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Abstract

The absolute equilibrium statistical mechanics of a two-field model of drift wave turbu-
lence is investigated with emphasis on predicting the direction of spectral transfer, and on
exploration of the role of desity-potential correlation in constraining the nonlinear transfer
process. The results indicate that departure from the adiabatic relation #/ng = ed/T.
allows transfer of total eﬁergy to small scales in fully developed turbulence. This predic-
tion is in distinct contrast to intuition based on the one-field Hasegawa-Mima model. The

results are verified by direct numerical simulation of the basic mode coupling equations.
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The question of the direction of energy transfer in drift wave turbulence is a subject
of considerable interest and one which is poorly understood. Previous studies!~*of this
subject were mostly in the context of one-field models with adiabatic electron response
(7i/no = e¢/Ts). They show that for low frequency fluctuations, the total energy tends to
flow to large scales (the so-called inverse cascade). In obtaining this result, the adiabatic
constraint is crucial. However, in realistic systems, the adiabatic relation does not hold
absolutely, so the density evolution dynamics must be considered.

In this paper, we present a study of the statistical mechanics of a two-field model of
drift wave turbulence first derived by Wakatani and Hasegawa.® The adiabatic restriction
in this model is relaxed due to the introduction of a small but finite resistivity, so that the
decoupling between 7 and é can be taken into account. In order to facilitate the analysis,
we will proceed in E—space. The fourier transformed version of the mode coupling equations

(see equations (6) and (7) in ref.(5)) are:
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where &75 and fiy are the fourier modes of potential fluctuation and density fluctuation
respectively, Xe = vZ, [Veiwei is electron parallel thermalconductivity, p is ion kinetic vis-
cosity, and wye = —kyd (Inng) /dz is electron drift frequency. The E-space is truncated so
that kmin < k < kEmaz.

A simple analytically tractable approach to the problem of determining the direction
of energy flow is that of equilibrium statistical mechanics.® The idea of this approach
is that the direction of energy transfer is determined by the properties of the nonlinear
mode coupling terms, and the constraints due to nonlinearly conserved quantities. In
order to study the properties of these terms, we consider an isolated system with no linear
dissipation and drive. In this case, the nonlinear mode couplings will drive the system
to an absolute equilibrium state, thus the equilibrium spectrum indicates the direction
of energy flow. Although the use of equilibrium statistical mechanics approach restricts

us to consideration of two limiting cases (i.e. adiabatic electrons with x. = co, and
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hydrodynamic electrons with . = 0), the results are sufficient to indicate how the trend
of energy flow changes when the system departs from the adiabatic electron assumption.
In particular, the results presented in this paper will be a good approximation to the case
where Xekﬁ ~ 0, i.e. the strong hydrodynamic regime.

As usual, we introduce a phase space in which the coordinates are the real and imag-
inary parts of fiy and gZ,-c—. The phase space density P(Y) is defined in such a way that
P(Y)dY is the probability of finding the system in the phase space region dY around
phase point Y, where phase point ¥ = (Refig, I mﬁ,—;,Re%,—s,I mggz) Using equations (1)
and (2), we can show that in the absence of dissipation and drive, the flow of phase space
points is incompressible, i.e. 01},;; /0Yz = 0. Then Liouville equation follows directly as:
OP(Y)/0t + 3.z YzOP(Y)/8Y; = 0. Based on this Liouville’s equation, we can introduce
a H-theorem for the drift wave system by direct analogy with the statistical mechanics of
many particle system,” namely dH(p)/dt < 0, where the entropy functional is defined as
H(p) = — [dYH(Y)Inp(Y), with (V) being the coarse grained phase space density.

For an isolated system with several in{zariants of‘ motion, such as the total energy E =
Fy, total enstrophy 2 = Qg etc., the phase space density is a microcanonical distribution
given by P(Y) = C§(E — Eo)8(Q — Q) -+ -. The single mode distribution function which
will be used in the caculation of equilibrium spectra can be easily obtained by integrating
out the other variables. The result is a Gaussian distribution®: p(Y) = C e:vp(—oinc» -
ﬂf)z —--+), where a, f, etc., are inverse “temperatures” related to the invariants Ey, Qo,
etc;

In the following, we will discuss the equilibrium state of the drift wave system in
two limiting cases, namely, the adiabatic case: Xeklzl = o0, and the hydrodynamic case:
xekﬁ = 0.

In the first case, the model equations reduce to the Hasegawa-Mima (one-field) equa-
tion, and the system admits two invariants of motion:total energy E = [ d3z(($)2 +(V$)?),
and total enstrophy Q = [ d®z(¢ — V24)?. The equilibrium spectrum is obtained to be:
< QE% >=1/[(1 4+ k¥)(« + B(1 + k?))], and the total energy and enstrophy spectra are:

2
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These spectra, which have been noted by Hasegawa and Mima, show that in the

equilibrium state E(k) tends to accumulate at small k (large scale), while Q(k) tends to
accumulate at large k (small scale). Thus, it was predicted that the total energy cascades
to large scale while the total enstrophy cascades to small scales.

In the second case, the evolutions of vorticity and density decouple, the model equa-
tions then admit four invariants of the motion. These are the fluid kinetic energy E4 =
fd3w(§<g)2, fluid internal energy E,, = [ d®x(7)?, fluid enstrophy Q¢ = [ d®z(V?2$)?, and
crosscorrelation I' = — [ d3x(ﬁvz$). We see that the decoupling of the two equations
allows not only additive but also independent conservation of E, and Ey. The equilibrium

spectra are thus caculated:
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The total energy and enstrophy spectra then follow directly:
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The large k asymptotic behavior of E(k) and (k) are similar in that they both accu-

E(k) =

(®)

k) = 9)

mulate at large k or small scale. This strongly suggests that when the adiabatic relation
is broken, both total energy and enstrophy tend to flow to small scales. This is not sur-
prising. In the hydrodynamic regime, vorticity and density evolution are governed by the
same equations as those that govern 2-D Navier Stokes turbulence. Therefore, by direct
analogy, the conceptual and methodological results in 2-D fluid turbulence can be trans-
fered here to explain the result above. Thus, the internal energy E, and fluid enstrophy
Q4 cascade to small scales due to isodensity and isovorticity contour stretchings by fluid

motion which generates small scale density gradient and vorticity gradient perturbations.

4



The fluid kinetic energy , however, flows to large scales due to the constraint of the con-
servation of enstrophy. Since the number density of mode increases with increasing k, the
transfer of density fluctuation to small scales dominates the total energy cascade process,
thus determining the direction of total energy cascade!

Another intersting feature of these spectra is that the presence of finite crosscorrelation
(n term in equation (5) and (6)) adds an extra negative term to the denominator which
distorts the equilibrium spectra toward high k. This indicates that it will take a much
longer time for a system to approach an equilibrium state with finite crosscorrelation than
if crosscorrelation vanishes. In other words, the effect of finite crosscorrelation here is to
inhibit the nonlinear transfer process.

The results are verified by direct numerical solution of the original model equations.
The figure (1) shows evolutions of density and potential contours in the adiabatic regime,
while the figure (2) shows corresponding evolutions in the hydrodynamic regime. The
initial conditions are the same for all the cases. As shown in figure(1), both density and
potential flow to large scales. From figure (2), we see that density cascades to small scales,
while potential flows to large scales.

An analysis of the role of the crosscorrelation has been carried out by using an EDQNM
closure theory, which will be presented in a future publication. The basic result of this
analysis is that the crosscorrelation in drift wave turbulence plays a role analogous to that
of crosshelicity < ¥ - b > in MHD turbulence,® namely the presence of crosscorrelation
reduces the cascade of internal energy to small scales. Hence, in the strongly adiabatic
limit where crosscorrelation is maximal, the cascade of internal energy to small scale is
completely inhibited by the cancellation of the nonlinear term due to the perfect density
potential correlation, so that the internal energy is carried to large scale by strong linear
coupling (i.e.7i/no = ed/T.). In the hydrodynamic limit, however, the correlation is not
perfect (due to the breaking of the adiabatic relation), so that the nonlinear transfer
dominates over the linear coupling, leading to internal energy cascade to small scale.

These results have interesting implications for our understanding of low frequency
hydrodynamic microinstabilities in tokamaks. In particular, a collisional drift wave in a

sheared magnetic field has the characteristics of both the hydrodynamic and adiabatic
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regimes discussed here, depending on whether wv,; > (k”')z z2v2 or wye; < (k”')z z2v2,.
Thus, on the basis of the analysis preseﬁted here, one might expect generation of small
scales to play an important role in the nonliear dynamics of the hydrodynamic layer in
collisional drift wave turbulence. Also, an important class of collisionless microinstabilities
driven by pressure and curvature (i. e. toroidal ion temperature gradient driven modes and
trapped particle modes) are described by nonlinear equations with the same structure as
the hydrodynamic regime model discussed here. Hence, energy transfer to small scale and
sensitivity to density-potential crosscorrlation can be expected in these systems. Therefore,
existing theoretical models based on the assumption of inverse cascade of energy to large
scales appear ill founded.

In conclusion,this paper deals with the problenﬁ of determining the direction of energy
cascade in a two fleld drift wave turbulence model. Though only two idealized limiting
cases are considered here, the results obtained are sufficient to tell how the direction of
total energy flow changes when the system passes from adiabatic regime to hydrodynamic
- regime. More significantly, in this paper we have identified an important and previously
ignored issue, namely that decoupling between density and potential fluctuations leads
to total energy flow toward small scales, which is in contrast to intuition based on the

one-field Hasegawa-Mima model.
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Figure Captions
Figure 1: This figure shows the comparison of evolutions of isodensity and isopoten-
tial contours in adiabatic case with x. = 10wy.; a) isodensity contour evolution, and b)

isopotential contour evolution.

Figure 2: This figure shows the comparison of evolutions of isodensity and isopotential
contours in the hydrodynamic case with x. = 0; a) isodensity contour evolution, and b)

isopotential contour evolution.



Figure (1) : Comparison of density and potential contour evolution in
the adiabatic regime with e = 10wye.
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Figure (2) : Comparison of density and potential contour evolution in
the hydrodynamic regime with y, = 0.
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