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Abstract

It is shown that rippling instabilities can tap the density gradient expansion free energy
source through the density depenence of the neoclassical resistivity. Linear analyses show
that the region where neoclassical rippling modes are significantly excited extends from
the edge of the plasma to the region where v, < 1. Since these mO(Iies are non-dispersive,
diamagnetic effects are negligible in comparision to the nonlinear decorrelation rate at sat-
uration. Thus, the relevant regime is the ‘strong turbulence’ regime. The turbulent radial
diffusivities of the temperature and the density are obtained as eigenvalues of the renor-
malized eigenmode equations at steady state. The density gradient acts to enhance the
level of turbulence, compared to that driven by the femperature gradient alone. The satu-
rated turbulent state is characterized by: current decoupling, the breakdown of Boltzmann
relation, a radial mode scale of density fluctuations exceeding that of temperature fluctu-
ations, implying that density diffusivity exceeds temperature diffusivity, and that density

fluctuation levels exceed temperature fluctuation levels. Magnetic fluctuation levels are

negligible.



I. Introduction

Resistivity-gradient-driven turbulence’ (RGDT) has been successful in explaining
many characteristics® of tokamak edge plasmas: large fluctuation levels, radially increasing
large diffusivities, and the breakdown of Boltzmann relation. Consideration of impurity
density fluctuation dynamics®* and radiation effects® has made RGDT an even more real-
istic tokamak edge turbulence model. Recently, it has been argued® that these attractive
features are ill-founded from the conventional standpoint of linear stability. Indeed, RGDT
evloves from unstable rippling modes,”™® and detailed linear analyses® indicate that the
linear rippling modes tend to be quenched at moderate temperature due to stabilizing ef-
fects of large parallel thermal conduction and finite electron diamagnetism. However, both
theoretical and computational analyses!* have demonstrated that the nonlinear evolution
of RGDT is characterized by the nonlinear broadening of an asymmetric mode structure,
so that the resistivity and potential fluctuations move away from the rational surface and
decouple from the current perturbation. This current decoupling drastically modifies the
usual linear structure’ of the perturbations, and renders the stabilzing influence of field
line bending ineffective. Therefore, RGDT is nonlinearly robust. It is also crucial to note
that the tokamak edge is rarely quiescent,? due to the presence of impurities, plasma-wall
interaction, etc.. Therefore, the conventional picture of linear instability developing from
a quiescent plasma at equilibrium is not necessarily appropriate. Hence, the tokamak
edge fluctuations can only be understood by nonlinear theory. All afore-mentioned RGDT
modelsh*® are based on a reduced, resistive MHD description!? of a plasma, and consists
of Ohm’s law and the vorticity and resistivity evolutions. However, this model is valid
only in the Pfirsch-Schliiter collisionality regime.!?

Recently, neoclassical MHD equations!? have been derived which are valid in
the experimentally relevant banana-plateau collisionality regimes. The most significant
modification in RGDT due to neoclassical effects is that the neoclassical resistivity!2:13
is now a function of the density as well as the temperature, while the classical Spitzer
resistivity'* depends on the temperature only. Therefore, rippling modes®~¢ can couple

to the density gradient, and the density fluctuation dynamics becomes significant in de-

termining the evolution of neoclassical rippling modes. Main purpose of this paper is
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to investigate neoclassical resistivity-gradient-driven turbulence (NRGDT) evolving from
neoclassical rippling modes, to incorporate density fluctuation dynamics, and to extend
the validity regime of RGDT further into high temperature, low collisionality regimes of
tokamaks. The resulting particle diffusivity increases as temperature decreases, allowing
a possibility of explaining the radially increasing profile of particle diffusivity from exper-
imental measurements.?1®> We note that drift wave instsabilities!® are unable to account
for this experimental result.

Linear stability analysis shows that without neoclassical coupling to the density

gradient, the large parallel thermal conduction has a strong stabilizing effect for small scale

modes, and that the growth rate decreases with the poloidal mode number, m, for large
m. In a small-m limit, parallel conduction is less efficient, and the growth rate increases
with m. Therefore, conventional rippling modes are most unstable (linearly) for moderate
m-values. When the density gradient is included, the equilibration of density fluctuations
along flux surfaces is affected by parallel stress tensor effects (due to collisions between
trapped and untrapped particles). This has a much weaker stabilizing effect than thermal
conduction. Therefore, the unstable region extends both in distance from the edge (i.e.,
into regions of higher temperature) and in m-values.

The radial asymmetry in the mode structure develops further during the nonlinear

evolution, resulting in negligible current fluctuation in the region of interest. This leads to

the decoupling of the vorticity evolution equation from the other basic equations, so that -

the system consists of Ohm’s law and the temperature and density evolution equations.
Nonlinear saturation is attained when parallel dissipations, enhanced by nonlinear mode
broadening, balance linear instability sources. The mode broadening results from nonlinear
mode couplings mediated via F x B convection. Convective nonlinearity is renormalized to
yield spectrum-dependent turbulent diffusivities. The turbulent temperature and density
diffusivities are obtained as eigenvalues of the stationary renormalized eigenmode equations
at saturation. Their values are much larger than naive mixing length estimates, based upon
linear growth rates and mode widths. The dominant effect of the inclusion of the density
dynamics is the considerable increase in the level of turbulence, in comparision to the case

with only the temperature gradient.



Levels of electrostatic potential, temperature, and density fluctuations are deter-
mined. The level of density fluctuation is higher than that of temperature fluctuation as
a consequence of larger radial scale-length of density fluctuation, and is different from the
level of electrostatic fluctuation. The magnetic fluctuation level is shown to be too low to
induce any significant heat transport along perturbed magnetic field lines.

The remainder of this paper is organized as follows: In Sec. II, the theoretical
model for NRGDT is presented. The structure of the neoclassical resistivity is investigated
in detail. In Sec. III, the linear stability results are presented. In Sec. IV, the nonlinear
saturation mechanism is identified and the level of turbulence is determined. A discussion
of the theory in the context of ELMs in DIII-D H-mode!” plasmas is also presented. Finally,

Sec. V contains a summary and conclusions.



II. Neoclassical Resistivity-Gradient-Driven Turbulence Model

In this section, we present the basic neoclassical resistivity-gradient-driven model
which is derived from the simplified neoclassical MHD equations.!? The simplification is
due to the omission of perpendicular flow. The neoclassical correction!?*? to the Spitzer
resistivity is most relevant to the evolution of NRGDT, and is discussed in detail.

The simplified neoclassical Ohm’s law in the electrostatic approximation can be
written as:

. - . 1 Ao
By ==V =tmedj + e Jj = V) <Ten—0 + Te) : (1)

Here, E) is the parallel electric field, ¢ is the electrostatic potential, J| is the parallel
current, T, is the electron temperature, and ng is the density. Also, (~) denotes the
perturbed quantity and the n,. is the neoclassical resistivity, the expression for which
will be given later. The origin of Eq. (1) can be easily seen by considering the electron

momentum balance equation,

dv” 1 1
me—d—t— = —eE” - ;Z—gbvpe—}-abvn”e'*‘enspj” (2)

Here, P, is the electron pressure, m, is the electron mass, II)| is the parallel stress tensor,

and b = B/B. Also, the Spitzer resistivity,'* 7sp is given by
m
e = Kl e

where K| ~ 0.51 for Zeg = 1 plasma, and the electron collision rate, ve, is
4 noet
Ve = -é-v ZleH A.
The parallel viscous drag due to collisions with trapped particles is given approximately
by:
b-V. H”e ~ menopev”. (3)
Here,
2.3¢1/2y,
fe 2
ST 14102012 +1.07vn,

where ¢ is the inverse aspect ratio, v4e = ve/wbee3/2, wpe = Vth,e/Rogq, Ro is the major

(4)

radius, and ¢ is the safety factor. The poloidal component of the first order electron
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perpendicular flow, leading to the bootstrap current!?!2 is omitted for simplicity. From

Egs. (2) and (3), Ohm’s law becomes

1
J” — —b-VP,. (5)

€Ny

4.51¢l/2
By=mnep |1+ 1/2
14+ 1.020:8° + 1.07v,

12,13

Thus, the neoclassical resistivity can be written as

N 4.51¢!/2
e 14+ 102202 +1.070,. )

Note that 7, now depends on the density as well, through the density dependence of v,

/

while the Spitzer resistivity is a function of T, only, i.e., nsp T 32, Therefore, in the
neoclassical theory, resistivity-gradient-driven turbulence! is modified by, and depends on
density fluctuation dynamics as well as temperature fluctuation dynamics. Exploring the
consequence of this novel feature is the motivation of the present work.

The structure of the neoclassical resistivity fluctuation can be written as

7711C — @_ . ‘ﬁ‘
nnc - C’tTe Cn ’I’LO, (6)
where
Olnmyc
On = - dlnng
-1
 4.51e1/2(0.51031% + 1.07v4.) - 4.51€l/2 -
(14 1020202 + 1070 )2 141020202 + 1.070e
Oln e
Co=- olnT,
= g —2Ch. | (8)

Since C), vanishes in both limits (v4. — 0 and vy — ©0), the density gradient effect on
rippling modes also vanishes for values of vy, far from the unity. For moderate values
of ¢, C), has a maximum value of about 0.2 around v, ~ 1 and decreases slowly as v,
increases, as seen in Fig. 1. Also, note that C, and C}; are always positive.

The vorticity evolution equation can be derived from the charge neutrality con-

dition:
BZ
c2

d

p7 Vi ="V, 9)




where p is the mass density. We have neglected the neoclassical enhancement of the inertia
(arising from an additional polarization drift) and the neoclassical cross viscosity!2:18 (aris-
ing from an anisotropy in the perturbed pressure) in Eq. (9). The neoclassical cross viscos-
ity, along with the bootstrap current which is also neglected in Eq. (1), act as destabilizing
sources for the neoclassical pressure-gradient-driven instabilities.’®1® The neoclassical en-
hancement of the inertia as well as the ion diamagnetism acts to reduce the growth rate.
However, in lowest order, these are irrelevant to the evolution of NRGDT due to current
decoupling. The heating due to the bootstrap current is also neglected for simplicity.

The density equation is determined from the continuity equation:

dn c

" 1_ . 3
i Bb X V¢ -Vng + ';V”J” — no V. (10)

The center-of-mass velocity @) evolves as

W _Gyno Ly — il (11)
o Il A Y e |

Here, ion temperature fluctuations are neglected, M is the ion mass,

1
2 _ ,
¢ = J\/[(Te + T3),
i = 0.66€1/2y;
Y 141.08022 £ 0.310

where v; is the ion collision rate and v4; = Vxe—;. The term involving u; comes from the ion
neoclassical parallel viscous force due to collisions with trapped ions. The first-order ion
perpendicular flow component has been omitted, consistently with previous simplifications.
In the regime where modes grow slower than the effective neoclassical collision time (d/dt <
©i), Eq. (10) simplifies to:

fl—? - anﬁﬁ - i—:ﬁzVﬁﬁ =

where Xn, = ¢2/p;. Note that X, combined with the shear, cuts off sound wave propaga-

C

. 1 .
b xV¢-Vne+ =V Jy, (12)
B e
tion. Also, note that up to additional couplings to T, and j” dynamics, density fluctutation
dynamics is similar to impurity fluctuation dynamics,®* with neoclassical viscosity replac-
ing effective parallel diffusion y,. Therefore, results structurally similar to those of Ref. 4

are expected.




The temperature evolution equation is

d - - c 7
ZZ—ETe - X”VﬁTe = ""B‘b x V¢ VT, (13)

where x| is the parallel electron thermal conductivity. The large value of x| tends to
localize classical rippling modes around the mode rational surface, and thus has a strong
stabilizing effect. We have neglected impurity radiation cooling effects,® for simplicity.

Equations (1), (9), (12), and (13) constitute the basic NRGDT model to be
studied analytically.




ITII. Linear Theory
We study the linear instability described by the basic NRGDT model by Fourier
analyzing perturbations as:
#=" Tmn(@) expli(mb —nZ) + 1),
el
where m and n are poloidal and toroidal mode numbers, respectively, R is the major
radius, z is the coordinate along the major axis, and z = r — r, is the distance from the

singular surface, r,, at which ¢(r,) = m/n. Then, the eigenmode equation becomes

2 e 2
d,—‘I)— —1-X2— 6tXr B 6 X 1 th,— &
dX? 4 1+5:X2 1406,X2 14 6,X2
. OltX2 Oln.X2 thZ _
_Z[1+th2+1+an2 (1_1+th2 ®=0. (14)
Here,
X =z/zpg,
¢ 1 el \?
Tp = ZnnC')’P Bk )
_ CCtE"Ls
¢ 4ByLizg’
5 = Xl [ kezR 2
T v Ls )
6n — Cn(gt,
Ct"]e
'r]eTe (kéxR)2
dy = ,
yuiM \ L,
_ Xn (kozr
w2 (55
_ Tecke
" 4L.evB
on = a¢/ne

We have used V3 o d?/da® > k}, Vg = ikgy = im/r,, and V) = ik = —ikex/L,. -Also,
L, = R¢? /rq' is the shear length, Ly = —[dInT,/dr]™! is the temperature scale length,
L, = —[dlnng/dr]™?! is the density scale length, and ne = L,/L;. The first term in Eq. (14)

represents the inertia and the second represents field line bending which has a stabilizing
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effect. The third and the fourth represent drive due to the temperature gradient (6¢) and
the density gradient (6, ), respectively, through temperature and density dependences of
the neoclassical resistivity. The drive is limited to small regions by b; and b,. Also, the d;
factor represents the coupling of temperature evolution to density evolution. Finally, the
imaginary part of Eq. (14) represents the electron diamagnetic effect, which gives rise to
finite real frequency. It is crucial to note that the eigenmode equation is not symmetric in
z, with the consequence that ® is asymmetrically skewed about the rational surface. The
resistivity fluctuation breaks the parity of Ohm’s law to localize ® at the high resistivity
side around the rational surface. This is because the destabilizing part of J x B force
(proportional to 7j) changes sign as the rational surface is crossed.?”

Equation (14) can be solved appproximately®?® by using the WKXB method, by
ignoring the subdominant imaginary part. Eigenvalues are determined from the condition:

Xo - 'd r2 2 1/2
/ qX { 6: X + 0 X (1 di X ) B L} _
0

1+b0,X2 " 140,X2 " 1+0X2) 4 (21+1);  (19)

N3

where [ is an integer, and X is a turning point, other than 0.
First, we consider the limit where é,, = 0, corresponding to the flat density profile,
where the density coupling to the resistivity is neglected. In the limit of small electron

parallel thermal conduction (b; = 0), exact solutions can be found:
1
®(X) = ®(0) exp [—Z(X — 2602} H [21/2(}( — 250] , (16)

where H; is a Hermite polynomial. The eigenvalue condition is 262 = 2/ 4+ 1. Note that
the center of modes are located 2§; outside the rational surface. Most dominant modes

are the localized [ = 0 modes, for which

m\1/5 [ RriqkeLsC}J} i —3/5_—1
Yt = (_> Su'Th (17)

4 c2B2L2
Here, Sy = 7r/74 is the local magnetic Reynolds number, 7 = 2 /nc? is the resistive

time scale, 74 = Rg/vy4 is the poloidal Alfvén transit time, and vq = B/ (47rp)1/ 2 is the

Alfvén speed. In the limit of large x| (b¢), the dominant mode has

_ CE”C'th 4/3 L, 2/3 R2q2 -1
"= 0'78< BLy ) kg r2 SMT4 ' (18)
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Except for the extreme edge region of tokamaks, the approximation given by Eq. (18) is
more appropriate. The radial scale length, W, is also greatly reduced compared to the
small x| limit, and is given by
CE"Ct 1/ 3
Wi | =——— L. 19
t (Bthnkﬁ) ’ (49)
The naive mixing length ‘principle’, based on linear mode widths and growth rates, thus

predicts a thermal diffusivity:

EyCiL.Rq\* , L2
ety Cy Q) SMg, (20)

DML ~ (
¢ BLyx)ker

which is small, due to strong dependence on x|. This is qualitatively different from the

TA

nonlinear prediction of D?, as we will see later in Sec. IV. This is because the character of
the nonlinear evolution of NRGDT differs significantly from its linear antecedent, because
of current decoupling.

It is interesting to note that the growth rate for a small b; scales as v; o m2/5.
The nonlinear saturation mechanism requires that the energy cascades to small scale modes
where it is eventually dissipated. Therefore, additional sinks at small scales would be
necessary to achieve nonlinearly saturated state in a small b; limit. However, for a large
bs, v¢ < m~2/%, and nonlinear saturation is attained without additional sinks.

Next, we consider the isothermal limit (§; = 0), while retaining the density de-
pendence of the resistivity (6, # 0). The mathematical structure is same as when &, =0,
since b; > d;. When b, is small,

: 2/5
m\1/5 [ RrlqkeL,CAJ} —3/5_—
Tn = <Z) < c2B22 SM/ T4 (21)

When b, — oo,

cEyCuLs\** (L \?* R2g? | |
Yn = 0.78 <Tnxn> E TE—_SMTA 3 (22)
cEyCh )1/3
W, ~ (——-— Ls, | (23)
BLyxnk2 g

cE|CnlsRq ) g (24)

ML
D ( BLyxnker TA
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Since bn /b ~ O(me /M), these modes cannot be neglected (7, > ), even in a relatively
high temperature region.

In general, tokamaks operate in the regime where L; and L,, are comparable and
same in sign. Therefore, both driving terms contribute to the instability. In the limit of
by = b, =0,

7o = gt 3

i.e., the density gradient acts to enhance the growth rate. In a more relevant, large b; and
bn limit, v is expected to be slightly bigger than v, (Eq. (22)), since b; > b,. When two

gradients have different sign, these modes will grow more slowly.



IV. Nonlinear Theory

Having discussed the linear properties of the basic NRGDT model, we investi-
gate the nonlinear evolution and saturation of NRGDT evolving from linearly unstable
neoclassical rippling modes. Energy-like quantities (Ex, E¢, and E,) are defined. These
are required to be stationary at saturation. The condition 0F /0t = 0 leads to the current
decoupling, an important feature common to turbulence''* evolving from the linear rip-
pling instabilties.®~® Two remaining conditions determine the level of the turbulence. We
use the standard one-point DIA theory?? to iteratively renormalize the dominant E x B
convective nonlinearities. This procedure shows that amplitude-dependent radial diffu-
sions are induced by convective nonlinearities. The spectrum-dependent radial diffusion
broadens radial scales of modes. This, in turn, facilitates coupling to x| and x, dissipation
as a means for saturation. This saturation mechanism persists without, and dominates
over, the quasilinear flattening of the background gradients.

To study the nonlinear dynamics of fluctuations, it is customary to define energy-

like integrals which are quadratic in fluctuation quantities as follows:
1 712
= 5 dr IVJ-¢| )
1 2
Ey= = [ dr |T.J%,

/dT |722.

These will evolve as:

aEK /dv =8V, 2
3Et / dr —T*b x V- VT, + x|V Te|? (26)
8En 3 1 o

5 “/dT [E b x V- Vng + xa|V)#i|? — P i - M ViZe] - (27)

Nonlinear mode coupling terms do not appear explicitly the spectrum-summed energy
evolution since they only represent energy transfer between fluctuations at different scales.
Destabilizing sources are the resistivity perturbations produced by the relaxation of the

background temperature and density gradients. The magnetic field line bending, thermal
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conduction, and viscous drags are stabilizing. We note that the current decoupling ap-
proximation (j” is negligible where ¢ is significant) is a sufficient condition for 9F;/dt = 0.
Also, the simulation results!** support this condition showing that ¢, 7%, and # (equivalent
to Zeg in Ref. 4) are sharply skewed off the rational surface where j“ is peaked. Therefore,
we can neglect j” in the region of interest. This condition (current decoupling) greatly
simplifies the governing equations because it renders the vorticity evolution equation ir-
relevant. This decoupled_system is also referred to as the current convective instability.?
Indeed, in the nonlinear regime, RGDT reverts from its manifestation as a rippling mode
to that of a current convective instability. This is accomplished by the fact that nonlinear
effects resolve singularities at the mode rational surface. We study the nonlinear evoluton
of NRGDT for this case.

We use a standard one-point DIA theory**2% to describe the nonlinear evolution
of NRGDT. The driven fields, (ﬁ,l(f,,) and Téi),,), which are ‘second order’ in fluctuations, are
calculated from Eqgs. (12) and (13). These are produced by the direct beating between the
test (k) and the background (k') modes where k' = k + k’. Subdominant contributions
from other driven fields are neglected. The driven fields are then substituted into the
E X B convective nonlinearity to yield amplitude-dependent diffusivities. The coupled,

renormalized equatons are

9 - . 0 4 04 cEy koT. [, T. 7
—Te,k — X| VﬁTe,k — —l)lt< Te,k = Il %8 (Ct k + Cnn_k>

ot dz * oz B kL \ ' T. no
: Tepe | fix
twyeTe ( T, + no) , (28)
0 . 2. 0 n0 . no —am B keng Topfr Ak
gr e ~Xn Vi = g Digp e Vit =g, \ T T O,
: Tex | fix
— W™ ok Tk) 2
iwy, N ( T + no) (29)
Here,

wt, = kocTe/eBLy,
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wy, = kocTe/eBLy,

.Di == Z Fk” ‘B ]»9(]51(/‘ 3 (30)
kl

Dy = Z (Pk”)_l 9¢k" . ' (31)

The propagators are
(Tkn)™" =Re ['nw + Awir — x| Vi + Z'Wie(k")] -, (32)
(D)™ = Re [er + Afts = xa V] + iy (8] (33)

Here, Re[(- - +)] denotes the real part of (- --), and Awyr is the nonlinear decorrelation rate,
which effectively limits the coherence time of nonliner interaction.
It is interesting to note that one-point DIA theory generically does not conserve

21 incoherent emission as well as

the total energy. However, in energy spectrum evolution,?
coherent damping act to conserve energy. Indeed, the local (in k) competition of these
two effects yields a spectrum flow rate comparable to the damping rate predicted by one-
point theory. This feature underlies the validity of one-point theory here. It is worthwhile
to draw analogy between the propagtor in energy-conserving two-point theory and the

propagator in one-point theory. By neglecting 7 for simplicity, one can write for T:

aTe k

a + ZQkTe k= Z Ak' k! ¢k’Te k', (34)

k=k’'+k/

where, o
s ) ¢ cmyJ"
Q'k =Wye — <X“l"| ]\’I”BLt )
c
Ak’,k" = Ek’ X k”.

Nonlinear terms conserve energy since [ dr T.b x Vé - VT, = 0. By multiplying T;k to

Eq. (34), one finds the evolution of the energy spectrum:

% < ~62>k — 2Im(Qx) <T3>k
= Re Z Agr ke < b T k">

k=k/+k"
e >t ((BPbeTeser) + (TiabeTR0)) (35)
k=Kk'+k
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Here, ((-++)) denotes ensemble-average. The first term in the right-hand-side of Eq. (35)
denotes the incoherent emission and the second term denotes the coherent damping. The
contributions from ( quR, o ku) are similar to the second term, and are neglected for

simplicity. From Eq. (34), Teﬁ() satisfies:

t
PO = / gt AABD =) N, Fe (YL (),

Here, Awy reflects nonlinear scrambling due to interaction with modes other than k' and
k". We further assume that the spectrum evolution time-scale is much larger than the

nonlinear scrambling time-scale to approximate:

(B ()i (1)) = (1)) &= (e HAs) =),

Therefore, Eq. (35) can be written as

21, () ,
e Y / i A per [ gor (8 (t)> <T3(t)>k”+A_kf,k <$2(t)>k’ <‘f3(t)>kJ

“ k; l::”(Qk'i'Qk'+Qk“)+Awk+Awkl+Awk//}(t t')
Mo (820)) (T2®)), +Ameac (82®) (T2))

~ R Yl
ekzk’z—'_k” k', k z(\Qi + Qe + Q’k") + Awg + Awyr + Awyrr

k. (36)

Note that the terms on the right hand side of Eq. (36) are comparable as noted above.

Also, the nonlinear decorrelation rate can be recursively defined as

U 1 —J! ”2
Arer e At <<J5 (t).> g |
i(Qf + Qe + Qe ) + Awye + Awier + Awyerr

Awk ~ Re
k=k’+k"

Therefore, the propagator can be written as:
(Piu)_l = Re [Z(\Q; + Qe + Qku) + Awyg + Awyr + Awku]—l . (37)

When nonlinear interactions are negligible, the interaction time becomes infinite, and

we recover the weak turbulence limit. However, since rippling modes are nondispersive
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(wkr ~ wi+wik ), NRGDT is always in the strong turbulence regime, and the real frequency

and wy, effects play no role. Also, the radial diffusivities can be written as:

LY(V?)

pt = L) (33)
Xjkg(AL)?
L2 (72
pp= el l (39)
Xnko(An)Z
Here,
co _c_n ~ 12
ey —kodi (40)

and kg is the spectrum-averaged mean poloidal wavenumber. Also, At and A”™ are the
nonlinear radial scale lengths for the temperature and the density fluctuations, respectively,
evaluated at kg.

We now determine the level of the turbulence which mediates the energy cascade
from the dominant large scale modes to small scale modes, thus leading to the saturation
of NRGDT. To find the dependences of A* and A™ on the level of turbulence, we asymp-

totically balance (at large ) the radial turbulent diffusions with parallel conduction terms,

yielding:
+ L2D}
(a4 = 2, ()
n L2Dr

We note that A? and A™ increase as the level of the turbulence increases. When the
turbulence level reaches the point where the dissipation sink (x”Vﬁ and anﬁ) balances

the linear instability source, the saturated state can be attained.

Following Ref. 8, we multiply [ dr#* to Egs. (28) and (29), yielding:

(7] L |Te) (| Te) + (] Lz [7) (7]7) = 0, (43)
(7l Ly |Te) (| Te) + (7] La |7 (7i]2) = 0. (44)
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Here,

e dr n*LT,
ln ) = L
(71| Te)
(|T.) :/drn 7,
k3 0? cEyLs 1
L+ = e 2 Dt _ | 3 -~
L= X Lgm k 92 Cr BL; =’
T. ., cEyLs1
Ly=— -
== BLL 7
La = _ 0
2= izt T BLL o
kg 2 n 0 cEyLs 1
L4'—XnL§$ _Dkamz—'cn BL, z’
where we have required 8/8t = 0 for saturation. We note that T, and 7 are skewed

about the rational surface, and that they are negligible at £ = 0. Therefore, integrations
involving 1/z remains finite. Also, when cross products are involved in integration, A®
should be taken as the characteristic width, since A* < A™. For Eqs. (43) and (44) to

have a nontrivial solution, the determinant should vanish, i.e.,

Vi — CicEyLs/BL; ~CncELs/BLy | _ . (45)
TVe/xiM — CicEyLs/BLy V, — CucEyLs/BLy|
The solution is
o _ CEyLs T.
Vr - BLn l:C'n (1 + X”M;M) + Ct'r]e:| . (46)

As expected, the density gradient acts to enhance the turbulence level, in comparision to
the case with only the temperature gradient.! However, the way the gradient drives com-
bine [(Crn/Ln) + (Ct¢/L+)], is interesting because one may naively expect the temperature
gradient drive contribution to be suppressed, due to the large parallel thermal conduction.

From Eqs. (38)-(42), and (46), we obtain
> ) (47)

(48)

[cELg 13
At = B.lllln (Crn + Cine) (x”

[cE\ L, 1
i BL, (Cn + Ct'r]e)

An

=
RS
>
3
Sl
N—
o
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We have used x| > Te/p; M. Turbulent radial diffusivities are then given by

i .4 —2\ —%
cE”L‘9 3 k
12 —2\ ~%
[cB)Ls * (. E
D™ = n e (n .

Since A™ > A!, and A™ controls the particle flux, the thermal flux due to NRGDT is
dominated by convection (D™ > D*). By comparing Eq. (49) for L, — oo (or C, = 0)
with Eq. (20), we find that the prediction of DM according to the mixing length principle
differs substantially from the more consistent nonlinear result. The same can be said when
Eq. (50) for Ly — oo is compared with Eq. (24). However, A? and A™ compare well with
Wt and W™, respectively, in limiting cases. Therefore, we conclude that the nonlinear
decorrelation time-scale decouples from the linear growth time-scale, in contradiction to
the mixing length prediction. Also, since L, has the same sign as L in tokamak discharges,
the density gradient acts to enhance the turbulencelevel. The density gradient drive is most
relevant near vy, ~ 1, where C),, has a maximum, and C; has a minimum. The density
gradient drive becomes also important for a steep density profile (5 < 1). Thus, the
region where resistivity-gradient-driven turbulence is significantly excited broadens inward
from the edge of the plasma. The particle diffusivity in Eq. (50) has an interesting scaling
which may offer further insights into understanding of confinement properties in H-mode??
tokamak edge, in particular, ELMs in DIII-D tokamak.'” The confinement improvement in
the H-mode after L—H transition is due to the formation of a transport barrier just inside
the separatrix flux surface.?® It has been also suggested?* that the strong global shear near
separatrix region is responsible for the reduction of turbulent transport due to resistive
MHD type of modes and the creation of a transport barrier. This favorable role of global
shear is also supported by the limiter H-mode results in JFT-2M,%% where the quality
of H-mode is better for higher elongation. After L—H transition, the plasma density at
the edge rises continuously. In DIII-D, the electron density profile changes dramatically,
and becomes very flat (sometimes even hollow) with a sharp gradient at transport barrier |

region. It is interesting to note that 7, at the edge remaions relatively low, implying a
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higher value of vy, for H-mode compared to L-mode. This unique feature of DIII-D H-
mode profiles at the edge (sharp Ly, high no, v4e > 1, modest T,) is usually destroyed by

ELMs, resulting in a large outward particle flux. Interestingly, from Eq. (50), we have

77,(1)/3 Cr(Vse) n Ct(Ve) 4/3
7o/° L Ln Ly ’

which indicates a rapid increase in turbulent particle flux as the density and density gra-

D™ x

dient are increased as v.. passes through unity from below. To this end, it should be
noted that recent experiments have established that the ideal ballooning stability limits
edge pressure gradients but have not identified the physical mechanism of the giant ELMs.
Indeed, it should be mentioned that resistive ballooning modes®® are also a candidate for
‘explaining ELM activity.

Now, we derive the saturation amplitude of various fluctuations. Balancing the
destabilizing gradient with the stabilizing parallel conduction (this is effective mixing

length theory in that the nonlinear mode width is used) yields:

T, L2V,

T =22 e (51)
e X ko(A)2 Ly

i L2V,

(52)

7

o)

o xnFa(A"P L
By combining Egs. (51) and (52) with Eqgs. (47) and (48), we obtain the temperature and

density fluctuation levels:

-1
I At 1 CE”L‘9 3 Ez 8
== ! =8
T. L. L [ BL, (C"‘Lcme)] "zz) )
~ L
A _ A LBl oo () (54)
ne  Ln L. | BL, ‘" T Yt XnT2 '

Usually, since A™ > A?,

v 1

T, 7 Xn 8

—e — ) =n. [ 22 1,
(Te>/<77'0> " (Xn) <

as experimentally observed in tokamaks.? The electrostatic potential fluctuation level is

given by
eB) L

TeEGLn

% _ (Co + Cine). (55)
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We note that unlike drift wave turbulence,'® the Boltzmann relation, ed/Ts = #/ng, does

not hold in NRGDT, which is also consistent with experimental results.?

Unlike T and i, J)| has nonvanishing components near the rational surface:

P P
7 = Ciz + Cnr (56)

Therefore, magnetic fluctuations can be induced in NRGDT. Integrating Eq. (56) using

the constant-i) approximation,” we obtain

Al = 47”“ (@N% + CnA"ﬁ) ,

No

where 9 is the parallel component of the vector potential. For large poloidal mode numbers,
A' ~ —2ky, and therefore,

B, _ 2nJ) [cEyLs § 76_3 @ Xn s
E = ¢BL, [ BL, (Cn + CtT]e) Xn L% Cn+ Ct"?e XI . (57)

This magnetic fluctuation level is too feeble to induce any significant electron heat transport

due to stochastic magnetic fields.?” The electron heat transport according to NRGDT is

mainly due to thermal convection.
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V. Summary and Conclusions

We have incorporated the effects of the neoclassical correction to the resistivity!21® into
the evolution of rippling modes.5~® Through the density dependence of the neoclassical
resistivity, rippling modes can tap the density gradient free energy source as well as the
usual temperature gradient free energy source. The density coupling (C,) to the neoclas-
sical resistivity is strong when v, ~ 1. Although C, is smaller than C}, the density
gradient is much more effective free energy source, since conduction of density fluctuations
along flux surfaces provided by neoclassical viscous force is less efficient than the parallel
thermal conduction. Thus, the region where the neoclassical rippling modes are signifi-
cantly unstable (linearly) extends further inside from the edge. The growth rate and the

linear mode width are calculated in limiting cases.

The nonlinearly saturated state is characterized by current decoupling: asym-
metry further develops to make other fluctuations skewed around the singular surface
where j” is localized. Mathematically, this is a sufficient condition for a stationary FEg.
Two remaining stationary conditions determine the level of turbulence. The saturation
mechanism is nonlinear mode coupling between long wavelength modes and stable short
wavelength modes. It is shown that NRGDT is always in the strong turbulence regime,
and that w and wy. do not play important roles in nonlinear evolution. In one-point DIA
theory,?? the nonlinear damping is expressed in terms of fluctuation-spectrum-dependent
radial diffusion, acting to broaden the radial scale of modes, thus leading to more effec-
tive parallel dissipation of fluctuations. The renormalized coupled equations are solved by

treating the turbulent diffusivities as an eigenvalues. The principal results are as follows:

(i) The density gradient enhances the turbulence level in comparision to the case

with only temperature gradient,! as expected from the linear theory.
(ii) The density fluctuation becomes much broader than the temperature fluctuation.

(iii) Turbulent radial diffusivities (D* and D™) are different from mixing length esti-
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(i)

classical pressure-gradient-driven turbulence

mates (¢ (W*)? and y*(W™)?) both qualitatively and quantitatively, i.e.,:

]

[cEyLs A
D" = ” (C -}-Cme) (ang‘) .

[cEyL, 13 % "3
Dt = II (c + Cine) (x”L—§> ,

We note that the recent nonlinear study of resistive interchange modes?® and neo-

29 revealed only quantitative difffer-

ence between nonlinear results and mixing length estimates. Here, current decou-
pling, a novel feature which modifies the mode structure drastically in NRGDT,
is responsible for this more significant discrepancy.

The density fluctuation level is higher than the temperature fluctuation level and

the Boltzmann relation does not hold:

— 1
n 1 CE”L 3 LG :
L || (ps)

o

T. 1 [cE|Ls 5 EZ 3
i=L—t[ (Cn +Ctne)] (xnzg ;
e¢  eByL,

—_— = — Cn C e

T, = T.%,L, (Cn T Cene)

(v) The magnetic component of NRGDT is calculated to be too feeble to be signifi-

(vi) The region where RGDT applies is extended into v, < 1regimes. Real frequency

and w, effects do not play a significant role in the nonlinear evolution.

(vii) Some speculations into ELMs in DIII-D H-mode plasmas!” are developed in the

instabilities

context of this model.

Other potentially important neoclassical corrections which we neglected in this
study due to the omission of the poloidal component of the first order perpendicular
flows are the bootstrap current'?!3 in Ohm’s law and neoclassical viscous damping in the
vorticity equation. These effects combine to excite neoclassical pressure-gradient-driven

. These instabilities are significant when 8 (B is the ratio of the kinetic
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pressure to the magnetic pressure) is large, while the present study is limited to a low-3
case. Study of turbulence evolving from neoclassical pressure-gradient-driven instabilities
is reported in another publication.?? Modification of the current decoupling in presence of

these neoclassical corrections will be studied later.
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FIG. 1. Plot of the density coupling coefficient to the neoclassical resistivity
(Cr = —0Innne/0lnne), in terms of vy for (i) e=1/4 (solid line), (ii) e=1/5
(dashed line), and (iii) e=1/6 (dash-dotted line).
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