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The linear and nonlinear behavior of the toroidicity induced drift
mode is studied using a three dimensional, natural coordinate electro-
static particle code. In this simulation an instability involving radially
extended toroidal drift modes, showing a banded frequency structure,
is observed for the first time. Nonlinear phenomena such as the en-
hancement of instability by toroidal mode multiplicity, saturation, and
particle transport are also reported.
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.. The drift or universal instability.has long-been suspected to play a strong

..role in the anomalous.transport.observed- in-plasma-experiments. It has -

attracted much theoretical attention because of its ubiquitous nature, being
driven by a density gradient alone, and is known to be absolutely stable
within the confines of the sheared slab model [1,2,3]. However, toroidal effects
fundamentally alter the behavior of the drift mode [4,5]. In this system, the
drift wave eigenrﬁodes at neighboring mode rational surfaces become strongly
coupled, annihilafing the ion shear damping. This results in the radially
extended, toroidicity-induced (T1) drift instability [6].

In this Letter, we report on the first self-consistent electrostatic particle
simulations of a tokamak-like plasma in the TI-mode regime. Previous re-
lated efforts include the study of the trapped particle instability by Cheng
and Okuda (7], and the study of the of the nonlinear destabilization of the
slab drift wave by Sydora et al [8]. The work of Cheng and Okuda [7,9]
demonstrated the feasability of large scale three-dimensional particle simu-
lation in a non-Cartesian metric, and the development of large core memory
machines (e.g. Cray-2) has made such methods increasingly practical. The
algorithm we have developed utilizes an orthogonal flux coordinate system in
a nearly arbitrary metric and is much better suited for the study of radially
localized modes such as drift waves (details of this method. will be reported
elsewhere [10]).

In the present simulation model, the entire plasma profile is represented



- by the particle species. Field quantities are represented on a two-dimensional

grid in (7, 6).and a mode expansion in-¢; a nonuniform radial grid generation
method [10] is employed to increase radial resolution near the mode rational
surfaces. An iterative method of solving the toroidal Poisson equation is used.
Ion dynamics are modeled exactly, while electrons follow drift-type dynamics
given by the equations of motion v; = u.+(b/f,)x {(,u/m)VB + vﬁ(b : Vb)}
and dv)/dt = —(e/m)E) — (u/m)b - VB, where u, = E x b/B, b = B/B,
p = 3mvl /B, Q. = eB/mc, and m is the electron mass.

Simulation runs employing a single “high” toroidal mode number n= 9 :

were performed for two values of k, p, (0.2 and 0.4) and inverse aspect ratio

. of a/Ry = 0.4; these runs were repeated in the cylindrical limit of the code

as a control case.” The mode rational surfaces contained within the system
ranged from g ~ 0.56 (m = 5) to ¢ ~ 1.67 (m = 15). “Undesired” mode
rational surfaces (for which the eigenmodes are not confined within the sys-
tem) are excluded by eliminating the appropriate Fourier components of the
electric potential. The drift ion resonance layers are contained within the
simulation region for each mode rational surface thus selected. An addi-
tional set of runs including a multiplicity of toroidal harmonics were carried
out to study the enhancement of growth rate and saturation level due to
the stochastic-electron mechanism of Hirshman and Molvig [11]. The ini-
tial velocity distributions are 'Maxwellian, with T, = T;, T)/TL = 2, and

Ve = 1.56 Agw. " (w, is the plasma frequency). The remaining simulation



parameters are given by : N, = 98304 (number of particles), N, = Ny = 128,
- At =4.0w;?, me/m; = 0.01, Qe /w, = 10, and particle “size” approximately

“one grid spacing in both the radial and poloidal coordinates (using two passes

of a binomial digital filter for the radial grid). The gaussian density profile is
giveﬁ by n(r) ~ ng exp[—(kor)?/2] with xoa = 4.8, and a = 1284, the mi-
nor radius (kop, = 0.041). We then have w*/§; = (kp,)(k1ps) = m(Kop,)?,
where k = L;' = 8lnn/dr, so that thé only variation of the electron dia-
magnetic frequency w* is through the poloidal mode number m. We will
devote the bulk of our presentation on the results of the k, p, ~ 0.2 cylindri- . -
cal (control) and toroidal runs. For these cases, the value of k) p, evaluated
at the mode rational surfaces varies only weakly, having a minimum value of
0.165 for m = 6 and a maximum of 0.219 for m = 15.

For theoretical corroboration with the simulation results, we shall com-
pare to the work of Schep and Venema [12]. Parameters in the central region
~are comparable to those used in the theoretical calculation [12], for which
€n ~ 0.1 (= L./ Ro) and §(= r¢’/q) ~ 1. The simulation employs &, p; ~ 0.2,
for which the growth rate of the TI-mode is expected to be a maximum.
Compromises due to computational and/or algorithmic limitations include
the relatively large inverse aspect ratio in the simulation (roughly twice that
of the theoretical work), and large electron/ion mass ratio. In addition, in
the simulation most quantities (shear, diamagnetic frequency) vary siéhiﬁ-

cantly over the radial extent, while the theoretical treatment assumes the



only radial variation is through the variation in the safety factor g(r).

- ... The. simulations.for a.single_toroidal harmonic.n =.9. with k;p, ~ 0.2
are run for a total of 15,000 time-steps (¢ = 6000Q; ). For the toroidal
run, modification of the electron density profile is observed until about ¢ =
1200Q; . In Figure 1 (a) we plot the electron density profile initially and
at time ¢ = 1200, Also shown in Figure 1 is the location of the mode
rational surfaces and radial grid spacing and the radial variation of the safety

factor, q.

An obvious feature is a definite profile modification about the m = 5.~

mode rational surface, which is highly localized. This occurs in both the
_cylindrical and toroidal runs, and is therefore not a toroidal eﬁ'e;ct. Further,
the growth rate of the potential at this location is much larger than that
expected for a drift mode. Since the curvature at the m = 5 mode rational
surface is quite strong, a gravitational-type instability may be responsible for
the observed behavior there.
Additional profile modification occurs from about the m = 7 to the m =
10 mode rational surfaces in the toroidal case, but not in the cylindrical ca,se;
The potential for these modes is found to grow exponentially until roughly
t = 1000Q;", at which time significant profile modification ceases as well.
The time evolution of |e®/T| is shown in Figure 2 (a) for the m = 8 mode
for a typical radial position near the mode rational surface. The growth rate

is measured to be approximately v/§; ~ 1.256 x 1072, or y/w* ~ 0.075 (note



;/w* ~ 60.0). The measured value is roughly a factor of three larger than
.. the.value predicted theoretically [12], which may be due in part to the trapped
electrons present in the simulation (neglected in the theory) and to the rough
association of parameters between the theory and simulation (the increase in
both the inverse aspect ratio and mass ratio is expected to be destabilizing
[12]). Saturation for these modes occurs at a level of |e®/T| ~ 0.04 (for
reference our p,/L, ~ 0.075). The toroidal run with k;p. ~ 0.4 showed
growth for the m = 8 modé as well, with the growth rate observed to be
v/w*~ 0.057. No growth in the potential for this mode and radial position: .
was observed in the cylindrical runs, leaving the observed toroidal behavior
as strong evidence of the toroidicity-induced mode.

A run employing toroidal mode numbers n = 7 through n = 11 was
undertaken, with otherwise the same parameters as the single-n case. Growth
of the potential was observed fbr a number of (m,n) pairs, with growth rateé
as large as a factor of two greater than in the single n run. The time evolution
of |e®/T| for the m = 8, n = 10 mode from this run is plotted in Figure 2 (b),
showing a saturation value of [e®/T'| ~ 0.06 and growth rate of y/w* ~ 0.132.

We examine the mode structure of the potential on long time scales via
spectral analysis for the toroidal single-n run. The power spectrum is cal-
culated by the maximum entropy method; peaks in the calculated spectrum
are located numerically for each radial position and mode number, with only

the strongest power peaks retained. The observed frequency spectrum, as



a-function of radius and mode number, has many new noteworthy features.
. First, we see a multiplicity of modes with frequencies below the diamagnetic
frequency. This result is a consequence of the strong coupling of the poloidal
modes in toroidal geometry, which allows multiple toroidal drift harmonics
to appear. In Figure 3 (a) & (b) where we have plotted the observed wave
frequency w as a function of radius, and power versus w, both for the m = 7
mode. In these plots, each mark denotes the presence of a signal, and some
of the lowest power signals have been removed. Note that the ion magnetic
drift-frequency is on the order of @p,/§); ~ 0.001, so the ion magnetic drift..
resonance may significantly affect the lowest harmonic. The modes are seen
to propagate in the direction of the electron diamagnetic drift.

Comparing the frequency dependence on the radius for neighboring mode
numbers, we see a dramatic preference for certain frequency bands (which
may vary with position), especially at low frequency. This is demonstrated _
in Figure 3 (c), in which the response for the m = 7 through m = 11 modes is
plotted. The lowest two frequency bands show the highest degree of overlap,
and are by far the strongest modés. The frequency of the lowest harmonic
is given roughly by w/w* ~ 0.26, and the second harmonic by w/w* ~0.55,
compared to the (single) theoretical value [12] of w/w* ~ 0.4. The cylindrical
run, on the other hand, shows no band structure in its frequency response,
as expected. In addition, the lowest ha,rmoni.c‘seen in the cylindrical run has

a frequency approximately that of the second harmonic in the toroidal run;



the ultra-low frequency harmonic appears only in the toroidal case.

Most modes extend over a large number of mode rational surfaces, but
still show some radial localization. This is consistent with the physics of the
parameter regime. The mode coupling in this case is reduced by the varia-
tion of the diamagnetic frequency with radius, which differs by a factor of
three between the highest and lowest mode numbers, and by the radial vari-
ation of the shear. Thus the mode structure cannot be completely described
by either the strong coupling (ballooning mode) or weak coupling (Fourier
mode) limits, but a 'mix of aspects of each. Qualitatively, the variation of.
w* with radius will reduce the number of poloidal modes involved in a single
quasimode, and limit the radial extent. The changing w* is expected to give a
radial variation to the resulting frequency spectrum, which is observed in the
simulation results via an upward trend in frequency with increasing radial
position.

The radial structure via the interferogram diagnostic [13] shows peaking
of the potential near the mode rational surface for the observed frequencies.
The waveforms are typically highly oscillatory iﬁ r and overlap an appreciable
number of adjacent mode rational surfaces. This behatvior is @ consequence of
the weakly damped or unstable, radially extended character of the mode, in
contrast to the rapid radi;dl decay of the slab geometry drift mode eigenfunc-

tion. Radial interferograms for the m = 12 mode are shown in Figure 4 (a)

& (b) for the toroidal and cylindrical runs. The width of the interfered po-



tential in the toroidal case is approximately twice that in the cylindrical run,
-demonstrating the radially-extended nature of the toroidal mode. Note that
the finite radial width of the TI-mode eigenfunction is caused by the vari-
ation of equilibrium quantities with » (such as the diamagnetic frequency),
and from our truncation of the poloidal mode space.

The interferogram in the poloidal angle shows another aspect of the to-
roidal nature of these modes. Theoretically, strongly coupled modes exhibit
“ballooning” towards the outside of the torus. This ballooning behavior is
observed in the simulation, for several frequency ranges and at many radial.
grid points; a representative interferogram is displayed in Figure 4 (c). For
the case shown, the maximum amplitude occurs away from the § = 0 axis
(outward direction), although more usually the maximum occurs on the axis.

The particle diffusion which occurs as a result of these unstable modes
can be obtained through the use of test particles [8]. In the course of each
run, 100 test particles are followed in time. These are initially uniformly
distributed in the region of interest. The diffusion coefficient calculated from
this diagnostic was observed to be D ~ 1.4p%w* for the multiple-n toroidal
run, D ~ 0.60p2w* for the single-n toroidal run, and D ~ 0.36p%w* for
the cylindrical (control) run. With the diffusion coefficient D = (67%/tc,)
where (67/p,) ~ (e®/T)(k1ps)(teor(li), and using the observed value of the
saturation level of ®, we obtain the correlation time of turbulence as w*topp ~

2.2 for the multiple-n and single-n cases.
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Figure Captions

. (a) Electron density profiles at time t = 0 (solid line), and time t =
1200 ;" (dashed line). (b) Positions of mode rational surfaces (g = 5/9

to 15/9) and radial grid spacing. (c) Safety factor q as a function of r.

. (a) |e®/T| versus time for the m = 8 mode, toroidal single-n run, at a
radial position near the mode rational surface. (b) |e®/T| versus time

for the m = 8,n = 10 mode in the toroidal multiple-n run.

. Frequencies and power spectrum obtained from spectral analyzer: (a)
Power as a function of w/(; for the m = 7 mode. (b) w/; as a function
of radius for the m = 7 mode. (c) w/€; as a function of radius for the
m = 7 through m = 11 modes. The arrows mark the location of the

mode rational surfaces (g = m/n = 7/9 through 11/9).

. (a) & (b) Interferograms of the potential for the toroidal run and cylin-
drical run, respectively. These are plotted versus r for the m = 12
mode, both real part (solid line) and imaginary (dotted line). (c) An;1-
plitude interferogram of the potential plotted versus 6 for a given value

of r.
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