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ABSTRACT

A particle simulation study of shear Alfvén wave resonance heating is presented. A
particle simulation model .has been developed for this application that incorporates Dar-
win’s formulation of the electromagnetic fields with a guiding center approximation for
electron motion perpendicular to the ambient magnetic field. With this model, we ex-
amine several cases of Alfvén wave heating in both uniform and nonuniform simulation
systems in a two-dimensional slab. When the antenna parameters match the shear Alfvén
resonance condition, the simulation plasmas in the homogeneous cases react strongly with
the driven wave. For the inhomogeneous case studies, the kinetic Alfvén wave develops in
the vicinity of the shear Alfvén resonance region. The electrons kinetically react wiﬁh the
wave through a collisionless process. The electron velocity distribution function flattens
about the parallel phase velocity of the wave with accompanying changes in the spatial
structure. of the wave. The electron heating rate is in good agreement with the Landau
damping model. A substantial electron current is also generated parallel to the applied

magnetic field. The ions gain energy by oscillating in the wave electric fields.
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I. INTRODUCTION

The resonant interaction of driven Alfx;én waves with a magnetized plasma is studied
using particle simulation. Plasma heating using the shear Alfvén resonance was indepen-
dently proposed by Tataronis and Grossman' and by Hasegawa and Chen? . This has.
applies to electron heating in magnetic confinement fusion devices. It is also of importance
to spacé plasmas. This process might be responsible for heating particles in the plasma
sheet layer of a magnetospheric substorm®, for particle acceleration in the aurora?, and
for plasma heating in coronal loops®. The Alfvén wave heating scheme was originally con-
ceived as a method where a radio frequency wave, launched at the edge of the plasma,
propagates from the edge until it couples its energy to plasma particles in the vicinity of
the shear Alfvén resonance layer. In a nonuniform plasma, there exists a; singularity in the
ideal magnetohydrodynamic (MHD) equations associated with the shear Alfvén resonance
in the continuum, (w = k“,V,A,),.‘,,,At the singular lé)ier, the wave can propagate only along
the mégnetic ﬁeld‘ lines and the wave enérgy accuﬁulates at the resonance layer, which
must eventually be dissipated. This heating scheme has been examined extensivgly both.
theoretically®=!! and experimentally'2~17 for more than a decade. However some impor-
tant features are still not Well understood. Difficulties lie in the complicated. geometries |
of the laboratory experiments, strong influence of surface eﬁects, and nonlinear effects. A
full kinetic treatment of Alfvén waves in a magnetized nonuniform plasma is a formidable

theoretical problem to investigate analytically.

Through this investigation, we present an attempt to apply a fﬁlly nonlinear, electro-
magnetic particle simulation code!® to Alfvén W'ave resonance heating and to confirmation
of the Alfvén wave mode conversion. Particle simulation codes follow. the temporal evo-
lution of the problem while self-consistently including kinetic effects and nonlinearities.

Particle simulation of kinetic Alfvén wave heating has also been performed by Tanaka

2




et al.1°, In their simulations a monochromatic plane wave is initially established in the
plasma while the wave is launched by an antenna in our case. Their simulations examined
doubly-periodic systems whereas our simulations include bounded, nonuniform systems.
Other theoretical investigations have mostly examined the linear, stationary response of
the plasma to an antenna. However, some of the e);:perimental results are not eésily un-
derstood from such linear, stationary analyses. A primary goal of this work is to pinpoint
important areas that may not have received sufficient attention thus far. Since it is diffi-
cult to represent all the.aspects of a confinement device in.a computer model, it becomes
necessary to idealize the geometry and reduce the temporal énd spatial scales to times and
lengths manageable in a computer model.

The standard particle simulation codes available to us either were too computation-
ally expensive or did not incorporaté enough physics in the ﬁodel. For this purpose, a
new computer model was developed that incorpbrafes a massless guiding center model
for electron motion perpendicular to the magnetic field with Darwin’s radiationless (mag-
netoinductive) model for the full electric and magnetic fields. This simulation model is
discussed in Section II. The reactibn of the simulé,tion plasma to an extemal sourée of RF
energy, Whose freqﬁencjr is in the Alfvén wave frequency rénge, is presented in a nurﬁber
of case studies in S.ection ITI. The details of the wave dynamics, heating processes, and the
effects the wave has on the plasma propertieé are examined when the plasma is homoge-
neous and when an inhomogeneity is introduced .by varying the magnetic field. Finally,

Section IV summarizes the paper.
II. COMPUTATIONAL MODEL

The computational model that we found suitable for this application combined Dar-
win’s magnetoinductive model for the electric and magnetic fields with a guiding center

scheme for electron motion perpendicular to the magnetic field which is described in more
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detail by Geary et. al.!®, The magnetoinductive approximation eliminates light wave
propagation. The magnetoinductive model is nonradiative in character and thus has a
lower overall background noise level than fully eléctromagnetic codes while retaining self-
consistent electric and magnetic fields. Both radiation and the full details of the electron
gyromotion are assumed not to be necessary for the description of Alfvén waves or of the
important dissipation processes. A simpler version, which neglects compressional Alfvén
waves, has been used by Lee et. al.?? to investigate anomalous transport due to sheér
Alfvén waves.

~ Electron motion perpendicular to the magnetig field follows the E x-B motion of
the guiding center while the electron motion parallel to the magnetic field retains full
dynamics. Thus parallel kinetic effecfs resulting from finite electron inertia are retained.

The resulting equations of motion for electrons are

Ver = =5E X By - (1)

dt

wilere E|(x) = b(x)[b(x) - E(x)] and where b(x) = Bo(x)/Bo(x). The time step used to

advance the simulation can greatly exceed the electron gyrotron period. The ion motion in

this code model is governed by. the full non;elativiétic Newton-Lorentz equations of motion

dv; e e '
W—'A—{{Eﬁ'EV,XB (2)
dx,;_v'
da "

This model contains the essential ingredients of particle motion for simulation of Alfvén
wave heating processes. The E x B motion of the electrons is necessary for the existence

of Alfvén waves. Electron Landau damping, which is expected to be a primary heating
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mechanism, is included in our model. The Alfvén wave frequency and the ion gyrofrequency

| are too close to treat ions as guiding center particles. Moreover, finite ion Larmor radius
effects are essential to the nature of the kinetic Alfvén wave. The particle equations
of motion are advanced in time by the combination of a predictor-corrector schéme for
the perpendicular electron motion and a leapfrog scheme’ for the ion motion and parallel
electron motion.

The magnetoinductive field equations are

VxEp=-—22 (3)
VxB= 47”,]1, (4)
V-Er =4np (5)
V.B=0 (6)

where the subscript T' denotes the divergence-free (transverse) and where the subscript L
denotes the curl-free (longitudinal) components of a vector. With these definitions, E;,
and Er satis.fyA | | |
VxEL=V-Egr=0.
The words longitudinal and transversé will refer to the curl-free and divergence-free com-
poneﬁts of a vector. A key feature of the magnetionductive model is that information
is transmitted instantaneously. Magnetic induction from Faraday’s law, Eq. (3), is still
retained.

The particle simulation code employed here has 2-:15 dimensions, i.e., two spatial co-
ordinates (z,y) and three velocity components (vg,vy,v;). The 2-direction is ignorable.
The finite size particles, or quasiparticles, are Gaussian-shaped. The background magnetic
field vector lies in the y — z plane. An external source in the shape of a sheet antenna

is located at approximately the centerline of the z-direction. The antenna current flows
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in the z-direction preserving the charge neutrality of the antenna. A sinusoidal travelling

wave is launched by an antenna current of the form
AJA(x) =Ja8(z —za)stn(wat — kay)2 (7)

wheré Ja, wa, and k4 are the amplitude, frequency, and Wavenumber of the antenna and
where z, is the z-coordinate of the antenna current sheet. Because of the periodicity of
the y-direction, the antenna wavenumber k4 is restricted to be an integer multiple of the
fundamental wavenumber of the grid in the y-direction. Finite size particle effects act to
broaden the currenf sheet such that it effectively has a small but finite spatial extent in
the z-direction.

The strength of the antenna is normalized in terms of a parameter W, the energy of
the source integrated over the simuia.tidn volume divided by the initial thermal energy of

all the particles in the simulation,

all

- B2 + E2 particles 1 .
W = /‘; —%d){/ Z -émpjv?. (8)
. 7 ' ..

The antenna fields B 4 and E 4 are calculated including the presence of the plasma assum-

ing that the particles in the piasma have an effectively zero temperature. The ambient

.magnetic field direction is constrained to lie in the y — z plane. With 8 defined by 6
= tan™!(B,/B.), the parallel wavenumber is given by kj = ky sin §. Thus the antenna
launches a single coherent mode propagating obliquely to the magnetic field. For the results
presented in this paper,the condition By, > By, will apply (small 8). The finite particle
size is held fixed at az X ay = 1.5A X 15A. The simulations begin with with initially equal
ion and electron temperatures, T; = T,. To clearly separate the Alfvén wave resonance
effects from ion cyclotron resonance effects, it is desirable to place the kinetic Alfvén wave
resonance frequency well below the ion gyrofrequency. This places strict demands on the

range of parameters in the present computer model.

6



Simulation results are presented from codes that are either bounded or periodic in the
x—directivon and that are periodic in the y-direction. The bounding technique assumes the
existence of mirror systems adjacent to the active simulation region. The image particles
‘ carry the same charge and execute the same motion as the corresponding particles in the
active system. Particles crossing a periodic boundary are reinserted at the opposite edge.

Particles crossing an image boundary are reflected using Method I of Natiou et al.?!,
ITI. SIMULATION RESULTS

The behavior of a simulation plasma is examined in a number of computer exper-
iments. Our aim is to point out important effects and explain the results in terms of
simple physical concepts. The computer results may be important in a sense that they
indicate those areas that may fequire closer examination in future theoretical and exper-
imental work. The first set of simulations discusses the behavior of a simple systeﬁ, a
homogeneous plasma with periodic boundaries. The plasma responses to resonant a_na
nonresonant excitations are analyzed. In the final set, the plasma behavior is investigated

when a nouniform magnetic field introduces inho'mogeneity-to' the bounded system.

A. Elementary Theore.tical Considerations

Tataronis and Grossman! and Hasegawa and Chen? pointed out by that the Shear
Alfven wave sin’gulérity in the MHD equations could ,be utilized to heat the plasma. Let
us consider a slab- model that is nonuniform in the z-direction and assume solutions to the |
MHD equations of the form

v = v(z)e—iwtei(kyy-i-kzz)

where By lies in the z-direction. Using ideal MHD, the wave equation can be written?

/ 2
d [ eaB dvg v, =0 (9)

dz | aB?%k, (z) — ¢ dz
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where

and where

The singularity in the differential Eq.(9) occurs when €(z) = 0. An electromagnetic wave
with frequency w will satisfy the resonance condition of a point z, when w = Ky, (z5)va(z,).
Thére exists a continuous range of frequencies that satisfy the resonance condition bounded
by (kv A)rznin <w?< (kjv 'A)?naa;' If an external source of RF energy can excite a resonant
wave at the singular point £ = z,, the singular property of the shear Alfvén wave permits
the wave to propagate only along the magnetic field lines. Thus the wave energy accumu-
lates at the resonance Iéyer. Because of the existence of a continuous frequency spectrum,
the wave energy may be dissipated by “phase mixing” at the resonance layer. The inclu-
 sion of kinetic. effects®? modifies the properties of the shear Alfvén wave solutions, often
termed the kinetic Alfvén wave, from the MHD solutions. When the ions maintain their
finite Larmor radius, a charge separatioﬁ between the electrons and ions develop which-
generates significant longitudinal (electrostatic) electric fields. These longitudinal electric
fields can be much larger than the transverse (inductive) electric fields associated with
the kinetic Alfvén wave. For parameters in contemporary laboratory devices, collisionléss
damping is expected to dominate over collisional heating.

We therefore examine heating by Landau damping. The change in kinetic eﬁergy U

in a volume V is given by

a1 | -
&z ., . Edx|. 0
— 2Re[/vJe E +J; ExJ (10)

The first term on the right side of Eq.(10) is the electron absorption and the second term

is the ion absorption. Assuming a Maxwellian electron distribution function, the change
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in electron energy is given by

dU, wge [EHIZ
where
be = \/gzse—z’/z
and where
w [m w

Z2= — = .
k” T, k”VTC

The heating rate from Eq.(11) acﬂieves its maximum value when z = 1. In the reso-
nance region where w = k”VA, this is equivalent to Vp, = w/k” = Va. A calculation
for the ion Landau damping rate® contains a similar exponential dependence with a term
ef{p[—Vi /2VZ;]. The ion heating By Landau damping is therefore negligibly small for a
low-3 plasma. If the plasma £ is smaller thé.n 0.1, electron Landau damping is expected
to dominate c»ollisionless absorption processes. .

In an experimental device, such as a tokamak, an antenna located at the plasma edge
launches an electromagnetic wave. The shear component of this wave is strongly damped
at the edge. It is expected that the coupling to the Alfvén wave resonance region oc-
curs through the weakly evanescent compressional component. The antenna configuration
should be a.ppfoximately the same shape as the resonance mode for maximum coupling. It
has been pointed out by Stix 2 that for the wave to propagate across the density gradient
from the antenna to the resonance region, either 8, > m or f; > \/W If
neither condition is satisfied, the kinetic Alfvén wave is better described by cold plasma
equations and is reflected from the resonance region forming a surface mode. This result

has been confirmed by the numerical studies of Ross et al.”.

B. Driven Alfvén Waves in a Periodic, Uniform Plasma
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We start with a homogeneous magnetized plasma slab in an unbounded system. The
plasma behavior is investigated for one example when the wave generated by the antenna
does not resonate with the plasma and for three examples when the antenna driven wave
satisfies the Alfvén wave resonance conditions. The nonresonant case displays weak cou-
piing between the plasma and the antenna, while the resonant cases show strong coupling

between them.
1. Nonresonant

” The first example does not match the frequency and wavenumber of the antenna
current with any plasma resonance. For this nonresonant run, the plasma 8 is low, 8 =
2.7 x »10‘4. An jon-to-electron mass ratio of M/m = 1600 is used with a time step of
Wpe At '= 15.0. The angle @ has the value 8 =. 3.1°. .The oscillator frequency, ws = 2.9 X
10~ 3wy, is below the ion cyclotron ffequency, Q; = 8.3 x 103wy, such that ion cyclotron
reson.an.ce'eﬁ'ects are not expected. The electron thermal velocity has the value Vre =
0.4w,.A and the Alfvén velocity has the value V4 = 1.0wyeA. The ion Larmor radius is
a little larger than the érid spacing, p; = 1.2A. The antenna wavenumber is given the
K fﬁndamenta,l value of the system, kgA = 27A /L, = 1.96 x 10~2 and the antenna strength .
is W = 8.6 x 1073, The parallel phase velocity of the wave is (Vph)-” = wa/(kasind) =
2.79wpeA which is significantly larger than the Alfvén speed. There afe four particles of
each species per grid cell. The simulation size is L_.,; x L, = 64A x 320A. The plasma
parameters chosen for this run are closest to the values near thé edge of present toroidal
experiments.

The dominant wave Apatterns driven by the antenna are characterized by the vantenna
wavenumber in the y-direction and the grid fundamental wavenumber in the z-direction.
For the duration of the run until w,.t = 13000, the electric ana magnetic fields directly

driven by the antenna maintain a standing wave pattern in the z-direction while propa-
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gating forward in the y-direction. The time evolution of the total electromagnetic field
energy and the ion and electron'kinet.ic energies portrayed in Fig. 1 indicate that the wave
driven by the antenna couples weakly to the plasma. The electromagnetic field energy
and the total ion kinetic energy do not show an appreciable time averaged increase in
value. However, both of these energies oscillate out of phase with each other suggesting
that there is an energy exchange occurring between the ions and the electromagnetic fields.
These oscillations have a f‘iequency that is approximately twice the shear Alfvén resonance
frequency for the antenna wavenumber. The electrons do not appear to participate in this
energy exchange. The electrons have an average gain in kinetic energy of 2.5% which is a

small value compared to the resonant cases.

2. Resonant: V4=V,

For the first resonant case, the parallel phase velocity of the wave is equal to the
electron thermal velocity. It is expected that this‘ parameter range will maximize the
~ collisionless electron heating. The plasma B for this case is fairly low with 8 = 1.7 x 103,
The plasma parameters that are different from the nonresonant case are Vr, = 1.'0wpeA
and p; = 3.0A. The antenna parameters have the values: w4 = 1.08 X 1073wy, ka A =
1.96 x 102, and W = 3.1 x 10~3. The parallel phase velecity of the antenna driven Wave.
_is therefore (Vph)” = 1.0wpe A which matches the Alfven velocity and the electron thermal
speed. The excitation frequency is almost a factor of 8 below the ion cyclotron frequency.
The simulation ran to time wyet = 36000 which is approximately 6.2 periods of the antenna
wave. At a later time wpet = 24000, the kinetic Alfvén wave strongly establishes itself
from the initial input wave, as can be seen in Figs. 2 and 8. The excited wave forms a
standing wave structure in the z-direction and propagate with the antenna current in the
y-directien. Particulary indicative of the kinetic Alfvén wave are the mode structures seen

in Fig. 3 of the longitudinal electric fields, which are entirely due to the plasma response.
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The magnetic fields B; and B, are dgrivable from a single vector potential component A,
(since 8/8z = 0) and the electrostatic fields are derivable from an electrostatic potential
®. The wave propagating in Figs. 2 and 3 has the feature that the electrostatic potential
® has the same phase as the vector potential A,. This wave has properties consistent with
what is expected of the kinetic Alfvén wave. These wave patterns are established for all
three resonant examples in this section. |

The wave signiﬁcaﬁtly modifies the electron veldcity distribution function parallel to
the magnetic field as shown in Fig. 4. The velocity distribution function is flattened at the
parallel phase velocity of the wave. The effect is so strong in this case, that in contrast to
the initial Maxwellian shape peaked about V, = 0, the distribution function at later times
does not exhibit a substantial peak in the range —0.5 < V,/(Vre) < 1.5. As expected,
significant electron heating is ébserved Which is spatially peaked near the antenna position -
with a secondé.ry peak occurring approximately one-half of the system’s length away. The
peaks occur where the electric fields with parallel components, EI_,y and Er,, are at their
maximum strength. This information supports the conclusion that Landau damping is the
'mechanis.m heating electrons. The maximum of the spatially localized electron température
is 250% above its initial value at wpet = 36000.

There is also a substantial iﬁcréase in the measured ion temperature inﬂa,ll three
resonant examples. Separate ion temperatures are associated with different ion velocity

components. For example, the ion z-temperature T, is defined as

ions

11
5Tiw= M _(VE ~ (V2)?)
J' .

and where
ions

<Vw) = Z Via.
7
similar definitions apply to the temperatures T}y, T;,, T;1 and T;)|- The spatial profiles of

the ion y-temperature T}, exhibit two peaks of roughly equal magnitude positioned on both
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sides of the antenna. These peaks are located approximately where the electron heating
is at a minimum. The spatial profiles of the ion temperatures T}, and T;, do not display
noticeable changes from their initial shapes. The ion temperature increase is adequately
explained as ion oscillation motion produced by the electric fields of the kinetic Alfvén
wave. The wave electric fields eouple to the ions via E x B ‘motion. This agrees with the
observation that the maxima of T, coincide with the bigges_t contour values of Er ., which
is the largest of the wave electric fields. The temperature increase does not represent a
true increase in the thermalization of the ion motion. To get a true thermalization, some
mechanism, such as collisionality, would have to interrupt the regularity of the motion

effectively mixing the phase of the ion oscillation with respect to the wave oscillation.

The time evolution of the electromagnetic field energy depicted in Fig. 5 is enhanced
over its initial values. The field energy grows by over a factor of seventy above the initial
wave energy during the first five periods before reaching a saturation level. The saturation
is reached when the electron distribution function is flattened about the phase velocity of
the wave thereby quenching the absorption from Laﬁdau damping. Energy is exchanged
be_f,ween the ions and the excited wave at twice the antenna frequency. In dimensionless
units, the total field energy-increases' by 0.22 while the ions increase 0.15 indicating there
is roughly an equal division of wave energy between the ions and the electromagnetic
fields. The electron kinetic energy keeps increasing over the full length of the run. The
electron energy increases 112% above the initial thermal value_'. The greatest share of the
ion energy increase is seen in the ion temperature T;1 and the remainder goes to Tjg.
The ion parallel temperature is not significantly affected by the kinetic Alfvén wave. The
collisionless electron damping also .generates a substantial electron current. By the end of

the run, the electrons gain a net drift velocity which is 39% of the initial thermal velocity.

3. Resonant: V4 <V,
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The next case examined in this section is characterized by an electron thermal velocity
larger than the parallel phase velocity of the wave. This is the largest § case presented
" in this section with the value B = 9.5 x 1073, These parameters are probably closest to
the conditions at the resonant surface for a toroidal device such as the PRETEXT or
TCA tokamaks of the cases presented. The other plasma parameters for this run are:
M/[m = 900, Vre = 1.2wpeA, (1 = 7.5 X 1073wy, p; = 5.4A,60 = 6.3°, and wp.At = 8.0,
The a,nténna, parameters have the values w4 = 1.44 X 10"3wpe, kaA =196x10"2and W =
8.6 x 1073, The system is followed to time wpet = 24000 which is 5.5 periods of the antenna.
The parallel phase velocity of the wave is (Vph)” = 0.67wy.A or (Vph)”/ Vre = 0.56. The
heating efficiency of the electrons from Landau damping is expected to be somewhat less
than the last case. |

The wave Structures of the electric and magnetic fields initially form the patterns of
the kinetic Alfvén wave propagating in‘the y-direction and with a standing wave structure
in the z-direction similar to Figs. 2 and 3. At a Ala,ter fime however, wyt = 19200, the
contoufs of the wave fields have changed, as seen from Fig. 6. The phase fronts are at
an oblique angle with respect to the y~axis rather than perpendicular to it. At this péinf
in the simulation, both the particles and the electromagnetic fields are losing energy. The
simulation plasma gives energy back to the antenna rather thaﬁ absorbing enefgy. By
the end of the run of wy.t = 24000, thev wave structure recovers its previous shape. The
electron absorption again appears consistent with expectations from Landau damping. As
can be observed from Fig. 7, the evlectron distribution is smoothed about the parallel phase
velocity of the wave at time wy,.¢t = 12000. By thé end of the run, wy.t = 24000, the peak
of the distribution function has shifted towards that value.

The total electromagnetic field enérgy reaches a saturation level quickly at wyet =
10400 after 2.3 wave periods, as seen from Fig. 8. The field energy then undergoes

a subsequent decline to a minimum level approximately at wpet = 19000 and later is
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increasing again by the completion of the run. The maximum gain of the field énergy is
-about 12.5 times the initial antenna value. The ion and electron kinetic energies increase or
decrease when the total field energy increases or decreases. The maximum gain of the ion
kinetic energy is about 10% above its initial value and the maximum gain of the electron’
kinetic energy is 31% above its initial value. The electrons are also driven in the direction
of wave propagation. The maximum average drift electron speed is about 18% of the initial
-thermal speed. The wave growth and plasma heating is smaller than the previous case.
The plasma saturates at a much lower level and for a time drives energy back into the

antenna.

4. Resonant: V4 >V,

The parallel phase velocity of the wave is larger than the electron thermal velocity
for the third resonant case presented here. The plasma S is low for this example with
the value 8 = 2.3 X 10~%. Other plasma parameters have the values: M /m = QOO,VT; =
0.75wpeA,>Q,- = 9.9 X 1073wy, p; = 2.5A,Va4 = 2.6TwyeA,0 = 3.1° and w,.At = 10,
The antenna parameters have the values: wy = 2.46 X 10;3wpe,kAA = 1.96l>< 1072, and
W =6.8 x 1073, The anténna, frequency is about one-fourth of the fon cyclotron frequency
so ion cyclotron resonance effects are not expected. The‘syster.n is evolved to wp.t = 16000
which is 6.3 wave periods. |

The kinetic Alfvén wave that has been excited accelerates electrons in the parallel
direction generating substantial currents in the plasma. These currents in turn significantly
modify the wave fields. These currents appear to shift the wave to the left in the z-
direction. ‘As is shown in Fig. 9, by the completion of the run, the wave has moved
to the left approximately 10A which is 16% of the system length. The wave is acting
to trap electrons and accelerate them. The trapping creates an energetic tail on the

. electron velocity distribution function parallel to the magnetic fields, as is shown in Fig.
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10. The spatial structure can be inferred from the =z — V|| phase space scatter plots of
the electrons in Fig. 11. The maximum trapping occurs near the antenna but is not
symmetric about the antenna. It is stronger to the left of the antenna than to the right,
probably explaining the shift of the wave fields. ‘As is expected in trapping phenomena,
the maximum velocity achieved by the electrons is double the parallel phase velocity of the
wave, which is 2(Vph)” = 6.1V1.. There are large increases in the electron temperature.
The heating is strongest near the antenna and is spatially symmetric about the antenna
position. There is a secondary maximum in the electron temperature at L, /2 away from
the z-coordinate of the antenna. The maximum electron temperature increase is about
640% above' initial values.

The electromagnetic field energy reaches a maximum after approximately 3 periods
as can be recognized from Fig. 12, eventually declining in magnitude.‘ The maximum
increase in field energy is over 5 times above the initial antenna contribution. The totai
energy gain of the electrons is abo_ut 160%. The wave interaction affects the electrons far =
more intensely than the ions. The trapping and acceleration gives the electrons an average
drift vélocity which is approximately 30% of the initial electron thermél velocity. A small
. parallel drift of the ions develops but its value is only 2% of the initial ion thermal velocity. .
The wave again saturates at a lower level than éase 2 where V4 = Vp.. Since electrons
are trapped by the wave, the electron tempefature increases greatly and a strong current
is driven.

Simulation runs of an unbounded, uniform plasma driven by an external source have
been presented from four different parameter regimes. In the first case, the antenna
wavenumber and frequency do not match a plasma resonance. The simulation plasma
exhibited weak coupliné to the driven wave as a consequence. The antenna wavenumber
and frequency matched the shear Alfvén resonance values for the three remaining cases.

These three examples are primarily distinguished by differing values of the Alfvén speed
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with respect to the electron thermal speed. All three resonant cases displayed strong in-
teraction between the antenna driven wave and the plasma with the electromagnetic field
energy increasing at least several times above the initial pump amplitude. Substantial
electrostatic electric fields characteristic of the kinetic Alfvén wave develop to accompany
the inductive fields driven by the antenna. When V4 =~ 3Vp electron trapping is the
dominant process in the system. The electron distribution function develops a large non-
thermal tail with a maximum speed equal to twice the parallel phase velocity of the driven
wave. The other two resonant cases exhibit smoothing, whose width is the order of the
phase velocity, of the electron distribution function about the parallel phase velocity w’of
the wave. The electron heating and currents are produced by collisionless absorption bf
th.e wave. An increase in ion temperature is observed but it does not represent a true

thermalization of the wave. This increase represents the portion of total wave energy that

resides in the ion motion.
C. Driven Alfvén Waves tn a Bounded, Nonuniform Plasma

Thus far, the excitation of kinetic Alfvén waves and assoéiated heating processes have
been examined in homogeneous plasmas. For the Alfvén wave resonance heating Scheﬁle,
the variation of i)lasma parémeters pla&s an e.ssential role. We are pérticula.rly inferested
in the situa.,tion. in which the plasma contains a shear Alfvén resonance layer. The results in’
this section are therefore a step closer to experimentally relevant situations. The bounded
model is.used for the nonuniform cases presented here. Both of the examples considgred. in
this section contain an Alfvén wave resonance layer. There is an example where V4 = Vip,
.is satisfied at the resonance layer and an example where V4 < Vr. at the resonance layer.
When V4 > er at the resonance layer, the wave does not penetrate so this case is not
examined here”.

The variation of the density is an important nonuniformity present in the laboratory
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experiments. In our numerical model the algorithm scheme of renormalization used to solve
the transverse eleétric field involves an iteration about the peturbed density. A density
gradient is likely to worsen the convergence properties of this itérative field solver. Instead,
in the present model, the nonuniformity in the Alfvéx'l velocify is introduced through the
| variation of the externally imposed fnagnetic field. This is accomplished in a manner that
does not degrade the solutidn for the transverse electric field. The ambient magnetic field

is varied by the relation

BO(z = zrea)
[a(z — Zres) + 1.0]1/2

By(z) o« B,(z) o« Bo(z) =

~ where the variable a is related to the magnetic field scale length L,., at the resonance layer
by @ = —~2/L,.,. The angle 6 between the y- and z-components of the ambient magnetic
field maintains a constant value throughout the plasma for this type of variation. The
center of the resonance layer is chosen to coincide with the center of the active system, i.e.,
Tres = Lz /2. For the cases p.re'sentedv in this section, the ions.and electroﬁs have initially
equal temperétures, T; = T.. The antenna excites a single mode travelling wave éiven by
Eq. (7). The simulation size is L, x L, = 64A x 320A. The magnetic field scale length is
Lyes, = 100A. Quantities that depend on the magnetic field will be quoted by their values

at the resonance layer.
1. VA (Xres)zvte

The first nonuniform case we examine has the Alfvén speed at the resonance layer
equal to the electron thermal velocity, i.e., V4 (zres) = Vre where it is expected that
electron heating will be maximized. The plasma parameters at the resonance layer are the
same as the first resonant case 2 in subsection B. The antenna parameters are assigned
the valﬁes: wa =1.08 X 10 3wy, k4 A = 1.96 X 102, and W = 6.5 x 10~3. The variation

of the Alfvén speed with z is graphically depicted in.Fig. 13. The magnetic field has its
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maximum value at the boundary where the antenna is placed. This simulation evolved to
time wpet = 54000 which cbrresponds to 9.3 wave periods.

The Fourier transformed values of the electric and magnetic fields, Er (k,t), Er(k,1),
and B(k, t), are stored on disk for subsequent analygis. We display the field energy density
spectrum |E(z, ky,t)lz' where z and ¢ are varied and k, is held fixed. The energy density
spectra for the field components |Er.(z,ka,t)[?,|Bs(z, ka,t)|?, and |Er,(z,ka,t)|? are
shown in Fig. 14 from different perspectives. The Er, spectrum is not directly generated
by the antenna but is due only to the plasma response. For the plots in Fig. 14, the
lines running parallel to the time axis show the temporal variation at a particular spatial
position with each line representing an average over three grid points. The lines running
parallel to the z-axis similarly show the spatial variation at a given time inte;val with each
line representing an average over one-fourth of an é.ntenna period.

Inspection of Fig. 14 demonstrates the development of aﬁ Alfvén Wa;';re near the
resonance jndicaﬁng that mode conversion has occﬁrre-d. However the wave is stronger in
the region adjacent to the antenna. The modé converted kinetic Alfvén wave grows during
the initial 1.5 wave periods of the simulationi. The amplitucie of the wave energy in the
resonance region is fairly constant for the following two periods. A decline in amplitude
then occurs after wpyet = _20006. The peak of the mode converted wave is shifted towards

smaller z than what is expected. The boundaries may influence the location of the mode

conversion region since the system length in the z-direction is about 20 ion Larmor radii.

As was seen in the uniform cases, the electrostatic potential ® of the kinetfc Alfvén wave
propagates in phase with the vector potential A,. The electric and magnetic fields in the
region adjacent to the antenna are larger in magnitude than the wave fields generated in
’the resonance layer. The wave at the edge has the same features as the resonant wave.
Both propagate in the y-direction with the antenna current with the same phase structure

between the components of the electric and magnetic fields. This wave that forms adjacent
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to the antenna is probably a sheath phenomenon. The formation of electrostatic sheaths
around an antenna for the lower hybrid frequencies has been investigated by Decyk and
Dawson®22% using a 21D electrostatic particle simulation code. It is also possible that
the nonuniformity does not sufficiently remove the plasma parameters from the resonance
regime for nonresonant behavior to occur. The analysis is éomplicated by the particle

reﬂections that occur at the boundaries.

Thé spatially averaged distribution function for the parallel electron velocity shown
at different times in Fig. 15 exhibits flattening near the parallel wave phase velocity at
the later times. The alteration of the local electron velocity function within the mode
conversion regioh should undoubtedly be greater than what is seen in Fig. 15. We bélieve
that the decline of the wave fields after '3% wave periods is related to the local change in
the electron velocity distribution function. This modification from its initial state changes

the plasma properties from what can be expected in the linear regime.

As was seen earlier, the kinetic Alfvén wave generated by the antenna also héats
electrons. Electron temperaturéproﬁles in z are shown in Fig. 16. A broad maximum of
the electrqn temperature develops within the mode conversion region. The la;rgest increase
occurs in the region iminediately adjacent to the antenna with a smaller increase seen near
the opposite (left) boundary. The rate of heating in the resonance region slows from
wpet = 24000 to wyet = 36000 compared to times p_ri(;r 10 wpet = 24000. This coincides
with the decrease of the mode coverted wave fields. The temperature peak in the center
of the simulation at wyet = 24000 broadens‘ in the x-direction‘as time progresses, due to

the diffusion of particles.

The temperature increase in the mode conversion region will be compared with the ‘
theoretical formula Eq. (11). This must be carefully done because the calculation of the

heating rate from Landau damping assumes that a single coherent wave interacts linearly
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with the plasma. We shall evaluate the expression

1 dT, 6 wpe /L" IEu z,9)|
T, dt / d dy (1?)

over the range 24A < z < 35A until time wp.t = 24000. The electric field v_alues stored
in the correlation data include the thermal ﬂuctﬁations-as well as the coherent wave. The
inclusion of these fields in Eq. (12) yields an increase far in excess of the actual temperature
increase since these fields do not on average contribute to electron heating. To minimize
these contributions, the parallel electric field is Fourier transformed to k-space. All of the
k-comj)onents of the parallel electric field are set to zero except the (k;,ky = ka) modes.
The parallel electric field is subsequently inverse Fourier transformed back to configuration
space. For the grid points located in the area between 24.5A < z < 35.5A, the measured
average increase of the electron temperature from wpet = 0 to wyet = 24000 is 19%. The
predicted temperature increase from a summation over all the grid points within that
region using the k-filtered parallell electric field is 28% agreeing reasonably well with the
simulation. One reason that the computed estimate is larger than the simulation value
is that the modification of the electron velocity distribution function may already slow
the heating from What is expected from a linear calculation. Another reason is that the
k-space ﬁltering may not remove all of the thermal contribution to the parallel electric
field.

The time evolution of the total electromagneﬁc field energy displayed in Fig. 17 verifies
the decline in field energy after wp.t = 20000 indica‘ted. in Fig. 14. The field energy does
not show any dramatic increases above initial values. The ion kinetic energy undergoes a
ra.pid increase during the first wave period as the kinetic Alfvén wave establishes itself and
increases linearly afterwards. There is an energy exchange again between the ions and the
field energy clearly seen towards the completion of the run. This energy exchange has a

frequency that is 1.5 times the pump frequency in contrast to twice the value observed in
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the periodic simulations. The increase of the ion temperatures are reasonably explained
by E X B oscillations. Some true thermalization occurs from the phase mixing caused by
ion reflections at the boundaries.

The total electron kinetic energy increases most rapidly from tﬁmes wpet = 9000 to
- wpet = 15000. The heating rate then undergoes a subsequent decline until wyt = 22000,
after which it increases more slowly. The rate of electron heating slows as the electron
velocity distribution function flattens. The decline in the electromagnetic field energy also
correlates well with the decrease in the electron heating rate. The total electron kinetic
energy increases 13% above its initial thermal value. This value is larger than what would
be experimentally measured since our measurement does not include electron thermal
motion perpendicular to the magnetic field. Through the length of the run, the electrons

acquire a net drift velocity that is approximately 5% of the electron thermal velocity.
2. VA(Xrea) < Vte

The last example exhibits results from a nonuniform example where the plasma 3 in
the resonance region‘is Wéll above the electron-to-ion mass ;atio, Ji} (:z-:,e,,)M /m = 8.6. The
parameteré for the plasma at the resonance la&er are the same as for case iv) of subsection
‘B). The antenna parameters have the valﬁes wa =1.44 X 1073wy, ks A = 1.96 X 10™2 and
W = 4.5 x 10~%. The system is followed to wpet = 19200 which is 4.4 wave periods. From
the fesults of the homogeneous runs, it is expected that thé reaction of the plasma for this
example will be weaker than seen in the previous case.

As is found in the earlier example in this section, the wave electric and magnetic fields
have their largest amplitudes in the region adjacent to the antenna as can be seen frém
the three-dimensional graphs of field energy densities in Fig. 18. Lines running parallel
to the time axis represent a spatial averaging over three grid points and lines running

parallel to the z-axis are averaged over one-fourth of a period. At initial times, there is
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a secondary maximum of the field energy at the left edge opposite of the antenna. As
time progresses, the field energy deﬂsities, displayed in Fig. 18 decline at the left edge
near z = 0 with a corresponding increase in amplitude near the resonance layer, which
we interpret as the mode conversion of the kinetic Alfvén wave. The amplitude of this
resonant wave is comparatively smaller than for the immediately preceding exaxﬁple. The
evidence supporting the occurence of the kinetic Alfvén wave mode conversion is weaker
than in the previous example but is nevertheless still convincing.

"The electron velocity distribution function parallel to the magnetic field displays weak
smoothing about the parallel phase veAllocity of the wave. The time evolution of the elec-
tromagnetic field energy does not have a net increase. The oscillations of the field energy
are at approximately 1.5 times the pump frequency as is seen earlier. The ions participate
very weakly if ét all in these oscillations. The electrons gain energy most rapidly during
the first wave period as the kinetic Alfvén wave in the resonance region establishes itself.
The net trend of fhe total electron kinetic energy after this is still increasing but at a much
slower rate. .Ther_e is a small decrease of energy beginning at 2.6 periods that is reminiscent
of the decliné seen in the homogeneous system for these parémeters. The increases in the
teﬁlperatures are too small to deﬁect‘ spatial dependencies. The electron acquire a small
net drift velocity of (VD)” = O.OIVTe.

Two different parameter regimes have been examined in nonuniform systems. Mode
conversion of the kinetic Alfvén wave is observed near the resonance layer for both exam-
ples. However, the amplitude of the nr_lode converted wave is smaller than the wave fields
adjacent to the antenna. The time evolution of the resonant kinetic Alfvén wave suggests
that its structure is sensitive to the shape of the electron velocity distribution function.
The electron temperature increase in the mode conversion region agrees reasonably well
with the expectation of Landau damping. The resonance interaction for the lower f case

where V4(Z,e,) = V. is stronger than for the higher 8 case where V4 (%) = 0.56Vp,.
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IV. SUMMARY

The kinetic processes associated with Alfvén wave resonance heating are examined
in this paper. Different parameter regimes were investigated in simulations that wefe 1)
uniform systems with both the z- and y-direction periédic and 2) nonuniform systems with
the z-direction bounded and the y-direction periodic. The kinetic Alfvén wave is seen to
grow well above initial levels. Electron heating and a net electron current are produced
by the kinetic Alfvén wave. The mechanism has been identified as Landau damping. The
observed increase in the ion kinétic energy is caused by E X B drifts driven by the wave
electrostatic fields. A large portion of the total wave energy resides in the ion sloshing
motion. If some mechanism exists to disrupt the phase of (i.e., stochastvicize) the ion
motion with respect to the wave ﬁeids, a net thermalization of the ions results. This seems
to occur in the bounded simulations from particle reflections at the boundaries bver a long
simulation run:

The Landau damping of the electrons progresséd to a nonlinéar stage where the elec-
tron vélocity distribution function parallel to the magnetic field flattened about the parallel
phase velocity of the vwa,ve.. This alteration of the electron velocity distribution function
has been correlated with a vdecline in the magnitude of the kinetic Alfvén wave in the reso-
nance region and with a slow-down in the rate of electron heating. Most of the theoretical
‘work is based §n the assumption that the absorption of wave energy does not signifi-
cantly change the plasma behavior. However, our simulation results demonstrate that the
plasma heating can alter the properties of the Alfvén wave when the local electron heating
increases 5-10%. In contrast, the TCA tokainék reports gains of 25% in the bulk electron
temperature. However, a wide band resonance might be able to prevent the briginal dis-
tribution function from the severe distortions observed in our simulations. One must be

aware that the simulation operates with much higher power densities than currently exist in
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present experimental devices. Thermalization processes would guide the electron velocity
distribution function back to Maxwellian more effectively in the experiments. There does
exist experimental evidence of nonlinear behavior assqciated with the Alfvén wave heating
scheme. For example, it has been observed on the PRETEXT tokamak by T. Evans®® that
the electron density fluctuations reach a saturation level, fig/n.o ~ 0.6%, in power scaling
measurements. We therefore surmise that nonlinear effects from the absorption of wave
energy can modify the mode structures and wave propagation as well as heating rates and

suggest this as an area for further theoretical and experimental investigation.
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Figure Captions

Fig. 1 Time evolution of (a) total electromagnetic field energies, (b) total ion kinetic

Fig.

Fig.

Fig. -

Fig.

Fig.

Fig.

Fig.

Fig.

energies, and (c) total electron kinetic energies ending at wyt = 13000 for
case 1 of subsection B. The wave driven by the antenna does not match any
plasma resonance.

Contour plots of the fields (a) B, (b) By, and (c) Er, at wyet = 24000 for
case 2 of subsection B. The driven wave matches the Alfvén resonance and
Va = Vre. |

Contour plots of the fields (a) Er, and (b) EL, at wp.t = 24000 for case 2 of
subsection B. The electrostatic fields are entirely due to the plasma response.:
Electron velocity distribution function parallel to the magnetic field at (a)
wpet = 0 and (b) wyet = 36000 for case 2 of subsection B. The distribution
function flattens about the phase velocity of the wave.

Time evolution of (a) total electromagnetic field enérgies, (b) total ion kinetic
energies, and (c) total electron kinetic energies ending at wp.t = 36000 for
case 2 of subsection B. ‘ , ‘
Contour plots of the fields (a) B, (b) B,;, and (c) Er, at wpet = 19200 for

case 3 of subsection B. The wave phase velocity, V4, is less than V7. By this

~ time, the growth has saturated creating a distortion of the wave fields from

their initial slopes.

The electron velocity distribution function at times (a) wpet = 0.0, (b)wget =
12000, and (c)wpet = 24000 for case 3 of subsection B also exhibits smoothing
about the phase velocity.

Time evolution of (a) total electromagnetic field energies, (b) total ion kinetic
energies, and (c) total electron kinetic energies ending at wpet = 24000 for
case 3 of subsection B.

Contour plots of the fields (a) Bg, (b) By, and (c) Er, at wpt = 16000
for case 4 of subsection B. Strong currents modify the electromagnetic field

contours.

Fig. 10 Electron velocity distribution function parallel to the magnetic field at (a)
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

11

12

13

14

17

18

wpet = 0 and (b) wpet = 16000 for case 4 6f subsection B. The wave traps
electrons and creates a tail on the distribution function.

Phase space scatter plots, z — V,;, of electrons at (a) wpet = 0 and (b)
wpet = 16000 for case 4 of subsection B. The trapping is strongest in the
vicinity of the antenna and is strong where the accelerating electric fields
experience a secondary maximum.

Time evolution of (a) total electromagnetic field energies, (b) total ion kinetic
energies, and (c) total electron kinetic energies ending at wpet = 16000 for
case 4 of subsection B. ,
Spatial variation of the Alfvén speed V4 for the two simulations of a nonuni-
form plasma.

Spatial dependence and temporal evolution of the field energy densities (a)
[E'Tz(é;, ka,t)|?, (b) |Bz(z, ka,t)|? and (c) |ELy(z, ka,t)|? from different per-
spectives ending at w,.t = 54000 for for case 1 of subsection C highlight the
growth, saturation, and subsequent decline of the Alfvén wave at 'the Teso-
nance layer. ‘ _ -

Electron velocity distribution function parallel to the magnetic field at (a)
wpet = 0, (b) wpet = 12000, (c) wpet = 24000, and d) wyt = 36000 for case
1 of subéection C exhibits flattening at the wave phase velocity. _
Spatial dependence of the electron temperature at (a) wpet = 0, (b) wpyet =
12000, (c) wpet = 24000, and d) wyet = 36000 for case 1 of subsection C
shows électron heating in the resonance region and adjacent to the antenna.
Time evolution of the-.(a) total electromagnetic field energies, (b) total ion

kinetic energies, and (c) total electron kinetic energies ending at wpet = 54000

‘for case 1 of subsection C.

Spatial dependence and temporal evolution of the field energy densities (a)
|Bz(z,ka,t)|2, (b) |Bry(z,ka,t)|?, and (c) |Er.(z,ka,t)|? from different
perspectives ending at wp.t = 19200 for case 2 of subsection C show the
development of the shear Alfvén wave at a lower amplitude than the previous

nonuniform case.
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