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Abstract

A model that incorporates both the effects of temperature gradients and magnetic:
shear on the drift wave monopole solutions is analyzed. In the case where the former
effect is treated improperly and the latter is neglected, it was shown in Ref. 1 that there
exist exact monopole solutions, which can further be shown [Ref. 4] to be equivalent to
the e};istence of a point spectrum for a nonlinear eigenvalue problem. When both the
eﬁ'ects are included, this spectrum becomes a banded continuous spectrum. An eigen-
value of this spectrum is associated with a lQ.calized vortex structure that undulates in
space about a fixed level, eventually matching to a radiative ion acoustic tail. A novel

separatrix crossing technique is used to investigate this problem.



In 1977 Petviashvili énalyzedl nonlinear drift waves with the inclusion of a temperature

gradient. He was able to show that the model equation he used admits localized monopole

_ solutions, which come in two types: cyclones with negative vorticity and anticyclones with

positive vorticity. Recently, authors®® have come to realize that the model equation used by
Petviashili is incomplete; for a consistent ordering an explicit z-dependent term arising from
the nonconstancy of the temperature must be included. The inclusion of this term precludes
the existence of the exact monopole solutions. If one adds the local effect of magnetic
shear, then an additional explicit z-dependence is obtained, and thus further blocking the
possibility of exact monopole solutions. The purpose of this paper is to present a technique
for analyzing equations that have, in some sense, near monopole solutions.

In a previous work? we analyzed Petviashvili’s original model, and (iescribed the existence
of monopole solutions in terms of a nonlinear eigenvalue problem, where the amplitude of
the monopole at 7 = 0, r being the cylindrical coordinate, corresponds to the eigenvalue.
The spectrum in the case of Petviashvili’s model is composed of a singie point, assuming
k? = 1 — vg/u is fixed. Here u is the monopole speed and vg is either the drift wave speed
or the coriolis parameter S for rotating neutral fluids. In this work, we see that for a
model problem the presence of the explicit z-dependence changes the one-point nonlinear |
eigenvalue spectrum for the monopole into a continu-ous “banded” spectrum. An element of
the bdnded spectrum corresponds to a localized vortex structure with a nonmonotonic profile.
In fact these bands bccur upon imposing radiative tail boundary conditions. Qualitatively
one can understand the banded spectrum effect as arising from the variation of the Sagdeev
potential for a “soliton”; i.e. pure monopole [see Fig. 1(a)], to that of an ion-acoustic wave
[see Fig. 1(b)]. This variation arises because of the explicit z-dependence.

The presence of magnetic shear, forces a coupling of the drift wave, where w = kyvg/(1+

k?) to ion acoustic waves where w? = kﬁcf This happens because the magnetic field twists



over the scale length L;. Including both the sheared field and temperature gradient effects,

the perpendicular and parallel momentum equations are
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where the normalized electron temperature 7(z) = T.(z)/T,, the spatial coordinates are
scaled by pio = (To/m; w?%)Y? with wy = eBy/cm;, time is scaled by we and as usual ¢
is made dimensionless by a factor e/T. The parallel velocity is scaled by piowe = cs0 =
\/M , and the drift velocity is also scaled by cso. The quantity S = pio/Ls is a measure
of the magnetic shear. |

For small parallel speed, we take the ion acoustic dynamics as linear. Equation (2) then

becomes
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Combining Egs. (1) and (3), we > get the following model equation:
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In the limit of S — 0 and in the inconsistent limit ~ — 1 while 7//7% — constant we obtain
- T
the incomplete Petviashvili model. In this “limit” the monopole solution is obtained upon
substituting ¢ = o(r) where r = [z? + (y — ut)*]*/? into (4). One obtains the following

equation:
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where k? = 1 (1 — -v—d) and o = 7'/7%. Note that the presence of shear and temperature

gradient removes the radial symmetry of this equation. Assuming ¢(z,y—ut) Eq. (4) reduces

exactly to
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where, usually 4nno(z) ~ —vgz, vg = —nj/no is a constant and F is an arbitrary function.
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Choosing I = —f(so—_uw)—g%(w—uw)a, (@) = (1-ow)™, and defining X = :z:+;;2,
Eq. (6) becomes
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Equation (7) is a difficult equation to solve, and so for the purposes of this paper we modify
it in two ways. For tractibility of mathematics we replace V2 by d?/dz®. This semi-tractable
simplified mathematical model is of course not rigorously .correct; in particular interesting
asymmetrical behavior has been eliminated. The model does in some sense capture the
behavior in the z-direction and it exhibits the main physical feature of coupling between
the integrable solitary wave potential and the ion acoustic wave potential at large z. We
thus obtain a one-dimensional nonautonomous problem. Our technique can handle general

problems of this kind. For simplicity our second modification is to drop the last two terms |
of Eq. (7). Elsewhere we will present results including these terrﬁs. The qualitative behavior
of banded spectra obtained here exists also in the “correct” model.

Taking into account the above assumptions and introducing the new variables t =

R 2 R 2,2
Ple+ 2L , where k? = L 1—— + a v , ¢ = pnY(t) and s = i, Eq. (7) becomes
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where we have set
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and v is a constant that remains to be determined. The boundary condition (¢t — c0) — 0

and the initial conditions

p(t=0)=1 and ——"_=0, (9)



together with Eq. (8), define a nonlinear eigenvalue problem for 7. In the limit s — 0 the
solution of the model Eq. (7) is 4(s = 0) = 4o = 1 with the homoclinic orbit ¢y = sech®
where vy, u and /S are restricted to &2 > 0. '
Equation (8) can be written iﬁ the form of Hamilton’s equation for an effective particle
with coordinate ¢ = %, time ¢, momentum p = % and effective potential V(¢,t) = ——2%,[)2 +
242 ‘

213 + ST #?. The Hamiltonian is
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and the dynamical equations are
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As noted above‘, the effect of shear is to couple the vortex solution to the ion wave by
changing the potential energy V (¢, ) with time. The critical time for particles passing from
the solitary wave potential into jon acoustic wave potential is tg = % At the critical time,
the potential can no longer contain trapped particles (see dashed line in Fig. 1(b)). For
t > 1o trapped particle orbits exist in the nieghborhood of the origin; i.e. in the ion acoustic
potential. |

From numerical integration of the model Egs. (8) and (9), we obtain the spectrum of
eigenvalues +,(s). This is done by choos"ing a zero momentum initial condition and inte-
grating beyond ¢, to determine if there is trapping for all time in the ion acoustic potential.
We are interested in’ the critical value of the amplitude for such trapping. Physically the
trapping implies the radiative tailing at large t-values. See. Fig. 2. A detailed study of the
numerical spectrum yielded the v, (s) curve shown in Fig. 3. The curve shows the amplitude
at t = 0 (7y) for eigenfunctions 1 (¢) that are bounded as t — oo, versus the shear parameters,

s. Observe that the upper and lower boundaries of the “bounded region” oscillate as s — 0
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s — 0 (c.f. Fig. 1(b)) with an eventual limit at v = 2/3. Each of thse cycles corresponds
to a class of eigenfunctions that oscillate a given number of times about the minimum of
" the drift wave part of the potential before becoming trapped in the ion acoustic feature. As
one approaches smaller s the effective potential bounces more times before the transition in

mode at t.. Empirically, we have discovered the following relations:

1 2
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where n is the number of effective particle oscillations that occurs for 0 < t < tg = 2/n. The
numerical results show the relation (12) works very well when n > 4. |
We give a qualitative explanation of Fig. 3 and Eqs. (12) by appealing to the analogy of

a dropped ball in the gravitational potential
. s2t?
V(,t) = -2 +2¢° + T¢’2 (13)

as shown in Fig. 1 (setting v = 1). From Eq‘. (13) we find that the depth of the potential at

the local minimum is
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We consider the cases without (s = 0) and with (s # 0) shear.

8 2 o '
at ¥, = = are constant in time. If

o7 3
we drop the ball within 0 < % < 1 at ¢ = 0, it would oscillate around the bottom forever

Without shear, the potential depth V,, =

(with (¢t = 0) = g, the ball would stay motionless at the bottom); if (¢t = 0) = 1, the
ball takes infinite time to get to the ¢» = 0 point, which is the homoclinic orbit for the

solitary wave solution studied in Ref. 1. If (¢ = 0) < 0 or 9(t = 0) > 1, the ball goes over

the potential hill at ¥» = 0 off to negative infinite as ¢t — oo. Here, the expansion of the
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Boltzmann distribution n, = N(z)exp(e®/T.) = N(1 + ) used in deriving Eq. (4) breaks
down. The potential has depleted the electron density to the unphysical point where n.
becomes negative.

With s # 0, however, the potential V, depth V,, of the potential Well, and position %,
of its bottom change with time. The potential well becomes shallower and shallower with
increasing ¢ until V,, = 0 and %,, = 0 when t = ty(s) = -z-.as shown by dashed line in
Fig. 1(b). When ¢t > %, the potential well changes its shape into that shown by the solid line
in Fig. 1(b). Therefore, the question of whether the ball becomes eventually trapped in the
well shown by the solid line in Fig. 1(b), or it goes into the “Hell” as ¢ — oo, is determined
not only by the initial potential energy (the initial position ¢ of the ball) but also by the
magnitudve of s. The shear parameter s serves as an inverse characteristic time for the change
of the well. It is also obvious that the number of oscillations that the ball performs around
the bottom of the potential well within ¢ < -32- is determined by value -i- The first formula
(for v > g) of Eq. (12) or the upper branch of Fig. 3 corresponds to dropping the ball from
the right side of the bottom of the potential well at ¢ = 0, while the second one (for v < %)
of Eq. (12), or the lower branch of Fig. 3, from the left side of the bottom. |

Although Eqgs. (12) have not been proven, we understand that coupling of the Wa,ves. at
large t to the vortex at ¢t = 0 fesults in a spectrum of vortices with an increasing number of
oscillations of ¢ in the nonlinear trapping region. Thus, the inhomogeneity acts to split up
the vortex point spéctrum into continuous bands given by ¥n(8). The shear inhomogeneity
is a defocusing effect.

By introducing the action—angle variables

J=-217;j§pdq=§1;7§ 2H — V) dy

and separatrix crossing theory we can relate the action at ¢.= 0 for the homoclinic orbit

Te=0,7)= o= § \2H(E=0) —4(r92 — 92 (14)
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to the orbits for ¢ = £, > %

L) =5 § Jzﬂ'—ﬁx(ws - (1 - j) prdp (15)

The particles will be trapped if their velocities are positive (along positive ¢ direction) when
J(t=0,7) = Js(t,7) . (16)

From Eq. (16), we can find ¢, = t.(s,7). On the other hand we can approximately calculate

the period T of oscillation of particles by

_ _d Wy dip
T(v)—f{ dt“j{ P "f RIH(E=0)-V(t=0)]"/* (1

Equation (16) will be true if the particles have completed more than a half cycle. We

therefore can write

nT(y) | |

te(s,7) & —5— (18)
where n = 1,2, 3, - - - is the number of oscillations that the particles makes in the monopole

well (Fig. 1) before passing ¢t = % into the ion acoustic spectrum. We then can get the
critical 4(s) from Eq. (18).

In Fig. 4 we compare the analytic and numerical results for v(s). We see from the
figure that they agree quantitatively. The agreement is about as good as one would expect,
considering the crudeness of the theory. Keeping higher order adiabatic invariants and folding
in the result of the phase shift at the crossiﬁgs would impro{ze the comparison.

The effects of magnetic shear and temperature gradients on a model of the monopole
drift wave vortex has been investigated by analytical and numerical methods. The results
show that even small shear causes non-perturbative changes from the solitary to the radiative
solution, due to the sensitivity of the homoclinic orbit to the defocusing inhomogeneity. The
perturbation leads to the banded spectrum v, (s) with radiative tails coupling to the exterior

ion acoustic waves. The numerical results show that the number n of oscillation of ¢ within
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2 . 1 . . . .
t < — satisfies n = ~ and when s is small (s < .25), the eigenvalue v, (s) satisfy the recursion
s s -

relations of Eq. (12).

Even though the present formulation is an oversimplified model, it exhibits the main
physical features of coupling the integrable solitary wave to the ion acoustic wave due to the
presence of the magnetic shear. The study of a more comprehensive model which involves

the two fields, ¢ and v,, will be presented elsewhere.
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Figure Captions
1. Effective potential for nonlinear drift waves.

(a) Behavior of effective potential near the center of the drift wave structure: ¢ = 0.
(b) Behavior of effective potential far from the center of the drift wave structure:
Ct>2/s.
2. '(a) Nonlinear eigenfunction for s = % showing momnopole vortex and wave solutions
for v > % (upper bound).
(b) Nonlinear eigenfunction for s - % showing monopole vortex and wave solutions for

v < g (lower bound).

3. Spectrum of critical amplitude v versus shear s showing vortex branches +,(s) and

nonlinear wave solutions.

4. Comparison of v(s) from separatrix crossing theory with that from numerical integra-
tion rsults of Eq. (7). The solid lines represent the analytical results and the dashed

lines, numerical results.
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