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Abstract

The boundary layer arising in the radial vicinity of a tokamak
limiter is examined, with special reference to the TEXT tokamak
[Nucl. Fusion 27, 1125 (1987); Phys. Fluids 27, 2956 (1984)]. It is
shown that sheath structure depends upon the self-consistent effects
of ion guiding-center orbit modification, as well as the radial varia-
tion of E' x B-induced foroidal rotation. Reasonable agreement with
experiment is obtained from an idealized model which, however simpli-
fied, preserves such self-consistent effects. It is argued that the radial
sheath, which occurs whenever confining magnetic field-lines lie in the
plasma boundary surface, is an object of some intrinsic interest. It dif-
fers from the more familiar axial sheath because magnetized charges

respond very differently to parallel and perpendicular electric fields.




I. Introduction

The edge of an unmagnetized, bounded plasma exhibits a thin layer in
which the plasma density abruptly decays. Strong steady-state electrostatic
fields, oriented to confine the faster plasma species, characterize this “Debye
sheath,” whose width is measured by the Debye length, A\p.! Essentially the
same structure develops near the edge of a magnetized plasma, provided that
~ the magnetic field direction is normal to the bounding surface—as occurs,
for example, at the end-plate of a magnetic mirror device. In either case
the motion of charged particles to or from the bounding wall is constrained-
by both self-consistent electric field and collisions. We refer to this sheath
as an “axial” sheath, since the plasma parameters and fields vary along the
direction of the confining field.

However, a magnetized plasma also allows for a fundamentally different
sheath structure, which we shall call the “radial” sheath. A radial sheath is
formed when magnetic field lines lie in the plane of the plasma boundary,
rather than normal to it. It is clear that the mechanisms for self-consistent
equilibration are sharply different in this geometry, since particle motion
normal to the boundary becomes severely constrained. Such motion occurs
either through Larmor gyration, or through guiding-center drifts; in either
case the orbits are restricted and only indirectly responsive to sheath electric

fields.




We study a specific radial sheath, on which there is considerable exper-
imental data: the limiter scrape-off layer in the TEXT tokamalk.?3 This
sheath is marked by a steep peak in the electrostatic potential, @, IOL}ghly
centered at r = a, where r is the minor radius and a the limiter radius. Typ-
ically it is found that e¢ changes by a few times the electron temperature,
T., over a radial distance of a centimeter or two:
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This peak in ¢ evidently corresponds to a localized excess of positive charge:
a halo of ions surrounding the quasineutral plasma. (It should be empha-
sized here that the observed potential fluctuates widely, at a frequency near
the diamagnetic drift frequency, w,; our present comments and subsequent
analysis pertain to the steady-state or time-averaged potential.)

| TEXT has a singlé, poloidally symmetric limiter ring. Measurement of
the sheath potential (by Langmuir probes as well as ion beam techniques) is
effected at a toroidal location diametrically opposite the limiter, some three
meters away. Thus, while the limiter is surrounded by the usual (axial)
Debye sheath of width Ap, the potential measurements refer specifically to
a radial sheath. It is convenient here to point out that, because of the rapid
streaming of electrons along B, the edge region outside of the Debye sheath
is effectively axisymmetric.

The origin of excess positive charge near and beyond the limiter radius




has been understood for some time: it is an artifact of the relatively wide
radial excursions of ion guiding centers. We recall that the guiding center

orbits of charged particles in tokamaks have a radial width measured by their

= (2)-

where p is the usual (thermal) gyroradius, B is the total field magnitude and

gyroradii in the poloidal field,

B, is its poloidal component. For comparable species temperatures, the ion

excursion is evidently larger than the electron excursion by (m;/m.)*/?. For

this reason, and also because of the related disparity in parallel streaming

speeds, the “halo” region outside the limiter radius is a relative loss region
for electrons. Ions, especially those magnetically trapped ions that have the
widest orbits, can protrude into the halo while evading the limiter; electrons
whose guiding center orbits lie outside the limiter radius are promptly lost.

These remarks lead to a straightforward estimate of the magnitude of the

halo charge density:
AZd’n

dr2 ’

where A; is the radial ion orbit width. But the conventional assumption,

Ny —Ne ~v

A; ~ ppi (3)

(here aspect-ratio factors—not far from unity—are omitted for simplicity) is
found to yield a charge density bigger, by orders of magnitude, than what is

observed.



One reason for this disparity is immediately clear. While numerous com-
plications related to ionization, secondary emission and similar effects have
been neglected (see below), the estimate is fundamentally inconsistent in its
use of Eq. (3). In fact, as can be seen from early work of Berk and Galeev,*
and Furth and Rosenbluth,® Eq. (3) grossly over-estimates radial orbit widths
in the presence of significant charge density. Thus radial gradients in the
E x B drift, arising from radial gradients in E, and therefore proportional
to the local charge density, have long been known to modify guiding-center
motion. For realistic sheath values of dE,/dr the result is “orbital squeeze”:
a pronounced shrinkage in radial width of the ion orbit. (The effect on elec-
tron orbits is negligible.) It can be shown that similar squeezing will also
typically occur in the idealized case of a uniform magnetic field, where it is
manifested by elliptical Larmor orbits.

In other words, a magnetically confined plasma is typically characterized
by a “skin,” on its radial periphery, of squeezed orbits. The importance of
this skin with regard to plasma-wall interaction was first mentioned in Ref. 5.

A second reason for the unrealistically large predictions of naive orbit
theory is less obvious, but equally important. It is rooted in the fact that
the sheath or halo region, containing a significant plasma density (a per cent
or so of the central density), is not collisionless. While it may approach
(as in the TEXT device) or enter the “banana” regime of neoclassical the-

ory, collisional processes remain important well beyond the banana-plateau



transition. 'In the context of halo physics, collisions are primarily important
because they imply relaxation of poloidal rotation.®” For the relatively large
sheath electric fields, F x B poloidal rotation is potentially large, and its
decay through collisional viscosity has striking effects. We shall show that
collisional relaxation, in concert with the orbital squeeze, further reduces
sheath electric fields.

A secondary consequence of collisions is to reduce the population of ba-
nana particles. In the TEXT device, for example, one finds that a sizable
fraction of the halo ions are insufficiently energetic to execute their collision-
less orbits. Since collision-dominated ions do not contribute to space charge,
the sheath field is again reduced.

It should be clear that understanding the structure of the radial sheath
is not possible without self-consistent analysis of guiding-center motion, col-
lisional relaxation and Poisson’s equation. In the case of orbits, for example,
we note that variation of the radial sheath potential can squeeze ion radial
excursions, thereby attenuating the halo space-charge. Too much orbital
squeeze, corresponding to ion orbits little wider than their electron counter-
parts; would inconsistently eliminate the source of the charge density; too
little dE, /dr would yield little shrinkage and an inconsistently potent halo.

It should also be clear that the radial sheath, which achieves equilib-
rium only through orbit modification, has a peculiar and novel structure.

Especially when guiding center orbits have macroscopic dimension (such as




tokamak banana orbits), it is described by a self-consistency condition en-
tirely unlike the axial case. The radial sheath equation is nonlocal (integro-
differenfial). Even its lowest-order, localized version is distinct: we shall find
that approximation to be a transcendental equation for d%¢/dr? alone, rather
than a differential equation for ¢ as in the axial case.

The present derivation and analysis of the radial sheath equation, based
on a simplified kinetic theory, is highly idealized. Its intention is to display
the key features of radial sheath structure—ion halo, orbital squeeze, rotation
and self-consistency—in the simplest possible context. Yet when the (non-
adjustable) parameters of the model are fitted to values characterizing the
TEXT edge region, we find the main features of the experimental electrostatic
field to be reproduced, within factors of two or three. In other words, self-
consistency alone is sufficient for a prediction in reasonable agreement with
experiment.

It is convenient to point out here that the present, essentially kinetic
descripﬁon of halo physics is by no means the only plausible description.
Indeed, a sheath theory based on scalar-pressure fluid equations has long
been available.® This alternative analysis takes into account the conducting
nature of the limiter surface and, unlike the present work, treats seriously
the variation of electron temperature within the sheath.

We also point out that the present analysis specifically addresses a poloidal

limiter. The sheath analysis corresponding to a toroidal limiter would dif-



fer because of the different ways in which orbits are interrupted in the two
limiter geometries.

In the following section we briefly consider the ion halo and review the in-
fluence of space charge on tokamak guiding-center orbits. The orbital squeeze
is discussed from a general point of view as well as in the local approximation
of previous theory. Collisional processes—especially the decay of poloidal
rotation—are reviewed in Sec. III. In Sec. IV we derive the self-consistent
radial sheath equation. Model distribution functions are used to make the
equation explicit and extract its local approximation. The numerical solution.
to this transcendental equation is displayed and compared to TEXT data in

Sec. V. Our conclusions are summarized in Sec. V1.

II. Space Charge and Guiding-center Orbits

The density of a magnetized plasma species, when viewed on time scales
long compared to its Larmor period, cannot vary arbitrarily over spatial
scales shorter than its thermal gyroradius. Because (for comparable species
temperatures) p; > e, the ion density in a magnetized plasma is relatively
fuzzy; it cannot track abrupt changes—specifically, sharp changes in slope—
in ne. (It is not hard to see that an ion density of constant slope is easily
constructed, independent of the magnitude of the slope.) Thus whenever the
plasma boundary tends to induce large d?n./dr?, a charge halo should be

expected.



A similar but more severe halo is pertinent to a toroidally confined plasma.
Here the relevant orbit corresponds to guiding-center motion, rather than
Larmor gyration, and the time scale of observation must be presumed long
compared to the bounce or transit period. On such time scales, any charged
particle is effectively smeared over the generally macroscopic extent of its
guiding-center orbit. Note that in this case rapid equilibration along the
magnetic field allows only a radial halo—one bounded by flux surfaces.

The simplest example is banana motion in a tokamak; the conventional
banana has radial width

r

1/2
(E) Pp N Pp 2> P,

in view of Eq. (2). We note here that

B Rq
= =4 4
Bp r ? ( )
where ¢ is the safety factor. This factor is close to 12 in typical tokamak
geometry, intensifying the (non-self-consistent) halo over what would be ex-

pected in the slab case. Denoting the self-consistent, squeezed orbit-width

by A, and recalling the qualitative argument of Sec. I, we presume
Ai > Ae

A straightforward way to guarantee quasineutrality in the plasma interior is
to assume that ion and electron banana centers have identical spatial distri-

butions, both vanishing at the limiter radius (because electrons with orbital

9




centers outside r — a do not survive). Then the electron charge density van-
ishes within A, of r = a, while n; decays over the much broader range of A;,
yielding the expected halo of positive charge. Below we refer to this simple
alignment of ion and electron orbital centers as “guiding-center neutrality”
(although “guiding-center quasineutrality” would be more accurate).

Clearly other distributions are possible; a precise alignment of electron
and ion orbital-centers in the region immediately interior to 7 = a is not com-
pelling. But it should be stressed that the halo not easily filled by electrons.
Because of ambipolarity, the relative disposition of ion and electron banana-
centers in the vicinity of the limiter radius is severely constrained. Recall
that orbital centers move radially in response to dissipative processes, which
typically conserve local momentum (this applies to both Coulomb collisions
and the most probably relevant turbulent diffusion processes). As a result,
the radial motion of electrons and ions are tightly linked; only electron-ion
pairs can enter the halo region. Of course such pairs have no effect on the
halo charge density.

Other potential sources of halo charge, such as ionization, are also inher-
ently ambipolar, and thus irrelevant. A prominent exception is secondary
emission of electrons from the limiter plate, a process that can clearly con-
taminate the halo with additional electrons. Without attempting an a priori
accounting of secondaries, we note experimental evidence that they do not

dominate halo physics. Measured sheath potentials are roughly symmetrical

10




with respect to the limiter radius—an improbable symmetry if secondary
emission, restricted to the r > a region, were controlling the space charge.?
Thus, while secondary electrons and other departures from guiding-center
neutrality would enter a complete radial sheath analysis, the main sheath
features should be visible in the guiding-center-neutral case.

Next consider the guiding-center orbits. We have already noted that
rapid electron streaming annihilates asymmetry outside a thin Debye sheath
at the limiter, so the halo region is effectively axisymmetric. For the same
reason poloidal variation of the sheath potential, mainly a response to ﬁﬁite
aspect-ratio and plasma rotation, is relatively small. The essential features
of sheath structure involve only the dominant part of ¢, which is a function
of minor radius only.

Using these simplifications and large aspect-ratio

r

<D

we can exploit previous studies tokamak orbits.*® We briefly review, with
mild generalization, the previous work. The invariant angular momentum
can be expressed as

e
p¢ = mRy| — %, (5)

where ( denotes the toroidal angle, m is the particle mass, v the paral-
lel speed and x is the poloidal flux. We have used Eq. (3) to ignore the

distinction between the field magnitude B and its toroidal component, By,
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whence
V¢ = Y||-
The contribution of perpendicular drifts to the toroidal speed is omitted

because of the small gyroradius ordering
p <L L,

where L can be identified with the radial scale-length of sheath variation. It
is significant that p and not p, appears here; we explicitly allow for variation
of sheath parameters on the scale of p,. (The variation observed in the TEXT
sheath approaches this steep scale.)

Poloidal guiding-center motion results from streaming as well as poloidal

E x B drifts,
ck,
5

B
Vp = —pv” + V]_:;p = —pv” —

B B
The Vg = (¢/B)E x B term is retained here, despite its neglect in (5),

because B,/B is small in the inverse aspect ratio. It is also worth recalling
that E x B motion is an exact consequence of the Lorentz force, and not
exclusively a small p/L effect. |
Trapped particles, which have a special influence on the sheath poten-
tial, satisfy v,(rs,0) = 0 at some bounce radius r, and bounce angle 6.

Introducing the abbreviation

U(r) = ; (6)




we can write

v”(rb,ﬁb) = U(’I‘b). (7)

It is convenient to denote the orbital change of any quantity r(r, ) by
Af = f(r,0) - f(%@b)-
Then Ape = 0 implies
mRAv) + my AR - %x'Ar = 0.

Since B, = x'/R and p, = vth/(eB,/mc) = v/, where vy, is the thermal

speed, we can express momentum conservation as

Ay = QpAr—g(—r;—%-A—R, (8)

where

Avy = o =U(m). : | (9)

Note that Ar is the orbital width and recall that

AR r
“R“-O(ﬁ)

is presumed small. Similar manipulation of the energy conservation law,

mvﬁ:g

AZ R

AR — eAd,

where p is the invariant magnetic moment and we have used

AR
AB~ —B=E
B —B—,
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yields the relation

A\  pBAR eA¢
A’U” (Ub-i- 5 )—- m R o (10)

where Uy = U(rp). When ¢ varies moderately on the scale of the radial orbit

width, it is appropriate to expand

eAdp e , " Ar?
Y “E[¢b+¢bA7’+ 5 +
! 2
= [UbAT + Ubﬁr + - } (11)

as in the previous literature. However, allowing for faster ¢-variation, we

defer this step and neglect only Ar? to write, combining (8) and (10),

20U, AR €0 2uB AR
Ar[Ar—l—Qp (1- R)]erpAT_mQ;R. (12)

The left-hand side of this relation is a function of Ar that vanishes at Ar =
0, while the right-hand side is effectively independent of Ar and of order

p2(r/R). There are three possibilities:

(i) When ¢ varies slowly, as in the plasma interior, the first term on the

left-hand side dominates and the orbit has the conventional width Ar ~

(T/R)l/zf’p' .

(ii) ¢ may vary so rapidly that the second term on the left-hand side dom-

inates; notice that in this case we have

#-0(3
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the general expression of the orbital squeeze. The only way Eq. (13)
can be satisfied in the presence of sharp potential gradients is by radial

shrinkage of each banana orbit.

(iii) In the intermediate case, the two terms on the left may be comparable.
In particular, the éense of A¢ may allow the two terms to nearly cancel
at certain radial regions. This singular possibility has been considered
in some detail élsew11ere12; it yields orbits that encircle the magnetic
axis as in the untrapped case, without straying far from a single flux

surface.

While the singular cancellation is approached at the extremities of the

radial sheath, we do not consider it further here. Its effects are too radially

localized to critically influence sheath structure, at least in the limiter case:

of present concern. Our attention below is concentrated on case (ii), which
will be seen to describe most of the sheath region.

Next we turn to the local approximation of Eq. (11)._ A striking new
feature is the cancellation of the lowest order term, Q,UsAr, from Eq. (12).
Furthermore, since the two terms in (8) are comparable, Ay = O(r/R) and
it is consistent to replace Uy by v wherever it is multiplied by r/R. Hence

we obtain the localized orbit equation

[Ar - Mﬁr Ui (aryt = ZAREB T (14)

0 R| 9 "M@ R m
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which is easily solved for Ar. The fact that only Uj and not Uy (i.e., ¢" and
not ¢') appears here is related to Galilean invariance.'®
For our purposes the following abbreviated version of Eq. (14) is sufficient.

Let Arg denote the conventional banana width:

Then the squeezed orbit is evidently described by

Ar?
Ar? -
r S ,
where the squeeze factor is
!
§ = |1- % . (15)
p

The first observation concerning S is that its departure from unity is pro-
portional to particle mass. Hence, for any reasonable squeezing of ion orbits,

we have
S, = 1+0 <T—n—3> :
m;

squeezing of electron orbits does not occur. We exclusively consider ion orbits
from here on, often suppressing the s-subscript. Other critical features of S

are visible from the expression

c ¢ll

e¢”
BPQP '

S 14 o (16)

1
= \1-1-5,072,

We point out that:

16
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A crude estimate from TEXT data suggests
S ~ 10. (17)

The point here is that ¢ and ¢’ have different scale lengths. If we define

_[dng]™
'r¢ = d']" 5

where the slope is measured near its maximum, a centimeter or two

from the peak, then the observations suggest that

"> i;,
Ts

at the peak.

We will find that the estimate (17) also follows from self-consistency. It
is therefore worth mentioning that its inference from the TEXT data is
only marginally justified by the experimental resolution. It is not used

as a critical test of the present analysis.

The ¢” term is negative in the positive halo of the radial sheath. This
circumstance alters banana geometry and implies that edges of the
sheath will enter the singular region, as discussed previously. While the
singularity at S = 0 is not physical—the local approximation breaks
down before S becomes small—we must keep in mind that a local anal-

ysis remains accurate only while S exceeds unity.
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(i) Our general conclusion concerning the orbital squeeze, Eq. (13), is eas-
ily made explicit in the local case. From the local approximation we
have found that Ar? < ep2/S. At the sheath center we have ¢' ~ 0
and A¢ = ¢"Ar?/2, whence

2
A (%) ~ S'A;" <e
T Py

as before: the orbit squeezes to maintain the bound on Ag.

ITI. Collisional Relaxation

It is easily appreciated that the shrinkage of collisionless ion orbits has the ef-
fect of reducing halo space charge. However, Coulomb collisions have equally
important effects on radial sheath structure, for two reasons. First, suffi-
ciently frequent collisions prevent the execution of banana orbits, removing
the essential cause of charge imbalance. Such orbit randomization occurs
whenever the effective collision frequency, veg, equals or exceeds the trapped
particle bounce frequency, wy; it is marginally relevant in TEXT, where veg
and wy are comparable in the halo region.

The second consequence of collisions, rotational relaxation, is more gen-
erally important, affecting space charge even when veg < wp. For this reason
we consider rotational relaxation in some detail here; orbit randomization is
treated in the experimental comparison presented in Sec. V.

To begin we review some well-known features of the interior region in

18




a banana-regime tokamak.!> Because v.g < wy, guiding-center orbits are
collisionless, displaying the well-known banana excursions. However, the dis-
tribution of such orbits is far from collisionless. Because the particle confine-
ment time is much longer than veg—fundamentally, because of scale-length
orderings—the guiding-center distribution function is a Maxwellién in kinetic
energy, whose radial profile is determined by collisional dissipation.

The relevant scale-length ordering here is

A<<1
L )

where A is as usual a radial orbit width and L a scale-length for macroscopic

variation. Whenever the neoclassical ordering,

A
‘Ewb < Veffy (18)

is satisfied, then A/L is the primary small parameter. Independently of the
collisionality veg/wp, Eq. (18) forces the lowest order distribution function, fj,
to be a local Maxwellian; collisionless motion determines only the first-order
correction, f1 = O(A/L).

The ordering (18) has striking consequences in the presence of strong
radial electric fields.® In that case, collisional viscosity acting on the poloidal

E x B drift has been shown to quickly relax the poloidal flow,

p
%= o(g):

by inducing a mean flow along B:

19



B ck,
Vo = WIP"‘VEP“EPWI_ B ~ 0.

The corresponding toroidal flow is relatively fast:

cE,
Bp

Vi = V= > Ve

After comparison with Eq. (6), we can express the basic fact of tokamak
rotation very simply: at each radius, there occurs collisional relaxation to a

local Maxwellian centered in parallel velocity at U:

,02 _I_,U/Z
fo(r,v) ccexp {——L——z——ﬂ—} , (19)
Uth
where
v = v = U(r). (20)

We note that Eq. (19) is an elementary prediction of -neoclassical theory,
requiring little more than that the underlying collisional process satisfy an
H-theorem.

So far this discussion has reviewed well-known features of rotating-plasma
equilibrium in the tokamak interior. But it is not hard to see that essentially
the same conditions and arguments pertain in the radial sheath. In par-
ticular, the basic ordering (18) appears to describe most tokamak sheaths,
including H-mode discharges where the edge is relatively hot, mainly because
orbital squeezing keeps the scale-length ratio small. It is easily satisfied in

the TEXT radial sheath.

20



In fact, at least in the case of TEXT, the main distinguishing feature
of the edge region is that the electric field is directly measurable and large.

From TEXT? data one finds

1
U~ Evthi.

Hence the inclusion of the toroidal flow term, as in Eq. (19), adds significant
realism to any analysis of the limiter region. It should be emphasized, how-
ever, that local collisional relaxation can occur only over radial scales long
compared to the orbit width. Thus Eq. (19) consistently describes the sheath

region only because banana orbits are squeezed.

IV. Radi.al Sheath Equation

Let ro(v) denote some average radius of the guiding-center orbit of a halo
ion having velocity v, and let g(ro,v) denote the distribution of such orbits.
Thus, in particular, g prescribes which banana orbits are populated and

which are not. We can then express the distribution of halo ions as

f(r,v) =glr = (r —r0),v]. - (21)

We call f the halo distribution to allow for other, charge-neutral ion pop-
ulations in the sheath region. As emphasized in Sec. I, the region outside
the limiter contains a background of neutral plasma (presumably reflecting
transit-time residence and ionization): the space-charge decays to zero before

the plasma density.
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We calculate the halo-ion density, n(r), by adopting a simple model for

g, and then evaluating the integral

n(r) = /dsv glr — (r —ro),v]. (22)
The simplest model for g has a linear dependence on rq. We suppose that
that no ion whose orbital center is outside the limiter radius survives,

9(ro) =0, ro2a, (23)

and that the distribution of orbital centers inside the limiter decreases lin-

early:
a—7"Tg

g(ro) = [ ]fo, ro < G. (24)

Hence fo is the function of v specified by Eq. (19) and r, is a density-gradient

Tn

scale length pertinent to the sheath region.

This linear model for g is obviously not ﬁnique. Other models have been
considered, including one, with a Gaussian profile in radius, that yields a
somewhat more realistic sheath potential. However, we have not found the
model choice to have a crucial bearing on final results, and Eqgs. (23) and
(24) have advantages with regard to simplicity and clarity: they seem in
some sense the archetypal choice. Moreover, the experimental density mea-
surements are sufficiently consistent with Eq. (24) that r, can be estimated
from the data.l?

Similarly the choice of rq is not unique; as long as the scale r, is wide

compared to the orbit width, different choices of 7o will yield indistinguishable

22




halo densities. For convenience of integration, Eq. (19) suggests choosing rg

as that radius in which the parallel velocity in the moving frame vanishes:
vj(ro) = 0.

It is then a simple matter to deduce from Eq. (5) the formula

v, [U(r) = U(ro)]
Il 0
r—rp = =+ , (25)
° Qp Qp
or in the local approximation,
+of
_ _ I
r —To a5 (26)

where S is the squeeze factor of Eq. (15). Here the sign is irrelevant because
fo is even in vl'].

The distribution implicit in Egs. (21), (24) and (26) can also be derived
from a simplified but formally conventional neoclassical argument. While the
neoclassical arguﬁent makes our result no more compelling, it casts some
light on our omissions. The

drift-kinetic equation,

(Vi +vp) - Vf=C(f,f) (27)

is to be solved for small A/L as discussed in Sec. III. The lowest-order solu-
tion is a local Maxwellian in the rotating frame. The banana-regime correc-
tion, fi, is chosen to approximately preserve the invariant p, or, equivalently,
To:

f(ryv) = f(ro) = f(r) = (r —ro) f'(r).

23




Indeed one finds that f; = —(r—ro) f{(r)+G(r), where f, is given by Eq. (19).
The function G is ultimately determined by collisions. Here we recall only
its crucial property: G tends to cancel the first term of fi, —(r —ro)f'(r),
except in the trapped particle region.!? As a result most neoclassical effects
are proportional to (2r/R)'/?, the relative volume of trapped phase space.

Thus the drift-kinetic equation gives results roughly consistent with the
model of Eq. (21) et seq. On the other hand, some of the simplifications of
that model are now especially clear. In addition to omitting temperature and
other gradients implicit in fj, we have neglected the phase-space localization
implicit in the function G. On the other hand the missing phase-space factor
(2r/R)Y? is close to unity for realistic aspect ratios.

Returning to the linear model, we combine Egs. (23), (24) and (26) to

evaluate the integral in Eq. (22). The result is
Pp
ST

where ng is a constant measure of the halo density and

n(r) = znTi {a —r+ |a —rlerf(Sz) + exp(—5'2$2)} , (28)

_ ]a,-—r|.

Pp

(29)

HA

This density decays properly for r —a > A ~ p,/S; for r — a < A, in the
plasma interior, we find n — (no/r.)(a —r), a large charge which must be

cancelled by n.. Hence we choose

Ne = n—:(a —7)0(a—r)
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consistently with both guiding center neutrality, as discussed in Sec. II, and
the vanishingly small electron gyroradius (a finite gyroradius version is eas-

ily constructed and found, unsurprisingly, to give indistinguishable results).

Here of course O is a step-function. We have derived the halo charge density
Ny —ng = 22 [—1— exp (—S2x2) — St erfc(Sw)} : (30)
Before combining it with Poisson’s equation,
@' = —dre(n; —ne),

we note that Eq. (16) implies

B 126¢”
S__l_2ppfz-;7

whenever the right-hand side is positive—the important case, in view of (17).

Hence we have
2
pp Te N — Ne

where the Debye-length is defined in terms of ng:

T.
A= ——° |
D™ Arnge?

The radial sheath equation can therefore be expressed as
8S(S +1) = F(Sz), (31)

‘where ¢ is the radial sheath parameter

2
§= 2 (A_D> 27 (32)
pp \pPp) Te
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and, from Eq. (30),

F(y) = —=exp (—yz) — yerfe(y).

S

Equation (31) is to be solved fér S as a function of radius z. Before
considering the numerical solution S(z), we comment on salient features of
the equation.

The radial sheath equation is a transcendental equation for S, rather
than a differential equation for ¥, as in the axial case. The reason for this
difference has been discussed previously: in the axial case, ¢" depends on ¢
because particle streaming normal to the boundary equilibrates to the local
potential; in the radial sheath, where the relevant particle motion involves
guiding center drifts and where radial profiles are determined by slow-time-
scale collisional relaxation, only changes in ¢’ are relevant.

The local approximation pertains only near the center of the sheath, as
noted in Sec. II. A more broadly accurate sheath equation, based on Eq. (25)

rather than Eq. (26), would have the form
U' = NIAU; <, (33)

where NV is a non-local functional of AU = U(r) — U(ro). Equation (31)
should be viewed as the first approximation, valid near the potential peak
where U is indeed linear, to this more general version. The local approxima-

tion explains in particular why Eq. (31) fails to satisfy S — 1 for |z| — oo;
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indeed, S + 1 is proportional to the charge density only when the latter is
sufficiently large. It is therefore consistent to replace S 4+ 1 by S on the

left-hand side of (31); equivalently, we have

o 1 e¢II

The sheath parameter has the alternative expression

§ = —n (”_A>2, (35)

Eo \ e
where v4 is the local Alfvén speed and ¢ the safety factor. For TEXT sheath

conditions we find

§~1072 —1073.

It is smaller in H-mode discharges, where the edge temperature is relatively
large and r, relatively small.

Certain idealizations of our model are visible here and worth emphasis.
For example, Eq. (31) is symmetrical in (r — a), implying that ¢ decays
identically in the limiter shadow and the plasma interior. As noted in Sec. II,
the experimental data roughly preserves this symmetry. Equation (35) is
explicitly model dependent in the appearance of the density gradient scale-
length; recall from Sec. II that only dzn'/ dr? should enter the halo charge
density. The point is that our model has constant density outside the limiter
radius, so that r,, in fact measures a second derivative. The Gaussian model

has continuous slope; it yields a similar sheath parameter where r,, is replaced
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by
" 1/2
" [(d?n/cw)} |
V. Solution and Experimental Comparison

The non-self-consistent charge density is found by setting S =1 in Eq. (30).
The corresponding fields and potential can be found by integration; as noted
previously they overstate the observed field by about two orders of magni-
tude.

Turning to the self-consistent case, we observe (from the monoticity of
both members) that Eq. (31) has a unique solution for each radial position, .
We denote this solution, which assumes every ion to complete its collisionless
orbit, by S.(z); it is easily found numerically.

Note in particular that
Su(0) & amMes

is indeed large; for typical experimental data one finds

S.(0) = 15-20.

Hence Eq. (34) is pertinent and we can determine the electrostatic field from

straightforward integration. For example

ek,
T

2

— [ dz S(z), 36
[ da () (36)
where ¢ = |r — a|/p, and the integration constant is fixed byE,(0) = 0.
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Since the local approximation breaks down a few gyroradii from r = a,
the asymptotic,  — oo, limit of S is not physical. Yet S does become
relatively small for ¢ ~ 3; Figure 1 shows that the electric field in this region .
is nearly constant. In other words it is possible to discern an asymptotic E,,.
which changes relatively slowly; we denote this quantity, which provides a
useful datum for experimental comparison, by Ey:

E, — Ey =~ constant, at sheath edge.

One finds that the Ey computed from S, is much closer to the observations
than the non-self-consistent version; however it remains larger, by roughly a
factor of 6, than the experimental asymptotic field.

The reason for this disparity was discussed in Sec. III, where it was noted
that veg and wy are comparable in the limiter scrape-off of TEXT. Because
only the hotter io.ns are able freely to execute banana orbits in this case, our
halo integral overestimates the ion charge density. We adopt a crude but
transparent remedy, simply excluding from the halo integral any ion whose
energy is too low to satisfy the banana constraint z/e}f(v) Jws(v) < 1, where
the two factors on the right are the velocity-dependent effective collision
frequency and bounce frequency respectively. Note that this criterion is a

strong function of v, since veg(v)/wy(v) o v™2.

Explicitly, we define the
critical speed v, by

Veff(vc)/wb(vc) = 1)
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and cut off the halo integral for speeds lower than vc:

/Ooodv—>/voodv.

While this treatlﬁent of collisional randomization is far from rigorous, it is
difficult to believe that more elaborate analysis would yield significantly dif-
ferent results. Since the slower particles make smaller elxcursions, the cut-off
affects S only very close to the limiter radius. Even at r = a the effect is only
moderate; the corrected S(0) is ten or twelve, so that, in particular, Eq. (34)
remains valid. Nonetheless the total halo charge is diminished enough to
significantly improve the prediction for Ej.

Figure 1 shows the resulting electrostatic sheath potential ¢(z), compared
to five experimental measurements from a single TEXT run. The agreement
between theory and experiment is on the whole quite good. Note the asym-
metry of the experimental points, which show a depressed charge density
in the limiter shadow; such asymmetry is also evident—if less striking—in
other experimental runs. It is quantitatively moderate (less than 15%) and
hardly surprising in view of the likely presence, for r > a, of unneutralized
secondary electrons, as discussed in Sec. II. In the region r < a, where our
idealizations would be expected to be more realistic, theory and experiment
are especially close.

In addition to experimental uncertainty (discussed in Ref. 2), Fig. 1

is subject to imprecision concerning the value of the sheath parameter, 6.
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In particular, in order to estimate the value of n/r, = dn/dr for the halo
ions just inside the sheath, one must first estimate the relative proportions of
halo ions and charge-neutral background ions. We use the relatively constant
density in the limiter shadow as an estimate for the latter,!! and conclude
that the two ion populations are roughly comparable. Fortunately it can
be shown that the gross features of sheath structure, including Ey, are very
weak functions of §.

A more precise comparison of theory and experiment is based on Ey. The
data allow reasonably unambiguous measurement of this field, which is also
straightforwardly computed from Eq. (36)—using, of course, the collision-
ally corrected S. The resulting comparison is robust in the following ways:
(i) it depends only weakly on 6; (ii) it is remarkably similar over several sets
(“runs”) of TEXT data; (iii) it is roughly the same for the Gaussian and
linear halo-density models. One finds that the theoretically predicted E,
exceeds the experimental asymptotic field by a factor of two or three—more

commonly three:

Eo(theory) ~ 3 - Ey(experiment). (37)

We ascribe this disagreement to electron contamination of the sheath,
or, equivalently, to inadequacies of our model for the halo charge. In fact
such assumptions as guiding-center neutrality and Eq. (27) seem sufficiently
idealized to make the agreement expressed by Eq. (37) its most striking

feature. In this regard it should be emphasized that the non-self-consistent
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prediction, for the same 6, is about 80 times larger:
Eo(non-self-consistent) ~ 250 - Eg(experiment). (38)

Equations (37) and (38) express concretely the critical importance of such
self-consistent processes as orbital squeezing and rotational relaxation to the
structure of the radial sheath.

We close this section with some remarks on the calculation of Ey. Denot-

ing its dimensionless measure by

~

BE= 0$° dz S(z),

we introduce the integration variable y = S(z)z. Then the sheath equation

becomes

S(S+1) = %y), (39)
and furthermore, we have
do _ 1 _ (y/87)dS
dy S dy
Then
S;l_; 1 yd(ZS),

so the integral for B can be written as
~ Yo InS
B=["ay|1—yi= 40
|y l v ] (40)
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where yo = y(zo). Since S can be expressed in terms of y using Eq. (39),
Eq. (40) gives an explicit expression for E, which can be evaluated without
soiving the sheath equation.

Our sole application of Eq. (40) is to study the dependence of E on the
sheath parameter 6. It is noteworthy that 6 enters (40) only through the
integration endpoint, which is chosen such that S(zo) ~ 1. Using this fact

and assuming § < 1, one finds from (40) that
E o (In 6)%/?

as remarked previously, such weak dependence is roughly consistent with
the experimental data. A more important dependence of sheath structure
on edge parameters comes from Eq. (39), which provides scaling for the

maximum orbital squeeze:

5(0) ~ 672 ~ B2,

VI. Summary

We have studied the radial sheath observed near the limiter radius in the
TEXT tokamak. We have shown that self-consistency, manifested through
both the radial squeezing of ion guiding-center orbits as well as the radial
variation of F X B-induced toroidal rotation, is the critical issue for sheath
structure. Indeed, reasonable agreement with experiment is obtained from

an idealized model which, however simplified, preserves such self-consistent

33



effects. This conclusion is visible in Fig. 1 and quantitatively expressed in
Egs. (37) and (38).

The salient features of the sheath considered here are generally pertinent.
A radial sheath occurs whenever the plasma boundary is a flux surface—
whenever, as in most confinement devices, the confining field lines lie in the
bounding surface. The present work suggests that most such sheaths, includ-
ing those associated with separatrix (divertor) geometry, should be broadly
similar. Only the collision-dominated sheath, in which the disparity in ra-
dial width between electron and ion orbits cannot induce charge separation,
seems significantly distinct. In larger, hotter tokamak plasmas, where the
edge region is more fully collisionless and has steeper density gradients, the
eﬁ’ects studied here would be magnified. /

The radial squeezing of ion banana orbits is of special importance. We
have emphasized its importance to theoretical consistency: the relaxation of
plasma rotation occurs only on scales wider than an ‘ion banana, and could
not affect sheath structure if the bananas were not squeezed. The orbital
squeeze seems even more relevant to tokamak burning-plasma experiments,
since fusion products must penetrate a skin of thin bananas before striking
the container wall or reaching a divertor. Since alpha-particle orbits are
also squeezed (in fact somewhat more than proton orbits), an estimate of
wall bombardment that omitted radial-sheath physics would be seriously in

error.
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Finally we have argued that the radial sheath is an object of some intrin-
sic interest. It is fundamentally distinct from the more familiar axial sheath,
essentially because magnetized charges respond very differently to parallel
and perpendicular electric fields. As a result its structure is determined, in
lowest approximation, by a transcendental self-consistency relation for the
charge density, rather than a differential equation for the potential. More-
over, the predictions of this equation are realistic only when it incorporates
both self-consistent orbit modification and the collisional processes pertinent
to a B X B driven rotation. At least in the parameter regimes typical of mod-
ern tokamak experiments, equilibration of the radial sheath depends upon a

peculiar interplay between collisionless and collisional physics.
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Figure Captions

1. The solid curve is the predicted sheath potential in electron volts. The
abscissa measures minor radius as a fraction of the limiter radius. The
experimental points shown were measured on TEXT; one error bar,

showing typical shot-to-shot variation in the r < a region, is indicated.
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Figure 1



