where

Fe(x,v”,t) = jazﬁ(v“ - wE/k”)fe(X,vl,v”,t).

g = Oxelo/[1 + T(1 = T)] where
g) = I (b)exp(-b), b = (klp.)2 and T = T_/T,.

o LM e’ 7i
The quasilinear equations (43) - (45) apply when the width
of the parallel phase velocity spectrum A(wk/k”) o Ve is

. 1 3
greater than the mean trapping velocity Vip = ve(W/nTe)ﬁ ’

which is well satisfied when W/nTe < (vc/veﬂ .

The maximum parallel phase velocity in the spectrum

depends on the particular system. In the infinite slab

1 1 e
1 = = ,) 2 = 2 > .
without shear Ve v ve(me/Bml) cS/B for B me/ml

A

and v, = vé/2 for B < me/mi. In the sheared slab

I

L i
_ 2 2
Vo = cS(LS/rn) for B <,rn/Ls and Ve cS/B for B > rn/LS
as shown by Gladd and Horton (1973). For a finite length
Lo’ shearless system, Vo = max(g,k)Lo = cS(LO/rn) < V-
As the turbulence level}develops the electrons diffuse
. |
in parallel velocity more rapidly than in radial position.
The v”—slope of the distribution evolves to the "plateau"
where
“k afPh x  afBl |
= + =0 for |v | <v,. (46)

v” Bv” mce ox c

TTT




‘arises from the cooling in parallel kinetic energy of the =
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For w, = wi, and dTe/dx= 0 the marginal distribution fgl
is the Maxwell-Boltzmann distribution Fg(v). With Wy < Wyg

the plateau distribution develops a steeper v”~slope that

electrons that emit the waves. The cooling of the V|-
distribution is a prominent feature in the particle

simulations of Lee et al. (1978).

The extent to which the v”—distribution is distorted
from Fg(v”) by the waves increases strongly with kipg-
From the nonlinear transformation of the wave spectrum
analyzed in Sec. 3 it is found that energy in the short
waves kipi = (miB/me)l/2 > 1 is stfongly transformed to the

long wave region k;p. £ 1. Here, we restrict consideration

~

to spectra |s0k|2 that are peaked at Ei such that Eipi < 1.
For such wave spectra the quasilinear plateau obtained from

Egs. (46) is

2

g 2 2 2 '
m ' m_ v m_ (v, ~v>) m v
pl _ .M e (B) _Tell _Tetll e’ fe 2 e’ _ 3,

fe =Fa(v)) (2'ﬂTe) )7 2T 2T, (kyp) ™ +n( 2T >) (47)

for ]vﬁ] < v, and fgl = Fg(v) for |v”| > v,. The parallel

kinetic energy released in the evolution frdm Fﬁ to le is
A v m v2 2 Y=
1 2,.M _ pl ~ c e’ c k '
/f Y (Fe‘ fe ) dv ne(ve)< 2Te > <wE> (48)

where n, = ne(vc/ve) is the density of resonant electrons
2

with parallel kinetic energy % m. V.- In the plateau the

TT T




turbuient wave energy density is given by -

pl o 5 - . ) .
W /nTe = (vc/ve) (Yk/wk). The diffusion to the plateau

- — - — - — —occurs-at-constant-§-=- X"’"”Eivnz’/*z“”ééwE —which-bounds ~the -~~~ =~

displacement of the resonant electrons by
§x = r_ (=) (49)

as shown by Galeev and Rudakov (1963). To the extent that

the plateau is achieved the anomalous diffusion ceases in

- Tthe>ééllisionless plasma.

Clearly, it is now essential to take into account the

fact that the particle collisions act to disrupt the plateau.

Since the resonant electrons lie in the velocity space sector
restricted by |v"[ < Vo and v, ~ v, particle’éollisions act
predominantly to pitch-angle scatter the electrons as

described by the Lorentz operator
CE_ = v _(v)3;(1 - A%)a:f (50)
e e A AT e
where )\ = v”/v = cos & and ve(v) = veG(v/ve) is the energy

dependent collision frequency. Introducing the quasilinear

phase space flux

S

N
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_ e 22 2 _
T oV Vs ®) = o) "Ly 1oy [ 78 Ly =y vy)

of k. of
[ e v e

o TRy e e
s e T

the quasilinear or turbulent collision operator for fluctuation

spectra with Elpi <1 is

N oJ v oJd
D f - e7+ ” ) e

g7 e av” W (52)

ceYde 9x

and the complete kinetic equation is

& = Dézfe + Cf . 4 (53)

Y.

The v”—divergence in Eg. (52) dominates the x—divergence by

the factor (ve/vc)2 so that fe:evolves rapidly to the balance

BJe(fe)
BV”

. 2
- ve(v)ak(l - A )akfe

2
2 0 M
-V \)e(V) S'V—z'[fe - Fe(V)] . (54)
I

IR

The radial diffusion is determined by the subdominant terms
in the kinetic equation (53) from which the density and the
energy moments give the transport equations (22) and (23) with
the formulas

M

I'e = -fdz ET Je(fe) (55)
; ce de

™11
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ce de 2

The transfer of energy from the electrons to the drift

(56)

We dv m vy I (£.) (57)
as first given by Gladd and Horton (1973).
The two mechanisms determining fe in Eg. (53) compare as
Vg to v . For Vo > Vi the distribution is the Maxwell-
Boltzmann with a Vi/V, correction. For v, > v, the
T distribution is ' )
= ¢Pl (1)
fe = f£.7 + fa
T where
- (l) _ _2 3 repPl _
Je(fe) = J fa = -V, (v) . [f F (v)1 . (58)

Il

Galeev and Sagdeev (1973) point out that by taking the vy

integral of Eq. (58), using Eg. (46) to write

afpl/av” = (E,/Fju )(afpl/ax) = (K,/Fjug o) (3F/3x)

and using Egs. (44) and (45), the balance expressed by
Eg. (58) determines the relation between YE(fe) and
YE(Fg)A= Y% . To within a factor of order unity the

relationship is expressed in terms of v*/ve as

11
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M
Tx

1+ v*/ve

,_mélﬁhoughﬁEqiﬁ(SQL_dQegwth_detexmineufé%fﬂand,|¢klf,ﬁw

individually, it does determine the combination, namely

J_, required to evaluate

e

the anomalous flows.

From Egs.

(47) and (58) the first order flux is shown to be

2

2
2 v _(v) vyv m. Vv
(1) e IV M= 2 e’ 3
Jo7 = —p— (5 F LK 0) "+ (5 - )] (59)
i : v e
e |
) for [v”1 < v& and J_ = 0 elsewhere. o
The anomalous flows calculated from the first order
phase space flux Jél) using Egs. (55), (56) and (57) are
4\)enevi - 2
e = " 3u_v_v, [CotkP - Cynel (60)
ce de e
’ 3
4v n T v g
elehe C = 2
qQ, = - z—————— [-C(kp)™ + Con_] (61)
e 3wcevdeve 1 H. 2''e
4v n T v
o e e e, ¢33 T2
We = —3— (5 Ic B " - ¢pn ] (62)
' . ' .. . _ 3
where 9, is the thermal conduction e = Qe -5 ere and
A v v2
_ 1 M L,2x 3 _"eln
Cn = ;EL/dXJFe(Vl)(vg) v(Vl)(z' jfﬂ;) . (63)

TT 11
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For 7 _cc > 1 the velocity dependence of the collision
frequency is V(u) = l/u3 and the integrals reduce to

C0 =Cy = 1 and C2 = 2/3. At the high collision frequency

limit of formulas (60) - (62) where Vo = Vi the flux

. - ~ v o2 -
becomes T necS(W/nTe)(kyp)6E where 6E (vc/ve)[(klp) ne]
so that the formulas join continuously with those in Sec. 2.1

and 2.2 where v_ > v,.
e

The anomalous flows written in terms of effective transport

coefficients are : - - A

dn

= oD —°
Fe = =D dx
ar |
— fas == e, - e [N\
) ‘e dx 64)
We = VeffneTe
where
D =D, [C,(X 02 - c,n_] (65)
= Poltpliyr 1"e
X, =nD.[C, - C (f'o)z/n 1 (66)
e e 0-72 1L é
with
_ 4 2,V¢, 3
DO = § \)ern(v—) . (67)

TT TIT
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The integrals C0 and C, are positive definite, whereas Cq is

indefinite.

in théiregime of reversed temperature and density
gradients where R < 0 the particles flow.:down.the .density
gradient;and the thermal energyfflows down the temberature
gradient. The net energy flux ée = % TeT + de nearly

vanishes due to the cancelling contributions, as noted

by Liu et al. (1972).

The turbulent diffusion is characterized by two regimes.
Eor v, < v, the quasilinear diffusion from the turbulence

actually limits the anomalous flux to a value determined

by—the—colIisional—destruction—of—theplateau+—

Between collision periods the resonant: electrons diffuse
the distance 8x given by Eq. (49). The resonant electrons
of density n, = ne(vc/ve)‘are scattered by collisions at the

rate ve(ve/vc)z. Thus, the diffusion rate in this regime is

n v v
r e, 2 2 2,°¢c,3
Dy = (=) _ (/)7 (8x)" = v_r (=)
0 ng' e, e'n v,
as pointed out by Galeev and Sagdeev (1973). For Vo > Vi

the collisions maintain the Maxwell-Boltzmann slope to the
resonant electrons. Here, the diffusion of the resonant

electrons occurs through the turbulent velocity %vé) with a

T
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correlation time YLM)/wészhich leads to
k k :

?where We is the maximum turbulent energy density given in
Sec. 3 from nonlinear saturation, Wf = neTe(p/rn)z. and W is the
wave energy density.

The two regimes are summarized in Fig. 6. For nonlinear
saturation in the strong drift wave turbulence regime where
W=W; = nTe(p/rn)z;'the’anomalous diffusion coefficient =

varies as

C
S P 4
< < = =20
vern(v ) for Vg S Vi = (r )
e n n c

D = { | (68)

cT Vo | c A%
\ T r )(——) for v Z v, = — )2(----)2

where the different values of vc/ve in terms of the plasma
pressure B and the shear S = rn/LS arefgiven in the paragraph

follow1ng Eq. (45) . From Egs. (65) and (66) we observe that

X C,=Cy kp) /n

Co(kp) -Cl Ng

Depending on the system parameters the electron thermal conduction

due to X g May be several tlmes greater than the convective rarticle

transport from drift waves.
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3. Drift Wave Fluctuation Spectra

The rate of anomalous transport depends dlrectly on

777”777W“ﬁtheimagnltude and the spectral distribution of the electrro
potential fluctuations I(E@). The fluctuation spectrum
is influenced by many complicated processes rn the plasma
and, consequently, cannot be given precisely except in
certain exceptional cases. On the other hand, the general
behavior of the spectrum has been extensively investigated

- - - with the result that certain features of the -fluctuations
are well-known. We now consider the physical processes

that determine the potential fluctuation spectrum.

A The--drift-wave-dispersion-relation yields-a-growth-rate————— 1
Y(ky, kl' k”) for a broad range of wavenumbers once the
system parameters are past their threshold values. The
quasilinear decorrelation rate for the electron interactions

is Ak”ve and! for the ion interactions is Awkvwhere Ak

and Awk are the widths of the unstable spectrum. The

e e e e e

correlation times are such that Ak“ve > Awk = Yk'. For

~

~

macroscopic gradients that are weak over the scale of the
ion gyroradius the energy density due to the diamagnetic
currents which produce the drift instability is a small
fraction of the thermal energy density,

1 2

' 2 ,
Wd =3 nimi(vdi - Vde) & (p/rn) nTe. The maximum energy

W% available to drive the collective field energy density W

due to low frequency fluctuations with an average radial
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width (sz) ~ (ki)—l'is bounded by the thermodynamic free

energy of the system W/nT_ < Wf/nTe & (Ax/rn)z: or

(Ax/rT)2 for T < T Fowler (1968). These circumstances

indicate that the general method for .the problem of nonlinear
drift waves is the statistical theory of plasma turbulence
which takes into account the large number of weakly interacting

fluctuations.

The general turbulence theory consists of expanding
- the nonlinearwequations—in powers of W/nT. The truncated - -
weak - turbulence expansion becomes inadequate in the state of
fully developed drift wave turbulence at the level where the

E X B mixing of the plasma produces nonlinear decorrelations

<(Ef¢*yﬁ}g>% at~aﬁrate~eémparabie«toﬁthevquasilinear
decorrelations rates. At the turbulence level given by the
free energy bound W S'W} £he random Doppler shifts from the
E x B motion are comparable to Wego As a result in fully

developed drift wave turbulence it is necessary to

sum high order secular contributions in the interaction

- propagators. These renormalized drift wave:turbulence

theories are developed in Kadomtsev (1963), (1965), Dupree
(1967), Galeev (1967) and Horton and Choi (1979). The

renormalized propagatoré describe the decorrelation of the
collisionless resonance w = k » v from the stochastic E x B

~

drifts produced by the turbulent collective electric field.

T T
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3.1 Qualitative Picture of Drift Wave Turbulence

Before proceeding to the systematic nonlinear theory

of the drift wave inéféﬁiiif&riet dérfbiidﬁﬂéhéiééiifhiﬂ
analysis by Oraevskii and Sagdeev (1963) that uses weak
turbulence theory to give a qualitative picture of drift
wave turbulence and the associated transport. First, it
is observed that the linearly unstable region of k-space
is limited to domain I' in Fig. 7. The larger k”rn region
in domain II is a region of strong collisionless jion
damping. The smaller k“rn region in domain III is a region
of collisionless electron damping. Above a critical wave

amplitude for the drift wave oscillations there is a strong

coupling of the active k-scales to the damped k-scales to

balance the input of wave energy 2Yka .

~

The strongest wave input occurs for klpi 2> 1 and

Cq < wk/k”_g Vp where

+ i Pre (i + i Cxe >
W 1y, & —— 1
k k k, p.

with Y driven by the square of the density gradient and
L . ~ - ~ 1 L '
reaching the maximum Y = cS/rn when k”rn =3 (B/2) % and
L ‘

kip; ™~ (miB/me)2 An elementary estimate of the critical

amplitude for nonlinear mode coupling in the ion dynamics

to balance the linear growth Yi is

(69)

™11
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~ & 1y 9
VS (V) m, )k )Bvl 0F; kxr (V)

which occurs when El(k) = —iklw(k) is of order

ev (k) _ 'max _ 1 } (70)

~
.

T klvi klrn

. L
» ; ~ . .~ 2
From the phase shift formula §_ (k) w*e/k”ve_ (kyp)(me/miB) ’

the approximate spectrum in Eg. (70) and the anomalous flux

- formula (17) the k| -dependence of the spectral integral cancels,

and the resulting diffusion coefficient is

o CT T g e
..__.'._. p e - e Lz - |
n 1 e

for Be > me/mi and simply

v

) CEe c
D = (E;)(EE?) (;;)

for B < me/mi. The more precise evaluations of the spectrum
and diffusion given in Sec. 3.4 below show that formula (71)

1
over estimates the diffusion by the factor (miB/me)é.
3.2 Systematic Theory of Drift Wave Turbulence .

The quantitative description of the nonlinear dynamics

begins with a computation of the nonlinear charge densities

T

from a small amplitude expansion of the Vlasov equation.

The expansion is straightforward, as given by Sacdeev




|

o o S ) _
“and Galeev.(l969),jand yields the nonlinear equation for P

2"73 71 P2 73

ki+gz+k3 '
oy . .)

= ' =k .
where k stands for the Fourier sbace variables kw.

For the background particle distribution fj(e,X) where

€ = % v2, X =x + vy/Q,}with.negligible velocity space
| - . .

~anisotropy, the linear and nonlinear dielectric functions

“L'E Sk ke kPRSP Feeam0 (72

k,v,\ [/ 3fs k. 3
. ‘32/ lvlé‘qﬂ f17+ - fj\] |
3 PSR o W o AR Wy !
2_(2) - 2me; (k' xk" -« z) O\w . /0w . 0\ w_.
S : 2 ~ w - kv + 1iv
' 7 Mgy 1V
J 3¢
kl'+kll =k
of. k' of. 37. kil 3F .
aeJ W . BX aﬁ w . BX
X cj _ Cj ‘ . (74)

RN
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(3) 2med (k' x k"« Z)[k™ x (k' + k") - 2]
k €10 " " =Z J ~ =~ i >~ ~
k' k", kML 1302
k’+kll+klll=k j cj
k, v kv K"y s
To ()T (G T (5T ()
dv - ¢y <] cj c .
B O I N R TR
k' 5f. 3. k" 3f.
Y J w__J- Y J
+ wcj 9xX W "Se + wcj 9x
) “Kvy v IV BT - Ky, + v | (75)

'In the collisionless weak turbulence regime the iv in

the particle propagator is the positive infinitesimal arising

Frnm_the_time_histoxy_inxegLai_which—gua£antees—eausaLT—anaiyt$c

response functions. As the turbulence increases to the level where

2 2 -
YO = wﬁ there is a nonlinear or finite amplitude

~

((],-3 . 'Y*E

decorrelation of the wave-particle resonance. The propagator
then contains the non—Markoviaﬁ turbulent collision operator
iv »> ivkw given by renormalized turbulence theory.‘ Horton
and Choi§(l979) obtain the formula for ivkw;bY“a'selectivé

summation of high order secular contributions to the free

particle propagator which gives

k v
252 VL
(ka| . Z) lSDk.] 0(_(.0—0_3-—)
- - c
gy VL) = 22 R D I A (76)
~ k!

In the region where kuw is small compared to the peak kw of the

fluctuation spectrum, the turbulent collision operator reduces

TT 1T
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kw ~

~

to iv > k Q(z) . % where D(z) is the Markovian turbulent

diffusion coefficient

‘ A N kv
T € e A N LN e g
T -l Ey =
~X 522 TSR AL E D@ K (77)

k"l

given by Dupree (1967). Kadomtsev (1963) introduces still a

different turbulent broadening operator ivkw - nk@(v”) given

in Sec. 3.4. Kadomtsev (1963) points out that the renormalization

of the propagator does not appreciably alter the value of
the nonlinear transfer rates in the mode coupling equations.

Rather, the role of the renormalization is to describe the

finite correlation time_llﬁkm(z) that limits the resonance

period of the particle v with the fluctuation kw. Although

T the turbulent énérgy density Wgfiéwéﬁiééwéﬁéii‘Eompaféd with
the thermal energy density, the shortening of the interaction.
time with ihcreaéing field amplifudes is an impértant nonlinear
process in collisionless drift wave turbulence. |
As eXplained earlier, in the theOriés of arift'wéve,
turbulence it is argued that the nonlinear interactions
produce sufficient mixing of the modes that a statistical
description of the 2 fields is justified (Terry and
Horton, 1981). The d;éree of randomness-of the fields is
assumed sufficient to allow the fourth and higher order
cumulants to be neglected. The third order correlation
<¢kl¢k2¢k3> is computeq by perturbation theroy. The

equation for the spectral distribution I, r Eq. (9), of the two

T

|
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point correlation function of the potential fluctuations
that follows from the statistical description of the mode

~ couplings in Eq. (72) is

“ (2) (2) -
} C1 o1 z oo ek otk 5. (3)
X7k kkl k" ek"kl k,k|l—kl
* kl k_kl- (78)

| ‘kl Ek

This well known result is derived, for example, in Kadomtsev

(1965) and in Sagdeev and Galeev (1969). We now proceed to

the principal results that follow from Egs. (72) - (78) for

drift wave turbulence. The results given here are obtained
in different limiting approximations to this nonlinear

system of equations since no general solutions are known.

First two general limiting forms(of Eg. (78) are to be |
noted.  In the theory of weak turbulence Eq. (78) is reduced
to a balance equation for the k-spectrum by obsérving that
for sufficiently small amplitudes the lowest order solution
#),where the time dependence of I(E,t)

describes the slow variation induced by the nonlinear couplings.

is I(E@) = T(k,t)s (w-w

The imaginary part of the Eg. (78) determines dr(k,t)/dt and

when calculated reveals two physical processes. The processes

are the three wave couplings:and the nonlinear collisionless ... -

~dampihg,'ofteﬁ calléd'ihduced Wavé scattering, [Chapter IV.2].
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‘The second point of view of Eq.(78) is. that first advocated
by Kadomtsev (1963, 1965). Returning to the problem

of the truncation of the correlatlons that is made in g01ng

~ from Eq. (72) to Eq. (78) , we may view Eq (78) as
containing the leading terms in a small W/nT expansion

for two coupled equations for the renormalized fluctuation

nl

propagator €y and the spectral distribution Ik. In this

framework these equations are the plasma physics analog

of the Direct Interaction Approximation of fluid turbulence

i

| 1ntroduced by Kralchnan (1965) as pointed out. by Kadomtsev (1965)

The relevance of this p01nt of ‘view becomes clear when the

equations are analyzed in the fluid llmlt in Sec. 3 3

"Follow1ﬁg Kadomtsev (1965) and Tsytov1ch (1977) the coupled

‘ I —and
the renormalized response function eﬁg are
|
I Ipu ~ (79) Ty
and
k' k= k'e k'yk _ 5 (3) | (80):
k,kl,_kl . (80)

In Nav1er—Stokes turbulence where e(

k

k. k = 0, the second

3

1

1r=27
equation is often written for the nonlinear response fﬁnction

= ni
l/s:k .

1

Ry
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, (2) (2) o ‘
[ek - 42 €t -k Rp-kr Tpr €k k]Rk =1 (81)
5 k' .

'whlch is the fluctuation analog of the renormallzed propagator

equatlon for gk(v) It is ev1dent the Eq (78) is the first iteration
of the DIA equation (80) ‘in which the approximation Rk" = l/ek"
' is made in the interaction integral.

3.3 Fluid Limit to Drift wWave Turbulence

Some particular results for the behavior of the nonlinear
transfer and the form of the fluctuation spectrum are known

in the fluid limit of drift waves.

directly from the nonlinear Vlasov response functions in the
limit that klp. <1 and k”v. < w <vk”v . Alternatively,
the problem may be formulated in terms of hydrodynamlc

equations derived in the drift orderlng as glven in Eqs (19)—(21)

The hydrodynamic formulation is particularly appropriate
when there are sufficient collisions to justify the use of
collisional transport theory to determine the plasma flows
parallel to the magnetic field, such as nj”:=E” + V“pe/epe
for parallel €lectron momentum balance. In the collisionless
regime, the hydrodynamic approximation to the nonlinear

coupling remains a useful approach which can be partially

The—fluid—limit for-the drift-wave-problem-is obtained—— — ——

TTT10T
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justified. In the collisionless description the electron
resonances that produce the phase shift and the growth

rate are retained with kinetic theory formulas.

In the fluid approximation to the nonlinear dielectric

functions in Eqs. (73) - (75) we write that kzkzD Eﬁz - eﬁz

to remove the Debye length dependence of the theory in the

2,2

long wavelength regime, k“A < 1, where the quasi-

De

"neutral approximation is well satisfied. The fluid limit

of -the Vlasov response functions gives

w Wy 2 2 W
* % . * .
=1 - i - _ _*pi ke _ *pi
€ = 1 16 w + klp (1 m ) 2 (1 _1T_) (82)
£Tom Egq. (73) and
_(2) § CTg k' X K" vz fTu (M) w (k')
€xr,x" T 7 eB W' + w" w" - '
| ‘ A
. __e_[ I, S [ RO ]
mi?ww w'2 ww w,2 B
w (k") T k2 "
*pi _e;[ T ]
" "
U‘,)'\ mi wz w(,l) w"2 C
2 2. ’
w (k") rk k, k! k!“q
. Uxpi |l + (! + | (83
w' .2 ww' ' 2.
w w C
from Eq. (74). The third order dlelectrlc function e( )(k k )

.IS also readily obtained from the small kipi and k”vi/w'expanSLOn

—— of Eqg. (75) .

T TIT
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. The subscripts A, B and C in Eg. (83) label the origin

of that nonlinearity in the hydrodynamic equatlons. In drlft

wave fluctuetlons only ther;on behavior is hydrodynamlc.ffﬂfrf
The coupllng terms denoted by A arise from the E X B |
convective nonlinearity and the nonlinear polarization

drift. The terms denoted by B arise from the E x B

convection of the parallel ion velocity and the terms

' C from the E x B convection of the ion pressure.

- The A terms .proportional to (w}/w" - wi/w")
typically dominates for the (klb)z and N driven electron
drift wave. The.A term arises from the E X B convective

nonlinearity V « (n (1) (l)) @ k! x k" . z[w;/w'-—kﬂ o ]wk.wkn

and~from~the*polar1zatlon drift nonlinearity in which

0 BREPN 2 2 .
Ve (nf )v}g Vvg) = k' x K ¢ 2(k]%0%)¢, 0, where in both
terms the kf contribution is due to the polarization drift.
These polarlzatlonvdrlft contributions-cancet in obtalnlng'the ;

final term A in Eq (83).

The simplest model for drift wave .turbulence follows from

con51der1ng only the EXB and polarlzatlon drlft nonllnearltles 1n7

V» the hydrodynamlc equatlons correspondlng to the A terms in Eqg. (8§z,

Wlthln thlS ‘model there is an 1nstruct1ve analogy between drift

waves and two-dimensional fluid turbulence. Consider the limit

in which iﬁi, kﬁci/wz and w*pi/w are negligible in Egs.
(82) and (83) and return to Eg. (72) inverted from w-space
to t-space. The gquadratic mode coupling equation that

results is

T
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Ay CT s K'xk" -2
— = = —_— E' -~ = n -
" Ktk L?

where wk==w*e/(l-kkl2p2) ‘Equation (84) is derived by

Hasegawa and Mima -(1977 and 1978) from the pressureless ion hydro—

dynamlc equations and the adlabatlc electron approx1matlon.
The mode coupling element in Eg. (84) is a strongly
increasing function of klp and vanishes unless ki and k_L are
in dlfferent dlrectlon.
In terms of the space—time dependencé of the electrostatic
potential ¢ (r,t) the mode-coupling equation (84) is equivalent

to the two-~dimensional partial differential equation

T™T

C."‘

(1 —p2v2y B8PAX,y,E) _  _ dp 2 :
(L -p Vi)_f—éE'_—- = Ve 3y + eB [w,p vlso]’ | (85)

where the Poisson bracket [¢,f] expresses the convective

“derivative
e cacpaf cd33f - cir, .
Equation (85) can also be derived from V: j; + Vipdy =0,

using the ion polarization current for j; and the collisionlessM

electron conductivity d” =f-inee27ﬁw - wne)/kﬁvi for the paxallei

electron currént.v The analogy with two-dimensional incompressible,

inviscid neutral fluid dynamics is evident when the adiabatic

shielding of the electrons and the driftbvelocityA v are

de
neglected‘(equivalent to droppiﬁg j”);' In this limit, Eq. (85)

T
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is equivalent to the neutral fluid equations 9, = ~[y,w] where
~7 * : . .

Vix,y,t) is the,Stream.function and w = Vzw is the vorticity
_ 1l
of the incompressible flow.

Futhermore, exactly the same equatlon as (85) is obtalned

for two- dlmen51onal atmospherlc flows on a rotating planet(Charney,l94@
In the atmospheric problem the gradient of the:vertlcal Component

of Coriolis force f(x) Wlth longltude produces the wave frequency

'k = k z><Van/(l + klp )  with z the vertlcal coordlnate.

The alsper31on dLstance is set by the .Rossby
radius Py = (QHé)%/f; where g is the acceleration of gravity
and, Ho -the vertical scale height {for the -atmosphere. There‘
are observations and computer simulations of Rossby waves in

. co ,

the atmosphere and oceanographic literature,| (Rhines,1975; .Williams,

1978). From this literature it is also known that there are

B — il:a-r Or’e:amp:lfi‘i:udie:tmo_:'ctj:me‘nsi,onaLs,o‘LJ_,tary_wa,v_e‘;s olutions of the —

form o¢(x,y,t) = ¢[¢§2 + (y'— ct)z], where @(r) ~v exp(-kr)

for r =+ °°o(FfLierl, et al., 1980). The two—dimeneional drift wave or
% Rossby wave solitons propagate With a»Velccity c = vdé or in the direction

opposite to Vie*

The ccnvective nonlinearity from the ExB convection of

the plasma is an iﬁportant characteristic of nonlinear drift-
wave theory. The gquadratic coupling ‘[w;f}f describing the
nonlinear transp0rt is a conservative process that gives rise
to 1ong;rangé coupling of the modeés in E epace proportional
to ky x kj + 2 (the area of the interaction triangle

-

Ainteractions follow from the properties

+ k, in -k space). The conservation laws for the.

S 3 Bt
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[-J-f.:[ggrh] dx = = Jg[h,f] dx '=, ‘jh[f,‘g]'d’%
and '
S fg;h]l "= 0 <= n = h@)”*’*” S

Since [g,h] is also the Jacobian of the coordinate transformation

S - from x,y tO'g(x,yj,h(k,Y) its vanishing gives the generalization

' to non-sinusoidal functions of the condition shown in Fig. 1.

'_ For example; in the drift wave model (85) of'Hasegawa and Mima,
it is evident that the conserVative properties of the mode coupling

guarantee that the normallzed energy den51ty, Eg. (25)

W= @I[w + (Vl¢) ]dx - and the potentlal entrophy
= oj[(v ¢) + (V ¢) ]dx Tdx . are constants of the motion.

- When a large pumber of modes are present the dynamlcs is
strongly m1x1ng in the wk(t) phase space.v'Thls hypothesis is
tested for the two-dimensional inviscid initial value problem
in a study by Fyfe and Montgomery (1979). In an eXample with
a truncated, isotropic k| spectrum with l<k£o< iS‘the numerical

integration for ¢k(t) is shown to agree with the . ™~

equlllbrlum statistical theory that dictates

e — = e e e e e et e e e e e m m e — = — = .

that the observed spectrum is the most probable phase space
distribution con51stent with the constants of the motlon.
For a large. number of modes the ‘most probable phase space .
distribution consistent with the constant energy W and

enstrophy U is exp(-aW - BU) where W =-%% H_+kf)|¢k|2

it | R
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_1ls.2 2
U= 35Zk](1 + k) |<pkl

. . . 2 .
distribution Iwkl for the truncated inviscid system is

]2 Thus, the statistical equilibrium

2. 1
) = 2 2
(1 + k[) (o + Bk])

iy, |

° !
with the constants o and B determined by W and’U,ijfe and

Montgomery (1979). This equipartion distribution is divergent as
. o1 L 1.2 U ’
kmax + o with W fjll(kmax) and U B kmax and does not

represent the physically observed nonequilibrium spectra.

Theiobserved turbulent %spectrai.as reviewed by Rose and Sulem

(1978), vary nore nearly as w ~ K7 or €lv,] % = 1/kf for kp> 1.
Such a distribution can be understood as the broadest ST
spectrum consistent with a logarithmically convergent value
for the enstrophy in the kmax + o limit. A simple derivation
of this l/kf spectrum is given by Hasegawa, et al. (1979)
from a wave-wave decay analysis of Eqg. (84). The decay
process proceeds with the intermediate'wavenumber mode
ko (kg <k, <kj) decéying by giving the fraction'(k%-—k%»«k%-—ki)
of its enefgy to mode k; and the fraction (k%-—ki)/(k%-—ki)
of its energy to mode §3.~ A Monte-Carlo simulation of this
decay process shows that the spectrum becomes anisotbropic at

2 2

long wavelengths, klp < 1, where energy preferentially flows

to ky < kx at small k. This anisotrophy is consistent with

length,regiQh.~
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The anisotropic feature of the k-spectrum is supported
by observational and computational studies of Rossby

. .
waves {(Rhines, 1975). It appears that most of the energy

:initherﬁoésby waﬁé is in the 1ongest aneienéth'mbdes of
the system, and furthermore, the energy appears preferentially
in the ky = 0 modes and at a finite kx. This energy distribution

produces large zonal flows in the y-direction with a periodic

variation in x.

%ﬂTij ?In weakly 1bnized plasmas drift wave turbulence is limited by

the E k’E mode coupiiné'as“givén by Sudaﬁ and Keékinen (1977,
1979) and Keskinen (1981) using DIA theory. Thé theoretical
results are compared with computer simulations and ionosphefic
measurements. |

The dfift wave problem differs in some important aépects‘
from the neutral fluid problem. One important difference
is the presence of dissipation ﬁhroughout broad regions of
_E@ space due to ﬁhe particle-wave interactions. The most
important dissipation is that from the electron-wave
interactioné iéi which leads to the excitation of the instability
and the n-y phase shift that produces the anomalous plasma
transport. The drift wave mode coupling equation based on the

ion hydrodynamic description taking into account the dissipative

phase shift iGE is developed by Horton (1976b). a

In the presence of the phase shift the E X B nonlinearity
dominates the finite ion inertia nonlinearity in Eq. (84)
in the long wavelength part of the spectrum where

(k_Lp)2 < 5é(KL)' The mode coupling element is now

T

N

TT 1T
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[n,0] ~ ;5' x k"o E(Gk" - 6k,)¢k,wk"nghich also conserves‘

the wave ehergy W = % f[wz + (Vlw)z]d§ in the mode coupling.

~ !

Due to the nonlinearity, wave energy is coupled

fﬁom fegions of ngth yk/wk = Gi > 0 to regions of ﬁéliision—
less damping. From the spectral equation for dI(k,t)/dt

given by Horton‘(l976), the balance of power input ?o the
spectrum 2wkaﬁwk occurs with nonlinear transfer to regions

of absorption when the spectrum is given by

-2 7

(86)
2. 2
(ern)(kyp)

T
e

where Ge(gi) = -Im ;k(wk) > 0. The k) -spectrum

in Eg. (86) reflects the transfér of wave energy from short
wavelengths to long wavelengths where it is absorbed by
collisionless ion damping when Weg ~ k”vi ~ vi/L where L

is the effective parallel length of the system or the

electron Landau damping when (k_Lp)2 < Ne /2.

The transfer of energy to long wavelengths shifts the
peakof the spectrum from the fastest growing mode at the
maximum of kyée(k) to the maximum of Se(k)/ky according to
formﬁgé (86) . fHOEher'studies_suggest -
that theﬁmé;iﬁum of the spectrum occurs nearlthe‘long wave-
length poinﬁﬂof marginal stability Im g (W) ~ 0. The

renormalized turbulence theory used to obtain Eg. (86)

predicts broadening of the spectral lines atrwk given by

11T
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= w<kirl> (k,p) I(k0) (87)

where v, < Wy is assumed in the theory for I(ky). Further

kN
‘aspects of this theory are described by Tang (1978).

Microwave scattering experiments by Mazzucato: (1976)
and Goldston et al. (1978) measure the kl.spectrum and
the w spectrum of drift wave fluctuatiens in a ¢onfinement
experiment. The exéeriments are analyzed by Horton (1976b),
and Horton and Estes (1979) u51ng the spectral formula (86) derlved
from the hydrodynamlc ion nonllnearlty and the llnear kinetic

theory electron response for the system. 'I'he var:l.able scatterlng :

angle defines the Ei of the electron dens1ty fluctuatlon
produ01ng the scattered microwave 51gnal ‘Fluctuations with
klp ~ 0.6 have the frequency spectrum shown in Figure 8 where
the maximum of the spectrum rotates with the electron
diamagnetic velocity or somewhat faster due to an ion
confining radial electric field. Figure 8 shows the change
of rotational direction with the change Bz ~ -B,. The

width of therfluctuation’spectrum is comparable to w, as
expected for the measured turbulence 1evel. The frequency
integrated wavenumber spectra obtained from different scattering
angles is shown in Fig. 9. In addition the value for the
spectrum given by formula (86) is also shown when evaluated
for the experimental parameters. vWith this spectrum the

- anomalous transport given by Eg. (17) is substantial due to

the phase shift in the region where the fluctuation amplitudes
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are significant. Analysis of the electron thermal transport
in this and other experiments with microwave scattering

show a significant correlation between the drift wave

turbuleﬁce theory and anomalous. electron thermal losses,

Horton and Estes (1979) .

3.4 TIon Temperature Gradient Drift Wave Turbulence

In the regime of stronag ion temperature gradients
ny = dznTi/dznnif>,2 ‘the dispersion relation (82) yields

the ion temperature gradient~-driven drift wave instability

. ~ 1 11/3
with o = 7|w*pi| /

~

lk”cslz/3 and the growth rate

M

T
i

L 3 1/3 2/3

The fastest growing’mode in the unstable spectrum occurs at

-1
%

. . 1
: ~ ( ~ i .
kip; = (1 + ni) < 1 and X = (1 + ni) and has

r
n

. 1 : .
. ~ : %5 . . ‘ : _
Ynax _.cs/(ran) . Coppi et al. (1967) show that the mode

is not stabilized by shear S = rn/LS and that the basic
features of the instability are given by the two component
fluid'equations'with adiabatic electrons 6ne =_ne[e¢(£,t)/Te].
The nonlinear saturation and transport has been studied in
terms of the hydrodynamic equations. The ion temperature
~gradient-driven drift wave turbulence is quasineutral with
ni(E,t) = ne(i’t) = ﬁe(x)[l + e¢(£,t)/Te] which allows the
plasma density to be eliminated in terms of the electrostatic
potential. The instability arises froﬁ the cubic polynomiai'

in. w describing the small amplitude drift-ion acoustic waves

1T IIr
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in the presence of a nonuniform ion pressure gradient. The

' follow from Vej = 0,

~

equations for 8.9, d,vy; and d.p.
the ion parallel-momentum balance and the ion thermal balanace
~equations, feépecti#ély; ”Thé'eléméﬁiaryrééﬁiﬁétéé'fbfithé'
nonlinear limit of.the aﬁplitudes suggests scalihg the
amplitude of fields in terms of smallIQYroradius parameter
a = pi/rn. The unstable growth réte and wavénumber éuggest
scaling the space—timg variables according to I = X0

z = Cr., and 't ='Trn/cé.v In terms of .these dimensionless

variables the hydrodynamic eguations are

| 2, 8% _ 80 _ o o i 2

v _ ' - . , _

°p - _ - -

5t o [ (I),p] . OLVV”p (X.'YPVHV r (89)
where V” é'aC»f S(x - xo)ay and )
ep(x,t) SV Ps - Jp———
___:,___ = ._9_ @ ’ __J.'-L = —B——V ’ 1 - —ip_ (90)

T r, 7oeg R : niTi r

The system (89)'is nondissipative with the total energy We =

W/ (a®nT)
_ 1 .2 1 2 1 .2 P
wf-/[—z-q> + SV, 9% + 5V +———-0L(YEl)A]d§
being a constant of the motion. Three~dimensional simulations

of these reduced hydrodynamic equations were performed by

Horton et al. (1979).

1

T
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The mode-coupling thebry of Seqtions 3;2 and 3.3 applied
to Eg. (89) indicates that the terms labelled C in | )
Eq. (83)vare déminant. The”nﬁmeridal simulations show that .
‘the limit o > 0 can be taken in Eg. (89) The fluctuations

: | o , ‘21/2 1/2
saturate at the root-mean-square level @O = <> vo(1 o+ ni) .
The mode couplihg'is strdpg so that even with the initial data
taken as a single small-amplitude.eigenmode, the Saturated
state contains a spectrum of k modes.

In the saturated state there is a turbulent convection

of ion thermal energy given by

ar,
Q; = <VggSPi> = Xy a7
where .
e oy ( cTi__,w_Lﬁsw-_l/,?; 172 . =
xx = Sz \w) ) @y (s1)

with Cy N~ 0.25 to 0.5 for Ls/rn“< 100. For weak shear the
finite length .of  the system becomes important. 1In a toroidal
system with low shear we find that Xy = Cl(pi/rn)(cTi/eB)q

where g 1is the toroidal safety factor.

™ TI
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3.5 Kinetic Theory of Drift Wave Turbulence

In general the hydrodynamic equations do not adequately
describe the particle and fluctuation dynamics that occurs
in drift wave turbulence. In particular, the important
role of fluctuations with klpi ~ 1 and fluctuations with

w "~ k”vi are not included in the nonlinear transfer processes

described by the fluid approximation equations. The nonlinear

analyses of Kadomtsev - (1963) , Galeev and Rudakov (1963},
and Sagdeev and Galeev (1969) examine the influence of these

kinetic processes in the theory of drift wave turbulence.

——— ———These investigations—consider—that-the- —+turbulent fields are
sufficiently random and weakly coupled to close the hierarchy
of cqrrelation functions by neglecting fourth and higher
‘order cumulants. Galeev and coworkers assume further that

it is sufficient to approximate the frequency spectrum by
I(kw) = I(k, t)s(w - wk) and apply weak turbulence theory

to reduce Eq. (78) directly to the weak turbulence theory
spectral balance equation for dIk/dt. In contrast,

Kadomtsev (1963) introduces a re;ormalization of the equation
for the vl—integrated kinetic equation and derives a formula

for the frequency spectrum. Both investigations, however,

lead to similar conclusions. The investigations show that

[
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the role of the nonlinear ion dynamics dominates in the

mode coupling equations and that this couplihg leads to a

transformation of the k -spectrum from short perpendicular

wavelengths klp = (mj_B/me)l/2 to longjwavelengths where
klpi < 1. The important results from these investigations

are summarized in this subsection.

Analysis of the weak turbulence spectral egquations by
Sagdeev and Galeev (1969) leads to the conclusion that the
induced ion wave scattering is the dominant physical
mechanism. The induced scattering rate is calculated from
the imaginary part of the mode coupling elements in Eq.

(78) with Egs. (73)-(75) and is given by

2 , ey
m(cT _/eB) . ‘ kT2
Yy = e — > (xk' 2) 2| =] M0 KD
1+ (Te/Ti) (l - <JO>) kl -~ e
((.0 - w 1)2 i
W40 g /2 k k S i
~l(ﬂ —— | exp |~ —————>— | - (92) -
k) Ielvy S R

T T




where M(ki'ki) is the positive definite symmetric matrix

k_LVL k"’l KV N2
J g ( of )T ( )
e 1ty o 2RV o klvl) o o e
R0y
(93)
where k" = k - k'. The total mode balance equation is
2
dle | |
~ % N3 2
—g— = [2y7 (k) + 2v" (,lg)]lsokl . (94).

For large klpi the drift wave frequency

o = weee PI_(b)/[1 + T /T, (1 - e P1 )] = (c./r_)/2/2n is

nearly independent of k, so that three wave decay processes

are strongly forbidden. For large k p the matrix

M(ki'ki) ~ l/(klm(kip) and the induced scattering from

klp ~ 1 is strong. In particular ymz(k) ~ —|w* (k)|2|e¢k, /T
k' /[k'p] whlch overcomes the maximum growth rate

N 1/2 - 1/2,,2.2,
Ymax = (€g/Ty) (me/miB) when W/nT —~(me/mi8) /<kro> .

Consequently, as in the fluid model, the kinetic ion non~

linearity shifts the spectrum to smaller kipi' For

kipiN klpi < 1, however, induced ion scattering becomes

weak due to the cancellation that.occure between the

bare ion scattering and that from the screening cloud as shown
 showmi by thie- reduction M(k; ,k{) = (k;p)2(k{p)2. Thus, Sagdeev
and Galeev (1969) conclude that the spectrum is peaked at

kl = k_L with klp <'1

2
|

B

.
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A constraint imposed by the mode balance equation is given
for the k—integraﬁed spectrum. =~ The authors introduce

Sw = Wy, = wg (k) and obtain from the balance equation

~

s TP
> || kI & ——— (95)
ke |6‘°k“rn
where YE/SwE is evaluated at the peak of the spectrum.
Using this result (95) and the formula (18) with
Se(E) =~ (me/miB)l/2 for the linear n-¢ phase difference,
the anomalous particle flux is computed as
me P CTe dne e
r=- m,B r_ eB a4x (96)
i n

which is smaller by the additional power of Ge in Eg. (95)

than the estimate (71) of Oraevskii and Sagdeev (1963).

_Galeev and Rudakov (1963) emphasize that for Eg. (96)

to be valid the collision frequency must be greater than 4

Vv, = wci(p/rn)3(me/mi6) to maintain the slope of the resqnant
electron velocity distribution close%to the Maxwell-Boltzmann
value. For v < v*‘Eq. (96) remains valid with

the value Yk(fe) coﬁputed from the qﬁasilinearly flattened
distribution given in Sec. 2.7 from which it is evident that»
the final diffusion coefficient is obtained from Eqg. (96)

by dividing by the factor 1 + v*/ve;

Hil

T
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Kadomtsev (1963) obtains a different nonlinear transfer
equation by introducing a renormalized particle-wave

resonance gk(v”) = [w - k”v“ + nk(vv”)]_:L obtained from the

Hil

~V1—integrated*nonlinear'kinetic'equation; "From the fact
that w < 2, and inVn/n] < 1 the v -dependence of the
nonlinear fluctuating distribution is obtained in terms
"of Jo(kivl/ﬂ). The turbulént collision operator obtained

by Kadomtsev is ;_ . |

VL kv, KMV, L,
(k x k' -z)2<J - SSEE l)JO( = 5)>2 1)

2
L) =& z
I k, v k v
,]E' é ( i3 _I.><O( 1 _L>{w" k" _|_ l\))

where k" = k-k' and w" = w=w'. The operator Mo (v”)_reduces ' ‘

~

o7y - .

to the v, -average of the ivk (v”,v ) operator'in'Eq. (76) ~ | 4
~ when Ew < E*w'. Physically, the operator nk descrlbes the S

decorrelations produced by the kinetic nonlinear k - vE effects
in the fluctuation kw interacting with particles w1th parallel

velocity v - The broadening operator takes into account the

averaging by the fast cyclotron motion of the large gyroradius

particle orbit over the coupled fluctuations ki » k', k.

Kadomtsev (1963) also includes the electromagnetic polariza-

tioh of the wave which reduces the parallel electric field and
hence the growth rate when the Alfvén frequency k”vA becomes
comparable to the drift frequencyAw*e. The polarization effect
is evaluated with the linear dispersion relation, and its

principal effect is to determine the parallel wavenumber

T




.74 .

at which the spectrum is peaked. For me/mi < B < (me/mi)l/3

Kadomtsev finds that the k”—spectrum is peaked at

/2.
L i R L

The spectral equations given by Kadomtsev, which are too .
complicated to give here, are of the form given in Egs. (79)
and (80). This pair of coupled equations for the nonlinear

. ng
response function ¢

" is the

and the spectral distribution I

(98) -

plasma physics analog of'the Direct Interaction Approximation of

'fluid.turbulencéyu Propertles such as energy conservatlon"

of the renormallzed .dielectric functlon are glven by

Dupree and Tetreault (1978)

From analysis of the frequency integrated mode balance
equation Kadomtsev concludes that thé quasilinear spectrum
is peaked at kl < 1. Since this is a region where the
Bessel function matrix elements take on a complicated form
Kadomtsev notes that it is not feasible to give a formula
for the spectrum. Instead a constraint for the %*integrated

spectrum is derived from the balance equation which leads to

2 m

e [k’1(kx jak = 2 (—&)l/2
2 1 2'm.

T r 1
e n

where the estimate A ~ 1/10 is given. Furthermore, it is
argued that at the peak of the spectrum the Gne-w phase-

shift remains as given by the linear electron response since

(99)

RIN



the ion nonlinearities produce the saturation. Using the
linear phase shift §_(k) = ('rr/Z)l/2 w*e/|k“|vé which at ,
the peak of the spectrum gives Ge(ﬁ) o (me/miB)l/z, the

T T T *'anomalous"particfle"flux from formuj.a"(l'})’i’s” T T T T TTT T T ToTmT mom s e B

T = =

e p edn o (100)
m., B ro eB dx r'
which is the same formula obtained by Sagdeev and Galeev,

except for the smaller coefficient. For B > (me/mi)l/3 it is

the ion VB collisionless resonance Wy = wVB(E) = % Bw*e(E/T) that

changes the linear theory and reduces the flux from that given

in Eq. (lOO).

Wlth knowledge of the approx1mate k spectrum the

w-spectrum is obtained from the €k2 k balance'equation,(79).

The fact that éﬁz = 0 describes the decay of a fluctuation

kw in the turbiilent plasma, while the right-hand-side
of the equation for I gives the production of fluctuations
at kw due to the nonlinear transformations. For the turbulence

level obtained in Eq. (99) Kadomtsev estimates that the shift -

in the natural frequencies wk are small and that the line

~

shape is Lorentzian with a width given by

Yﬁx-= - ImEnQ/(ae /Bwk)--J

Ykl’ P

IR
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With the k-spectral distribution obtained from the
preceding analysis the equation for the correlation
function Ik is analysed for driven low frequency fluctuations
“as explained by Tsytovich (1977, Chapter 2.7-2.8). For the
nondecay dispersion relation of drift waves in the region
klp < 1 where the primary spectrum is most intense, the

correlation equation (79) yields a strong productidn of low

LF
ko

frequency fluctuations there is no particﬁlar relation

frequency long wavelength fluctuations I For these low

between k and w. The low frequency spectrum is given by

dw (ky)

LF_ _2m
X 22
el

- e —— - R G Ik

Equation (10l1l) predicts a broad band filling-of‘the low
frequency spectrum when the fluctuation amplitudgs are at
the level given by formula (86) or fofmula (99). This low
frequency filling;of the spectrum caﬁ be a dfiﬁing mechanism
for véry low frequency motions‘of the plasma such as convéctive
cells.

3.6 Anomalous Transport Due to Convective Cells

Particle simulations and theoretical studies by Dawson
and collaborators show that zero frequency collective modes

with k) # 0 known as convective cells are an important

T1 10
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mechanism for anomalous transport across the confining
magnetic field. Particle simulation studies by Okuda

et al. (1975) and Chu et al. (1975) compare the particle

. diffusion D and the convective cell life Ty, with the
formulas used in the analysis given here. Agreement
between theory and simulation is reported by Dawson and
collaborators for the anomalous diffusion produced by

the weakly damped two dimensional convective cells.

At long»wavelengthsrklpir< 1 the convective cell
appears in the retarded branch of the shear Alfvén wave

dispersion relation for the inhomogeneous plasma

2 2 L2, ) 2.2, _ ‘ |
ﬁ,,,v,_*ngﬁ_ﬁ?Vﬁ,Jgtpw‘L(wﬁ:hﬁlkl¢uwiww::Ju*pjgf;:wkujey-;:~DAH~V _ (102)y . ____ _|
As kHVA/w*pi +~ 0 the two plasma modes are the ion flute mode
Wy = Wepg F kﬁvi/w*pi and the convective cell
~ 2 2 1] 2 .

Wy = —k”vA/w*pi - lkl“ (163)
where w*pi = (kyc/einiB)(dpi/dx). In the long wavelength
regime the collective mode with finite k| and wﬁ = wz(kl,k”) = 0

is a large scale hydrodynamic (E“ = 0) roll whose damping is

2

.. The
i

- determined by the ion collisional viscosity p==0.3vip
cross-field E x B flows produced by these zero frequency

modes, in the frame with Er = 0, are different from that of
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drift waves in that the convection shown in Fig. 1 is now
steady and closed. For drift waves the convective flow
changes..direction after transport over the distance yE/w.
7T£éhh§aroaynéﬁiéwmoaéé apbééfraf fhé tﬁéfﬁairfiﬁééﬁaéioﬁi
level determined by the weak damping until driven up iﬁ

amplitude by some mechanism.

Sagdeev and collaborators (1978) show that a natural
mechanism exists for driving the convective cells through the
parametri¢ decay of the drift waves. Their theory is
motivated by three dimensional particle simulations of drift
wave instabilities by Cheng and Okuda (1977)‘and;(1978)m';The

simulations show that in the first stage of saturation the

T e

T T T T T wave spei ctrum is domina t’e’d*by“dr‘i’ ftmodes withk WV; - wk ’

~

but at a later stage a significant fraction of the fluctuation

energy is in a kH = 0, low kl mode of the spectrum.

Sagdeev et al. (1978)T6bserﬁé'thatﬁsince;the drift wave

frequency wi = w(kf, ky) has a broad maximum for klpi <1,

: ifﬁeié are many unstable drift modes which beat to produce

zero-frequency, zero-parallel wavenumber fluctuations.
Formulating the problem following the well known methods
of Langmuir-ion acoustic wave interactions, the coupled

drift wave Sn(i(xt)/ne = eﬂg(xt)/Te and convective cell

Gng(gt)/ne > JeqF/Te[ equations are derived and reduced to

o

S
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cT '
202, 8 .. 8. .d_ _ Te a . c
[(l - P V_L)’a—t‘l'vdew] Sn = eBnO[ﬁn ,(Sn ] (104)
2
T
| 5 .2 2. ¢c _ Cte d .2.4d
,g_a—ET}lV.L) V_I_(Sn _eBTin0<[6n’V_]_6,n ]>, el SRR ,7(,]:(25,) . ;3

the drift wave nonlinearity which projects out the k” = 0,

w = 0 components of the interaction: term.

Egs. (104) and (105) determiné the stability to parametric -

decay [ see Chapter IV.4] of a large amplitude drift wave

Ghi exp(iko ¢ X - iwi t) into a small amplitude drift wave
0 ~ ¥ 0

th (t)exp(ikl . x'—'iwi'ty and a convective cell

1 - .1

.. C s _ .
ony (8) (i ky + %) where kg = ky + kyr Ko = kyp, and

wg = wg . When k2 > ki,the parametric decay occurs at the rate
0 1 0 “UES
11/2
et T (k2 -%3) |k 17|
ng _ e | k.| e 0 1 0 ,
Y = =5 K1 X kol |7 5 —| (106) . . _.
1 k2 e

The anomalous diffusion coefficient D; produced by the

two dimensional convective cells is investigatéd by Dawson and
collaborators as the zero-frequency limit of the Dupree

(1967) diffusion coefficient. This diffusion coefficient
follows from the k” = 0, klpi = 0 limit of formula (77)

and is given by

T S

T
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2
2 |EC (k) |
c . 1
D =- s Im % . (107)
L B2 kl wk + 1Pk
with
I, = kzD - 7itidé;77
k T OtMLEL T
which for kal > wi reduces to
: _ c o o
I cTe  l6n <kl)]2 l/2
1 = eB n, S . _4(109)

Sagdeev and collaborators - (1978) propose that a steédy

turbulent state is reached in which the energy from the

gradients in the?nonuniform electron distribution which

drive the drift waves at the rate 2y§W§ is balanced by the

decay into convective cells. Power balance in the convective

cells is 'reached when the cell damping rate Yﬁ = _kal balances

- the rate of drift wave pumping which for a turbulent spectrum

is given by

d

w T r o a .
Y}V{LQ, - k 5 Te( l’li)2<16n |2> (llO.)
. C n
(k;p) iAx] e

where Ax® is the average radial width of the convective

cells. This balance determinesrthe drift wave turbulence

level as

B |



|
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- C
sndi 2172 Ve Ty oo o Ax. oo
<|n—] > —q ‘I'_(k.l.p) (r_)
e U)E e n

B - ¢
where k, Wy are mean wavenumbers and frequencies in the drift

wave spectrum. The cell size Axc is of order (pirn)l/2 when
the shear is zero and of order pi(BLS/rm)l/2 in the presence

of shear, B = BO(E + §X/LS);

Power balance through the entire fluctuation spectrum

requires

2yd wh = 2y Mhye

the convective cell motion

d
8012 o Tk 0x%2
ne B U.)g rn )
k

From Eg. (109) the diffusion due to convective cells at

this amplitude is

cT yg 1/2 c
D= (—9) (X (K, p,) |22
eB d i 1Pi/ 1%
W n
k
1/2
cTe [k i B s,1/2 = Tn
(eB) g r (r ) for B < P,
W n n n i
k
q.1/2
°Te [Tk Pi 1/2 Ls . '
EN\=) & for Bz > 5. -
Wi L, n. Pi

(111) -

(112)

(113)

(114)

(115)

o with WSl —]Zi-( k1—91~)—2—]~§n9 ~(—k1--)-/-néf[-%- and -leads—to the- amplitude-of - —

T
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For Y%/w% = (me/miB)l/Z'the diffusion reduces to

D = (Pi/rn)(cTe/eB)(meﬁ/mi)l/4(Ls/rn);/2 : L (116)

This secondary diffusion from convective cells driven by.
the drift wave spectrum can dominate the primary diffusion

given in Egs. (96) and (100).

For the doubly periodic system with integer kyr = m,
kZR = £ and with shear Bakai (1979) notes that the drift
modes must be strongly overlapping in order to produce the
convective cells. His consideration of this geometrical
aspect of the probleﬁ also leads to the possibiiity of

cohﬁective cells and predicts a Gaussiah Ei—fluctuation

spectrum.

H 16
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4, Anomalous Transport from Electromagnetic Fluctuations

The electrostatic drift wave turbulence of Secs. 2 and
'3 is the dominant mechanism for anomalous frénspofﬁﬂiﬁ blééméé .
where thermal pressure p is sufficiently small compared to
the magnetic pressure; B = 8Wp/32'< 1. On the other hand,
in moderate»to high pressure plasmas the self-consistent
collective modes are typically stronglyvmagnetic in charécter,
and additional formulas taking into account the electromagnetic
nature of the fluctuations are required to describe anomalous l
transpbft. Withvhighér plasma'pressure there are’a variety i
of low frequency plasma instabilities that are related to !
the spatial.gradients of the paiticle distribution and lead ]

to anomalous transport. 1In particular, the temperature

gradient driven tearing modes and the current filamenﬁation
instabilities producekelectromagnetic turbulence and assoc¢iated
transport. The direct E ng transport from the electron drift
wave fluctuations bécomes less important than the electro-
magnetic transport as thefvaiue‘of beta for the plasma increases.
The cqmpeting roles of the Zanémalous' diffusi‘oh relaﬁéd to,, S —~
different instabilities and transport mechanisms at modératé .
to high plasma beta remains an area of active research. Some

principal results are given here without attempting to make

a definitive assessment of their relative importance.

At high plasma pressure the anomalous transport must be

considered as a function of the full electromagnetic fluctuation
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spectrum specified by six correlation fuhctions,
<Ea(£'t')EB(£ﬁ)>, rather than the single electrostatic

potential correlation function <®(r't')®(rt)> and its
asSOCiated'speCtral'distribufion'I(E@)'ihttoduced’in'SeCZ 2,
Eg. (8). Two methods are widely used to represent

the electromégnetic fiﬁctuations. One method is to retain

the electrostatic potential @¢(rt), and the associated
correlation function, and to introduce the two additional

vector potential fields Ay (xt) and a(rt).

The padrallel vector potential A”(gt) describes electro-

magnetic perturbations in which the perpendicular component

of the electric field remains irrotational, V X E = 0,

and consequently, there is no compression in the magnetic

perturbation, 6B” = 0. The fluctuating A”(Et) therefore
produces a magnetic field GEl =V x (A”%) = VA” X 2 and
an inductive parallel electric field E% = —BA”/cat. The

- second component of the vector potential a(rt) is perpendicular
to B0 and produces the rotational €lectric field E, = Z x Via

and the compressional.magnetic field GB” = (ic/w)Vfa.

The probleonf drift instabilities is formulated in terms
of these potentials by Rosenbluth and Sloan (1971) and by
Berk and Dominguez (1977). Berk and Dominguez give the

complete form of the low frequency conductivity tensor for
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high beta system with background particle distributions of

the form fj(e,x).

Théiéeconaréomménly ﬁsed ﬁééreéeﬁfaéiénrféfithér"7
electromagnetic fluctuations is obtained by choosing
Ey(r,t), Bx(gﬁ) and SB”(g,t) as the independent field
components and using the homogeneous Maxwell equations to
derive the other three fields EX, E” and By' In kw space

these relations are

k
= =X - W
E, (k) = ﬂ E (k) + lB (k) ' (117)
I - kK, Y k,C "X ;
B (k) = -E{—”— §B, (k) - % (%)
y - ky I ky <

' This representation of the fields is used for drift modes by
Catto, et al. (1974) and Tange, et al. (1979), and it

is used here.

™ 11T
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4.1. Electromagnetic Formulas for| Particle and Thermal Transport

The anomalous flux of particles, momentum, and thermal
‘energy are given by thE”pair"correlations’betweeanluctuating;”
thermodynamic particle variables and electromagnetic field
components, such as <ﬁjﬁy>. - That only such pair correlations
are required follows from the fact that the interaction term

in the Vlasov equation, (E + v X B) + 9f/dy, is bilinear in

the fields and partidles. :It follows from this blllnear feature
that general expressions for the anamalous fluxes

co&ré&t to first order in the field correlation functions aré
obtained from linear relations between the fluatuating thermo-

dynamic :variables and the electromagnetic fields. The

fluctuating thermodynamic variables are calculated from the

fluctuating particle distributions.

For a background distribution function of the form

fj(e,X),Where € = % v2 is the energy per unit of mass and
X =x + (vy - v )/ is the guiding center coordinate in

the nonaniform plasma, the calculation of the fluctuating
particle distributions follows from integrating the
perturbing force [E(Eft') + z' X §(£'t)l,- afj/az' along
the particle orbits. Including the VB-guiding center drift
of the‘particles, the calculation [Catto, et al. (1974) aad

Berk and Dominguez (1977)] of the orbit integral yields

1T 11T




'iejEy(k) afj ejw afj c afj .
6fjk(z) T mjky 5e " <m.k 5e T B Eb{)gk(vﬂ’vl)

- ) CT B i T o ” ’ T N lvl ’ ’
X exp(lk><v- z/wij J E (k) + J B (k)-—————J SB”(k)

(118)

where the particle propagator is

1
- : (119)
k”v” + 1vk

J _
Iiew (V) rVL) = 5T X Vo;

as introduced in Sec. 3.2. The Bessel‘functioné %&andJi:n1Eq.(¢18)
have arguments kivl/wcj whereawcj = e.B/mjc. The guiding

v J
center drift velocity is v = vDﬁ§-Pv”§ where vDﬁ_#

%(vf/wcj)(dlle/dx). In the limit of electrostatic turbulence
Eg. (118) reduces to formula (12) for ijk(x) used in Secs. 2
and 3. The same discussion concerning the role of ivk in the

particle propagator given in Sec. 2.1 and 3.2 pertains here,

but the electromagnetic formula for ivkw requires a generalization

~

of the previous formulag (76) and (97) or the Markovian limit

(77) .

The fluctuating particle density and currents,

jk /dv §f. k(v), Ejk =/dz v ijk(y) , (120)

and the fluctuating thermal energy density,

T
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3, 7 _ 1 2
f(anj) fdz 5 mjv Sfjk(z), ‘(121)
are readily computed from Eg. (118) er‘ijk(z)'
In particular, the fluctuating thermodynamic variables
required for the transport theory are
eJE (k) afj ej afj c ij
By 00 = SEp— fay 52+ Jdvled 52t § )
JyYy JYy
kivl
x gk(V)J ( )F (k, vJ_,v”) (122)
~ . ejw afj‘ . af 5 ]<:_L ;5 ' .
Tx(k) = dx(m.k e tE 3 )gk(v)lvlJl( )F (k, vl,v”) (123)
JY QJ
~ ej ij . Bf klvl
rll (k) = av (—¢ = tg 3 )gk(V)v”Jo( .)F (k, vi,v”) (124)
JYy CJ
where F; is the gyro-orbit average of the y component of the
Lorentz force
. kv kv
. i L L1
£ (v vy) = g () () + L L5 s k-
y L7 0
' J CJ,
iv kv
1 1Yl
- = Jl( mcj )6B”(k). (125)

The fluctuating thermal energy density is given by

™11
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: i3e.n.E (k)
2Ty, = - 3y
27973’k 2k
2
ejw ij c afj mjv 4 3 7
+ dx(mjky e tE 5 (3 )gk(vyJ)JOFy(k,vl,v”). (126)

In Eq. (122) the local contribution reduces according to

2

distribution is —nj/Tj. A similar integration is performed

in the first term in Eq. (126).

fdav SFj/Be = - inj<l/v2>, which for a Maxwell-Boltzmann

For the case of a Maxwell-Boltzmann distribution with
inhomogeneous dénsity nj(x), temperature Tj(x) and parallel

drift velocity u“(x) the velocity integrals in Egs. (122) -

(126) are performed in terms of modified Bessgsel functions

In(b) exp (=b) with b = kaj/ij§ and the plasma dispersion
function Z[(w - k”u”)/lk”]vj] with vy = (2Tj(x)/mj)l/2. The

formulas that result for the local Maxwell-Boltzmann are

given by Tange, et al. (1979).

In the general‘case of electromagnetic fluctuations the
completé set of anomalousrtranSPOrt processes are too
complicated to present here. For general expressions the
reader is referred to Tange, et al. (1979). The formulas
are derived under the same conditions discussed in Sec. 2.

- To summarize, we assume that (1) the crossfield transport

is produced by the macroscopic gradients, (2) the macroscopic
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inhomogeneity is weak in terms of the mean gyroradius,
ijn/n <1, pj VT/T < 1 and (3) the space-time scales for
transport 8}h1nj/8t, vV - Ej/nj‘are well separated from the
space-time scaleg of fluctuations, 1/Aw and 1/Ak. "When -~ ~~
the last condition_is satisfied the averages, such as
<njEy>' are well-defined when taken on a space-time scale

| small compared to the macroscopic variations and large

compared to those characteristic of the fluctuations.

The basic result for the anomalous particle flux is
obtained from the space-time average of particle momentum
balance in the direction mutually perpendicular to the

ambient magnetic field and the macroscopic gradient.

After assessing the order of the averaged inertia terms
and the divergence of the momentum-stress tensor as sub-
dominant to the y-component of thé Lorentz force in the
momentum balance equation for particle species j, the basic
result

<(n.E -1—i T. B)> - L ' .B = - Tj—jv C.(f,f)dv

J~y ¢ c ej Yy J ~
follows where mjfvycjdz is the collisional change in the
momentum. The well-known (Hinton, Chapter-I;G) contribution
of the particle-particle collisions is$ retained here to show

clearly when the turbulent transport dominates. According

to Eq. (127), there is a net loss of y=momentum in each

(127)

T
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species by the effective turbulent friction qf those particles
Qith the collective fluétuations and particle-particle
collisions. This loss of momentum is balanced by a steady

. of that species across the ambient
magnetic field. For example, electron-ion collisions
contribute to the momentum loss of electrons throﬁgh

m v Coidv = -m_(V _ - ‘\_fyi) /T e\; where the equilibrium diamagnetic drift is

y el ye

- _ = _ -1 _ 1/2 4
vye vyi = (c/eBne)(dp/dx) and To = Vg = 4(2m) n.e

1/2.3/2 . .
Z InA/3m T . The collisional increment to the
Teff e e _
transport is then

2 .
M€ dn '
Toor1 = Ve 7227 * Tilax - \ (128)

Throughout the presént Chapter the amplitude of the turbulent

fluctuations is assumed sufficient to produce an "anomalous"

or collisionless transport which dominates that due to the

vdirect particle collisions.

The anomalous particle transport in the direction of

the macroscopic . gradient is

i
I
Q-

FjXGB”)>

where the density fluctuation ﬁj and the fluctuating currents

~ ~

Tx' T” are given in terms of the first order field fluctuations

by Egs. (122), (123) and (124); Calculating the space-time

S (8 G 1
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averages by neglecting any weak correlation between different
kw modes, the anomalous electromagnetic particle flux reduces

to

o i eqw OFy - BF, 5
3= 5 % dfalee 5e 5 ) ™ Gy

iv
|J0Ey(k) + —i TpB, (k) - ‘E£ JlsB"(k)lz. (129)

The dominant processes in the thermal balance equation

are the generalized cE x B/B convective transport the parallel mo-

tion of the partlcles along the bending magnetlc fleld des-
cribed by . B+6§i,and the <i + E> powerwexchange between

the particles and.the fluctuations. Equation (129) may be

viewed as a sum over the energy spectrum of a set of
independent cross-field transport processes each having its
own strength according to IEM' Fj(e,X) and Im gi(z). From
this view it is evident that depending on whether the
dominant contributions to Pj arise from particles that are
subthermal or superthermal there is a net energy flux Qj
that is smaller than or greater than 3/2TjI’j where 3/2Tj is

the mean particle energy <%ﬂ5v2>n The total energy fluxtQj

is given by

U’JIO

dkdw dv( ——l EEi)(im v2)Im j(v)
de ox 2 9k ¥

iv
IJ B, (k) + 79 ToB, (k) - —EﬁJlaB”(k)[2 (130)
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and the conduction qj of energy relative to the convective

3 . . 3 .
transport 5 Tij is defined by q_j = Qj -5 Tij. Flnally,

resonant transfer of energy between the ?atticlés‘and the

- fluctuations is given by

i el o’ 3F5 k, OF, 2 5
Wy =<3y % = my dkdwfdy (2 TR )z T g (V)
- - Y

. lV )
|38, (5) + —l TB, (K) - —= 3 168y (1) | . (131)

The particle and thermal balance equations are the same as

given in Egs. (22) and (23) of Sec. 2.2.

Formulas (129)-(131) show that the anomalous flux is

proportional to the product of the fluctuation spectrum at

kw times the gradient of particle distribution at (x,v)

weighted by the strength of the fluctuation-particle

interaction given by Im gi(z). .The Bessel function Jo(klvl/ﬂj)
gives the gyroradius average of E (£') and B (E') along the
particle orbit whereas the Bessel functlon J (kivl/Q ) glves

“the average of 6B” over the area of the gyro- orblt or, equlvalently

the line integral fgi(N) . dl around the orbit.

- For a given magnetic fluctuation spectrum arising from

‘an external mechanlsm, the anomalous partlcle flux from Eqg. '(129)
is not aﬁbipolar.' Typically, the flucutating parallel electron

current dominates reducing the formula to

28 13
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()
B

oF
e

9x

2

I = _-ifzilgiw = 'fdk ‘dvvzlm e(V)
e eB B V| MG Y

The electron loss leads to a net positiveﬁéharge of the plasma
calculated in Section 4.3. In contrast, when the electromagnetic
turbulence arises from self-consistent fluqutations satisfying
the Vlasov-Maxwell equations, the particle flux averaged over

the fluctuations is ambipolar. From Eq. (129), we have

E<3) By = <3,58>] o

Zjejrj = = = = IrE [<BxayBX> + <8B3, B> ]
where we use Ampere's law and change néutrality’gg«= ) e4g4 = 0.
= JJ

J
The translational invariance of the equilibrium implies that

both the stability Y£'and the anomalous fluxes Pj, Qj, Wj are
independent of a Galilean transformation by vy - vy + V, whereas
the fluctuation frequencies and the radial electric field change
according to w > w, = kyV and Ex - EX‘+ (V/c)B. In cylindrical
'geometryvthese transfdrmation“properties are‘valid té the extent

that the centrifugal acceleration Vg/r remains neglible,

_ 2
ch = ke(cmiva/erﬁ) < Awk.
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For a Maxwell-Boltzmann background distribution

fd = F?(E,x) with a nonuniform density and temperature

~ the characteristic frequency

ch 1 dnj 3
v ejB 'Ig ar [+ nj (TE/Tj - 5)]]

w*j(e) =k

measures the effect of the nonuniformity. In this case the

3 ) . .
formulas for Tj’ qj -5 Tjrj and Wj simplify to

Yy

Q
It

Y
(133)

and

= _—l/ékdf/év FM(e) ——[w Wy () 1Im gk(v)|Fj (k vl,v”)| .
Y
(134)

The condition for the background distribution to be close to

a Maxwellian-Boltzmann is found by following Ssec. 2.7.

Now we reconsider for the high pressure plasma the
entropy production functional oj introduced in Sec. 2.2. For
the Maxwell-Boltzmann background distribution the entropy

density is sj(gt) = —njlxl(nj/Tj3/2) and the local rate of

ce.T. ‘ [w=wyg.(e)] . .
J°J [ax dw] ay F () (== 3 *3 m gJ (v) |F3 (kv ,vy) |2
B |~ ] -k ~" L ”

e.c , ' [w - w,.(€)] . .
T, = _%—:/A£ dm}{dz 1 (e) ]{*3 — Im gj(z)lFi(k,vl;v”)lz, (132)

T

T1T ih
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change is computed from the transport Egs. (22) and (23).
Apart from the external particle and thermal sources introduced

in Sec. 2.2, the rate of entropy production is given by

Upon using Egs. (132)-(134) the entropy production reduces

to

2 : 2
e. [ [w = w,. ()] . : .
¥ T, /;lk/dz Fy () 5 ]Fy<k,_z>| m g (v) . (135)

k
Y

Now we consider the transport in problems with a substantial

level of magnetic fluctuations.

4.2 Polarization Relations fdr Low Freguency Eleqtromagnétic

Fluctuations

At moderate plasma pressure, B <1, there are general
polarization features of the low frequency, drift wave and
tearing'mode type of fluctuations that simplify the transport
analysis. In contrast, for 8 =1, all three;éiéétric
field components are coupled in a complicatedrmanner; however,
the drift-=type modes are then unstable only under rather
special conditions, such as the n=d1lnT/d1ln= - % mode

‘found by Mikhailovskii and Fridman (1967).
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In moderate pressure plasma the highly elongated
fluctuations ]<:l > k” of the drift wave and tearing mode

type decouple from the fast compressional motion with

2.2

wz <k Vs The polarization of the slow convective modes

‘is determined by the total pressﬁre balance across the-

magnetic field
BcSB”‘(k). + 4msp) (k) = 0

that is maintained on the scale kIl during the slow oscillations.
From this relation and the formula for Gpl(k)-the magnitude.

of the;ﬁagnetic compression follows as

6By (k) _ ls[ieEy(k)] %-iBFﬁngJ | | ‘“ | ‘(i36y
B 2 kyT 2 T , ’

which is valid for modes rotating in either the ion or the

electron diamagnetic direction. The change in the magnetic

field strength 6B”(k) ensures that there is no compression of

the plasma V - Ve = 0 in the convection of the plasma across

the finite beta equilibrium with Bz(r) + 8ﬂpl(r) = const.

In addition to the diamagnetic drifts Vdj defined in Sec. 2,

the guiding centers drift with the velocity

zbj' = (mjcvf/ZejB)(dlle/dx)§ which also influences the

transport. In the absence of strong magnetic field curvature

we observe that “<VDj> = (cplj/esz)(dB/dx) = - % ijdj(l-knj).

TT il
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The perpendicular magnetic perturbation 6Bl(k)
considerably exceeds GB”(k) and takes on the magnitude and
phase required to short out the parallel electric field,

E”(k) =-ik”¢(k)’; i(w/c)A”(k)N Q.< The important case

where the inductive part of the parallel electricffield is‘not
able to cancel the parallel electric field occurs when

the kw components are such as to incur an anomalously low
parallel conductivity 0”(5,&). The fluctuations for which

the parallel conductivity is low are w ~ Wy, and k”ve 2 w

gsince from the electron current T”(k),

. 2
m n_e
oy (k) = 55— (0 = 0, )BT (——) - (137)
2k;'T |k |v
l~e e
from Eq. (124). For fluctuations in this domain it follows
from V x GEi = 4ﬂ6j”/c that the perpendicular magnetic
perturbation is
8B, (k) Wy . . '
L L By1/2, ke ey (k)

where Ey(k) = -iky¢(k) is used.

In characterizing the moderate B drift-tearing mode
fluctuations it must be observed that the field line bending
from 6Bl(k) couples the parallel transport into a radial

motion. As an example, we observe that in the absence of

T

Tl
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line bending the electron temperature fluctuation determined

for Ve > k”ve from the thermal balance equation with

de = Xje V) Te Where xjo = n T /M Ve yields 3
5T (k) i [sT (k)"
e _ e _ _ 3 ep(k), _|__e
S L R I R S [ e ] (139)
e k”ve e - e conv

from the balance of convection and parallel diffusion.

In the presence of line bending, however,

the thermal transport along  the field~prdduces'the’fluctuation'

T ‘ik” B T  dx

e Te

ST (k) B. (k) ar [T (k)]
e -1 X j; e . { e ] (140)
e Agonv

-from the balance equation. For Bx(k)/B"k”rn[e¢(k)/Te] the

temperature fluctuation from the parallel transport exceeds
that due to convection. At the magnetic amplitude GBl(k)
where this occurs the parallel inductive field (w/c)A”(k)

due to 6Bl(k) = ikyA”(k) is such that

(A _ iw ~ W s

The opposite parity in k; of A, (k) and ¢(k) is a general
il I

feature of the low frequency fluctuations.

The polarization relations for the low frequency drift

and tearing mode fluctuations at B < 1 . allow the particle

T

TT 117
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and energy flux formulas to be simplified. First consider
the contribution of 6Bw(k) to the ILorentz force F;(k,vl,v”)
in Eqg. (125). Using Eq. (136) to relate'Ey(k)Aand 8B (k)
j o T 1 . -
we observe that Fy = Ey(k)[Jo4'lBiJ1{(klpﬁn Ev(k)JO(klvl/wcj)

for Bj < 1 and arbitrary kij. Now,xconsider the

contribution to F; due td SBl(k). For the SBl(k) given in
Eg. (138) it follows that F§ = y 0(l + v”/v ) when

We . ™~ k“vA. For the plasma pressure B < 1 the Alfvén speed

e

ig intermediate to the ion and electron thermal velocities,

so that the magnetic force is small on the ions with
Fl = 7 E and dominant on the electrons Fe = (v /c)B_ (k).
Y 07y y | X

Taking into account these simplifications we have

. cEy(k) 2} afi in Bf. 9 klv
Ti;=§ :“TE—_’ Wigg + 1 5% o o &) Im g (1) (141)
Bfe wQe Bfe 2 e
Té d&‘ax + ky Be)VHIm gk(z)’ (142)

and the energy flux Qj is obtained by including the kinetic

energy % mjv2 under the velocity integral. For fluctuations

with sufficiently low frequencies,
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ky<v2> a1n £,y
o] < ZSZj <dx >’

the anomalous flux is driven directly'by ij/ax.

4.3. Qualitative Picture of Anomalous Transport Due to

Magnetic Fluctuations

Low frequency fluctuations near a neutral sheet such
as in the geomagnetic tail plasma, e.g. Galeev (1978), or in
the laboratory near the mode rational surfaces of the helical
magnetic fields used for confinement, e.g. Callen (1977),
produce parallel inductive electric fields E”'= —aA”/cat
and perpendicular magnetic fields GEi = VA”%E. Such 
magnetic perturbations lead to anomalous transport. According
to the guasilinear formula (142) the electron transport is
proportional to <|6Bx(k)|2> and the interaction strength
Im gi(z). For time dependent magnetic fluctuations Callen
describes the procéss as transport due to "magnetic flutter."
Even in the case of static magnetic perturbations with
<]6Bl(k)|2> = <16BLQ5)|2>6(w),‘there is an enhanced transport
due to the particle motion along the magnetic field line.
The anomalous.transport produced by the static magnetic field
perturbations is described by Stix (1973) as transport due
to "magnetic braiding;" ‘ | | |

Sfix points out that é magnetic pertﬁrbation 6§l(§) théf is
resg;%nt With avhelicél magnetic fieldrﬁrdduces a chaingafrmaghetic

islands of width Ak about the resonant surface-Whéfe

T
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BV = ik”B = 0. Writing B = BV(x)§ + BOQ for the local maghetic

field and L;l = dBy/B dx for the local shear, the width A, of the

magnetic island is qiven by

Ay = (E]%E %)1/2 - | (143)
When two or more of these chains of islands occur as shown

in Fig. 10 the magnetic field becomes ergodic first along

the separatrix and then throughout the region between the

islands with increasing'amplitude of the magnetic perturbation.
Owing to their high speed the electrons follow the braided

field lines to produce a transpoft across the ambient

helical field. The magnetic perturbations arise from a

variety of reasons such as. filamentation of an Ohmic heating
current, electromagnetic fields from auxiliery heating methods

or collective instabilities in the plasma.

The low frequency drift waves and tearing modes which
‘arise from the gradient and magnetic energy density in non-
uniform plasmas produce small scale magnetic perturbations.
For example, Callen (1977) suggests that the drift wave
fluctuations meesured by Mazzucato (1976) have sufficient.
amplitude to produce  a substantial anomalous thermal

transport. due to their magnetic component.

1 i N |

1T
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For finite beta drift wave turbulence, the case
emphasized by Callen (1977), GBX(X) vanishes at the resonant

surface, rises to a maximum of SBXA at k”vA o Wi r and

decreases as 6BX /x) for k” a > Wig o Here, Xp is the

distance from the resonant surface k“ = 0 to the region
, _ . .o 1/2

where k” A kyvAxA/LS = Wyq which is Xy = oB (Ls/rn).

For a drift wave island width A§W3>XA, Callen finds .

LSXA SBXA)1/3

0

and the distance Ly along the magnetic field to circumnavigate

the magnetic island

Since Lk is greater than LS the drift wave frequency‘mk
resonates with the electron transit frequency around t;e
island Wy = ve/Lk' Including the buildup of an ambipolar
potential ®(x) to equalize the ion and electron loss rates,

Callen (1977) estimates that the electron diffusion and

ambipolar potential are given by
d]Jln

~ _ 2 e_e do_ _weB ;.
2 A (v -+Yk)[ dx T, dx ck T'] ‘0 (144)

e do _ - )dlnnegsdlnne
T dx Wy dx o dx
e

TT I T T
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or essentially electrostatic confinement of the electrons.

The electron thermal transport

is estimated by

3ne 5
Xe = <15 F Ax 0 + 1) (145)

where Ve is the electron collision freguency and l/yk is the

. correlation time or the life time of the magnetic island Dy -
Equation (145) is a nonlinear generalization of the quasilinear

formula in which the island width

'AG,B : 123‘
XA
{—Efﬂ for drift waves
. 1/2
SBX(O)' .
:——Erf—i ' -for tearing modes

replaces the linear radial excursion v”BX(k)/BA(w -k v) =

[BX(k)/B]v”Tc that occurs in the quasilinear theory, Eq. (142).

The magnitude of the anomalous transport produced by
magnetic braiding depends sensitively on the correlation
time of the electron with the magnetic perturbation 6B, »

as well as the obvious amplitude dependence. Rosenbluth

TT 1T
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and Rechester (1978) introduce the methods of stochastic

trajectories to obtain formulas that describe the finite

correlation time T, ©r length L along the field line.

Flrst the statistical properties of the magnetic field
in the presence of the stochastic perturbations
8B, = 2 6Bk exp (ik - x)'are established. Rechester and
N k ~ ~~

Rosenbluth introduce the stochasticity parameter

s = Emﬁi + Ak2>/],<rkl‘— rk_z)l o , (147)

that compares the total width of two magnetic islands with
their radial separation, Fig. 10. When this parameter exceeds
unity the magnetic surfaces are destroyed between the chains
of islands. In this region where the field lines wander
ergodically, a small circle of radiusAﬁo is mapped by
following the field line into a complex, elongated shape that
has the same area as the initial circle since V - B = 0.

The mapping of the circle by the magnetic field is shown

in Fig.1ll. The stretching of a typical’side of this area

is given by
2(z) = ZO exp (z/Lc) , . (148)

where Lc-= TR/1In(ms/2) which is called the stochastic:

instability of trajectories. To conserve area the width

i
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§(z) of the area must decrease according to §(z) = ZO exp(—z/Lc)
as shown in Fig.llb. When the el@mﬁﬂjon £(z) exceeds the
cross field correlation distance § different regions

separated by § evolve independently as shown in Fig. lle.

This coﬁditibn, £(z) = § = 1/Ak,, defines the correlation
length
L =L 1n (- (149)
c0 c Ly

for the area. For L >*LCO the magnetic mapping is a random

walk with the average sguared displacemeht of the area

described by
<Ar©> = 2D_L : : (150)

where

(151)

is the field diffusion coefficient.

Now consider fhe motion of a small patch of electrons
whose guiding centers follow the magnetic field lines. The
small patch of electrons of radius r, move along the field
mapping into the complicated thin filaments of width

r, exp (—z/Lc) until they suffer a collision at the average




107

distance z = ke = ve/ve. At the time of the collision the

initial patch of electrons has spread the average;sqmﬂxﬂ.paqudimﬂar
distance'<Ar2> = QDFA provided A ; LcO' After the

collision the thin filaménts'expand to réqkﬁﬁﬂaﬁEGQKEELytbe

neQ subsections of radius r, repeat the procesé,

This gives rise to the thermal diffusion
Xe = F<Ar®>v_ = v Dg (152)

valid for A, > L, ~ 1/Ak . Rechester and Rosenbluth (1978)

note that this transport applies to the electron thermal
energy since the particle transport must be limited by an

ambipolar potential.

In.the/collisional_regime.xe< L. the electrons. change
direction along the field line many times before the
reaching uncorrelated regions. During the parallel diffusion
“TAzz.i;x”et the patch of electrons expands across the
maénetic field at the rate b&éal/z by collisional diffusion
while the field line mapping contracts the width of the
patch accoraing to exp(—z/Lc). The balance between these
processes occurs when the width is of order Lc(Xie/XHe)l/z'
A small area of this radius becomes uncorrelatedehen

1/2 _ N L
Lc(XLe/XHe) exp ( Z/Lc)_ 1/hk, which yields the

collisional correlation length

L =L ln[ii

Xle,1/2
o5 c T (—=) 1. | (153)

c e
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] : : 1 d = 2 3%
The a55001at¢d time fo: parallel diffusion tG = Lcd/XHe is

\'umatime during which a particle may be thought of as orbiting

along a single field line before collisionally .scattered to.a new uncorrelated

_ \ 1 _ Y ,
field line. The random walk of the electron patch proceeds with

the step time t and mean radial step size <Ar2

| T | e 4 . | >M=fPFLc§. For
this collisional regime the thermal transport is
2 X
<Ar™> e
= = D (=) (154)
Xe tG F L06 '

which is smaller than the collisionless Xeo in formula (152) by the factor
simply'xe ==X"e <B§/B2> which follows from the fluid description of the

transport due to magnetic turbulence as shown in the next section.

Rechéster and Rosenbluth (1978) suggesf that finite

beta drift waves and tearing modes with fluctuation scalés

k”R ~ 1 and klpi'N 1 have sufficient amplituae in confinement
experiments to be well into the regime of strong stochasticity
where the field diffusion is Dp = R<63§>J/B2 and Xa follows

from Egs. (;52)for-xe > L, and (154) for Ae < Lg-

4.4 Electron Thermal Transport from Magnetic Fluctuations

in the Fluid Approximation
Kadomtsev and Pogutse (1978) address the problem of

calculating the anomalous electron transport from stochastic

mangetic perturbations within the MHD approximation for

=
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thermal conduction. The basic transport law is taken as
vog=o o B
with the colligional fo;mula for the local thermal flux
g = -xyh(h + VT - x, VT, (156)

where X|| exceeds Xy by several orders of magnitude. The

“collisional values are approximately Xy = nTe/me\)e and -

- 2 . C o 2 .2
and x; = nTe\)e/mewce and give the ratloxﬂ/x” = b%/@ce) =iy
where y is assumed small. The vector h along the magnetic

field is written as the sum
h=e_ +hb \ | (157)
of the constant vector in the direction of the ambient magnetic

field and small stochastic vector b = Ggi/B. It is seen from

Egq. (156) that for <b2>x ~ ¥, the contribution from the
I L

‘parallel transport is comparable to that from the cross

field transport.

The stochastic magnetic field g(giz) has Vv, - b =20
since §O = const. The stochastic field b is characterized
by (1) the small root-mean-square value b0 = <b2>l/2, (2)

isotropic properties in the plane perpendicular to the

ambient magnetic field, (3) the cross field correlation
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distance § and (4) the parallel field correlation distance
Lé' In this and subsequent sections the logarithmic factors that distinguish

Lor Too and-LcCS are,dlgregarded,

The equation for the transverse coordinates x of a

point following the field lines is
' 2
r) (z2) =/ Blr(z'),z'laz". (158)
~ ON

In the limit of small bO’ the quasilinear approximation for

<rf(z)> becomes at large z

<xts = 4D,z (159)

where

1 |
Dp =5/ <b(0,2)b(0,0) > dz. (160)

The parallel correlation length LC is defined by

1.2
DF.— T boly | (161)

with which the quasilinear diffusion may be written as
2 2

<r;> = bOLCZ for z > LO. The quasilinear approximation of
neglecting r (z) in Eg. (160) is valid when <rf>1/2 = bOLc-< 8

where § is the cross field correlation distance. Thus, the

amplitude parameter R,

= I S
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R = 3 ’ : (162)
defines the quasilinear regime.

To determine the field diffusion DF in the regime
R > 1, Kadomtsev and Pogutse (1978) use the statistical
theory of plasma turbulence, Dupree (1967). With N(r,z)

defined as the conserved density of magnetic field lines,

the magnetic transport equation is

a . . . . "
=+ - VN(g .,z = o. | (163)

Splitting the density into its mean value N and its

fluctuation N', the well known coupled turbulence equations

N _ . ro L 2=
Tz = v <bN'> = DFVLN
3N 240 .

Bz ~ PpUIN' = R VN

are used to obtain

b (k)

. 2
lkz + leF

dk (164)

~

where the factor 1/2 results from the angle average of the
isotropic spectrum. Here, the Fourier spectrum of the

istropic magnetic correlation function is

T

28 19

T




112

1
(2m)

b% (k) = far(p(0)b(x)) exp (-ik * ).

~

3

The guasilinear formula is recovered from (164) when

‘ 2 _ 2 _ .2
Akz > leF where DF = (m/2) fdk b (k)d(kz) = bOLC' For

large amplitudes R > 1 the cross field decorrelation

dominates,kap > Akz;and Eg. (l64) reduces to

o'
H
h
¢}
B
td
Il

_bOLc/6'< 1

o'
o3
h
O
B
o
|

= byLy/8 > 1

Returning to the solution of Egs. (155) and (156), the
temperature field is split into its mean Te and fluctuating
components Te' where linearization gives

dTe

2 2,2 .
(kZ 4 Y k.l.)Te' (]’i) = lkZbX(]'S’) -d? .

The mean value of the radial component of the heat flux is

(165)

(166)

(167)

1T T
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~ 5 dfe dTé
Te = P> T T X Px E@
,'yzksz(k)dk aT_
= - ‘ —_— . (168)
L2 + szf dx
When we restrict consideration. to bO > vy = Ve/wce and
demand that R < 1,it follows that for Akz > vk, the quasi-
lienar approximation for the effective transport resulting
from Eqg. (168) is
2
_ 172 Pok
Xe = OXx) 5
cTe bch
(—e-g-) (——6—) , | S _ (169)
where ( )1/2 = D_ = cT /eB and b,L < § is the limit of
kL B e 0~c

the quasilinear regime.

In the llmlt Xi + 0 formula (169) breaks down because of the

neglect of higher order terms in b. Kadomtsev and Poqutse
(1978) give a theory for the. nonlinear regime defined by
by > ¥/R. They show that in this regime the thermal

conductivity is

= ( 0 Cﬁz for R =b.L /8. < 1 (170)
Xe = XY\75) 0’ 0 .

T

T T
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: In both parameter ranges of

~the ratio X”/Xl'the'anomalouS"thermal'conductivity'ié“related

to the field diffusion by

e F (171)

P

I
O
<

I

where v x”/L*with'L*the characteristic length over which

the temperature perturbation is transpbrted. ! Formula {171)

=»bch agrees with formulas

with Dy, (152) and (154) to within
,iogarithmic factors of oxder ﬁﬂify and extends the’resultsvar

Xo Outside the quasilinear regime.

:

M 11
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In a plasma with high electrical conductivity it is .
natural to consider that G‘Bl arises from displacements
with & ~ § which bend the field acco:ding tovéB ~ BOG/LCf_
according to Kadomtsev and Pogutse (1978). Such displacements
put the magnetic turbulence in the R ~ 1 regime where Xe is

only weakly dependent on y = (xl/xn)l/z. The value of

/

Xe is
2, 2
x"(6 /LC) for A< L

(172)

from formulas (170) and. (171).

For the cross field correlation distance § Kadomtsev
and Pogutse (1978) propose that for low freguency fluctuations
of the drift mode type the natural scale for the déstructioén
and reconnection of the magnetic field lines is the collisionless
skin depth § = c/wpef The argument is that at these low
frequengies_the magnetic surfaces are frozen into the electrons
on tbis scale. With this assumption the formula (172) for

the\anoﬁalous electron thermal conductivity becomes

<

2
C

e

X = ee— ——

e wZ LC
pe

for Ve < ve/Lc (173)

T

TT 11
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where the parallel correlation. length L is now

. the effective Iength of the system. In a

toroidal confinement device with major radiué R and invefse
rotational transform or safetY'factor g the effective

léngth is~Lc = gR. In this case the formula agrees

with the émpirical formula proposed by Ohkawa kl978)‘to explain
the parametric dependence observed in toroidal confihement

experiments.

4.5 BSaturation Levels of the Gradient Driven Tearing Modes
and Finite Beta Drift Waves

.AThe électron ﬁémperature gradient destabilizes short
wavelength tearing modes also called microtearing modes.
These gradient driven modes produce substantial égl(k)
about the resonant surfaces k -* B = 0 which lead to anomalous
transport via the mechanism analyzed in Secs. (4.1)-(4.4).
The traditional long wavelength tearing mode is driven by

the magnetic energy produced by force free plasma currents,

.iugyfasfdiSCusseduin:Ghapteﬁ III.5, and, although transport is

produced as a consequence of the magnetic activity, the
mode is not inherent to the anomalous transport due to

macroscopic plasma gradients.

In the collisional regime the electron temperature
gradient driven tearing mode is analyzed by Hazeltine and-
Strauss (1976) in the quasilinear regime of Sec. 4.2.

The turbulent diffusion of the temperature gradient across

T
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a single magnetic island produces saturation when the

magnetic fluctuation reaches the level

' 1/2
<6Bl> e.l1l/2

by = — 5 S k0 (3 (174)

where pé is the electron gyroradius and Tm is the electron

temperature gradient scale length.

A mode coupllng analysis of the temperature gradlent !
, , R -
drlven problem by Drake et al. (1980) in a semicollisional ‘

reglme, Weg ™~ Véi leads to the conclusion that the nonlinear

transfer of mode energy from Sj“B balances the growth

rate v, = (w re/Ve) g (1 + 2 ng) Gladd et al., 1980) when the

' fluctuatlon amplltude reaches the level ' : |

<spf>1/2 o
bo = T =£_¥ B _ (175)

In the amplitude regime where the magnetic island width

A (L bo/k ) 1/2 is greater than the separation of the

k:

resonant surfaces, ky > (rTLS/rzpe)l/3, the anomalous

thermal transport is estimated by

w202 |
Xg = —5 = e Te
: 5
e T T

>

(176)

0
4
(0]

which Drake et al. (1980) discuss in terms of recent

experiments on magnetic turbulence.
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The renormalized electron-wave interactions due to the
magnetic fluctuations are investigated by Galeev (1978) for the
short wavelength collisionless tearing modes. The fluctuations
are dominated by perpendicular wavelength of order. of the colf

lisionless skin depth c/mpe. Galeev finds saturation of the

. modes at the turbulence level

B> > (]5)12 _ ke’ 1 (177)
52 E s a wée (1+1, /T,) ”

where E” is the mean parallel wave number determined by the geom-

etry and the shear. 1In view of the analysis in Sec. 4.4 this

saturation is at the transition point R = bOLc/G ~ 1 where

§ ~ ¢ and L = 1/kK,.
c/mpe n e - / I

example where the anomalous thermal conductivity in Eq._(173xxis

‘"The saturation level -(177) provides an

predicted.

For finite B drift waves, Molvig, et al. (1979) use the.re=-

normalized electron propagator and the stabilizing effect of mag-

~ netic shear to obtain saturation. The anomalous electron transport

obtained by Molvig, et .al. is
v i : 2

v =o0.1 e Picm bs ]
) miBe /rn eB rn(l+Ti/Te)n

which exceeds the transport in Eg. (100) by the factor (Ls/rn)z,
due partly to the higher fluctuation level. This model neglects

the ion nonlinearities analyzed in Sec. 3.

4.6 Kinetic Theory of Transport due to Magnetic Fluctuations
More information about the character of the anomalous elec-

tron thermal conductivity due to magnetic turbulence is obtained

- from a kinetic descripﬁion of the fluctuating particle distribu--

tion. In the analysis of the transport due to tearing modes,
Galeev (1978) shows that the net particle and thermal flux across
the ambient magnetic field is limited by the randomization or

stochastization of the particle-fluctuation phase relation. For

HE
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example, the cross-field electron diffusion <Ax2> = XgT in
the sheared magnetic field results in the decorrelation in
time 1T of the parallel phase relationship according to

.z e _1,,2.2 3 o _
<exp (if k”dz )> = exp ( z k" Vi XeT ) where k” —iﬂﬂﬁax ky/LS.

To describe both the turbﬁlent phase stochastization
and the collisional diffusion from electron-~ion vei collisions

and electron-electron Vee collisions, Galeev and Zeleny (1979)

introduce the renormalized kinetic equation with a Batnagar-

Gross-Krook collision operator that conserves particles and

parallel momentum. From this kinetic equation the fluctuating

parallel electron current j”(k) is calctilated and used in.

Eg. (129) to determine the radial transport due to <|6BX(k)l2>.

w eff el

the formula for the anomalous thermal conductivity reduces

to

eff

2 (179)
KiXe * Vers

;'GBX(k) 2 v
Xe = XIIeZ:‘ B 4
k

where

2,2 '
Verr = Ao )T (X o+ X) (180)

zvei being the classical parallel

e

. _ 4,2 o
with Xje = Aevei and Xle = o)

<y < V.., (178) .

TT I
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and perpendicular electron ; thermal conductivities. Here;.

A= ve/\)e is the electron mean-free-path and Pe = ve/wc

e e

i

the electron gyroradius.

The k” width of the correlation function is &

Ak” = (veff/xﬂe)l/z whi¢h defines the characteristic scale

length L; for stochastization of the electron-fluctuation
phase
v

_ _ ei 1/2 |
Lt = l/Ak”,— Ae(gggg) . , - (181)

~ When the 6B (k) spectrum is broad compared with Akj the

conductivity formula reduces to

>

= Vv
Xe = Ve

.’L—II
D % (D
=

D | " (182)

where the magnétic field diffusion coefficient Dp is given
in Eg. (151). At the collisionless limit of condition (178)
where the mean-free-path exceeds the phaseustochastization
length the electrons diffuse at the same rate as the

magnetic field

Xe = VaDp | (183)

as discussed in Sec. 4.3. For Ke < Lé the anomalous transport

is reduced by Ae/Lé but does not go directly to the collisional
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regime of Rechester and Rosenbluﬁh (1978) given in Eqg.
(154). Between the collisional and collisionless regime
there is a plateau or semi—céllisional regime where the -
mean-free-path is long compared to the shear length Ls & L0
~ but shorter than the phase stochastization length L;. In
this amplitude regimeAwhere Xe exceeds Xle the length Lé
varies inversely with xz_according to Eqs,(lgo) and (181)
Expressing Lé in terms of ¥, and solving Eq. (179) yields

the plateau thermal donductivity

Xe = X1 ePoky A (184) ‘

where bo is defined in Sec. 4.4 and EY is a mean wavenumber
in the Spectrum. The plateau or semi=collisional—formula
(l843 is valid for b, constrained by X, > X|e and
Vegg € Veir OF equivalently L; >>ke, which defines the domain

1/2 0

e l/2
3/2 Dby ) (185)

y e

For b, less than the lower limit in Eg. (185) ¥, equals X
plus a Small increment from the magnetic turbulence. For
higher fluctuation levels the mean-free-path exceeds the
stochastization length and the collisionless formula (183)

applies. At still langer amplitudes bO > G‘/LS the 0
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thermal conductivity becomes Xe = veboéxﬂ.

These four regimes are shown in the left half

of Fig. 12;

The limited region of radial correlation in the magnetic
turbulence also influences the form of the anomalous thermal
flux. Here, we define 6X = 1/EX as the radial scale distance
over which the magnétid-fluctuations are correlated. There
are two effects that arise from the finite radial correlation
distance. First, there is a further loss of the phase
coherence due to the perpendicular diffusion over 6X which
is described by Vesf ~ Verrs T kixe; and secdndly, there is

an additional decorrelation from the parallel motion of the

electron along the radially tiltéd field line which is

|

described by the nonlinear—k <« B = kHOB F kXSBX. With—regard

Py e = S

shows that the radial decorrelation dominates “when

k

=

S
>
A

e

")

ET
N
b

. . | .
From the second effect it is adequate toftake:uﬂn.acamnﬁ:that

the mean value of the stochastic k is given by

Il

b

2 2 2, 2
> =

Kz =k * kgPo

from which it is evideht that the nonlinear broadening of

the parallel phase dominates when

_to the first effect, a comparison of kjx, with v o, in Eq. (180)

(186)

(187)
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max(k”) S
- X (188)
0 k LS *

o
v
|

Taking these two effects into account: generalizes
correlation function in Eqg. (IZQ) so that the quasistatic

thermal conductivity becomes

2
Yo T Mle Ll TE (k2 + k2b2)yx,_ + v + k2 | (182)
k' Il %P0’ X[[e T Veff xXe

~

The approximation of replacing kﬁ'by the average nonlinear
<kﬁ> given by Eq. (187) appears'adequate to recover the

essential results of the nonlinear;physics;

First, it is observed from Eg. (189) that in the
guasilinear regime, b0 < GX/Ls; that the scale length for

stochasization of the electron phase is shorter by

1/2 1/2

/1 = By = [0vpr + Koxg) /Xl /2 % Ky (xo/Xy o)/ when

when condition (186) is satisfied. For Ay < L* the plateau
fOrmﬁla that follows fromng is
4_2:
bOL

Xg = X”e(—gii) - (190)
X

which agrees with Eq. (170) from Kadomtsev and Pogutse

(1978) and connects the thermal éénduétivity to Eq. (184)

when condition (186) is reveréed.”
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'The domain of applicability of Eg. (190) is shown in the middle-right

hand section of Fig. 12. For the anomalous. conductivity
Xe to exceed the collisional conductivity Xl e it is necessary that
1/2

b0 > (péGX/AeLS) .

' In the nonlinear regime b0 > SX/LS the stochastization
of the parallel phase is unimportant according to Eg. (189)
Clearly, there remain two sub=domains depending on the
magnitude of the nonlinear broadening kingﬂé. In the
lower amplitude subdomain clearly Eq. (189) reduces simply

to

2

o~
(2E
1O
(A}

—r

Xe T K10

where now the condition for applicabilityiybecomes

8

X §

T <P < n -
S e

When the nonlinear parallel decorrelation is substantial,

— . . - 2.2 .2
theronly consistent solution of Eq. (189) has kxbOXHe kxxe
and consequently Xe = X”ebg,valid when the mean free path is
less than the parallel correlation length. The parallel
correlation length is given by l/L“’VkXbO'” bO/GX. Thus, -

the well known self-similar form X = XHebg remains valid
e .

until
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S

X
bo > T
e

whereupon

gives the nonlinear, collisionless thermal transport shown

in the upper part of Fig. 12.

Finally, it should be noted that the selfjsimilar
result X, = X ‘<83i}/B2 is universal in the sense that it is
realized both for strong collisions and for'e high. level
magnetic fluctuations. TIn the regime of strong collisions

the result is « obtalned by Rechester and Rosenbluth (l978)

5 A (192)

in Eqg. (154) .~ As shown by the kinetic analysis in this sectlon and

summarized in Fig. 12, there are’ plateau or semlcolllslonal
" regimes of practical importance where the transport follows

different laws.

In conclusion, there are differeut mechanisms for anomalous
traneport depending on the regime of the élasma. At the present,
there are no general rules for determining which of theAformulas
presented here govern transport in a specific.plasma. As a guide,
however, we may remark that formulas (60)-(68) are important for

low plasma pressure DL < . ; and are supported by the

. experiments discussed in Sec. 2.3. The formulas (8o) and (87)

for the k spectrum and the line width vk are supported 5§ the
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microwave scattering experiments. The formula (91) for the ion
thermal conduction is supported by computer simulations. For

B> me/.Iﬁi the formula: (96)., or equivalently -(100), appears
consistent with the empirical scaling laW-for tokamak confinement.
In this regime, the.magnetic‘turbulent transport formulas
(172)=-(173) yield a result rather similar to (96) and may also

be a reasonable approximation to the empirical scaling law

for thermal tréﬁsport in low beta tokamaks. Finally, the
transport produced by convective cells is given by formulas

(115) énd (116) which ére also .important fesults for thé analysié

of plasma transport.

T

I
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FIGURE CAPTIONS

Figure 1 (@) A segment of a drift wave fluctuation ‘showing the variation of the
‘elec;:tr“os;tatic -potential berpendicular to the magnefic field at a
given instant of time. The contours of ® = const in the plane
‘pérpendicular to B% are the stream lines of the 5 X B particle
moﬁon .

(b) . ,A 'segment of the correlated but phase shifted density variation.
(c) Troplview of the potential and density contours in (a) and (b) in the
(d) Top view in the case where the potential and density variation are

out of phase by. wén "

I

Figure 2. From the collisional drift wave experiment of Hendel, et al. (1968)

showing (a) the plasma density profile n, r), (b) the am-plitude.';:j; of

the density and potential waves,and (¢) the phase shift I’Uén, © by
which the density wave leads the potential wave.

Figure 3. From the collisional drift wave experiment in Fig. 2, showing
(@) the radial particle fiux T'r) = Pwave produced by the drift
,,¥va-ve~c,émp’ared to the collisional flux Fe-i (r) and (b) the anoma~
lous diffusion coefficient D(r) produced by the drift wave com-
pared to the collisional diffusion De—i'

Figure 4. From the collisionless drift wave experiment of Brossier, et al.

(1978) showing the equilibrium plasma density and the amplitudes

of the density, electron temperature and the potential waves.
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Figure 5.

Figure 6.

Figure 7.
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From thé collisionless drift wave experiment in Fig. 4, showing
the phase shift between the density and potential wave lpf;n, ®
and thekphase shift between the density and the temperature
wave w&n, 5T *

The anomalous diffusion coefficient for collisionless drift waves
as a function of collision frequency. For Vg < V, the quasi-
linear change in the electron velocity distribution limits the

anomalous flux.

Diagram showing the unstable region of wavenumber space that

is coupled through nonlinear interactions to the larger damped

regions of wavenumber space as discussed by Oraevskii and

Sagdeev (1963).

sy

Figure8.

Figure 9.,

The frequency spectrum obtained 'fz:om inicrowave scattering off the
ope c_entimeter wavelength, ];fi ~ 0.6, in’the drift wave turbulence
studies in the ATC experiment, Goldston, et al. (1978). From

(@) to (b) the direction of rotation of the drift wave fluctuations

is changed by reversing the direction of the magnetic field. The
peak of the spectrum corresponds approximately to the drift wave

frequency w, and the width of the spectrum to the Doppler broaden-

k
ing frequency vk .
The k;—spectrum obtained from microwave scattering at six diffe-

rent angles in the ATC experiment by Mazzucato (1976). The spectral

formula of Horton (1976) given Eq. (86) is shown evaluated for the

experiment.
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Figure 10.

Figure 11..

Figure 12.

.small circle in (@) is mapped by the magnetic field to (b) showing |

»Xe'due to quasistatic magnetic turbulence. Formulas taken from

134

The magnetic island chains produced by two nearby resonant pertur-

bations k, *B = 0 andk, * B = 0 in the sheared magnetic field.

The 8B (k) amplitudes are small enough that overlapping has not
~ A2 ’

|
vet occured s 1. Adopted from Galeev (1978).

In the stochastic regime of strong island overlapping 8 >> 1, the

the stochastic instability of trajectories. When the filament length
in (b) exceeds the cross-field correlation distance the mapping
evolves as shown in (¢) Rechester and Rosenbluth (1978).

Regimes and formulas for the anomalous electron thermal conductivity

|
Rechester and Rosenbluth (1978), Kg‘a‘domtsev and Pogutse (1978) and

Galeev and Zeleny (1979).
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