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Abstract

When the ion temperature gradient is finite, the ideal kinetic theoriz plasma destabi-

. lizes the MHD mode below the critical § of MHD theory. For the temperature gradient
n; > 2/3 and inverse aspéct ratio e7; < 0.35 the electrostatic toroidal n;-mode is unsta-
.ble. The coupling between the two rﬁodes is investigated by solving the fourth-order
system describing the shear Alfvén-drift wave and the ion acoustic wave in the finite 8
tokamak. Thé ion kinetic velocity integral including the gyroradius effects and the ion
magnetic drift resonances are used to obtain yx(k, ¢*8,m;, s, €n, ¢, 7) and g/ (k2) for

the modes. The study emphasizes the 8 and g-dependence of the transport associated

with 75/ (k2).
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I. Introduction

Drift wave instabilities associated with the ion temperature gradient are used ,to interpret
the anomalous ion thermal conductivity in tokamak confinement studies. While the mag-
nitude of the anomalous transport agrees vs?ith the experiments the observed dependence
of the confinement on plasma current, which occurs in the dimensionless variables through
g = rB/RBy, is inadequately given by theory. This shortcorning of previous formulas for the
ion thermal conductivity X; suggests that a more detailed understanding of the ion pressure
gradient-driven mode with an emphasis on the ¢ and 8 dependence is required. Here we
investigate the dependence of the toroidal n;-mode on ¢, § and other system parameters due
to the toroidal coupling of the n;-mode to the stable, kinetically modified MHD modes.

In slab geometry, the finite § effects on the stability of the n;-mode are reported by
several authors. Using the kinetic-local dispersion relation, Pu and Migliuolo! report that
the finite § stabilization is ineffective and the high values of B, above the MHD bﬁllooning
mode threshold, are necessary for stabilization. This conclusion was confirmed by Migliuolo?
later through analytic, nonlocal mode analyéis. In contrast, Dong et al. report that finite 3
of several percent could have a significant stabilizing effect on the slab.n;-modes where they
use an integral equation formulation for the sheared slab model.

The n;-mode in toroidal geometry has been studied with electrostatic (E.S.) and electro-
magnetic (E.M.) theor;f both in the fluid description and the kinetic description with various
restrictions.*~® These studies*~® indicate that the toroidal 7;-mode is not finite 8 stabilized,
but the studies do not adequately describe the gyroradius at &k, p; &~ 1 and the full curvature
—VBEB drift reéonance effects. In Ref. 6 the full kinetic integrals were used but the analysis
was local to the outside of the torus which misses the toroidally induced mode coupling. In

the present study we investigate the toroidal n;-mode with the full gyroradius effects includ-



ing k1 p; > 1 and the ion magnetic drift resonance w = wp; effects and compare the results
with the previous works.

The model equations investigated here contain the MHD ballooning mode in the small
k1 pi, wp/w hydrodynamic expansion. In the MHD expansion the stability is given by o =
@B [1+mi + 7(1 + ne)] Jen and s = ¢’ /q with the MHD threshold occurring at o 2 0.8s/2,
The kinetic description in the Hastie and Hesketh” study and our recent work® show shows
that the kinetic theory with finite n; and‘w = wp; resonance effects destabilize the MHD
ballooning mode below the MHD f critical. In this subcritical unstable range the kinetic
MHD mode has a relatively small growth rate that is comparable with the .toroidal 7;-
mode growth rate. The frequency of the kinetic MHD mode in the subcritical range is
Wy, R Wiy, Which is greater than the frequency of the toroidal #;-mode, w ~ wp; which is also
unstable in this regime. The kinetic MHD mode has finite but small £ represented here by
qRE| = —04(¢ — 1), whereas the n;-mode has /4] ~ B < 1.

Equations describing the coexistence of the two modes have been investigated earlier by
Tang et al.® They do not focus on the B and g dependence -of v and i/ (k2) for the n;-mode,
but consider principally the soft onset of the kinetic MHD mode. The Tang et al.® study |
includes collisional electron dissipation, and the study also emphasizes the kinetic theory
reduction of the maximum growth rate below the MHD growth rate.

Another kinetic stability study that contains the physics of both the 7;-mode and MHD
mode is the work of Cheng.’® With an approximate treatment of the ion kinetic velocity
integral, Cheng!® reports the coexistence of the two branches of eigenmodes. The Cheng
study also emphasizes the kinetic modification of the MHD branch.

Dominguez and Moore!! also investigate the two branches with fluid theory and show
that the toroidal n;-mode tends to be stabilized by increasing 5. The coexistence of the two
modes and the j stabilization are shown clearly in their Figs. 9 and 10. In Fig. 9b they report

a curious stabilizing effect of increasing 7; on the unstable kinetic MHD branch. Recently



Jarmen et al.'? considered the same modes with improved fluid equations and reports that
the electrostatic toroidal 7;-mode persists both in the limit of small and large 8. But these
studies!®'12 neglect the ion dynamics associated with the compressional ion acoustic waves
and solve second order differential equation for the eigenmodes containing only the Alfvén
waves. The parallel ion dynamics is important for the n;-mode. In slab geometry the parallel
ion dynamics destabilizes the n;-mode, but in toroidal regime it gives a weak stabilizing effect.

The general formulations of eigenmode equations from kinetic theory in ballooning mode
formalism are given by Antonsen and Lane,'* Tang et al.'* and ours.® In the present work
we solve the fourth-order system of equations for the coupled electrostatic potential and
parallel vector potential. The perpendicular vector potential A, is neglected baséd on our
earlier local, kinetic stability analysis work showing negligible effects from A, .6 We find that
the correct analytic properties of the ion kinetic response function Py(w) [Ref. 10, Qx(w)]
require the separate v and vy velocity integrals for the V B-curvature drift resonances. We
neglect the resonance at kv = w — wp; and expand in Fyv;/|w — wp;| to obtain the second
differential operator description of the ion acoustic waves. We monitor the value of < kﬁ> /|w]?,
to determine the limits of validity of this expansion a posteriori. Recent investigations by
Romanelli'® include the kv = w —wp; resonance and show that it gives a small stabilizing
effect. The dissipative trapped electron effects are also neglected since they obscure the
dominant physics of the n;-modes.

The organization of the work is as follows. In Sec. II we derive the fourth-order dif-
ferential equations describing the shear Alfvén-drift wave and io;a acoustic mode coupling.
The solutions of these equations are presented in Sec. III. We discuss the finite B stabi-
lization of the toroidal n;-mode and the parametric dependence of the measure of the ion

thermal conductivity given by v/ (k2) obtained from the eigenvalues and the eigenfunctions.

Conclusions are given in Sec. IV.



II. Formulations

Following the calculations of the currents and charge densities in Ref. 6, we obtain the

condition of quasi-neutrality
ag+bp =0 (1)

and the parallel component of Ampere’s law

b + dep = 0 | 2)

I
where
¢ 9 _ 0
a(k,w,0) = —14+7(P-1)~- 2R289P 50
2
_ Wik, ¢z 0 0
bkyw,6) = 1-=""4 imoe 29
and ,
3 _ P 'UA 0 2 0 < _ w*e) ( . w*pe) Wpe
dk,w,0) = w?q?R? 69vl80 ! w + w w
_ i_a_p 9
w?q?R2 90" 198"

Here we used the ballooning mode representation and assumed the mode frequencies are in
between the transit freqﬁencies of the ions and electrons which will be justified later. Similar
differential eigenmode equations in ballooning mode formalism are found in Refs. 13 and 14
from kinetic equations, and two fluid equations in Ref. 16. The ion kinetic response functions,
P and P; = (j = 1,2,3) are given in Ref. 6 and we use the fluid limit in P;(j = 1,2,3)
functions

Wak;

— > T'o(b) — [To(8) + 6 (T4 (b) — T'o(0))]

P{:p{:]{{g(

with T';(b) = I;j(b)e™® and b = k2 p?. All frequencies are measured in units of ¢,/r, and

the wavenumber k; in units of p, = c(m;T, )1/ 2/eB. The dimensionless complex frequency
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wles/ry] is a function of the seven dimensionless parameters k, Be, ¢, &y, s, 7; and 7 = T/ T5.

With the dimensionless variables, we write Egs. (1) and (2) as

_ ﬁ 6* Wike ; ex 0
[I—T(P—l) + P 8—93]¢ [1—- ” +PZW§9—2]¢ (3)
e 290 0 Wke Whe ;oex 0
[ B0 e T <1_ o ) (1_ " >+P1 qu?W]‘/’
(1 pr o O
= [1 ” + P 77 392} o. (4)

First we consider the limit which allows ion acoustic coupling terms to be zero with

Wy = = <ﬁ—) V2 fixed. If ¢ — oo but ¢*f, finite, Eqs. (3) and (4) reduce to the 2nd order

differential equation

T [ PR

where we used

ﬁb_ 1+7(1—-P)
¢ 1_‘-’-’*a

from Eq. (3) and note that By = ik ¢( 1—y/ ¢). The eigenmodes of Eq. (5) have been analyzed
in earlier works.”~!! With the full ion kinetic veldcity space integral P we investigated the
kinetic effects on MHD ballooning mode.® Equation (5) also governs the toroidal n;-mode in
the low beta limit w3 — co by 1 = 7(P — 1) with the mode characteristics (|| > |#]), the '
high beta limit and the MHD ballooning mode (|@| ~ |¢|).
In B — 0 limit Eq. (5) reduce to' v
w8 , 0

1=r(P - 12 Sk =

0. (6)

Assuming [1 — 7(P — 1)] # 0, we obtain the solution of Eq. (6) as ¥ ~ tan™! @, which is an
unphysical solution having [ dfy? — co. To have a solution which tends to zero for large 6,
we must have

[l1—-7(P-1)]=0. | (7

.



Equation (7) is the local dispersion relation of toroidal 7;-mode and was studied in previous
works.®

Dispersion relation (7) gives unstable n;-mode when

2 ,
Mg > Ne ~ 3 and €Ty = % < 0.35.

Above the threshold the mode has wy ~ wp; = —2ke, and 7k ~ v;/(Rrg)Y?. Recent H-
mode discharge experiments show inverted gradient profiles with n; < 0 and &, < 0. For the
dissipative drift wave and the trapped electron mode the inverted profile showed a substantial
gain in stability for v, < 0.3 regime. For fixed or local value of § the condition ImP = 0

yields the marginal stability frequency

Wy = —-———1 + g i Wk
" 1= mil/enl
and
o ||, 1
Re P(wp,) & el To@
This leads to the instability condition of
Tro(b)
< 147

for inverted gradient profiles. In terms of the electrostatic dispersion relation D = 1+ 7(1 —
P), the high frequency collisionless dissipation becomes anomalous in sign for modes rotating
in the ion direction when |n;| > |e,|. The ar;omalous high frequency sign of the dissipation
gives the Nyquist diagram of D = D(w) encircling the origin for w in the upper half plane
under the condition n; > 2 and e, < 0.35, or eg; < 3—11:_—?_-(76—) for inverted gradient profiles.

In this work, we analyze both the MHD ballooning and toroidal m;-mode by solving
Eqgs. (3) and (4).



ITI. Stability Analysis

A. Electrostatic Limit

In the limit of 8 =0, Eqgs. (3) and (4) reduce to

<(1 - “’7*) o — 4% 4 [T+ b(T — ro)]> q%;aa_;w 1-7(P-1)]¢=0. (8)

We solve Eq. (8) with the full P-function and compare with the solutions from fluid or local

approximations. As § — oo, P — 1/k} — 0 due to JZ (kLvi/we) and the wp;-functions, .

we obtain the boundary condition as ¢ — 0 by requiring that ¢ must be spatially decaying.
The analysis of Eq. (8) shows that |w,| ~ v in contrast to the solution from fluid equations
(lor| < ).

Study of the spectrum of unstable toroidal n;-mode eigenvalues w(k) +4y(k) as a function
of kgp, = k for m; > n, and er; < 0.35 shows the growth rate increasing linearly with k
reaching a maximum around k& = 0.3 with «,, S 0.1 where wm 2 —0.1 to —0.2. The frequency
varies approximately as wy & —2¢,k demonstratiné the importance of the w = wp; resonance
for the thermal ions. |

Now we fix the wavenumber k in the region of maximum growth rate and vary the other
parameters. Va,l:ying n; we find that the growth rate increases as v & (9; — n,)'/? and
wg = —2ke, (1 + %) The reference parameters are €, = 0.25, s = 1, 7 = 1, ¢ = 2. The
critical 7; occurs near . ~ 1.5 for both £ = 0.3 and 0.5, which is considerably higher than
the 7. ~ 2/3 from the local kinetic theory which requires ¢ — oo. Thus we find that critical
n; = 1:(¢) is the function of ¢ shown in Fig. 1.

Now we vary the toroidicity €, and the shear parameter s = rq¢’/q. Solutions of the
ballooning mode equation show that the growth rate increase for small €,, and has a maximum
at €, ~ 0.1 for £ = 0.5, and at &, ~ 0.5 for k = 0.3, then «(e,) decreases as ¢, increases.
This is because &, measures not only the strength of magnetic drift but the strength of the

magnetic shear as well L,/ L, = ¢g/e,s. The frequency varies again as wj, = —2¢,k. For
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small s the growth rate is independent of shear. The growth rate decreases as s increases for
5 > 1/2 when k = 0.5. For k = 0.3, the growth has a broad maximum in the shear weakly
decreasing for s > 1.0.

In our study, we find that there are several unstable eigenmodes for a given parameter
set. For the modes not emphasized here the wavefunctions are very broad (62) > 1 and
oscillatory. We believe these modes are related to the sheared slab branches, but their study
requires the integral formulation to treat the w = kv, resonance without expansion which
is beyond the context of this study. In ViéW of transport, as measured by i/ (k2), these
secondary modes appear less important than the f-localized mode which we identify as the
toroidal n;-mode.

Finally, we consider the current or ¢ dependence of the growth rate and eigenfunctions.
As noted before the local theory is recovered for ¢ — oo and we find that v(¢) < v(g — o)
for the reference parameters. For ¢ ~ 1 we find that the systé_m is essentially stable due
to the strong coupliﬁg to the ion-acoustic waves and the associated parallel compression in
the ion motion. With request to the eigenfunction we find that (k2) = k?s* (6?) decreases
with ¢ as given in Eq. (11) of Ref. 4. Thus, we find a strong ¢ dependence of the v/ (k2)
measure for anomalous transport shown in Fig. 2. With the fluid expansion to the kinetic
response function P, the growth rate of the mode changes very litﬂe with q as also reported

by Romanelli.1s

B. Finite § Plasmas

For finite B there are two eigenmodes with different eigenvalues and diffefent mode
characteristics. One is a finite 8 modified n;-mode with |¢| > || and the other is an MHD
ballooning mode with |¢| ~ |i].

We prove that for n; = 0 the ion acoustic .coupling does not affect the marginal stability
of the MHD ballooning mode,® from the ideal MHD and kinetic equation. The ideal MHD



equations with the parallel ion acoustic dynamics, Eqs. (A21) and (A22) which ‘are derived
in the Appendix at w = 0 reduce to the ideal MHD equation at marginal stability

;82 5?0 lae““’m“’*e (H 1+m>”[’=0' (9)
The parallel jon dynamics does not change the marginal stability but reduces the growth
rate. For w = wx; the kinetic Egs. (1) and (2) also reduce to the ideal MHD Eq. (9) at
marginal stability, which proves the kinetic theory threshold is the MHD threshold MEP for
n; = 0.

BMHD is found to be from the ion magnetic drift

The origin of the instability below
resonance effect when 7; # 0. We explain this using Eq. (5) which neglects the ion acoustic
cbupling.

For n; # 0, the kinetic response function does not vanish at the MHD marginal stability
frequency. For w 2 wx;, the n; response adds to the Vig(2z) defined in Ref. 7 through the

function

T (L7 £ 1 (RN

L —wpi(vy, v, 2)/ws

~1/2

. Wz 1
+ zm\/27r&3zH(&32)/0 dv) exp (—2—1)'2' — (,T;z) JE (kJ_, [, — 2v|2|)

X <§ + lvﬁ - &32> , (10)

2 2
where &, = 2ws;/wpi(2,s) and H(z) is the heaviside step function. The second term in
the right hand side of Eq. (10) is from the ion magnetic resonance contribution. In the
neighborhood of small n; we expand Eq. (5) about the MHD marginal stability with w =

w® 4+ w® and we obtain

cos(z/s) + zsin(z/s) + —& T

oD p, (kJ_))—APj'
o

¢//(z) + 1+ 22 - (1 T 22)2
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Perturbation theory for the complex frequency shift w® due to 7; gives

%, deB AT o
T % (L~ Tolkipd)

where the eiger.lfunction-z/_)o(z) is real and given by Eq. (9). Most contributions of Im AP of

w® = wy;

Eq. (10) comes from z <1 and Im(AP) < 0 for z < 1 makes Im w® positive-unstable.

In Figs. 3 and 4 we show the eigenvalues of the two modes and the transport measure
v/ (k2) versus ¢*B. The parameters are &, = 0.25,7; =2, 7 =1, k = 0.5. As ¢ — oo, theion
acoustic terms vanish and we recover the local solution of the coupled ¢ —1 equations studied
in previous works. When ¢ = 2, we find the finite 3 stabilization of the toroidaln;-mode is
strong and the growth rate is zero for § > 7% ~ 0.01,

We find that for the MHD ballooning mode, the parallel compressibility effects are weak.
The growth rate is larger than that of the toroidal m;-mode, but the transport measure

v/ (k2) is relatively smaller as shown in Fig. 4.

IV. Conclusions

New results are presented for the behavior of the pressure gradient driven modes in
tokamaks by solving the fourth-order system describing the shear Alfvén-drift wave and ion
acoustic wave in the finite 8 plasma. The toroidal n;-mode is unstable for 7; > 7.(q) with
ne(¢ = 1) = 2.0 and 7.(¢ = 10) ~ 2/3. The toroidal n;-mode is characterized by |¢| > ||,
and the real frequency varies as w & —2¢,k which means that the w = wp; resonance is
essential. The growth rate v is smaller than the real frequency, which is in contrast to the
usual fluid result in which the solution with |y| > |w| is obtained.

The MHD ballooning mode is characterized by |¢| ~ |1| and the real frequency varies as
Wi = Wy, and the kinetic theory growth rate is much smaller than the fluid theory growth
rate. For the kinetic MHD ballooning mode, instability below SMHP is shown to arise directly

from the finite n; effect. For n; = 0, we prove that the kinetic equation gives the same S, as
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the ideal MHD equation. We give that the kinetic instability growth rate below the SMHD
is due to the ion magnetic drift resonance when 7; # 0 by perturbation theory.

In the electrostatic limit the growth rate is smaller than the local kinetic theory which
neglects the ion acoustic coupling (¢ — oo with ¢?8. finite). The finite B effects on the
toroidal n;-mode is a strong stabilization for smaller values of g. The experimentally observed
dependence of plasma transport on plasma current, which appears in the dimensionless
parameters fhrough q = rB/RBy, may be related this low ¢, fixed 3, stabilizing effect shown
in Fig. 2. In contrast, for the MHD ballooning mode, the ion acoustic coupling gives weak
effect. |

As a measure of transport we have studied the parametric variation of v/ (k2) for k near
the maximum of ;. While mode coupling in the turbulence may change some aspects of
the transport formula it may be useful to compare such theories or to compare experiinents
with the parametric dependence given by linear ballooning mode theory. We find that for

7 = 1 the ballooning eigenmodes give a diffusivity of the form

q(m — 77c)l’/2 <Ps CTe>
X ———— [ 12
s+ 51 r, eB (12)

where 7,:(¢) is given in Fig. 1, and

- )3/4 N

g
V2 (2en)t 1y

For sufficiently small s, profile effects!” on the broad radial eigenmodes are important. For

(m—nc
81 =

8 > sy and n; > 1. the formula is the same form as given by Eq. (36) in Ref. 4. For r, — oo

the effective scale length becomes

qps cT,

Formula (12) for the anomalous ion thermal conductivity is given as a model recognizing that

inverse cascade or other turbulence effects may modify the scaling with some parameters.
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Appendix

Here we derive the set of reduced equations from the two-fluid equations which govern
the pressure gradient driven modes in finite B plasmas.

The ion continuity equation is given as

%ni + VLV + Ve vy Vo v gV = 0 (A1)

where the hydrodynamic velocities are given by

chx V® cbx VP,

R A2
| m;c [0
Vpi = D (g + Vg V) Vo (A3)
and
o L0

= —eny (?) -Vo + p A”) —b- VP.. (A4)

dt at
We used E = -V — %%AHZD and B = V4 x b for the electromagnetic fields. The thermal

ion balance equation is

30 3
5@(7%11) + V- <§niTiV_Li + q2'> +n IV v =0 (A5)
where
5 Pb x VT,
% = g ———
MiWes

* For electrons, we write the electron continuity equation as

%ne +Vie - Vne+n.V- v+ niV||Y)e = 0 (AG)

where we neglected the electron polarization drift velocity term and v is given by

o _hxV® cbx VP
te="p en.B
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For the electron temperature equation, we use the adiabatic relation

A

b-(VP.+en.E)=0

with the electron temperature constant along the magnetic field

b.VT, =0.

(A8)

(A9)

We consider the ballooning type modes in the usual circular cross-section tokamak with

Br = By/(1+ €cos ) and By = gBT where ¢ = % and ¢(r) = rBr/RB;. The fluctuations

are taken to vary as

f = F(r) + 6f(0)eleo-d—iwt o ¢ ¢

This mode gives rise to kT = k3(1 + s%0%) with kg = £g/r and the parallel derivative ik =

L
qR O

D

9
ot
0

pradl
9
5th

0

b—tA

n;

0
akﬁuﬁ

k2 A

Using this model, the linearized version of Eqgs. (A1)-(A9) can be written as

. . . 0 . .
—iWske@ + 1Wpe® + Wwpep; + %Vigb - zw*piv_z,_qﬁ — zk”v”i
—ikgﬁ—-gA—z'k ; — Wk A

Il 315 ”pz *pi
. .5 .5 5 (0 .
Zw*piﬁﬁ - ZngiPi + Z‘?;;wDini + é—; anz + s P
—ikné -+ ik”ne — WA

—iwapik] ¢ + Wwpepi + iwpene — thy (Vi — Vjje)

%(vui = V)

where we defined the dimensionless space-time variable by

waé’ﬁps(w,y) y R 7 ThZ t_)rnt/cs
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(A13)
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and scaled the amplitude of the fields as follows:

Di  ps O Ps e Ps cs € Ps
D_lep | AW Pey | Zp=Le ] =L
P r, 0 e T, lii T. n¢ ane T. I T

These equations are combined to give 2 coupled 2nd order differential equations with

kb = —-g-t-A
2adnly 4 I + F(6— v (A16)
B, 2 00 J-ae w(w — wipi) k1 (6 =)
w [wDew*e (1 + l—t"—) + —w%‘j:u*e = (1 + %)
W — 3Wpi
62 H? WDe Wik Wke
dorgEs+ o+ (12 e+ (1-25) - v)
_ _wDe _ m
i (1 » > ¥ . (A18)

with f(6) and g(8, $,) are defined as -

o[ (§mm) = (14 &) wnww = & (14 7) b

F(0) = B w(w — wip) — g Ty (A19)
9(6,6,8) = §— (1= 222 ) — 2wt i) (9 — 220
el kDK € S m)é (A20)
w — ngZ

In the limit of w >> ws;, the Egs. (A16) and (A17) reduce to the ideal MHD equations

2 €2 8 1+4+mn;
,B 6_ ¢ -+ WZ]CJ_'E[) + WpeWske <1 + _17__77 > ¢ = _wDeC (Azl)
g2 02 1 |
2o T TTE 5—]¢ = ~wnet. (A22)

The growth rate from 4th order differential equation is smaller than the one from 2nd order

differential equation (Eq. (A20) with ¢ = 0), but the critical 8 is not changed.
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Figure Captions

1. The threshold value of n; versus the safety factor ¢. The parameter values are ¢, = 0.25,

s=1,7=1, kgp; = 0.5, and B, = 0.

2. The measure of the anomalous transport, 4/ (k2) for ; mode. Same parameter values

except n; = 2.

3. The eigenvalues of both 7; mode and kinetic MHD-like ballooning mode. The param-

eter values are ¢, = 0.25, 7, =2, 7 =1, and k = 0.5.

4. The measure of the anomalous transport, 7/ (k2) for both n;mode and kinetic MHD-

like ballooning mode. Same parameter values as in Fig. 3.
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myself. In this work we develop new results for the electromagnetic
ion temperature gradient instability in toroidal plasmas.

We appreciate your consideration of this new work for publication.

Sincerely,

(Uerdell KT

Wendell Horton

encl: 3 copies typescript
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