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Abstract

This paper presents a theory of weak ion temperature gradient driven turbulence near
the threshold of instability. The model considers kinetic ions and adiabatic electrons in a
sheared slab geometry. Linear theory shows that for ne, < 17: S nen+(1+1/7)Ly/Ls (where
nsy, = 0.95 is the instability threshold and L,/L, < 1) then v < w and a weak turbulence
theory applies. The nonlinear wave kinetic equation indicates that ion Compton scattering
is the dominant nonlinear saturation process. The wave kinetic equation is reduced to a
differential equation for the spectrum, from which it is shown that the energy scatters to
the linearly stable low k, modes. The resulting spectrum of fluctuation levels (peaked
about &k p; ~ 1) is much lower than that suggested by naive extrapolation from the strong
turbulence regime. The resulting ion thermal conductivity is also extremely low, so that
strong ion heating can be expected to drive the ion temperature gradient to a level where

this weakly turbulent threshold regime is surpassed.




I. Introduction

In recent years, ion temperature gradient driven turbulence! (“n; turbulence”) has bevcome
a promising explanation for the anomalous ion heat loss observed in tokamaks.? Most ba-
sically, the theory predicts that when the ion temperature gradient is steeper than some
threshold value (parametrized by n; = %& > mp, = 0.95 in the simplest version of the
theory®), the mode is destabilized and the resulting fluctuations cause ion heat conduction
(parametrized by yx;). This feature can qualitatively explain such experimental results
as the improved energy confinement (7x) which accompanies pellet injection,* and the
7g degradation that accompanies neutral beam heating of low confinement (“L-mode”)
plasmas.® Other successful qualitative predictions include the turbulent density fluctua-
tions propagating in the ion drift direction observed in TEXT tokamak,® and also the equal-
ity of momentum and thermal confinement times for neutral beam heated tokamaks. "8
Quantitatively, strong turbulence theory predictions! of x; (valid in the “fuid limit” of
n:i > nn, where wave-particle interaction is negligible) are easily large enough to account
for the anomalous heat loss observed.

With these strong indications of the relevance of the basic theory, the more detailed
issue of self consistency arises. For the fluid regime, this requires that the predicted y;
establishes an ion temperature profile consistent with the assumption that n; > n,. To
examine this, a transport simulation has been performed,'® which lets the profile evolve
under the influence of the fluid regime y;, combined with other sources and sinks of ion
heat. The vanishing of x; at the instability threshold (not accounted for by the fluid regime
formula) is modelled by interpolating between the fluid regime (for n; > n:) and 0 for
n; < nen. Results show that this y; is large enough that the ion temperature gradient
cannot steepen significantly above threshold, and remains well below the fluid regime level
(even with strong ion heating present). However, the validity of using the fluid x; for the
threshold region is by no means clear, since the character of the instability changes quite
a bit as threshold is approached. Thus, in order to determine whether the regime of fluid
theory is accessible, a separate theory is required to resolve the transport in the threshold
regime.

Previous linear studies®*!1%!3 have determined the location of the threshold analyt-
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ically, and investigated the growth rate near threshold numerically, but very little analyt-
ical theory valid near the threshold has been developed. Construction of a rigorous linear
theory of these modes is complicated by the facts that stability comes from ion Landau
damping (requiring kinetic theory), and that near threshold the last unstable modes have
k1pi; = 1 (leading to nonlocal interaction). The nonlinear and transport behaviour of the
n; mode near the threshold has naturally been even less well understood. There have been
mixing length estimates of the quasilinear x; near threshold,!* but this approach leads

to spurious results (such as a fluctuation level of é~1 /k1L, which does not vanish at

threshold). A reliable prediction requires more careful consideration.

The difference between the fluid and threshold regimes, in addition to linear Landau
damping, involves several important changes in the nonlinear behaviour. First, as the
growth rate becomes less than the frequency, the strong turbulence approximations of the
fluid regime become invalid, and a transition to vweak turbulence ensues. Commonly: used
estimates such as ed/T ~ 1/k,L to find saturation levels, and D ~ ~/k? for transport,
apply only for strong turbulence, where the nonlinearities are large enough to balance
the linear terms. For weak turbulence (where the nonlinearities are small), a calculation
based on the wave kinetic equation is necessary to obtain reliable predictions. Second, the
frequency broadening of strong turbulence becomes negligible, and the triad resonances
that are automatically allowed in strong turbulence for matching wavevectors ( E=Fk+k" )
must satisfy the additional constraint of linear frequency matching (w,—c‘ = wp + w,—co,,).
Finally as linear wave particle resonances grow more important, nonlinear wave-particle
interaction becomes a more effective saturation mechanism. A weak turbulence expansion
is appropriate for considering these changes.

This paper presents a theory of ; transport near the threshold of instability, with an
emphasis on weak turbulence theory. We consider the usual paradigm model of sheared
slab geometry with gyrokinetic ions and adiabatic electrons. The linear theory uses an
eigenmode analysis for the real part of the frequency (for v ~ 0), and a local approximation
to find the growth rate. This technique retains the essential features and orderings of the
threshold regime, but is also simple enough for construction of a tractable nonlinear theory.

The nonlinear theory follows the weak turbulence expansion, whereby the linear modes are
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substituted iteratively into the nonlinearity (which is smaller by an approximate factor of
v/w). This leads to a wave kinetic equation, describing the evolution of the spectrum as
a balance of linear growth and nonlinear scattering and damping. This is solved for the
saturated spectrum, which is used to calculate the turbulent ion thermal flux.

The principal results of this paper are the following:

1. When nip, < m; < nen + (1 + 1/7')%:, (where n:, = 0.95 and L, /L, < 1),
then ¥ « w and a weak turbulence expansion applies.

2. Linear theory shows that the unstable modes near threshold have frequency
w ~ (Lyp/Ls)%wsi, linear growth rate v ~ (Ln/Ls)(n; — nc)wsi, and width
Az ~ pi, where 1. is the k) dependent threshold. Furthermore, only the
! = 0 radial eigenmode mode is unstable at threshold.

3. The frequency is very dispersive, fllé‘,:‘; # 1, and therefore wave-wave inter-

actions and turbulent shielding are negligible in this regime.
4. Nonlinear saturation of the unstable modes occurs through ion Compton -
scattering to the lower k, modes, which are stable. The resulting spectrum

is given by

() =2 B () (2) o

threshold and is concentrated about b = 1 (Fig. 2 and after Eq. (29)). The

where I(b) is a spectral intensity function of b = k2p?, which vanishes at
coeflicient of I(b) is smaller that that for n; > n:, by a factor on the order
of (Ln/Ls)? < 1.

5. The ion thermal conductivity from turbulent E x B convection is given by
Xi = Nth%ﬁ (%)2 %

where Ny, is a threshold dependent function of n; given by Eq. (35) and
shown in Figure 3. The magnitude of x; is less than an extrapolation from
the n; > 14, regime by a factor on the order of (Lr/Ls)? < 1.

The remainder of this paper is organized as follows. Section II presents the basic

model and equations used in the theory. Section III develops a simple semi-local linear
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theory (frequency, growth rate, and basic mode structure) valid in the neighborhood of
the threshold. Section IV develops the nonlinear theory, including derivation of the wave
kinetic equation, which is an integral equation for the spectrum. This equation is solved
approximately for the saturated spectrum. Section V outlines the derivation of the ion
thermal conductivity, x;. Section VI contains a short summary and conclusions. Also
of interest are Appendix A, which addresses the stability and growth of the I > 0 radial
eigenmodes, and Appendix B, which addresses the stability of the flat density modes

(Lp/Ls — 00).

II. Basic Model

The goal of this work is to develop only the framework of an analytical theory of the n;
instability near the threshold. The essential features of the 7; instability are the drive from
the ion temperature gradient, ion Landau damping (from magnetic shear) and the nonlinear
Ex B drift, which determines mode coupling and transport. These are described in our
model by the nonlinear electrostatic ion gyrokinetic equation® with adiabatic electrons, in
a sheared slab geometry, with all inhomogeneities (density, ion temperature, and magnetic
shear) in the radial (z) direction.

In a sheared slab geometry, the magnetic field is given by B = B, (24 (z/Ls) §).
There are density and ion temperature gradients in the z direction, characterized by L,
and L7, where —dng/dr = no/L, and —dT;/dr = T;/Ly. In general, we consider the
regime Lt ~ L, < Ls, usually true for tokamaks. (We also consider, in Appendix
B, the stability of the L, > L, “flat density” case, which may be relevant to H-mode
discharges.) Since all inhomogeneities are radial, then linear perturbations have the form
f () exp (—iwt + tkyy + tk.z). The modes are centered about the point where k-B =0,
which in the closed field line configuration of the tokamak is allowable only on rational
surfaces, ms(E) The point 2 = 0 is chosen at the rational surface of the “test mode”,
so that ky = kyz/L,, and for the “background modes” (which are nonlinearly coupled
to the test mode) k' = ky'(z — zo(k'")/Ls = kyz'/Ls. The mode has low frequency,
w S wyi, radial width on the order of p; (since the broader modes are stabilized by Landau

damping), and has phase velocity w/k S v; over most of the mode.
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In the gyrokinetic model, electrostatic ion dynamics are described by the phase space
distribution function F' (7, ,t) = Fy(z, ) + F(F,,t), where Fy is a local maxwellian (i.e.,
with ng (z) and T; (z)), and f is the rapidly varying part of the distribution function. The
nonadiabatic part of f evolves according to the nonlinear gyrokinetic equation!® in the

electrostatic limit:

a . - o . mv? 3 kivy 6{5,;:
(E +Zk||v||> g — (a + W (1 + n; (—é-c-z_,—z— — 5))) FoJy ( o ) T =

[ o - = kJ_,'UJ_ ~
— > b (k' x ku) Jo < . ) b hgns (1)
AL R E=R i
where,
~_cTydlnng ~_dlnT; - m \3/? —mv? /2T Q. — eB
Wi =B dz = dlnng’ 0="0 2nTy ¢ ’ T omge’

Jo is the zeroth Bessel function, and || and L refer to the magnetic field direction, b =
B/ |B|. The right hand side of this equation describes mode coupling due to the Ex B
nonlinearity.

Electrons are taken as adiabatic (7ie = noed/T.), and Eq. (1) is closed with the
quasineutrality equation, 7i, = 71;, or

~

z k -
(1+1/7)no eék - /d3vJ_0 ( 5’?) hz, (2)

where 7 = T, /T;.

Equations (1) and (2) describe the n; instability in both the fluid (; > 1) and kinetic
(n; ~ 1) regimes. The fluid equations that describe the #; instability are reproduced by the
velocity moments of Eq. (1), in the w/kj > v; limit. Close to marginal stability, Landau
damping becomes important (w/k| > v;) and a weak turbulence expansion is applicable

(valid in the v < w regime!”). The latter is the limit examined in the remainder of this

paper.




ITI. Linear Theory

The focus of this paper is nonlinear dynamics and transport, so what we require from
the linear theory is a simple model that describes the most basic properties of the fre-
quency, growth rate, and structure of the modes. Several authors have discussed the linear
behaviour of the n; mode near threshold, but none completely enough for our purposes.
Coppi et al.l® derived an integral equation which reduces to a differential equation when
k% p? < 1; near threshold, however, the dominant modes have k3 p? ~ 1, described by the
fully nonlocal integral equation. The physical reason for this radially nonlocal interaction
is that the mode is both narrow (A, ~ p;) and slow (w/ww; <€ Lyp/Ls < 1). Thus, correla-
tion across the width of the mode (on an ion transit time scale of A, /v; ~ Q7!), dominates
decorrelation over this distance (which occurs, through shear, on the slower time scale of
Ag/A (w/ky) > Q;1), resulting in strong nonlocal interaction. However, such integral
equations are notoriously difficult to solve, and so threshold behaviour is generally ana-
lyzed with a gyrokinetic equation, which lends itself to two routes of approximation. First,
a local approximation®112 has the advantage of allowing simple algebraic solution for
w(l_c'), however it does nothing to resolve the mode structure, which is important for the
nonlinear theory. The second method is to expand to order (k;p;)? = p?%, and solve the
resulting differential equation either analytically (directly or with a WKB approximation)
or with a shooting code.!® While this method does resolve the mode structure, for the
present case it becomes overly complicated when carried out to the order necessary to
resolve the weak growth rate, and furthermore, since it relies on a (k;p;)? expansion for
modes which have width kzp; ~ 1, it is not clear that this complication leads to a more

reliable result than the method described below.

The present analysis calculates for the lowest order mode structure and frequency
(real part only, with |y| < |w|) by an expansion in (k.p;)?, and finds the growth rate
using local theory. The growth rate of the modes is then calculated by summing the
local growth of the individual parts of the mode, which corresponds mathematically to

2 [1dzl?dz = [ 2 |$z|?dz. Associating the former with the mode growth rate, and the
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latter with the local growth rate, we obtain the formula:

S0 1x ()
st lsgz

This semi-local mode analysis offers a tractable formulation of the linear dynamics, con-

.12
$z| dz

2
dz

3)

=

sistent with the ordering of this regime. The main approximation is the neglect of detailed
nonlocal effects, and it is doubtful that anything short of solving the full integral equation

could account for these properly.
Linearizing Eq. (1), Fourier transforming in ¢, solving for h, and substituting into

Eq. (2) produces the following mode equation:
e (wg +i7g) ¢ =0, 4)

where the linear dielectric function is given by:

w

e (W) =14 1/7 = Sy To¢? 4 =2 ("— —1— (it ) To¢Z((). ()

Ne Wi
Here Z is the plasma dispersion function, and

¢= w/\/iviklla v} = T;/m;, Tp=e "1, (b1), by = kZp} +0,

— 2,2 . — i — ;
b""kypi) Pi = ﬁti_’ w—wﬁ—l-wl-c»,

" I, is a modified Bessel function, and 5! = % +b (1 - %) is the k) dependent critical

value® of n;. It is useful to note here that the ordering in the threshold regime, which can

be verified a posteriori, is
2
w/w*i ~§, (v, mi—ne <,

where s = L, /Ls < 1 is used as a small parameter.

A. Local Analysis

In the local approximation, Eq. (4) is solved treating k, algebraicly. Assuming that

|'y§| < |wz;l, we can make the standard approximation €z (w,—; + i'ﬁé) = e;.c. (w,:) +ie’é (wi;) +
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1y0¢; /0wy (where e = €' + i€"). With this, and noting that €7 (wg) comes only from the

resonant part of Z (), Eq. (4) may be manipulated into the form:

ReZ

! _ W 2
) =p——ni*+g7— =0, (6)
and after some straightforward manipulation,
) i -1 p¢ImZ(¢)
eaw:w_(ﬂ__l_e__,.gz)____, 7
0= T ) prcRez (o) g

where p= (1+1/7) /T.
Expanding Z (¢) for ( < 1 (i.e., strong ion resonance), then solving Eq. (6) yields

21.2 -1
poiki (i mi
“’E(kll)=“;;<‘2‘+a"1
2 (8)

where the latter equality comes from the ordering |n; — .| < s (derived later in this section
from the |y| < |w| requirement) . From the above, it is easy to show that 9¢' /0wy ~ —p/wy

and ( = \/ipvik” /niwsi, and then using v = %, we obtain the local growth rate:

Equations (8) and (9) agree well with the numerical solutions of Egs. (4) and (5), treated
locally.!! We briefly review their analytical stability criterion, here exhibited in Eq. (9)
by the terms in the first set of brackets, which determine the sign of v; (k”). Since the
coéﬂ’icient of kﬁ is positive, then if n; > 7., there is a band of k| (centered about k) = 0)
for which yz(k)) > 0. This corresponds nonlocally to an unstable fluctuation centered on
the mode rational surface, and stabilized on the edges by Landau damping. If n; < 7.,
then vz(k)) < O for all &, and no instability exists. Figure 1 shows 7. (b). From this
plot, it is clear that as n; decreases from the fluid regime, the low k) modes (broader in z,

thus more heavily Landau damped) are stabilized. Threshold occurs when the last mode

is stabilized, which occurs for by, =~ 1 and 9. (b)) = men =~ 0.95.
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B. Mode Analysis

The most straightfo‘rward way to examine the mode structure is to expand every
I'n(b1) in Eq. (5) to order k2p?, and treat the resulting differential equation with a WKB
approximation. However, this analysis is rather complicated, and defeats the purpose of
finding a simple formulation of the linear theory. A method to circumvent this complication
comes from the insight gained from local theory that the dominant imaginary terms in the
mode equation balance on the average (i.e., the terms which vary as v and as —%—~ (b ) —1, with
all of b, , before any expansion). While radial variation of k, leads to some nonvanishing
imaginary part of the potential function, shooting code analysis confirms that the effects of
this may be neglected to lowest order. Furthermore, it is not clear that this complication
leads to a more reliable result than the present method, for the k;p; ~ 1 modes. In the
spirit of a semi-local theory, we shall neglect the imaginary part of the mode equation
entirely.
Keeping only the dominant (real) part of Eq. (5) with the ordering of the local theory,
taking k| = kyz/L,, and expanding in k, yields:

g 1 psPwui 2\ 1
Pz dz? + l_Fl/PO (1 niwg pz ¢ (10)

where s = Ly /L,, and the argument of T'y, is b (= k2p?) instead of b as before. This is a

Weber’s equation, and the general solution is given by the Hermite functions:

~

3z = Hi(w/As) exp [~a?/207] (11)

where A2 = nwp/ps’wyi. Combining this with the dispersion relation, we find:

2A2
w§=w*p773 p (12)
2 [ X
and
A? 2< Pl)
—= =(2l+1 1-=). 13
F=1 (1o (13)

This we regard as the lowest order structure of the mode, and may be modified by outward

propagation (from €”, ignored here) or other effects.

10




The growth of the [ = 0 mode is calculated using Eq. (3) with 75 (z) given by Eq. (9)
(assuming L,/L, < 1), yielding )

_ Ln A | 2p(p~1) (Ln 2 A2
')/k - '\/§UJ*2 Ls nip; li?]c 1 i Lg Pzz . (14:)

The stability and growth of the [ > 0 modes is derived in Appendix A. The stability
threshold in the L, /Ls — oo (flat density) regime is derived in Appendix B.

We now discuss the main features of the linear theory. First, it may seem surprising
that A, is independent of L, since k sets the radial scale. However, this is also true in
the 7; > 1 fluid limit, where A, is determined by shielding from the polarization drift,
and apparently the present case is similar. Furthermore, Eq. (13) is consistent with the
kinetic shooting code results of Ref. 16, which found that A, depends primarily on /, and
not Ls/Ly or n;. Second, the frequency of these modes, given by Eq. (12), is just the
local frequency evaluated at the mode edge (where k) = kyAy/Ls). Third, the instability
threshold of the modes is essentially the same as that of the local theory, but with a
small correction from the last term in the brackets of Eq. (14) (~ (Ln/Ls)?) coming from
the fact that modes of finite width cover both unstable and stable regions at threshold.
We shall ignore it for the | = 0 mode, but for the broader I > 0 modes this correction
becomes larger, so that these modes are not unstable in the n; ~ n. regime considered
here (Appendix A). Finally, in comparison with the n; > ns, and v > w fluid regime,
the real part of the frequency remains on the same order of magnitude in both regimes,
w ~ s2w,; (the frequency in the fluid limit may be checked from the dispersion relation
in, e.g., Ref. 1), while the growth rate changes from v ~ (1 4 7;)swy; in the fluid regime
to v ~ (n; — nec)sws; here. That the basic ordering is the same in both threshold and fluid
regimes (except for the n; dependence) implies that this is in fact a continuation of the

same root.

We have checked the analytical results with a shooting code, which retains all the
imaginary parts of Eqs. (4) and (5) and expands in k2p? (although this is not necessarily
more reliable than the present analysis for the kyp; o 1 regime). Results confirm that
the mode is basically gaussian in structure with width as predicted, albeit a small degree

of propagation past the turning points occurs, typically resulting in A, o< (Ls/Ly)® with
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@ S 1/4. In view of this kind of uncertainty, in the remainder of the paper we shall take
é ~ e’/ 2A3, (with A; unspecified and possibly complex), to allow for the possibility of
unresolved broadening through propagation. (The method of calculating normal mode fre-
quency and growth rate allows for this uncertainty.) When quantitative estimates require
a mode width, Eq. (13) will be used.

The exactness of this mode analysis is somewhat uncertain (since we have relied on
an expansion for k2p? < 1), but several qualitative features may be expected to persist
in a more detailed solution. First, the turning points in Eq. (10) would be the same even
without expansion in k,, since at these points, k, — 0. The existence of these fixed turning
points indicates that even in a more exact theory there will be a normal mode (as opposed
to a convective mode) whose width is on the order of p; (i.e., the separation of the turning
points). Second, the radial quantization (parametrized by [) may be regarded as a real
physical effect, since the modes are radial bound states. Finally, it is reasonable that only
the [ = 0 mode is unstable at the threshold, since the higher modes are broader, and hence
more heavily Landau damped. |

The validity of this theory depends on the |y| < |w| and |w| < |kyvi| assumptions.
The former of these gives the strongest restriction. Either by comparing the vz and wy of
the normal mode, or by requiring in the local theory that the region where « ‘(k”) >w (k”)
(which will always occur at the mode center, since w kﬁ while v o k near the rational

surface) occupy a negligible part of the mode, we obtain the restriction:

1 + 1/ Az Ln Ln
ni — el < \/51.‘{) L. S 1+ l/T)L_S' (15)

This range is plotted in Fig. 1. Since L,/Ls < 1, Eq. (15) means that the range of 7;
covered by this theory is rather narrow. It appears that [w| < |k“v,'| remains true well
above this threshold regime, meaning that between the fluid and threshold regimes there
exists a third regime, characterized by v 2 w (invalidating the present expansion) and
w| < |kyjvi| (ion resonances). This regime is discussed further in Section VI.

For a ﬁxéd value of n;, Eq. (15) limits the range of validity in k, space. Letting
ky = ky,crit + 6ky (where ky crit is the marginally stable ky for fixed 7;), then Eq. (15)
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yields:

2 1/2 1/2
66 (Vo EMT Ln Bs JOMNTE L (En
To mLs pi f)kg ’ L,

In other words, as ky, — 0 past &y crit — 6k, the mode becomes strongly stabilized, so that
[v| > |w| (Fig. 1). Hence these low k, modes are not described by our theory, but they are
probably not important in the spectrum energy balance. This is discussed further in the
next section.

Finally, we note that our theory seems to predict instability for the kyp; — oo modes.
Hdvvever, this result is probably unphysical, since at shorter wavelength, certain stabilizing
effects appear which are ignored in this theory, such as collisional viscosity or electron

dissipation.

IV. Noaulinear Theory

This section examines the transfer of fluctuation energy from unstable to stable linear
modes, in order to determine the turbulent spectrum. The weak turbulence expansion is
used to derive the wave kinetic equation, which is solved to yield the fluctuation level and
spectrum at saturation.

The weak turbulence expansion!” proceeds as follows. Noting that the linear part of
Eq. (1) is of order wh, while the nonlinearity is of order vA (Eq. (21) verifies a posteriori
that the saturation amplitude of the fluctuations is of order v), then for v < w the equation
can be solved by perturbing about the linear solution as follows. For simplicity of notation,
we write Eq. (1) as

Ly ghi+ Ly pde =Y Cr bz (16)
ic'l

with L, 7, L, 7, and Cy g defined from the corresponding terms in Eq. (1). Letting

71,; = fzg) + 77,%2) + ..., we have, to lowest order, the linear equation:

-1 .
Ly ghe) + L,z = 0, (17)
and to n*! order,
Ll’]'\':;%‘-n) - Z CE/,E// &75/ 77/2-:17;_1). (18)
B




Equations (17) and (18) are solved by iteratively substituting fzg) into the nonlinearity of
the second order equation, and repeating to n*" order. Substituting ﬁ%l) + 73%2) + Eg) into
Eq. (2) produces

) (CL)) ¢k + Z Eﬁ)k” ! w”)q/;k’/ 5}-“:/!

B4R =k
w! fw! =w

)P R R
+ L’+L”+A'” I: Ec’)k” L”’( I’w”7w’”)¢fc‘/¢k‘n¢k‘m =0 (19)

I+wll+wlll_w

where the symmetrized dielectric functions are given by
O @) =14 1/r) R+ [0l

JoL

1 0Lig rr - -
@ (W) =5 [ do——2E o+ (B e R
2§ ) T oonly n  FE
1,k'+ k" 1,k
JoL, %
(3) " _1 3 05a, k1
ek/ kll B (w s W 7w ) —5 d vL L : L CE',E”-FE"’CE”;E”’
1’;’5 1,]";'//_*_75/// 1)75///

+ (I';n o ]';:‘m) ’
where Jo = Jo (sz—-‘-) Following Ref. 17, Eq. (19) may be divided into two equations.
The real part becomes an equation for the frequency and linear structure of the mode,
& (wp) bz =10, (20)
as examined in Section III. The imaginary part of Eq. (19), after some manipulation, be-

comes the wave kinetic equation, which describes linear instability and nonlinear evolution

of the spectrum

1 3 g |~ 2l Ei)k/l wkl,wic.l/)’z L ,
3 By B B =—ilwp) 3 +1m 3 ® 3| |dw]
k B4R =k k'+k” (wzl + wi’:u)
w!tw!! =w
(2) (2)
I deg, R (‘”E”“’E")ez_z/ (wgy —wi) é : é 2
—I—m‘Z~ (1)(w ) k! Iic’l
Rl Fr \YEr
2 2
3 . .
—Im >, i:)_k:,g(‘-"zn—wznwrc)‘%,’ ’¢,;| , (21)
z’-l—l?”:]\,
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Where e( ) = e% + 2 e%, and wy refers to only the real part of the frequency.

Physically, nonlinear transfer is the result of two processes. First are three-wave
resonances, described by the second and third terms on the right hand side of Eq. (21).
This is a transfer of energy between the test mode %,w and background modes k', w' and
i ,w'", and requires a match of both wavenumber (75 = '+ &" ) and frequency (w = w'+w").
Although this process dominates when 7; > ns (in strong turbulence!), in the present

case it is much less important. This is because triads of waves which satisfy both % and

wy matching are rare, since wy, given by Eq. (12), is strongly dispersive ( dllIf‘,:’ # 1),
and frequency broadening is negligible for weak turbulence (Aw ~ v € w). The second
nonlinear coupling process is ion Compton scattering (also known as nonlinear Landau
damping), described by the last term on the right hand side of Eq. (21). This is a transfer
of energy between two modes 1—5, w and &’ ,w' which occurs when an ion resonates with their
beat wave, i.e. v|; = (w — w') /(k) — kj). Compton scattering dominates energy transfer in
the threshold regime, accompanying the presence of significant linear wave-ion resonances.

Neglecting the three-wave resonance terms, (as well as turbulent shielding, for the
same reason) we can write the wave kinetic equation as:

2at|¢k’ =g |6l + gl (22)

where fyi’c. is the local linear growth rate, Eq. (9), and Yz is the nonlinear Compton scattering

term:
" f 3y J2 ] “ZE' i
%=oF mz Ptk X K') ||/d w33 (Ry (wp) + Reop (wp—wp)) |-
* (23)
8(.0,-5

where,

k k'
Jo=Jo ( -;ZU—L>> J(;=J0( ;—;),J_>a

m'v2
eFy W= Wxi <1+77i —QT'—%)>
T w = ko '

Ry (w)=-
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In deriving Eq. (23), the test mode has been assumed situated at ¢ = 0, so that kl,l >k —
0. None of the linear theory has been used in deriving Eq. (23).

Equation (22) suggests that a possible saturation mechanism for the linear instability
is Compton scattering to the lower k, damped modes, which can dissipate energy. We
now discuss several details of this mechanism. First, the tendency for Compton scattering
to transfer energy to lower wavenumbers will be demonstrated from the form of vz after
it has been further refined. Second, although we speak informally of Compton scattering
only in terms of energy transfer between modes, this is not strictly the case. In the
scattering process, some energy is lost to the scattering ion (in the form of nonlinear
Landau damping), so that the true saturation mechanism is some combination of scattering
and nonlinear damping. However, in either case, the ultimate sink of wave energy is
heating of ions, leading to a net ion thermal diffusion as calculated in Section V. Third,
Compton scattering is a binary process, and transfer from ktok' requires that the product
$z(z)éz (z) be nonzero, which in turn requires finite levels of excitation for both modes
(as well as mode overlap). The finite excitation level for linearly stable modes can be
provided by nonlinear destabilization (i.e., when 7715 +7; > 0), as described by Eq. (22).
Finally, we note that that there must be enough modes to cover a given radial interval, i.e.,
> AL > Ar. Estimating the mode width as p;, and noting that the number of modes
between r and r+Ar with poloidal modenumber m is, on the average, m/q(r)—m/q(r+Ar)

(where ¢ is the safety factor and § = dlng/dInr), we find the condition
Mmaz Z qT/Pi§ ~ 30

(estimated for r ~ 1m, p; ~ Ilmm, and ¢ ~ § ~ 1). Typically this condition is easily met.
Several simplifications render Eq. (22) more tractable. First, we convert the discrete
spectral sum (which involves complicated information about the rational surface of each
mode) into an integral over the distribution of modes, with a density of states. Smoothing
the mode distribution in z' (to avoid rational surface information), and k;, (to avoid discrete

m information) results in

> — ﬁ/dk;|k;|/dm'.
k) 9
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Second, it is useful to decompose the spectrum as

-—S’( )exp( a:' JAZ),

~

ey
T;

where S(ky) is the spectral amplitude and exp(-—:z:'2 /A2,) accounts for the linear mode
structure, Eq. (11). Finally, by averaging Eq. (22) over the width of the test mode (i.e.,
in z), the local linear growth rate becomes the modal one (following the method of the
linear theory), and the odd term of (Z X l:’)ﬁ in 7} vanishes from the antisymmetry of k;

(~ 2 /A2 for the | = 0 mode). After some tedious algebra, this produces

e 7 rs ;LT * dg! , z'? "y
i\t o L Ko (<5) s 6. @

where the kernel of the integral is given by

232w z'?

. z 2
| 2
PRI (g wp)’ A
% {(w*, w*’) [( ST G (b, bl) n—1 (w*z w*i) 2 e, o 5

*2 !
+wg — w;:,}

The contribution from Ry, in Eq. (23) has vanished from symmetry in &, (i.e. S(k'y) =
S (—k;), following from symmetry of the equations), and

G (b)) = / ” 4?2 (\/ﬁ&u) J2 ( 2b'm) e 1,
0

G (b,4) = 3@ (3 b—'>

O{O!

a=1

With 77 in the form of Eq. (24), the wave kinetic equation is an integral equation
for S(ky). The integral operator in V3 closely resembles that in the integral equation that
formally describes the linear #; instability.!® The primary difference is that the z' integral
in the present case, representing spatial overlap of different modes, is replaced with a time
integral in the linear case, representing self interaction within one mode.

In both the linear and nonlinear cases, few methods are available for direct solution

of the full integral equation. One numerical approach to the solution might be to let a test
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spectrum evolve via the wave kinetic equation, until a steady state spectrum is attained
(which avoids the numerical instability associated with direct inversion of the integral op-
erator). However, numerical solution is beyond the scope of the present work. Analytically,
we are necessarily limited to rather approximate methods for finding S(ky). A simple but
often reliable method (used in a previous version of this theory!® and compared with the
present version as a rough check) is to estimate of the integrated spectral amplitude in
terms of the basic scalings and rms type quantities. An improvement over this method,
which we now follow, is to Taylor expand S(k;) about ky ~ k,, which reduces the integral
equation to a more tractable differential equation for S(ky).
Letting ky — k, = k,/, then

85(ky) | ky” 8°5(ky)
Ok, 2 k2

S(ky) = S(ky) — ky

Since S(k;) in narrower than the kernel in k,-space, then extracting .5 from the integration
extends the domain over which the kernel is integrated. Therefore, it is necessary to
accompany the extraction of S with a normalization of the integral, as ffooo SKdk, —

S [A5% Kdk!, ~ S5 [ Kdk,

Asx y> Where S and K represent the spectrum and kernel,

respectively, and Agsx and Ak are the widths of SK and K in k,-space. While this step is
heuristic, one can demonstrate that such a normalization factor is present for S gaussian
(Appendix C), and the results produced will be justified a posteriori. Also expanding other
functions of kj, as f(k,) ~ f(ky)— k, 0f /Oky for f = ky,wy, or G(b,b'), then 05 becomes,
for ky < ky,

c_ [mr8 QL To Ask /wfl_m_'/oo "R (K" _z
7 —\/;qpi 1+1/m)wp Ax Joo 2] Jooo Ay K (ky ) exp AZ

aS(k,) k' 82S(k
X {S(ky)— ky a(kyy) + ; 81553/)} .

(25)

where

Owz 2 1 f
K (ky) =(2p5k2k2)G (b,b) exp [— <k;’ (‘)k:) ﬁ_}

2
252wy; !

n l G' (b,0) 1l _ //% 3_@ vD ﬁ u_aw_ic’
X {'k@'”” Kz 00 ) T Mo, ) 2 Renw? TR,
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-3
It is easy to show that Ay ~ (g:,, \/_:w -&) , and we estimate Agxg =~ k; The

integration, first in kg then in z', and using wy < wy, produces:

G~ (5)3/ ? 18 il w*’L2k41‘0(b)G(b b) [( &, b)> m—l} 95 (2)

i (L+1/0) w EOD 31k,

40

With S(ky) no longer appearing under an integral sign, the wave kinetic equation has the

more tractable form of:

as . .85

where Vi, is the coefficient of 3327 BI S > in Eq. (26). Equation (27) has the form of a transport
equation in k, space, with the linear growth (damping) playing the role of a source (sink)
term, and the Compton scattering playing the role of convection. The fact that V, is
positive definite implies that the transport of spectral energy scatters to lower |ky|.

It is a simple matter to solve Eq. (27) for the saturated state (0/0t — 0). This.yields
(for ky > 0, with the other half following from symmetry):

k, |k
v

4 gp; P (A/p)  wp, (28)
/ dky Pi m3/2 (1-!-1/ )( s) (pik;)s(mk;)zw;i

1 N — Ne
1“o(b’)G(b’, V)24 G'/Gmi—1] nine

where kg is the maximum unstable k, (— oo for n; > 1), and we have applied the boundary
condition that kyﬁfoo S(ky) = 0. Thisintegral is straightforward but algebraicly tedious. To
the accuracy of this theory, a simple estimate suffices. The most important k; dependence
of the integrand comes from 7n; — 1,(b), which determines the sign. The essential features

of n. (asymptotics, threshold, etc.) are retained by the approximation:

1.
_—




where 7y, = 0.95 is the minimum of 7.(b), attained for b ~ 1. Also important is the k,
dependence coming from the terms which vary as k, to a power. Noting that for b 2 1 it
is appropriate to expand for I'y and G asymptotically, so that we obtain:

(Agfp)  wp 1 _2m(1+1/7) (ﬁ)i’(ﬁ)@
(piky)3 (pikx)z Wiq Fo(b)G(b, b) - i Ls i b’

where we have taken ky ~ ky, I'o(b) ~ (271'17)_1/2 (Ref. 20), and G(b,d)  b7! is easily
shown. If we use A, as given by Eq. (13), then asymptotically we have A2 ~ 1/2b. For

all the rest of the k, dependence, substituting (kyp;), . =~ 1 suffices. We now perform the

rms

integral in Eq. (28), obtaining

o2 (aey A1) (LaN (e

stk =2 (3) S (22) (2) 0 £
Here, I(b) is a spectral intensity function, defined as follows. If n; < ng = 0.95, then
I(b) = 0. If p; > mep (within the limits of validity of the theory), then

'1(1_l><i_i>+l(_1_;1)(_1____}_) o1 )
3 i) \ % 532 ) 5 \nem b5z i/ B

1/1 1 1 1 1 1
=1 1045 (=5) (55 =)+ (i =2) (5 2)

0o if I(5) <0

(=l

o

<1 b

L otherwise J

The parameter by (i.e., ko) is the maximum unstable b (given the above approximation for

770)
undefined 7 < Ntk
1—nm
by = <n<l1
0 1—n; mr SN <
o0 1< n;

Figure 2 shows I(b) for the cases by < oo and by — oo. In both cases, the spectrum is
concentrated about the region b ~ 1.
2 2
The first thing to notice about the spectrum is that the amplitude, S ~ %?% (i. e,

the coefficient of I(b) in Eq. (29), less the toroidal mode density terms £%), is extremely
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low in comparison to the saturation level in the fluid regime! (where S ~ —z—%), even when
the diminished linear growth rate due to the threshold is taken into consideration. Thus,
Compton scattering seems to be much more effective than triad resonances at transferring
energy away from unstable modes, thereby holding the turbulent fluctuations to a much
lower level. However, as 7; rises from the threshold level to the fluid level, v becomes greater
than w, and the resonant part of Z({) becomes zero.?! Thus, in the fluid regime Compton
scattering vanishes, allowing triad resonances to become the saturation mechanism, and
S(ky) rises to the level of Ref. 1.

It is useful to devise a rule of thumb for estimating saturation levels from Compton
scattering, although nothing as simple and broadly applicable as the mixing length estimate
seems possible. From inspection of Eq. (23), it is easy to see that the the Compton
scattering rate may be estimated by

~\ 2
c Q? 4 Wxi 6¢
15~ (pikl) P (T) :

for the present ordering. Balancing vz with the linear growth gives the estimate
.\ 2 )
> <ﬂ> RS (30)

T wii (kLp:i)* L.Ls

-

3
Using v and w from Egs. (12) and (14), and A, ~ kT' ~ p;, then Eq. (30) recovers the
spectral amplitude of Eq. (29). This estimate is limited to the present ordering, although
one might hope to derive a more general form from balancing the €' and €®) terms in
Eq. (21).

Considering the approximations leading up to Eq. (29), it is essential to justify the
main features of our nonlinear theory on physical grounds. First, the amplitude of the
spectrum is roughly the same as given by scaling-type estimates'? based on Egs. (22) and
(23), with (kypi)rms & 1, as above. Thus, it appears that the approximations after this
equation did not lead to any miscalculation in the basic amplitude of $. Second, the
result that energy scatters to lower k, is the usual result for ion Compton scattering, e.g.
as in the case of drift wave turbulence.'”?? Furthermore, it is reasonable to expect that

retaining nonlocal interaction in k, space (neglected when S(k; ) is expanded) would only
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further enhance this flow from the high k, source to the low %k, sink. Third, our theory
suggests that the spectral energy sink occurs for the kyp; ~ 1, weakly stable (|y] < |w|)
modes. One might ask if the strongly stable kyp; < 1 modes might provide a more effective
energy sink, and do not appear in our spectrum only as an artifact of neglecting long range
interaction in ky-space. To answer this point, we note that Compton scattering requires
that both S(k,) and S(k,) be nonzero for transfer from % to k', while at the same time
the strongly stable modes cannot be sufficiently destabilized by nonlinear coupling with
weakly unstable modes. Thus, one expects that the weakly stablized modes (which can be
nonlinearly destabilized to finite amplitude) should provide the dominant energy sink, as
this theory shows. Finally, the nonlinear calculation indicates a spectrum that decays as
1/ kz as ky — oo, although the linear theory suggests instability in this limit. This may
be due to the fact that Compton scattering produces nonlinear stability at low amplitudes
in this limit, but in any event, consideration of ion collisions or electron dissipation would

stabilize the high k, modes, and so a vanishing spectrum is physically correct.

V. Transport

Having obtained the saturated spectrum, we next apply this knowledge to finding the
saturation level of ion thermal conductivity, x;, due to turbulent E x B convection. Other
transport coefficients are of secondary interest here, since it is the balance of heating and
x: that determines n;, and thus the relevance of this threshold regime to experiments.
Turbulent transport is described by the guiding center Vlasov equation averaged over fast

fluctuations:

0(F) - Y-
o + non — turbulent terms = 5 <E‘ X b- Vf> , (381)

where F' = (F)+ f is the phase space distribution function, and (...) represents an average
over fast fluctuations. The right hand side of this equation can be written as the divergence

of a “fux”, —V,I';(¥), where
—p C . kJ.vJ. 77
I‘z(’l)) = E ;—Zkyjo 9—1 <¢zh_75> .
Treating [';(¥) similarly to the nonlinearity in the gyrokinetic equation yields, after some
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work,

(2) (.2
— 1 — ~ 2 /’l’kl kll( ) —75’,—]_.,:” ~ 2. 2
D.(?) = Imzky{ - u% )(7) ’¢,:’ + Y 0 ’¢Z~f’ 1%”1

G A

2 2
4#2/)]‘:” Eu)kl ~o 121 |2
Z e ¢E/, |¢;;’
RI+E1=F L"'

w! ! =
- #(3) kldp)‘qﬁk,’ }M } (32)

B4 kn=F
where the (™ (%) are equal to the corresponding (™ without the velocity space integration,
and the redundant arguments w have been omitted from both of these. The similarity of
the Eq. (32) and the right hand side of Eq. (21) is obvious. The ¥-moments of I'z(%)
give the fluxes of the fluid quantities. The particle flux, [ d®vI'y(¥), is proportional to

the right hand side of the wave kinetic equation, which vanishes at saturation. A.phase

shift between i, and ¢ (here, adiabatic) would be needed to model particle flux. The ion

thermal flux, ¢; = [ d®v e : I';(?), is a more involved calculation. For the same reasons as
in the wave kinetic equation, we retain only the quasilinear and Compton pieces of I';(?)

(the first and last terms in Eq. (32), respectively), and obtain (after extensive calculation)

r8 Ly

;] = — 2\/_v,noT(1 + 1/T)——-L—

(33)

X /oo ey pik2 A2 (1 — 25 B2 +oit —bZE)S(k )
oo K Y sz I10 P% Y/

where we have neglected terms of order /w or less. Inserting the spectrum from Eq. (29)

and expanding T',(b) for b R 1, we find the ion thermal conductivity:

o — . .—-dTO
X'l_ QZ nO d;z;
1+1/7) (Lr\? pPo;
&Ny ALl 2\/1) (L_s) EI—-J:, (34)

where Ny, is the k, integrated spectrum, and contains the cutoff of x; at threshold:

V= | ” abI() |
(D)) ) -2 v
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where by and I(1) are defined in Section IV. The integrated spectrum, Ny, is a function
of n; only, and is plotted in Figure 3. A simple calculation shows that Ny, oc (7; — ne1)?
just above threshold, so that the onset of turbulence is gradual as n; increases above its
threshold.

This calculation is valid in the regime ¢, = 0.95 < n; < nen + (1 +1/7)L,/Ls, and
L,/Ls < 1. When n; rises above this regime, ¥ <« w no longer holds, and Compton
scattering decreases, and is replaced by mode coupling, enhanced by frequency broadening
effects. Accompanying this transition is a rise in the saturated level of fluctuation, and
X; increases to the level predicted by the strong turbulence theory of Ref. 1 (valid when
n; > "7th)-

It is useful to note that the usual x; ~ y'A2 estimate predicts a x; that is too high
by a factor of about (Ls/L,)?, and therefore doesn’t apply to the present weak turbulence

case. A more appropriate estimate, based on the quasilinear piece of Eq. (32), is

w\ 2

1 v [ed

; ~ Lok, AZQ; = =
Xl LT Y T 2??2—77thw (Tz) ?

where the term 7; — n¢, cancels the corresponding term in « (reflecting the fact that x;
comes from the v? moment of y(%), and not the v? moment, as does ). Using the estimate
of e¢/T; from Eq. (30), we get

C 2
¥ 1 piny o
o~ 220,02,
Xe™ 02 (hips)s Ly P

This estimate follows from the orderings of the n; ~ 1, case, and hence is not as broadly

applicable as the v/k3 estimate from strong turbulence.
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VI. Discussion

This paper has explored the behaviour of the sheared slab 7; mode near the threshold of
instability, applicable to the regime n:, < 1; S nen + (1 + 1/7)Ly/Ls. Linear stability is
determined by the balance of the ion temperature gradient drive and ion Landau damping.
The unstable modes have k1 p; ~ 1 and v < w when 7; is in this regime. Thus, a weak
turbulence expansion is applicable. Nonlinearly, the saturation amplitude is determined
by the balance of linear growth and ion Compton scattering. This results in a spectrum
peaked about k p; ~ 1 and with an amplitude that is of order (L,/L,)? relative to naive
extrapolation from the fluid regime. The resulting ion thermal conductivity, x;, is at
a similarly low level. In experimental situations, this low level of x; near threshold is
probably obscured by competing mechanisms such as neoclassical transport.

The significance of this work is that it gives insight into the regime of n; turbulence
that is applicable to experiments. Since x; in the threshold regime, is extremely low, we
expect that the strong heating in modern tokamaks should easily drive n; beyond this. For
i > Neh, fluid theory predicts extremely large x;, driving n; down toward the threshold,
even in the presence of strong ion heating.1? Thus, it appears that the balance of ion heating
and ion thermal conductivity results in an 7; in between these two extremes. The linear
theory of this study indicates that there is an intermediate regime that differs from either
extreme. The linear modes of this middle regime are characterized by a fluid-like interior,
ion Landau damping at the edges, and ¥ £ w (prohibiting a weak turbulence expansion).
Modes with [ > 0 become progressively destabilized in this regime, with their growth rate
quickly surpassing that of the | = 0 mode. With these kinds of complications, developing a
satisfactory analytical theory of this intermediate regime is quite a challenge. Short of such
an analysis, one might assume on physical grounds that so long as linear ion resonances
are important, then nonlinear ion resonances are also present, and the associated nonlinear
Landau damping will maintain fluctuations at the low level indicated by this study. In
this case, then large y; will occur only in the fluid regime, where resonances are negligible.
Thus, the fluid predictions should determine the n; transport relevant to experiments.

Of experimental interest, these results suggest that a steeper ion temperature profile

will accompany effects that increase the weak/strong turbulence transition point, e
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nn + (1 + T3/Te)Ln/Ls. This might explain the improved confinement with increased
T;/T. as observed on TFTR,?® and with increased current (< 1/L,) on many tokamaks.?
Also, the broadening of the weak turbulence regime with increased L,, might be connected
with the observation that flat density profiles (L, — 00) do not seem to worsen H mode
confinement (even though a purely fluid 7;-mode theory?S indicates degraded x;. Of course,
a reliable estimate of whether these effects are strong enough to influence observations
would require use of a transport code that models y; in both the strong and weak turbulence
regimes.

The results of this paper suggest several possible directions for further study. Nu-
merical solution of the integral equations (both linear and nonlinear) would be useful as
a check of the analytical theory. Additional effects such as toroidal coupling?® or trapped
particles®” could greatly alter the characteristics of the threshold regime, perhaps leading
to more significant transport. Also, exploration of the regime that exists between the
threshold and fluid regimes is clearly interesting. Finally, a weak turbulence analysis for
flat density profiles would resolve whether the effects found in this paper can account n;

transport during H modes.
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Appendix A: Stability of Higher Radial Eigenmodes

In Section III, we obtained the growth rate of the [ = 0 mode by averaging the local
growth rate over the normal mode. Here, we apply this technique to the ! > 0 modes.
These are broader, and experience more Landau damping away from the rational surface;
this underlies the result that the stability threshold increases sharply with .

Averaging the local growth rate in Eq. (9), with k = kyz/Ls, over the modes given
by Eq. (11), and using the mode width given by Eq. (13), we find

=0 ) =0 2 B
Viya = \/iw*is(Ql + 1)%_ [11[3/2]_1_ <ﬂ _ 1) _ gl-l[s/z](zl+ 1)2.<Az. ) p(p 1)82}

ni \Me i UH
(A1)
where
g L VAR ECL=b—lhnd) 14
! 2UT(—I+r) ’ Ty
_ L, _
Alm—o = (1 - Pl/PO)l/zpi’ 8§ = f) In=e bIn(b)?
8

F is a hypergoemetric function, and I’ is the gamma function (not to be confused with
I',). The first several II" are listed in Table 1. In deriving Eq. (A1), we have assumed
that 2l + 1 < n;/s, so that the exponential in yz(k) may be neglected relative to the
exponential in Eq. (11). For [ = 0, Eq. (A1) reduces to Eq. (14).

Setting yx,,1 to zero and solving for the n; > 0 branch yields the stability threshold

for the higher radial eigenmodes

. 1 1 (1 - PI/PO)p(p - 1)52 Y2
e = 1e lz"'(z;"'cl e ) ]a (A2)

where C; = 3(21 + 1)2I°/% /1”1, The basic threshold, 7., is modified by the term
which varies as C;. The modification is of order s2 < 1, and is extremely small for the
! = 0 mode; however, thé coefficient is a rapidly increasing function of I, which raises the
threshold significantly for I > 0 (see Table 1 and Fig. 4). This higher threshold agrees with
the shooting code results of Ref. 13. They are also consistent with the kinetic shooting

code result'® that for weaker shear (i.e., smaller s) a larger number of eigenmodes are

unstable.
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Once n; rises above the threshold for the higher ! modes, the growth rate increases
rapidly, so that above the threshold regime these modes dominate the transport.'® How-
ever, it should be noted that n; must be significantly greater than 1 for a large number
of the higher [ modes to be in the fluid regime. This is unlikely in light of the strong
thermal transport they cause. Thus, we can expect that at most, only the first few radial

eigenmodes are relevant to tokamak regimes.

Appendix B: Stability of Flat Density Modes

Here, we use the technique of Section III to calculate stability in the limit 1 < L,/L, — oo
(formerly assumed small). This may be considered either as the limit of flat density, or as
stabilization coming from increased shear. In this limit, the dielectric function of Eq. (5)

‘becomes

T T 1
ep (W) = 1+1/r — Z=To(? 4 =% (?;Z”Czﬂ%) ToCZ((), (B1)

£

where w? = kyp?Q;/Lt,. Treated locally using the v = (5-,—;7-;;—‘0) approximation as before,

with kj, this yields
Lr |z| Lr\? [ 2\? Ly z\°
T T 1 o z _ z
Vi(z) = V2r [770 2p(p 1)( Ls> ( pi> exp 2( T. pi> . (B2)

Arguing as after Eq. (9) gives the result that only for (Ls/Lt)? — 0is y(z) stable for all z.

Thus, locally there is instability for all values of Ly. However, from our quasi-local point
of view, 4(z) must be positive over a wide enough region to give a net positive energy
input to the mode. The normal modes in this regime are described, as in the L,/L, <1
theory, by Eqs. (11)-(13) (the first three terms of Eqs. (5) and (B1) are the same, and the
rest are subdominant in both threshold regimes). Averaging v(z) over the I = 0 mode

produces
| L A, 1 2p(p—1) L2 Lt
- =v2==wl ["“ - -5 (B3
=V A (AL T (ne T AdfE 1 P @ Ve (BY
This shows that the threshold for VT; is given by
L\*_, oe—1) ( 2(Az/p,.)4p)1/2
e 1+ (14— . B4
(LT>C az/et ne(p—1) S
For b = 0, then (L;/Lr). is about 4/2(1 4+ 7)/72, and increases rapidly with b. Thus, it

appears that modes with b < 1 are the most relevant to the flat density regime.
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Appendix C: Normalization of the Expanded Spectrum

This Appendix demonstrates that the step of expanding S(k,) under the integral (as in
going from Eq. (24) to Eq. (25)) must be accompanied by a normalization of the integral.
Here, we show this when S(k,) is a gaussian, and assume on intuitive grounds that this

holds for more general shapes of S.
Letting S(k') = e~¥*/A% and K(k") = k'e=k" 1A% (which is the form of the kernel
in Eq. (25)), then it is easy to show that the exact integral is

*° AsA3,
/_ SR = 7 ke [-1/(8% + A%)]. (c1)
Now, if S(k') is Taylor expanded about k, where k = k' 4+ k", then the integral is

In the limit where Ax <« Ag, for which such an expansion is fully consistent,'then

s kK" 43S AS
S(l\,) k” dk + _é—d_]»z-:| I{(k”)dkl =Z£2;'—\/7?k exp [—-kz/AZS] . (02)

Egs. (C1) and (C2) are the same. However, in our case, Ax > Ag, so that Eq. (C2)
2

must be multiplied by (As/Ax)® exp [—k2 (ﬁé—)] to agree with the correct answer.

The exponential part of this normalization is of order 1 for modes in the spectrum (i.e.,

those for which k¥ S Ag), as well as an artifact of the gaussian shape of .S, so we ignore it.

(In comparing this derivation with the normalization used in Section IV, one should keep

in mind that the width of k" K varies as A}, and the width of SK varies as A%.)
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! I/ ok Cy
0 1 2/3 1
1 2 8/3 18
2 5/2 17/3 85
3 3 28/3 228.7
4 27/8 163/12 489
5 15/4 55/3 887.3
6 65/16 565/24 1469

Table 1: Functions used in Eqgs. (A1) and (A2).
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FIGURE 1: Stability threshold and weak turbulence regime, where v < w,
for L,/Ls =01, 7=1.
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FIGURE 2: Form of wavenumber spectrum in Eq. (29) (a) for n; = .98 and
(b) for n; = 1.02.
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FIGURE 3: Integrated spectrum appearing in x;, Eq. (33).
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FIGURE 4: Stability threshold for higher radial eigenmodes, with L, /Ls =
0.05 and 7 = 1.
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