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Abstract

The nonlinear evolution and saturation of neoclassical pressure-gradient-driven turbulence
(NPGDT), evolving from linearly unstable bootstrap current modes, are investigated. The
theoretical model is based on “neoclassical MHD equations” which are valid in the banana-
plateau regimes of collisionality. Modes with poloidal wavelengths shorter than radial
wavelengths are shown to be suppressed. From nonlinear saturation conditions, the tur-
bulent pressure diffusivity is determined as an eigenvalue of the renormalized equations.
Levels and radial scales of turbulence are determined from the pressure diffusivity and are
shown to exceed mixing length estimates by powers of a nonlinear enhancement factor.
The problem of the electron heat transport due to stochastic mégnetic fields driven by
NPGDT is revisited. The reconsideration of the radial structure of magnetic flutter leads
to estimates of the electron heat transport and magnetic fluctuation levels which differ

Qualitatively and quantitatively from previous calculations.



I. Introduction

Resistive interchange-ballooning instabilities’ have been successful in explain-
ing experimentally observed anomalous thermal transport in stellarators,? reversed-field
pinches,® and the auxiliary heated high-8 ISX-B tokamak.4 However, these theories are
based on a short mean free path description of the plasma, valid only in a Pfirsch-Schliiter
regime where the collisional mean free path is much shorter than the parallel scale length
(i.e., connection length). This makes the application of these models to present-day toka-
mak operational regimes rather dubious since the temperatures are so high that plasmas
are in low-collisionality, banana-plateau regimes.

Recently, so-called “neoclassical MHD equations” have been developed’® to treat
the low collisionality regime. It has been shown that these equations support interchange-
like instabilities when (dP/dr)(dg/dr) < 0, where P and ¢ are the pressure and the safety
factor, respectively. In a related study,® a kinetic treatment of the dynamics of trapped
particles reached similar conclusions. Moreover, these neoclassical MHD equations have
well-known neoclassical properties such as: a bootstrap current” in Ohm’s law as the
consequence of the interaction of the pressure gradient with the radial excursion of trapped
particles, an enhancement of the inertia® (by a factor of B2/ B2) because of an additional
polarization drift, neoclassical diffusion fluxes,” the Ware pinch,® and the neoclassical
correction to the resistivity.® Experimental evidence for the bootstrap current has been
observed in TFTR!! as well as in a toroidal multipole.}2 The neoclassical correction to
the resistivity has important implications for the dynamics of resistivity-gradient-driven
instabilities'® (rippling modes) since the neoclassical resistivity is a function of the density
as well as the temperature. This will be discussed in another publication.

In this paper, we study the nonlinear saturation of neoclassical pressure-gradient-
driven turbulence (NPGDT), evolving from linear interchange-like instabilities described
by the neoclaséical MHD equations. The structure of the neoclassical pressure-gradient-
driven instabilities is similar to that of resistive interchange modes.? However, it should be
noted that neoclassical modes are somewhat more virulent, in that they are unstable for
arbitrary 8, S, etc. (B is the ratio of the kinetic pressure to the magnetic pressure and

Sum is magnetic Reynolds number). Renormalized equations are derived. They are solved,
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yielding the amplitude-dependent nonlinear viscosity (or diffusivity) as an eigenvalue. A
similar treatment for resistive interchange modes? led to the conclusion that although
mixing-length estimates correctly predict the parameter scalings in leading order, they

significantly underestimate the magnitude. Our study shows that the same result holds

for NPGDT.

The remainder of the paper is organized as follows. In Sec. IT, neoclassical MHD
equations are summarized and corrections to the ususal resistive MHD equations due to
the inclusion of the parallel viscous stress tensor effects will be discussed. The parallel vis-
cosity due to trapped particles leads to a bootstrap current and a neoclassical correction
to the resistivity. The perpendicular component of the parallel viscous force (the cross
viscosity) leads to additional viscous damping and a neoclassical enhancement of the po-
larization drift. Energetic trapped particle effects,'* which are significant in experiments!®
with perpendicular neutral beam injection or resonant radio frequency heating, are also
incorporated.

In Sec. III, linear analysis reveals various branches of the neoclassical resistive
interchange instability. Without neoclassical or hot trapped particle effects, resistive in-
terchange modes? become unstable due to the interaction of the pressure gradient with
the average unfavorable curvature. These modes are stable in tokamaks because of the
minimum-B configuration. However, when the hot particle population trapped in the un-
favorable curvature region becomes significant, energetic trapped-particle-driven resistive
interchange modes'® are unstable. When plasmas are in the banana-plateau regime of the
collisionality, neoclassical effects are dominant and neoclassical pressure-gradient-driven
modes®® (bootstrap current modes) become unstable. NPGDT evolves from these modes.
In all cases, when the radial correlation length is much smaller than the poloidal corre-
lation length, the growth rate scales like v ~ S;,II/ 37';1 where 74 is the poloidal Alfvén
transit time. In the case of resistive interchange modes,? it has been shown that when the
poloidal correlation length becomes shorter than the radial mode width, one can recover
“fast-interchange” modes where the growth rate is independent of the resistivity. However,
because of their rather unusual structure, bootstrap current modes are stabilized in the

short poloidal wavelength limit. The neoclassical correction to the resistivity is responsible
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for suppressing small scale bootstrap current modes.
In Sec. IV, nonlinear study of NPGDT is presented. Nonlinear saturation occurrs

when the nonlinear energy cascade from linearly unstable, long wavelength modes to the

- short wavelength dissipation range balances the linear source. This cascade is mediated by

E x B convective shearing. As to dominant long wavelength modes, the saturation mech-
anism can be viewed as a radial diffusion, which balances the driving forces, naturally
leading to the broadening of these modes. The amplitude-dependent turbulent diffusivity
is obtained from the renormalized equations (i.e., as an eigenvalue of the renormalized
eigenvalue problem at saturation) and is significantly larger than the mixing-length esti-
mate. Other fluctuation quantities are also evaluated, showing significant enhancement
over mixing-length estimates.

In Sec. V, the problem of the electron heat transport due to stochastic magnetic
fields driven by NPGDT is revisited. The radial structure of magnetic flutter!” associated
with NPGDT is reconsidered. The bootstrap current contribution to anomalous transport,
which is unique to NPGDT, is also included in the determination of magnetic fluctation
levels. Thus, a cross correlation between the pressure fluctuation and the electrostatic
potential fluctuation appears. Results show both qualitative and quantitative differences
from previous calculations* of y. (. is the electron heat diffusivity). A recent study 8 of
Xe due to reistive interchange modes reached the same conclusion, as expected because of
the similarity in the structure of the resistive interchange modes and NPGDT.

Finally, Sec. VI contains a summary and conclusions.



II. Basic Equations

The neoclassical MHD equations® are employed in order to study the structure
of neoclassical pressure-gradient-driven turbulence (NPGDT). They are valid in the long
mean-free path (banana-plateau) regime. A comprehensive theory of the extension of re-
sistive MHD equations, which are valid only in the short mean-free path (Pfirsch-Schliiter)
regime, into a low collisionality regime can be found in Ref. 5. In this section, we summa-
rize the results necessary for the nonlinear study of N PGDT, and discuss the differences
between the two models.

The major correction to the momentum balance equation is the addition of a
large parallel stress tensor due to the friction between trapped and circulating particles.

The flux-surface averaged neoclassical parallel Ohm’s law is then

10y fhe te ¢ dP
E” =Z—5%———b-v¢:nsp (1+a—e;e-> J”—*—nspaeVeB_a?. (1)

Here, E) is the parallel electric field, b = B/|By|, 9 is the parallel component of the
magnetic potential, ¢ is the electrostatic potential, J|| is the parallel current, and 7, is
the classical Spitzer resistivity (which is a function of the electron temperature only). For

Zeg ~ 1, ae ~ 0.51 and
2.3\/e v,
He = 1/2 :
1+1.02042° +1.07v,,

(2)

Here € is the inverse aspect ratio, v, is the electron collision rate and Ve = Ve/ e3/ Zwpe,
whe being an electron bounce frequency. Recalling that the classical Ohm’s law in resistive
MHD is

By = nspJ);

it is easy to see that the Spitzer resistivity is replaced by the effective neoclassical resistivity,

Tneo = 7sp (1 + JL_G‘) . (3)

Qele

It is interesting to note that since nyeo is a function of the density as well as the temperature,
rippling modes®®, which tap the free energy in the resistivity gradient, can now be driven by
a density gradient. A nonlinear study, incorporating density dynamics in the evolution of

resistivity-gradient-driven turbulence, indicates that the density gradient acts to enhance
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the turbulence level for normal tokamaks profiles (i.e., n,T; > 0) where n, and T, are
the electron density and the temperature, respectively, and n, = dn./dr, etc.. A detailed
study of the neoclassical resistivity-gradient-driven turbulence will be presented in another
publication. The bootstrap current term in Eq. (1), Jp; = (tte/aeve)(c/Bg)dP/dr, which
does not have an analog in the classical Ohm’s law should also be noted. The bootstrap
current arises due to the fact that ion poloidal current vanishes because of large ion viscous
drag and electron viscous drag reduces electron poloidal current. |

The vorticity evolution equation, derived from the charge neutrality condition, is

d(, B\ _,- B'_ . BBd_ . B L.
7 (1 + -Eg) Vié= ;TPVHJII + ;E%V”P + .c—pb x K. V(2P+P||,h + Py x), (4)

where K = b - Vb is the magnetic curvature, the subscript ‘h’ denotes the hot particle
component, and d/dt = 8/0t+(c/B)bx V-V denotes the total convective derivative. The
left-hand-side of Eq. (4) denotes the parallel component of the vorticity, which arises from
the polarization drift. Note that the inertia is enhanced by a factor of B2 /B%. The first
term in the right-hand-side of Eq. (4) represents field line diffusion (field line bending) and
the second term represents viscous damping due to anisotropies in the perturbed pressure.
The latter is an analog of the bootstrap current and should be kept pairwise with it.
The interaction of these two terms is crucial in driving neoclassical pressure-gradient-
driven instabilities.’® Finally, the third term denotes the interaction of the pressure with
the magnetic curvature. Note that hot particles, treated separately from the core or
warm particles, do not contribute to viscous damping because the collision rate for hot
components is very small. Their contribution to the bootstrap current is also negligible
since Jpt,n ~ —(c/Bg)dP),p/dr, so that in the present ordering scheme, 2P ~ eP) j ~
Pyp-
For the core plasma,
dP 9P c

— N

~ b = 5
— 6t+Bbe¢ VP =0, (5)

i.e., the convective response to E x B flow is used. When hot particle effects and the cur-
vature interaction are ignored, Eqs. (1), (4), and (5) constitute the basic equations for the-

oretical model of NPGDT. When the hot trapped particle population becomes significant,
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as in the perpendicular neutral beam injection experiment,!® the perturbed distribution
function is obtained from a drift kinetic description of hot particle dynamics. A complete
description can be found elsewhere.** Taking a second moment of the nonadiabatic part of
the perturbed distribution function of trapped particles yields the hot particle pressures:

(PL”’) = —2%re,B /BB’;il" da(1—aB)'/? /dE { aB/2(11— aB)} Bi Qs (¢ _ %;/,) .

Pll,h w — Wyp
(6)

-1
max

Here,
o .
Qr = (wa +w*h) Eop,

Guh = ——b - xVInFpp - V,
Qp
o _.b X (Uﬁ_VlnB+2vﬁK) v
dh — 2 ° ’
20

Q% = enB/myc is the cyclotron frequency, @ = u/E is the pitch angle, u = v3 /2B is

the magnetic moment, E = v2/2 is the energy per unit mass, Fyj is the unperturbed hot
particle distribution function, and (- - -) denotes bounce averaging between turning points,

le.,

= J(dl/vy)-)
Sy

* Also in a low-f approximation, VIn B ~ K. Now, Egs. (1), (4), (5), and (6) constitute

the basic equations for NPGDT with hot particle and curvature effects. The linear theory

of this system will be studied in the next section.




III. Linear Theory

Having introduced the basic theoretical model, we study the linear stability of
this model in this section. To render the theory analytically tractable, two important
approximations are made. First, as a consequence of the electrostatic approximation, the
neoclassical Ohm’s law is simplified and b reduces to the unit vector of the equilibrium
magnetic field. Second, by neglecting the rippling effect (7 evolution), the density and the
temperature evolutions need not be treated separately, and the model consists of evolution
equations for ¢, j~'”, and P.

With these approximations, one finds two coupled equations for & and Jj by

solving for P, i.e.,

¢ cn, dPd®
k@ = || + e B By —ko— dr dz’ (7)
B dP d
o2 <1 + Bz) V3 e —z k”J” + —B—Led—d—k”@ + 2k3(K,,)®
F
~2reaks - / _HyaB / By (g
2(1—aB)2 W — Wqp

Here,

5, = He /<1+ “e),
el Qele

7 = 7neo,Kw is the total curvature, ® = (), and J| = (3“) where ((---)) denotes flux

surface averaging,
o _ JW/B)(--)

Therefore, coefficients are also flux surface averaged. Also, perturbed quantities are Fourier

analyzed according to:

- rranl (o)

where m and n are poloidal and toroidal mode numbers, respectively, Ry is the major
radius of tokamaks, z is the coordinate along the major axis, and z = r — r, is the
displacement from the mode rational surface [where ¢(rs) = m/n]. In Egs. (7) and (8),

the analysis assumes two different spatial scales: the longer parallel length scale, related to
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the connection length, and the shorter perpendicular length scale, related to the resistive
layer width. Perturbed quantities are averaged over along the slowly varying parallel
direction, such that the equations are in the fast variable z. This analysis is valid since
these modes are extended along the magnetic field lines. Also, one can write k| =koz/L,
where Ls = Rq/§ is the shear length, and § = r¢'/q is the shear parameter. If one
further assumes that the radial variation is much faster than the poloidal variation, the

approximation V2 =~ §2/8z? is possible. Then, solving Eqgs. (7) and (8) for ® yields

d? d
I')/Z%E@ - FB’y:Ez‘I’ + (Nvy — FBB)CE%@ + Ny — K + Kmu)® =0. 9)
Here,

BZ

I == 1 + ﬁg,
_ B3

c2pnL3’

Bkg dP
Ny = BePLs <_$> ’
Fpp = 6.Nv,
kg dP
K= 2(Kw)—p— (—E-> .

Physical interpretation for these terms is as follows: I represents the inertia of the fluid, Fig
is the field-line bending, Fizp is an additional field-line bending due to the presence of the
bootstrap currént, and Ny is the neoclassical viscous damping which represents anisotropy
in the perturbed pressure, which, in turn, drives NPGDT when combined with Fgp. Also,
K denotes the interaction of the core plasma pressure gradient with the curvature, which
drives the resistive interchange mode,? important in stellarators. However, this has a
stabilizing effect in tokamaks because of their average favorable curvature (minimum-B
configuration). Finally, Ky represents the interaction of trapped hot particle pressure with
the curvature, driving energetic trapped-particle-induced resistive interchange modes.!¢
The calculation of Ky is simplified when Fy), is approximated as slowing-down distribution,

corresponding to a neutral beam injected at energy E,,

FOh = EC—OE"3/26(01 - Olo),



for E < Ey,, where a is related to the injection angle. This choice of Fyj yields:

Wy

~
A

Ky = 2281 (w). (10)

Wdh

Here, ®ap = Wan/E, Pyh is the poloidal B for hot particles, and I, is a function of complete
elliptic integrals. For modes growing faster than hot particle precessional time, Kpg is

independent of the growth rate.!® Then, the general solution for Eq. (9) can be written as
&(z) = Boe™® /2Wi Hi(az).

Here, H; is a Hermite polynomial, [ is an integer,

1
WS DIRAL

4~412 ~I
1
w2 - (v =Fpp)*  Fp\* + Nv - Fpsp
44412 ~I 2y2I

The eigenvalue condition is:

Ny + Fgp— K + Ky
242

Nv—FBB_I__F’E)i'

= (21 4+ 1)I%/? (
( ) yoe >

The ! = 0 modes are centrally localized and
_ —:1:2/2I/V2
®(z) = Boke k, (11)

Now, ®ox is the magnitude of the electrostatic potential of the mode k, which cannot be
determined from the linear theory, and W is the radial width of the mode. By substituting
Eq. (11) into Eq. (9), one finds two coupled equation for v and WA, i.e.,

2
v Ny — Fpp

T _ g v — BB 12
Tope = For + wz (12)
2

— = Ky - K. 1
IWI% Ny + Kg (13)

These centrally localized modes are dominant, in that their growth rate exceeds that of
higher modes due to field line-bending stabilization (of higher, broader modes). Various

instability branches emerge immediately from these relations.
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A. Resistive Interchange Modes

In the absence of neoclassical effects (Ny = Fpp = 0, I = 1) and trapped
energetic particles (Kg = 0), resistive interchange modes, which might play an important
role in anomalous heat transport in stellerators? and reversed-field pinches,? are excited

by the interaction of the pressure gradient with the average unfavorable curvature, where,
V= (KPR ~ ks e, (14)

Here, Sy = Tr/Ta is magnetic Reynolds number, 7g = r2/nc? is the resistive time scale,
and 74 = Rq/v4 is the poloidal Alfvén transit time, vy being the Alfvén speed. Instability
of these modes requires K ~ (K, ) < 0 which is not satisfied in tokamaks because of their

minimum-B configuration. As a result, these modes are supressed in tokamaks.

B. Energetic Trapped-Particle-Driven Resistive Interchange Modes

When neoclassical effects are ignored (Ny = Fpg =0, I = 1), energetic trapped-
particle-driven interchange modes'® (due to hot particles trapped in the outside region for
which wyp/wan > 0) are excited even though tokamaks have average favorable curvature.

The growth rate for these modes is

. 2/3
y= (‘f*" Bondo — K) /F}ﬁ ~ St (15)
Wdhp :

There is a threshold for these instabilities given by

Ganli
Bon > = (16).

(:)*hIO

We have considered only the fluid limit here. These modes are purely growing in this limit
and are not resonant with the precessional drift frequency of hot particles. Detailed results

when these modes are resonant with the hot particle precession are described in Ref. 16.
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C. Neoclassical Pressure-Gradien- Driven Modes

In the absence of curvature effects (K = Ky = 0), effects from bootstrap currents
and neoclassical viscous damping, which are absent in a short mean free path description
of the plasma, combine to destabilize the pressure-gradient-driven modes in the banana-

plateau collisionality regime®® (bootstrap current instabilities) yielding:

NyFgp\'/ ,2/3 g=1/3__ -1,
_( e ) ~ K35 an

Interestingly, both the neoclassical MHD description® and the kinetic treatment® lead to
the same result. Note that I = B?/B} in this case. To be unstable, both Ny and Figp are
required to be positive. This is equivalent to ¢'P' < 0, as is satisfied in tokamaks. It is also
interesting to note that v is independent of , in contrast to previous cases where the shear
has stabilizing effects. However, the effect of the shear here is to limit the radial width of
the modes. These modes are of particular interest because they have fast growth rates,
and they may play an important role in anomalous electron heat transport in tokamaks.
NPGDT evolving from these modes and electron heat transport associated with magnetic
fluctuations in the nonlinearly saturated state are the main topics of this paper, and will

be be discussed later in Sec. IV and in Sec. V, respectively.

D. Compelete Description

When we retain all of effects discussed earlier, we obtain
= (Fee + Ku — K)'*(Ny + K — K\ |(IFp)'/® ~ S 3171 (18)

The instability condition is Fgp + Kz > K and Ny + Ky > K. Bootstrap current inter-
action with viscous damping, as well as hot particles trapped in the unfavorable curvature
region favors instability, while the core pressure gradient interaction with average curvature
favors stability. Since the inequality, Ny, Fzp > K, Ky is usually satisfied for the hot,
core region of tokamaks, previously mentioned case C (bootstrap current modes) is of the
greatest interest. It is worthwhile to note that all the modes treated here are of resistive

S 1/3 _1

interchange-ballooning family, in the sense that all growth rates scale as v ~ an
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Now, concentrating on neoclassical pressure gradient driven modes, one can

rewrite Eq. (17) as

2 9 1/3
v = c—ke5e d_P‘
B?p dr

8, \/3 /e \2/3 kg 2/3 e .
‘(167r> <Eﬁ”) (;:P) Su T (19)

where Lp = —(dln P/dr)™" is the pressure scale length. Then, from Egs. (12) and (13),

}1/6
1/6 1/3
€ be T -
-v2(58) (Grmzg) Sl (20)

It is important to note that we recover the “slow interchange” regime, where 7 is propor-

the radial mode extent is

B\'? s [ctpn?L?
(£ /3 P
W (Bo) o [ Bk}

dP
dr

tional to /3, in the limit where V2 o~ 9% /8z%. This is satisfied only for low-m modes, i.e.,
WZ < k2. In Ref. 2, it was found that there are also “fast interchange” regime where
is independent of 7, for very large m. However, since the structure of neoclassical pressure
gradient modes is somewhat different from resistive interchange modes (i.e., both boot-
strap current and viscous damping contribute to the former, while the pressure gradient
in bad curvature is the only source for the latter), one finds that there are no instabilities
for large m, where kg < 0?/0z2. This is due to the fact that 6, > 1, which leads to an

unphysical situation of radially increasing eigenfunction for growing modes.

13



IV. Nonlinear Theory

In this section, we investigate nonlinear evolution and saturation of NPGDT
evolving from linear neoclassical pressure gradient driven instabilities. Dominant E x
B drift convective nonlinearities are replaced by spectrum-dependent turbulent diffusion
coefficients using standard one-point renormalization theory.’® The renormalized equations
are solved as an eigenvalue problem to determine transport coefficients at saturation. The
pressure diffusivity and fluctuation levels are found to exceed mixing-length estimates by
powers of an enhancement factor obtained from the eigenvalue analysis.

Before describing the nonlinear closure scheme, we define two energy-like quanti-

ties. By eliminating j”, we obtain two coupled equations for ® and II = (15)

B? d B? B*_ d B? d
&7 G V%= 5 Vi® b 5V g+ opByar VI T PVIVIE,  (21)
dpo 9Py s ves xLV2IL (22)

dt B dr

Here, 1 and x. are added to provide energy sinks at small scales for V2% & and II, re-
spectively. They serve as short-wavelength disssipation to allow a nonlinearly saturated,
turbulent state. However, they do not affect the growth of large scale modes. As usual,

we define Fx and Ep as
Ey = %/d?’w PV 12,

Ep = %/d%l’[z.

The evolution of these quantities is determined by:

d B? 2 By d
EEEK = /d3:l: -2—0|V”¢‘| +/d3.'1: T&@V”a—‘@
Be d 2
—/d3$ ———CIDd V)@ /al?’w,o,u]_?2 |Viel’, (23)
—Ep /d3x —c-d—PHb Vo — /d3a:XJ_|VJ_H|2. (24)

The interaction of bootstrap currents with neoclassical viscous damping drives the kinetic

energy (Ex), part of which is dissipated by viscosity (1) and part of which is transformed
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into magnetic energy which, in turn, is dissipated by magnetic field diffusion (i.e., resistiv-
ity). The averaged pressure fluctuation (Ep) is driven by relaxation of equilibrium pressure
gradients and damped by small scale dissipation due to y.. A saturated state is attained
when there is energy transfer, mediated by nonlinear three wave couplings, from the low-m
energy source to the high-m dissipation region. To build a complete picture of the sat-
urated state, two point theory, which allows the calculation of the fluctuation spectrum,
must be utilized. However, in this paper, we study the saturation mechanism of low-m
modes using the standard one-point theory where nonlinear interactions are renormalized
to yield spectrum-dependent turbulent diffusivities. The saturation condition (v = 0) then
determines these diﬁ'usivities.

Detailed treatment of the standard one-point theory is described elsewhere? and
we only summarize basic steps here. Noting that the dominant nonlinearity comes from

E X B convection, one can write the nonlinearity as: for the field Ay (in our case, Ay

denotes V3 @y or IIy),

.c 0 ' . C 0P s OA _yi
= 73— o _/A " — IIA_I —-k‘ A// —-@ "
N(Ax) T Ek, ko(®—1r A — @rn A_1r) +ig ekg, ( k= K ),
(25)
where k" =k + k'. Now, the total convective derivative can be written as
d 3}
—Ax = — Ay). 26
ar e = gl T V(4K (26)

We renormalize N(Ay) by iteratively substituting the nonlinearly driven fluctuations (Al(f,,)

and @8,)) resulting from the direct beat interaction of test modes (<I>§<1) and Al((l)) with
background modes (<I>£1,) and AS,)) to extract the piece which is phase coherent with test
modes. Here, the superscripts “(1)” and “(2)” denote first and second order in perturbed
quantities, respectively. The renormalization can be simplified when one notes that @f;‘:,)
is spatially smoother than Vﬁ_(ﬁl(f,,) or H1(<2“) . The smoothness is because @8,) is obtained

from the inversion of the eigenmode operator, involving complicated spatial convolutions.

By neglecting @8,), we can write equations for the driven fields as:

(1) (1) (1) (1)
_ . C 1 3A ' 1) BA (1) 0<I>k (1 O(Dk,
AP =T H(Awn )i (kgcbf()a—: +kyd, 5~ e 5 — ko4, =5 ), @)
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where I'"* (Ax) is the propagator for Ay,
DV k) = 10 + Awo( VL 8y — 72, (25)

P(Hkli) = Yk + Aw(Hkn) bl X-LV?L (29)

Here, v is the growth rate, which vanishes at saturation. Also, Aw(Agr) is the nonlinear
decorrrelation rate which effectivelely limits the coherence time of nonlinear interactions.
Since II is not straightforwardly related to @, IT is convected by @ and it is easy to calculate
N(IIy) as:

0

0
N(Hk) = -—5—1) 97 —IIx + k‘eDyka, (30)

where

¢ ' 2
= =7 2 [kp@i? /T(Ten),
kl

0% |2

DY = /T(Then). (31)

We have used symmetry arguments to eliminate terms such as Yo B (0®xs /Or), ete..
Physically, Di* and D}’ are interpreted as turbulent radial and poloidal pressure diffusiv-
ities, respectively.

To calculate N(V? ®), one cannot simply neglect @1({,,) in Eq. (25) because the
vorticity is directly related to ®. Equivalently, the vorticity is not simply convected by &,
so that its back-reaction on ® must be considered, as well. To simplify this consideration,
we note that for a continuum of localized modes, one can replace the sum in k-space by

Jdm'|m'q'[|¢?| [ da', where ¢' = dg/dr. Then, N(V2 &) can be written as

2 c 2 4 2mm' 03,
N(V381) = ig Zk'm = 2mm’ 1) 2 190 +ighe Y T K R 52,
kl

Or
(32)
We have used dz" /dz' = m" /m', near the mode rational surface of k. By substituting Eq.

(27) into Eq. (32), we get

o ..o
0 oo 9 vr a4 2uvvi o, — Lo Loy 4 2oWa.,  (33)

2 —_—
N(Vi) = =g m’ 5 52k 9z
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where

CZ

z m2
W= g7 2 |l [TV 8),

3‘I’k/
lul:liy - B2 Z m”2 /I‘(Vl@k”)7
c? m?
Ck Bg mir2 kIGIVJ-(I)k' IZ/P(Vi@ku), (34)
m2 0@1(/
¥ =25 ZW Vi [TV @),
kl

Here, odd moments in «' as well as in kg-space vanish because of symmetry considerations.
The factor of m? /m/ (in comparision to Eq. (31)) represents the effect of the back-reaction
of the vorticity on the convecting fluid. Physical intrepretations of these coefficients are
as follows. ui® and ul? are nonlinear radial and poloidal diffusivities of the vorticity,
respectively, and act as effective sinks for Ex. CE® and CPY are their kinetic energy-
conserving counterpart, and act as destabilizing energy sources.

Now, we determine how much energy outflow from long wavelength modes due
to nonlinear multiple-helicity interactions is needed to balance the growth of these modes.
When low-m modes dominate in the energy spectrum, turbulent radial diffusions are most

effective stabilizing effects. Thus at saturation, the low-m modes satisfy:

0 0 B B d By d

b_/-‘k p —V? 1%k — V”@k — —65 V”d—Hk + ce I — V) lIx =0, (35)
0 0 c dP
5£D a—'Hk + zlveg—d ¢ =0. (36)

By solving these eigenmode equations, we obtain DE® and uf® as z-independent eigenval-
ues, required for the saturation of low-m modes. The level of turbulence is then determined
from Di® and pui®. In this treatment, nonlinear multiple-helicity interactions and signifi-
cant overlap between different helicity modes are crucial. We solve this eigenvalue problem

by Fourier transforming, i.e.,

B(u) = (27) /2 /da: Dy ()™, etc
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Then, from Egs. (35) and (36),

dZ F - NV d ZNV - F
2 BB BB zz 7, 6
Fpu ) 5®(u) + _—Dﬁ” u—®(u) + (———-—Dﬁz — e Tu ) ®(u) =0. (37)

Here, V3 =~ 0/02? is used again. The solutions are Bessel functions of integer order,2
O(u) = ubZ,,()\u?’),

where
Fpp — Ny

1—92h=
R

For localized modes v = 0, and an eigenvalue condition for this case is
¥’ = (2Ny — Fpp)/FpD??,

or
) Fpp—Nv\*  _Fsp—3Ny _
L (B sy -

Note that yWZ = Fgp /Fp is the mixing length estimate of Dg?® obtained by balancing
the linear growth rate and the turbulent diffision (Dx/W{2). Thus, if we put

Dg® = Az@a (39)
Fpg

we can interprete A as a nonlinear diffusion enhancement factor. Equation (37) is thus an

eigenvalue equation for A:

1/2

A =3671 —142[671 (267" —1)] (40)

We have chosen the + sign to eliminate the unphysical situation of zero diffusion as
pe/eve — oco. Thus, A% > 4 is always satisfied. It is interesting to note that non-
linear interactions always act to enhance the pressure diffusivity over the mixing length
estimate (A > 1). This is consistent with the notion that the stabilizing mechanism for
low-m modes is turbulent radial diffusion, thus leading to broadening of the modes. Also,
although A? — oo at very high temperature (y./a.v. — 0), the pressure diffusivity re-

mains finite.
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From Eq. (39), we can evaluate saturation levels of perturbed quantities. We
follow the standard procedure’ by approximating I'(V2 &) o pe® /A% and T(Ily) ~
Dg* /A%, where Ag and Ar are nonlinear mode widths of & and II, respectively. We
thus find

m? Ag
Hi m2 AH k» ( )
=2 (Dg*)?
. 42
(5} 42)

Here, (---) denotes spectrum-averaged value of (--), i.e.,

By =Y [a0ul* [ 3|awf’, ete.
k k

Also, V; = cky®/B is the radial E X B velocity. Then, asymtotically balancing nonlinear
viscosity with fleld-line bending yields:

AG — ,,zz C2p7]L§

while balancing nonlinear pressure diffusion with the source (the pressure gradient) gives:

bz I = |dP
D= =Vr|=I. (44)
I

It is interesting to note that by combining Eqs. (42) and (44), one finds

Yol el
Il
v|E

which is just the mixing-length estimate of the pressure fluctuation. However, since A
is different from its linear value, Wy, due to mode broadening, this relation should be
understood in its nonlinear sense. Finally, balancing nonlinear viscosity with destabilizing

neoclassical viscosity near the rational surface gives:

ps (V2)the _ Bok}

T

Mo IALYme  BpL,

(I2)1/2. (45)

rms
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Equations (39) - (45) completely determine levels and radial scales of turbulence, ie.,:

By = WiAllo,
A = Wi A8,
Vi, =3WiA®/?,
= -I%WkA”G,
Di# = FWyA?
= A2é1;§ﬂ,,c2 565—;,
pe = %—VW;‘:A- (46)

Our results are quite similar to those in Ref. 2. This is as expected, because of similarities
in the structure of basic equations. It is shown there that analytic results agree well with
nonlinear multiple-helicity simulations. It is interesting to note that in the nonlinearly
saturated state, Ay > Ag, which is a consequence of the direct dependence of the vorticity
on the convecting E x B velocity (D** > u®®). Also, because A is only weakly dependent of
plasma parameters, nonlinear results have the same parameter dependences as the mixing-

length results, but show considerable enhancement in the magnitude.
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V. Electron Heat Transport

In this section, we evaluate electron heat diffusivity due to stochastic magnetic
fields?! in satuated NPGDT. Magnetic fluctuations in NPGDT are coupled to electrostatic
modes through the parallel Ohm’s law.

From the electron drift kinetic equation?? with magnetic flutter nonlinearity, one
can calculate x. yielding:

.\ =1
_ 207 .12 N 2
Xe = Zv”|br,k| Re [z (w wp — kv + Tc}() :l . (47)

k

Here, X. is electron heat diffusivity, w is the mode frequency, wp is the drift frequency,
E,k = -é‘r,k/ By, and T, is the nonlinear decorelation time, representing the nonlinear inter-
action term. Also, Re|(- )] denotes the real part of (- - -). In the quasilinear approximation,
where 1/7.x is neglected, Eq. (47) reduces to the y. of Ref. 22. In the more relevant, so-
called strong turbulence regime, where nonlinear mode couplings become dominant, we
can approximate Eq. (47) to yield

Xe = vilbricl*Tek. (48)
k

To find Zr,k, we use the neoclassical Ohm’s law and Ampere’s law;

- b xr

bric = —5— Vi, (49)

where,
~  4m__, dr . _ o, d :
= — —4 —TIl.
Pk chJ_ V@ + B, V1 51 (50)
By Fourier transforming, we can approximate 7, by

Tae = XU, (51)

where

u

217 2\ /2 |
<————Ek“ (] ) . (52)
Zk l¢k|2

/ do' = % / dko [kl / dz, (53)
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To evaluate @2, we note that
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> = [ |2
* q




where R is the major radius of the tokamak. By assuming that nonlinear interactions
change the radial correlation lengths without significant deformation of the linear eigen-

functions, we can write
- 1/2 1
B(u) = Ag [C@@ZSQ(]CG)] exp (—EA%‘U?) ,

T(u) = it [OnTl" Su(ko)] 7 (—%A%?ﬁ) . (54)

Here, S¢ and Sty represent kg-spectrum of @ and II, respectively. Also, Cs and Cp satisfy

spectrum-averaged fluctuation level normalization conditions,

Z|<I> =3
Zlﬂkl2 =T,

k

to yield

-1
Cs = |:7r1/2 2 SQ(]C@)A@] R

Cn = [WI/ZT'R/’dk [k

From Egs. (50), (53)-(55), we obtain

]_1 . (55)

(56)

Here,

) C’q,(I)ZEC / dkg |ke[* Se(ke) AL 122
in ) CnTl" / ko |o|Stu(bo) Ar I

5= (o
(&
_ o(4ry? e(C’<1>C’1-I)1/2cI>IIRr/dk ko[2SL/2SL/2 A 2T (57)
5= (o
(

c¢BonL

) cq,qf%f dkg |ko|> So (ko) AT I2®

—”5) CHH”—%—"- / dkg |ke| Sm(ke) A TIT

23T
_o(4)?s (C'@cCB'n;L ®II Rr /dka Ikol2SL/2 8 1/2A3 ALTST (58)
9




where

2
ate@

“+oco
788 _ / _afemr
U= e “ @ ARy

4 ,—a
! :/_oo e+ AL
I@H=/+ooda ot exp [-a? (1 + A% /A )/2]
1 oo (a2+k2A2 )2

5 +o00 a26—oz2

+oco 2 _—a?
T a“e ‘
5= [ e

+o0 2 2 2
eI o?exp [—a? (1 + A} /A)/2] _
"= /_oo da (a? + W3AL)2 (59)
These integrals can be evaluated analytically, yielding:
+co 4 —pu o \/—
a“e . ™ 2.9 T 2,/2
/_oo da (aZ 22~ 4 (1+p™v%) - 5”(3 +2420%)et V" [1 — Exf(uv)]
+oco 2, —ua?
xe T 2,,2\gh*v% 11 _ —
/ da g = g (1 2 (L Ert()] — /R
where Erf(uv) is an error function,
Erf(uv da e’
(wv) = \/—
In the limit where low-m modes are dominant, we obtain
drke\” 4 =2 2
0 ——— —
L (CULS) Ba® +< 6) i
_4n)F &\
T) ke 12§77 ]
cBenL (A An ) I 2<1+Z1%[> J ’
8rd/2 [ ko 5/2 —1/2 r
S 6 Ag I} . 60
c2k9 7’]L B ( )

A simple mixing length would suggest* u% ~ W, ? This approximation would be relevant if

NPGDT has a tearing parity or if magnetic fluctuations have Gaussian structure. However,
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NPGDT has a twisting parity, or negligible magnetic fluctuations near z = 0. By using the
turbulence level determined in Sec. IV, we find @? ~ kg/Wy, when A is large. Therfore,
the radial structure of magnetic fluctuations plays an important role when we apply the
mixing length principle.

By substituting Egs. (49)-(53), and (56) into Eq. (48), we obtain

2 _ 22 -
Xe = V)|U z

” chan (u? + k2) du
T\ (IL)?
__ ’U” 8 2
= <_—B ) S (61)

During the linearly growing stage, x. due to magnetic fluctuations is negligible because

4 k2 d 47 ukg 2
] —®(u) + BB, be (@ + kg)ﬂ(u)

contributions from ® and II flutuations are almost equal in magnitude but opposite in
sign (i.e., Ir ~ 0). However, in the nonlinearly saturated state, the contribution from
the bootstap current becomes dominant over that from the inductive current because of

different power dependences on A.. When A is large, x. can thus be written as

€ 4/3 / r 2/3 2/8 y7) .
—2 5/3 - 7/3
Xe = 4.6 x 10 IUIIILS (—q'ﬂp> 5e (m) SM A . (62)

Parameter scalings of x. are
Xe ~ §T1S3 P B LR P T, (63)

It is interesting to compare these results with those of Ref. 4. There, the mixing length
theory is used, thereby neglecting the contribution from integrals due to the radial structure
of magnetic fluctuations. If the same approximation is applied to NPGDT, one finds that

the scaling of x. would be
Xe ~ RSB LSTI,

Hence, both quantitative and qualitative differences are apparent. Note that because
of the similarity in the structure of NPGDT and resistive-interchange modes,? the same

procedure can be applied to resistive-interchange modes. Recent study'® of the electron

24



heat transport due to resistive-interchange modes reached conclusions similar to the present
study.
Finally, the magnitudes of the radial and the poloidal magnetic fluctuation levels

are given by

5/6 273\ 1/4
=0.11 (Eﬂp) §3/2 (%ﬁ) 5&1/2_,\7/4,
q P

7/6 1/6
9.6 x 1072 (Eﬁp) / §4/3 (ili) 5’;,[1/31&7/6.
q €

Il

FoLp

SRS

Thus, magnetic fluctuation levels and associated electron thermal conduction are enhanced

by increasing 5, and a sharper pressure gradient, but are suppressed by strong shear.
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VI. Summary

From neoclassical resistive MHD equations® including hot, trapped particle ef-

fects, we have identified various branches of instability: stable resistive-interchange modes,?

i which are due to the average unfavorable curvature in the absence of neoclassical effects;

| energetic trapped-particle-driven resistive-interchange modes,! destabilized when there is
a sufficient population of hot trapped particles; and neoclassical pressure-gradient-driven
modes®® (bootstrap current modes), which become important when neoclassical effects are
dominant. The linear study of NPGDT shows that small scale bootstrap current modes
are stabilized.

Nonlinear saturation of NPGDT is achieved via nonlinear coupling of unstable,
long-wavelength modes to stable, short-wavelength modes, thus balancing the linear free
energy source with its ultimate sink, the viscosity and x,. Renormalized equations are
obtained. The turbulence level is determined from nonlinear steady state condition. The
principal results are as follows:

(i) The pressure diffusivity is obtained as an eigenvalue of renormalized equations at
saturation, yielding:
Sﬂpczn5e£—;A2.
This value is larger than the mixing length estimate of Dp by a factor of A? (A

_1
P8y

is always greater than 1; see Eq. (40)).
(ii) At saturation, the radial scale of pressure fluctuations differ from that of electro-
static potential fluctuations, i.e.,

Y Eﬂ 1/6 1 er 1/3 5‘1/3(L3LP)1/2A7/6
g f 167 ko L% M ’

Ny Elg 1/6 _1____5e_7“ 1/33"1/3(LL )1/2A1/6
®= q " 167 ko L% M o=P )

(iii) The levels of turbulence are determined from the diffusivities, i.e.:
o [ L 2 s 56 7'550>1/3 g-2/3 (LsLp)'? 74 A5/8
167 g " Lp M ps  kecs

1/6 1/3 1/2
€ be r L, —1/3,7/6
- = — S AP,
v2 (Qﬂp> (167r k(ﬂz?z) <LP> M
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(iv) Electron heat transport due to stochastic magnetic fields induced by NPGDT
has been estimated. The radial structure of magnetic fluctuations has been taken

into account, yielding:

2/3
Xe = 4.6 X 1072|vy | L, (L) Syt PAT3,
keLp

(v) Magnetic fluctuation levels are also determined:

B, e \*/® o, (r2L3\'* _

=L _ = 12 {1 _~s 1/247/4

b _on (55" (2" sy

B, 7/6 9 rg\ 1/6

Do _ 96 x 1072 (Eﬂp) §41° _%L— Sy PATIS,
B q koL

We note that while the resistive MHD turbulence! is relevant only in the cold
edge of the plasma, the region where NPGDT can be applied is extended over wide zone
between the center and the edge of the plasma. Also, as the pressure is increased with
additional heating, NPGDT becomes aggravated. Therefore, NPGDT may have some
bearings on confinement degradation during the L-mode.?® Furthermore, since NPGDT
shows similar behavior?# to resistive turbulence under the influence of strong shear, it can
be suppressed at the edge of an H-mode discharge,?® thus providing improved confinement
behavior.

So far, we have investigated the turbulence evolving from instabilities with the
twisting parity. Neoclassical tearing instabilities and the transport associated with them

will be discussed later.
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