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Abstract

It has been suggested that the recently observed fast sawtooth crashes
are caused by a low-shear, pressure-driven ideal instability. This hypothesis is
investigated, using asymptotic methods to solve the toroidal mode equations
for a class of equilibria characterized by a low-shear central region in which q—.l
is small, separated from the wall by a region with finite shear. A dispersion
relation which differs significantly from previous results is obtained. The new
instability displays no threshold with regard to the poloidal beta. An explicit
expression for the growth rate is given for a model ¢ profile. The linear growth
rates are found to rise steeply near marginal stability but not sufficiently so
as to account for the rapid onset of growth observed in the experiments. The
nonlinear corrections to the mode growth are evaluated to lowest order in the
amplitude, using a low-betav expansion of the reduced Magnetohydrodynamic
equa,tioné. These equations are shown to be identical to the full Magnetohy-
drodynamic equations in the linear regime except for the neglect of parallel

kinetic energy and the effects of compressibility. The calculation differs from

- previous bifurcation analyses by the inclusion of toroidal curvature effects in-

cluding coupling to non-resonant harmonics. The nonlinear forces are found to
be stabilizing for the profiles investigated. These forces lead to the appearance
of stable bifurcated equilibria above marginal stability. In this respect our con-
clusions resemble those for the zero-beta, free-boundary kink. The amplitude
of the bifurcated equilibria, however, is found to be much larger than that for

the fixed-boundary, finite-shear kink.
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Chapter 1

Introduction

1.1 Sawtooth Oscillations

Ohmically heated toroidal magnetic confinement devices, or toka-
maks, have long been known to sustain interﬁal oscillations called sawtooth
oscillations!. Each sawtooth period comsists of a slow rise or ramp phase fol-
lowed by an abrupt fall (Fig.1). The ramp phase of the sawteeth results from
the slow diffusive evolution of the plasma. After a period of time, typically
on the order of ten to a hundred milliseconds, a rapid instability develops, re-
sulting in the collapse of the central temperature and density. This process,
called sawtooth crash or minor disruption, usually lasts between 50 and 100
microseconds. On the outside of the plasma, the sawtooth is inverted, dis-
playing a slow decay and a fast rise (Figs.1 and 2). The temperature profile
is observed to sharpen during the ramp phase, only to be leveled during the
crash. The instability thus causes increased radial transport. Since the mixing
region includes a large portion of the plasma core, sawteeth clearly have an

important effect on the macroscopic confinement properties of tokamaks?.




Outer “inverled" sawteeth

Inversion radiuss Y,

Central "normal"” sawteeth

Y rersion auren YT

nversion radiuss= ¥,

Inner "inveried"” sawteeth
| 1 1 1 1 1 1

175 177 178 181 183
TIME [ms)

SOFT X RAY DRIGHTNESS [arb. units]

Fig.1: Soft X-Ray signals from selected channels of the TEXT array
showing typical sawtooth behavior (Courtesy of M. Foster, S. Mc Cool and the
TEXT group)

Recent experimental observations®=® have forced a critical reevalu-
ation of the widely accepted theoretical explanation of sawtooth oscillations,
the Kadomtsev model”. An alternative model which accounts for most of the

newly observed features has been suggested by Wesson®®. This new model is




the subject of this thesis. All these theories have in common that they rely
on Magnetohydrodynamic instabilities to explain the sawtooth crash. Thus,
we will begin by reviewing the most salient features of Magnetohydrodynamic
instabilities before describing the history of sawtooth investigations leading to

Wesson’s suggestion.
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Fig.2: Soft X-Ray signals from TEXT showing time delay of the ar-
rival of the sawtooth peak in the outer channels (Courtesy of M. Foster, S. Mc
Cool and the TEXT group). '




1.2 Magnetohydrodynamic Instabilities

Most of the theoretical work devoted to the sawtooth oscillation has
attempted to identify the instability responsible for the crash. The global,
coherent nature of this instability has concentrated attention on magnetohy-
drodynamic (MHD) models. In these models, because pf the disparity in the
characteristic time scales for transport phenomena and Alfvénic'dyna.mics, the
plasma evolves through a continuous sequence of quasi-equilibrium states dur-
ing the ramp phase of the sawtooth. The crash is then thought to occur as a

result of the evolution of the plasma into an unstable equilibrium.

All MHD instabilities share certain characteristics resulting from con-
straints imposed by the nature of tokamak confinement'®. These constraints
result from the combined effects of the large toroidal magnetic field and from
the presence within the plasma of large toroidal currents used for ohmic heat-
ing. The toroidal currents induce poloidal magnetic fields which, combined
with the externally imposed toroidal field, give rise to helical field lines wind-
ing around closed, nested flux surfaces. These flux surfaces surround a closed
field line, called the magnetic axis. Flux surfaces can be characterised by their
magnetic winding number, called the safety factor. The safety factor may be
defined heuristically as the limit of the ratio of toroidal to poloidal rotations
as one follows a field line around the torus. For rounded current profiles the

safety factor varies from surface to surface, giving rise to magnetic shear.

Certain flux surfaces, called rational surfaces, are of fundamental sig-
nificance for stability. Their distinguishing feature is that the field lines which
they contain close upon themselves after circling the torus a number of times.
In a sheared magnetic field, these rational surfaces are densely embedded in

the torus. Irrational surfaces, by contrast, are ergodically covered by the field

/




lines.

The importance of rational surfaces to stability is the result of a com-
bination of two circumstances?. First, the strong toroidal magnetic field favors
perturbations which vary slowly along fhc field lines, thereby minimizing the
line bending. On the other hand, perturbations which are constant along field
lines cannot vary on ergodic flux surfaces. Instabilities are thus always con-
nected to the presence of one or more rational surfaces, in the vicinity of which
the field lines may slip with respect to one another, or be interchanged, without

the restoring action of field line bending!!12.

These remarks can be made more precise by introducing a toroidal
coordinate system (F,6,¢), where F is the poloidal flux through a ribbon
bounded by the magnetic axis and a great circle, and § and ¢ are respectively
poloidal and toroidal angle coordinates on the flux surface. It is possible to

choose these coordinates so that the magnetic field can be expressed as
B=VFxV(¢f-o),

where 6 and ¢ increase by 2 as the flux surface is encircled once in the poloidal
or toroidal directions, respectively. The field lines are then lines of constant
(g0 —¢) in the flux surface, so that q is identified as the safety factor introduced

above.

Using this coordinate system, perturbations can be expanded in
Fourier series of the angles 6 and .
'LL(T‘, 97 90) = Z um,n(r)el‘p[i(mg _n"p)] .
Because of the toroidal symmetry and approximate poloidal symmetry of toka-

maks, unstable linear eigenmodes are usually dominated by a single harmonic,




with coefficient u, ,. The variation of this harmonic within a flux surface can

be characterised by its wave vector,
k=mV§—-nVp.

The integers m and n are called respectively the poloidal and the toroidal mode
numbers. The wave vector can then be decomposed into its component paralle]

to the equilibrium magnetic field,
k” = Bo k/Bo )
and its perpendicular component,

kJ_ =k—k[[Bo/Bo .

From the above considerations we conclude that instabilities are char-
acterised by small values of k: specifically, ki/k1< 1. In gegeral, this requires
the perturbation to be localised in the vicinity of the mode rational surface
for which the helicity of the perturbation matches that of the magnetic field,
g = m/n 13717, An apparent exception to this rule is the internal kink mode.
The kink mode involves a global displacement of the plasma core, but its growth
nonetheless remains critically dependent on processes occurring near its mode-

rational surface.

The description of the kink mode is greatly simplified by relying on
the large aspect-ratio property of tokamaks. The aspect ratio A of a torus
is defined as the quotient of its major to its minor radius, A = Ry/a. The
equations of motion can be expanded in powers of the inverse aspect-ratio

e = A~'. In the lowest order term in this expansion, toroidal curvature can

be neglected, so that low toroidal mode-number perturbations have a behavior



similar to long wavelength perturbations in a cylindrical plasma!®. It is found
that m > 2 modes are stabilized by shear in plasmas with circular cross sections.
The m = n = 1 kink mode, however, is only marginally stable at this order.
Projected on the poloidal plane, it has the form of a rigid displacement of the

plasma core inside the ¢ = 1 rational surface.

The stability of the internal kink mode is determined by higher order
terms in the inverse aspect-ratio expansion. These terms depend critically on
toroidal geometry. Because of the difficulty of toroidal calculations, however,

the cylindrical model is often relied on to make stability predictions.

1.3 Historical Overview

We now review the theoretical work leading to Wesson’s model. We
conclude this section by describing some of the more recent work stimulated

by Wesson’s suggestion and presenting the motivations for the present work.

Most theories of sawtooth instability rely on the m = 1 internal kink
mode as the cause of the crash. In cylindrical geometry, this mode is unstable
whenever the value of the safety-factor ¢ falls below one inside the plasma. The
following sawtooth mechanism then suggests itself: as the plasma is heated, the
decrease in central conductivity results in a peaking of the current profile, lead-
ing to a decline in the central value of the safety factor.’® When the safety factor
falls below one on axis, the m = 1 kink becomes unstable. The instability even-
tually results in the destruction of the confinement properties and subsequent
flattening of the temperature and current profiles. After a reheating period,

the process is repeated.

This possibility motivated the investigation of the nonlinear proper-

ties of the m = 1 kink by Rosenbluth, Dagazian, and Rutherford®®. In a 1973




article, these authors demonstrated the existence of low amplitude bifurcated
equilibria. The presence of £hese equilibria results in rapid saturation in the
growth of the kink mode. Thus, the predicted fluctuations would be too small
to account for experimental observations. One must also conclude from these
results that the flattening of the temperature profile cannot be explained on

the basis of a kink-driven sawtooth crash.

"The first explanation of sawtooth oscillations to gain widespread ac-
ceptance was advanced by Kadomtsev in 1975.” Kadomtsev attributed the saw-
tooth crash to the resistive reconnection of the magnetic field in the vicinity
of the ¢ = 1 singular layer. Although resistive processes are normally very
slow, magnetic reconnection can be considerably faster because of the singu-
lar current-sheets induced on rational surfaces by resonant ideal motion of the
bulk of the plasma.??? The resulting instability, the tearing mode, is driven
by the free energy made available by the motion outside the singular layer.'®
Tearing mode growth, however, had been shown by Rutherford to slow down
considerably in the nonlinear regime for m > 2 modes.?® Kadomtsev argued
heuristically that the opposite should be true for the m = 1 mode. He noted
that as a result of resistivity, the current layer caused by the nonlinear evolu-
tion of the kink mode would dissipate, and the flux surfaces within the ¢ =1
singular layer'would tear and reconnect with the outer flux surfaces. The-mavg-
netic pressure on the outside of the kink would thereby be reduced, while that

inside would be increased, causing further growth.

The essential features of this model were later confirmed by Wad-
dell et. al* by using a numerical code to chart the evolution of the m = 1
kink-tearing mode. The mode was found to continue growing exponentially at

approximately the linear rate well into the nonlinear regime, and to proceed
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until complete reconnection of the flux inside the ¢ = 1 surface had occurred.
Detailed comparison of the predictions of the theory with experimental results

were subsequently carried out by Jahns et. al,?®> and Callen and Jahns.?¢

‘The first toroidal analysis of the ideal internal kink was completed
by Bussac et. al*” about the same time as Kadomtsev’s paper. The surprising
conclusion they reached was that the ideal kink was stable for sufficiently low
pressure. Specifically, they found that the kink would be stable for 8, < f,.,

where the poloidal beta is defined by

P(ri) — P(ry) )

b= )

Here P(r;) is the volume-averaged pressure within the ¢ = 1 rational surface
r =71, and (B?/2) is the poloidal magnetic pressure. The value of the critical
B, needed for instability was found to depend on the current profile outside of
the ¢ = 1 surface, and particularly on the location of the ¢ = 2 surface. This
fact can be explained by the crucial role played by toroidal coupling of the
m = n = 1 harmonic to an m = 2,n = 1 sideband. For a parabolic q-profile

the critical f, was estimated to be
13 1/2
b= (zz) -

In a subsequent paper?® the same authors extended their analysis to
include the effects of resistivity, and concluded that the m = 1 tearing mode
would be unstable in toroidal geometry, with growth rates similar to those
predicted by the cylindrical model. Toroidal coupling to the m = 2 tearing
mode was found to be negligible for sheared equilibria, but it was remarked
that this coupling could be expected to become important for low central shear.

The conclusions of the toroidal analysis were thus consistent with Kadomtsev’s
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theory, and excluded further the possibility that the ideal kink was the cause

of the minor disruption.

I 20/200/3.5H _

5 _
- Y

- | -l

| i

345.0 346.0 349.0

Time (ms)

Fig.3: Sawtooth crash displaying strong precursor oscillation (Cour-

tesy of E. Synakowski, S. Mc Cool and the TEXT group).

The appropriateness of the Kadomtsev reconnection model has now
been seriously challenged by recent observations on the Joint European Toka-
mak (JET).*~® Early results indicated that the sawtooth crashes were too rapid
to be accounted for on the basis of resistive reconnection. Furthermore, esti-
mates of the transport rate after a crash indicated that if the currént profile
were leveled by the minor disruptions, it would remain essentially constant
during the sawtooth rise phase.® Such current profiles would result in a uni-

form safety factor with ¢ R 1 within the plasma core. This prompted Wesson
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to suggest an alternative mechanism for the crash, in which the disruption is
caused by an ideal interchange-like instability.® This instability will appear as
the central value of ¢ uniformly approaches one from above. For sufficiently low
shear, Wesson argued, the equilibrium would not benefit from the stabilization
found by Bussac et. al. The distinguishing characteristics of this mode would
be first, a fast growth rate and second, a convective flow pattern easily distin-
guishablé from the rigid shift displacement of kink-tearing.mode theory. The
reconnection would occur after the collapse, on a slower time scale. Wesson

called this instability the quasi-interchange mode.

Fig. 4: Flow pattern for the kink instability.The return.flow occurs

in a singular layer around r = r,.
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Fig.5: Flow pattern for the quasi-interchange instability.

Soon afterwards this conjecture was given vigorous support by new
results on JET.%® The broad convective nature of the motion was confirmed
and the formation of a cold plasma bubble at the center of the discharge was
observed. The existence of decaying oscillations after the collapse was cited
as evidence of delayed reconnection. In a second paper,” Wesson et. al com-
pared the experimental results to predictions made on the basis of two simple
calculations. First, the marginal stability conditions were estimated from an
extrapolation of the Bussac et. al analysis to the low shear regifneg*zg. Sec-
ond, nonlinear growth was simulated numerically for cylindrical geometry®®.
Wesson concluded this investigation by drawing attention to the fundamental
difficulty of explaining the occurrence of sawtooth crashes without precursor
oscillations. This problem is particularly serious for some JET crashes where

the growth rate reaches its maximum value in a fraction of the disruption time.
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This fact is incompatible with the idea of a transport-triggered instability, given

the extreme slowness of diffusive processes in tokamaks.

Quasi - Interchange

Fig.6: Topology of the hot inner core during a fully developed quasi

interchange instability.
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Kadomtsevy

Fig.7: Topology of the hot inner core during Kadomtsev reconnection.

The quasi-interchange mode was subsequently investigated both with
a Reduced Magnetohydrodynamic code and with a fully toroidal code by
Aydemir.® The essential features of the model were confirmed, and it was
discovered that the instability would persist at arbitrarily low values of beta.
Safety factor profiles with minima away from the magnetic axis were shown to

have stability properties similar to those of profiles with uniformly small ¢ — 1.
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p(r)
0.05 )

-1.0 0 1.0
b) t=400
Fig.8: Evolution of the pressure profile during a quasi-interchange

crash, from Ref. (31) (Courtesy of A. Y. Aydemir).

The present work was begun with the aim of extending the toroidal
analysis of Bussac et. al to low shear configurations. Interest in the prob-
lem of the onset of growth then motivated a bifurcation calculation based on
the Reduced MHD equations of Strauss®. As this work was being ‘completed
new current-measurement techniques havevproduced evidence supporting the
claim that the safety factor is in fact significantly below unity in the center
of the plasma, and is essentially unaffected by sawtooth oscillations.3334 These
observations are clearly inconsistent with every model of sawtooth instability

suggested to date, including the quasi-interchange model.

It should be noted that throughout this thesis, as in most of the ideal
MHD stability literature, the analysis has been limited to a very restricted class
of motions. First, the equilibrium state is assumed to be static, or flow-free.
Furthermore, only trajectories passing through the equilibrium configuration

are considered. The state of the plasma can then be completely described
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by the fluid displacement and velocity fields in the Lagrangian representation.
The apparent inability of this conventional analysis to account for the sawtooth
phenomenom may be due to its failure to consider more general perturbations.
Recent work in this area has resulted in some rigorous derivations of stability
criteria based on the Lyapunov method.35*® This method consists of construct-
ing a constant of the motion with a local extremum at the equilibrium. The
construction of such constants of the motion for MHD systems was made pos-
sible by the dicovery of new classes of conserved functionals, called Casimirs,
which appear in the hamiltonian formulation of field theories with constraints
such as MHD.?"=% New instability mechanisms have been suggested based on
this hamiltonian theory, and it is possible that such a mechanism is responsible

for the sawtooth crash.

This thesis is organized as follows. In chapter 2 we review the anal-
ysis for both kink and interchange modes in the simple context of cylindrical
geometry. The equilibrium properties of tokamaks with circular cross-section
are then described in chapter 3, where the metric of the flux coordinate sys-
tem is calculated to second order in the inverse aspect ratio. In Chapter 4 the
general mode equations are derived variationally from the linearized energy
for perturbations of a static plasma equilibrium, the so-called 61 principle.°
After reviewing the solution to these equations in the case of finite shear, we
describe in chapter 5 the solution to the low shear equation. As a result of
fundamental differences in the nature of low shear instabilities as compared to
the kink mode, a new solution scheme had to be used. In chapter 6 we describe
the motivation for the non-linear analysis and discuss the underlying assump-
tions. The nonlinear equations are then simplified in chapter 7 with the help
of the low shear ordering. The resulting, “interchange-reduced” equations are

then solved in chapter 8. In chapter 9 we consider the effect of resistivity on
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the quasi-interchange mode and show that this mode is in fact related to the

m=2 tearing mode. We conclude in chapter 10 with a discussion of the results.




Chapter 2

Cylindrical Model

The difference between the kink instability for a sheared equilibrium
and the corresponding quasi-interchange instability of low shear equilibria can
be illustrated by the cylindrical tokamak model. The potential energy per unit
length of a perturbation with poloidal mode number m and toroidal wavelength

k., = n/Ry can be expanded for large wavelengths (e = k.a < 1) as'®?°

§W = §Wo+ W, + 0 (¢), (2.1)

§Wo = 7r_/‘7"cl7"(127.nl2§)2 {r2 (%)2 + (m2 - 1) 62} . (2.2)

where

By 1
M= sz‘Bz = -'I'Z (23)

The lowest order term in the expansion, éW,, is non-negative, reflecting the sta-

(k- B) = k,B,(mp — 1),

bilizing effect of field-line bending. Instability requires (mp—1) ~ € somewhere
within tﬁe plasma. For sheared equilibria, such that r%‘r‘i ~ 1, this can only
occur in a singular layer of width § ~ ¢/u’ (Fig. 9). The m = 1 mode is then
constrained by the line-bending term to take the form of a rigid displacement,
with the return flow taking place in the singular layer. This is the conventional

m = 1 kink instability.?° The m s 1 modes are strongly stabilized.

20
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\ :

0 r a
$

Fig.9: Radial Eigendisplacement for a g-profile with ¢’ ~ 1 at the

rational surface r = r,, where ¢(r;) = 1.

As the shear is reduced, however, the layer width grows until it even-
tually includes the entire core-(Fig. 10). In the resulting low-shear [mu—1| <1

region the line bending energy is of the same order as the e*-order pressure-
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gradient driving term. The “quasi-interchange” instabilities associated with
such equilibria will thus have continuous eigen-displacements distinct from the
rigid displacement characteristic of the kink mode. The m # 1 modes are no
longer strongly stabilized but the m = 1 mode will always be the first to reach

criticality.!!
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central region such that [¢ — 1| ~ €.
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The cylindrical mode equation can be solved in the case of a parabolic
pressure profile (p = po - [1 — (r/a)?]) and a constant g profile (g = go).4? As-
suming e € 1, f = %‘2’ ~ €2, po = 1/ngo such that |muo — 1| < 1, one finds
that

6(r) = “Jnlkrfa) (2.4)

s o (K Bt (1)
3 (o = 1)

(2.5)
where Jy, is the mth order Bessel function, ¥ is the normalized growth rate

¥ = YTa, T4 = (kva)™7,

and B, = -g—’é’—, B, = Bg(a) where a is the wall radius. The growth rate is
determined by imposing appropriate boundary conditions. We consider two

cases:

(i) ¢ is constant throughout the plasma. The boundary condition is then

£(a) =0.

(i1) The constant ¢ region is separated from the wall by a sheared region. In

the sheared region the mode equation can be written

EC—ZT— {(m/z - 1)21*3-35—} - (m2 - 1) (mp —1)*rE =0 (62) . (2.6)
The displacement must satisfy £(a) = 0 and must remain of order one
as (mp — 1) — € in the low shear region. It is generally not possible
to satisfy both conditions simultaneously in the lowest order due to the
singularity in the mode equation for muy — 1 = 0. We therefore conclude

that £(r) ~ €? in the sheared region. Assuming that the transition be-

tween the constant-g region and the sheared region is sharp, we may then
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deduce the growth rate by imposing the boundary condition £ (r;) = 0,

where r; is the transition radius.

The growth rate for both of these cases can be written

o AR .
¥ = jz—m;[ﬁp'i'(m#o-'l)] = (mpo —1)7, (2.7)

where 7 = a in Case (i) and ¥ = r; in Case (ii). Here jn », is the n,th radial

node of the Bessel function J,,(r).
Jm'(]’m,n,) = 0, jl,l =3.83.

We emphasize that these results are for a compressible plasma.*? The various
terms can be identified as the pressure-gradient driving term, a parallel current
driving term, and the stabilizing line-bending term. We can distinguish two

possible orderings for f, and (muo —1);

(i) For (mpo —1) ~ € the current driving term in the bracket can be ne-
glected. The growth rate will be of order ¢, as distinguished from the

kink mode growth rate which is of order €.

(ii) For (muo — 1) ~ € there will be a stabilizing contribution from the
parallel current term for go > m/n. As we will see, the sign of this term

1s reversed in toroidal geometry.



Chapter 3

Toroidal Equilibrium

3.1 Flux Coordinates

We assume that the equilibrium is adequately described by contin-
uously nested flux-surfaces. Cylindrical coordinates (R,(,Z) are introduced
with the Z axis lying along the axis of symmetry of the torus (Fig.11). Toroidal
symmetry is then simply expressed by /0( = 0. The magnetic field can be
separated into its components in the toroidal direction, B, and in the poloidal
plane, B,:

' B=B,+B;.

In terms of the Magnetic vector Potential these are °
B, = VxA,,
B, = VA xV(.

Applying Stokes’ Theorem to a ribbon bounded by the magnetic axis and a
major circle, one concludes that A; is simply 1/27 times the poloidal flux F'.
Clearly magnetic surfaces are surfaces of constant F. From the equilibrium

condition,

VP=JxB, C(3.0)

we see that B-V P = 0. For sheared magnetic fields,this implies that P = P(F).

The equilibrium equation then requires that J lie in the flux surfaces. Applying

26
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Stokes’ theorem to the current flux through the surface defined above yields
2nRB,= [dS-J.

Since J - VF = 0 the right hand side integral must be a flux function. The

toroidal field may thus be written
B, = -T(F)V(, (3.2)

where use has been made of |V(|?> = R~2. Note that T'(F) is —1/27 times the

poloidal current flux.

The eigenmode equations are most conveniently expressed in a flux
coordinate system for which the magnetic field lines are straight . Let this
coordinate system be (F,8,¢) where 6 is a poloidal angle variable oriented

similarly to its cylindrical analog and ¢ = —( is chosen so as to preserve the

&

Fig.11: Flux Coordinate System

right-handedness of the system (Fig.7).

-
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The angle # is determined by requiring that the magnetic field take

the form

B=gF)VFxV0—VFxVp. (3.3)

Multiplying both sides of this equation by Vo, this is seen to imply

(VF x V0) -V = % . - (3.4)

The angle 6 is then determined by multiplying Eq.(3.3) by V6 and using
Eq.(3.4). After integration we find

- Em

where the integral is to be carried out along the cross section of the flux surface
F in the poloidal plane. A formula for the safety factor ¢ is now obtained by

requiring 6 to have period 2m:

T(F)
- jé IBpl — - (3.5)

To facilitate comparison with the cylindrical limit it is helpful to replace the

poloidal flux coordinate F by a minor radius coordinate r defined by?”
F g
2 =2R, [ dF (—) : (3.6)
0 T , ‘

where Ry is the major radius of the Magnetic axis. The jacobian for the system

is then

[(Vr x V) V]!

l

V9

R?r
= —. 3.7
A (3.7)
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3.2 Grad-Shafranov Equation

We now examine the consequences of the equilibrium condition,
Eq.(3.1). To do this we must calculate the current J. This is most easily
accomplished by introducing tensor notation. Covariant basis vectors are de-

fined for a general coordinate system (é1,&2,&3) by
e =V¢ fori=1,2,3.
The contravariant basis is given by
e = e,-jk\/g_(ej X ek) ,

where €* is the usual Kronecker symbol:

) 1 if (zjk) is an even permutation of (1,2, 3)
€* = ¢ ={ —1 if (ijk) is an odd permutation of (1,2, 3)
0 otherwise

The covariant components of a vector A are then given by
Ai=A e,

and the contravariant components by
Al=A €.

Note that the basis vectors satisfy
e;-el =68,

where

§ 1 ifi=j

: 0 ifezj

Thus, A - B is given by

A -B=A'B,= A;B',
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where the summation over repeated indices convention has been adopted. The

vector product

W=AxDEB

has contravariant components

Wi = g-1/26ijkAjBk
and covariant components

W; = g"/%¢;;, AT B .

The contravariant components of B are thus simply given by

B =0,
T
6—__..-...
B = &
T
B‘P = -]'_2-2-

The covariant components of the magnetic field are more complicated. They

are given by
B, = —ﬁR-zg(vr-ve),
By = VRS (vr.wr),
B, = T.

The equilibrium current is now written in terms of its contravariant components

as

J=1/g (V0 x Vo+ Vo x Vr+J°Vr x V§) .



31

These components can be calculated by applying the V x operator to the co-

variant expression of B,
B=B,Vr+ BV0+ B,Voyp ,
and using the identities

Vx(fV) = VfxV+4+fVxV,
Vx(Vf)y = 0.

One finds
: 0B 0B
S V5 N Bt At A
g ! ( 96 39@) ’

0B, 0B
6 _— -2 27T ¥
J I (390 or ) ’

J¢ = g2 (686 - 8B,> :

o 6

Substituting the expressions found above for the covariant components of B

vields
J =0,
J! = _Ld_T
qR2dF’

J? = "\;Tg_ {_gr- (ﬁR—Z%?Vr . Vr) + -8%- (ﬁR_zg—Vr -'V0>}

V. (R2VF).

I

We now return to the equilibrium equation. Its only nontrivial component is

along the covariant basis vector e, = Vr:

%; = /g (J*B* — J*B’) ,_



or

2P _
dF

Substituting the contravariant components of J found above yields the Grad-

(q7° —J*) .

Shafranov equation
A*F = R*V(R*VF)

dT dP) 58)

— — —_— 2_.__.
= (TdF+R aF

Note that the Grad Shafranov equation depends on the geometry of the flux
surfaces through the metric coefficients (Vr-V§) and |Vr|?. These coefficients

also appear in the energy principle. They are evaluated in the next section.

3.3 Calculation of the Metric Coeflicients

We nowiconsider the solution of the Grad-Shafranov equation in the
large aspect ratio limit. We will show that when the plasma is bounded by a
pefectly conducting casing of circular cross section, the flux surfaces are circu-
lar to first order in the inverse aspect ratio. The center of these flux surfaces
is continuously shifted towards the outside of the torus as one approaches the
magnetic axis. The resulting equilibria are referred to as Shafranov shifted-
circle equilibria. In modern tokamaks the highly conducting casing is replaced
by the equivalent image currents flowing in external coils. Of course this equiv-
alence only holds with regards to equilibrium: The stability of the plasma will
generally depend on the precise form of the boundary conditions, unless the
motion is localized within the plasma. This is the case during the e;irly stages

of the sawtooth crash.

The derivation of the properties of Shafranov equilibria is usually done

by postulating the shifted-circle geometry at the outset and solving for the shift
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function A(r) so as to satis{ly the equilibrium equation. We will instead refrain
from making any ad hoc assumptions about the geometry and derive all the
results constructively. This makes the extension of the calculation to second
order more transparent. It also shows clearly how the circularity assumption

can be relaxed. A similar equilibrium analysis has been given by Greene et. al“3.

Following Shafranov and Yurchenko!, a toroidal coordinate system

(p,w, ) is introduced by

R = R.+pcosw,

i

z psinw , (3.9)

where 12, is the major radius of the center of the vacuum vessel. The coordinates

p and w are related to the true flux coordinates r and @ by
p = p(r,0)

w = w(r,0).

To lowest order this is the identity transformation, p = r and w = .
At this order the Grad-Shafranov equation reduces to the cylindrical equilib-

rium equation:

1dF d dF dT G dP
HF%GUﬁ’”(%F+%EJ' (3.10)

This equation can be used to determine either one of the three variables F, T,

or P from the other two. Note that

qQ\r)= —7m=, 311)
q(r) Ro% (
so that ¢ ~ 1 implies
1dF T
S5 = 0()
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The “low-beta” ordering results when all the terms in the equilibrium equation,

Eq.(3.10), are taken to be of similar magnitude. Thus,

1dl _ (L)Z

Tdr  ~“‘Ry ’
and

Rg _ T \2

T2 = O(E) .

The first order corrections to the flux coordinate tranformation can

be presented as Fourier series in w:

p = 4+ ar)cosld,
1=0

w = 0§+ b(r)sinif, (3.12)
I=1

where we have assumed symmetry about the equatorial plane.

The metric is calculated in terms of these coefficients in the following
way: using Eq. (3.12) in Eq. (3.9) and taking the gradient of R and Z yields a

linear relation between the covariant basis vectors of the two coordinate systems

(R, Z) and (r, ).
(35):1\4-(5;), (3.13)

where the matrix M is given by

oR  oR -
or a6

M= ( ) . : (3.14)
8z 9z
or &6

The matrix M is now decomposed into a product of two matrices representing
the transformations from the coordinate system (R, Z) to (p,w) and from (p, w)
to (r,8). .

M=0-N,
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where
0= ( cosw —sinw ) " (3.15)
sinw  cosw
is an orthogonal matrix:
ot = 071,
det(0) = 1.

The matrix N is given by
' o e
T 2]
N=( : 8") . (3.16)
Por Pai
Thus, det (M) = det (N) and M~ = N=* . O*. To invert the matrix M note

that its determinant is the jacobian of the poloidal coordinate transformation.

It is related to the jacobian of the full flux coordinate system, given in Eq. (3.7),

by
R,Z\ R,(,Z
J<r’9> B J("',ea >
RCZ\ . (X,Y,Z
- J(X,Y,Z)J<r,0,tp)
Rr
T

This relation can be used to solve for the b; in terms of the a; by calculating

(3.17)

det (M) = det (N) explicitly and setting it equal to the expression above. Note
that to lowest order the magnetic axis is located in the center of the conducting
vessel, (Ro — R.)/Ro = O(a/Ry)*. Thus |

2
% =r+ TEcosﬂ + O(a/Ro)*
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We find

day 1
W= Lo (_gc;_l+;a1) . (3.18)

da, 1
b = — (E; + ;a;) yforl#£1. (3.19)

The inverse of N is now

ple 22
T
N1zt . (3.20)
Rr bw  Bp
—p-a—r or
The metric coefficients,
gi; =€ €5,
are then readily derived, given |[VR|?=|VZ|?=1and VR-VZ = 0:
Vr
G = (V9>®(vr Vo)
_ wn-1.p-1. [ VR -1t -1t
= N.0 ‘(vz ®( VR vz).0".N
= N*'.0'.1.07V.N7V
= N-1.N7¥, (3.21)

The corrections to the metric coefficents are clearly linear functions of the b and
their first derivatives, but more importantly there is a one to one correspon-
dence between Fourier harmonics of the coordinate transformation between
(p,w) and (r,6) and the harmonics of the metric coefficients. It is to bring for-
ward this correspondence that we decomposed the matrix M into the product

of O and N. Consider now the first order Grad-Shafranov equation:

186 ( dF 8 (dF | dP\
10 (4F o), 0 (4F o)) _ _ ap
ror (’" dr g”) * 58 (dr 979) 2Ror cos § (dF) ‘
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After Fourier decomposition this becomes a set of second order differential
equations for the coeflicients a;. These equations are all homogeneous except
for I = 1. If the conducting wall is strictly circular the boundary conditions are
that a; = 0 at r = 0 as well as at the wall (r = a). The general solution is thus
a; =0, for all [ # 1. To see that this implies circularity of the flux surfaces we
replace p and w in Eq. (3.9), keeping only lowest order terms and dropping the

indices:
R—R. = rcosf+a—(a+rb)sin®d+0(a/Ro)?,
Z = rsinf+ (a+rb)sinfcosf+ O(a/Rp)* .
In terms of the angle wy defined by
wo =6+ %(a-}-rb)siné ,
this is
R—R, = rcoswy—a+O(a/R)?, (3.22)
Z = rsinwy+ O(a/Ro)* . (3.23)

Eqgs. (3.22) and (3.23) are easily recognized as the equations for a circle of
radius r and center K. + a . Since the conducting shell is only fictitious it is
conventional to write Eq. (3.22) in terms of the major radius of the magnetic
axis Ro. The distance between the center of the flux surface r and the magnetic

axis is then denoted by A:
R—Ry = rcoswy—A+0(e)?,

Z = rsinwy+ 0(e)?, (3.24)
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The shift-A(r) is related to a, and the magnetic axis shift A; = Ry — R, by:

A=At—'a1

Note that the metric may easily be generalized to the case of a slightly
shaﬁed conducting wall by including additional harmonics in the flux coordi-
nate transformation, with coeflicients determined by solving the above equation
with boundary condition a; =cst. One may thus consider the effect of small

ellipticity or triangularity by including ! = 2 and [ = 3 harmonics, respectively.

In order to derive the lowest order mode equations, it is necessary to
calculate the metric to second order in the inverse aspect ratio. Fortunately,
for reasons that will become clear in the next chapter, only the [ = 0 harmonic
is needed at second order. The calculation goes essentially as sketched above
except for the addition of a second order term ¢(r) in the flux coordinate

transformation:
p = r+a(r)cosf+¢(r),
w = 6+b(r)sinf . (3.25)

This term is determined by setting the jacobian equal to rR/Ry. Introducing

the notation £ = 1/R, one finds that to second order accuracy,

krR=r+ krcosfd + %kr(a —rb—24,)

and

I
det N =1+ ((ra)’ + rb) cosb + (rc + %az + %rab) ,

where the primes denote differentiation with respect to r. We repeat for em-

phasis that only the [ = 0 harmonic of the second order term is retained in this
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and the following formulas. Setting these equal, we recover Eq. (3.18) and an

equation determining ¢ in terms of a:

1
rc= zll-az + Eraa' - —;—kzr‘1 - -;—krzAt . (3.26)
we find for N
1+acosf+¢ —asind
= . (3.27)
b sin 0 r+ (a+rb)cosf + c+ 1ab

Its inverse is given by

N = ZH

1 khin hi2 )
= = , 3.28
r ( hai Ry ( )

el

where
hyy = r+(a+rb—kr.2)cos€—%kr(a+rb)+c
1, 1,5 1,
+ 2ab—}— 2k - zkr(a rb—24,),

hi, = asinf,

hyy = —rb'sinf,
! / 1 !

hoy = 1+(a—kr)cos€+c~—§kra

1 1
+-2—k2r2 - Ek(a —rb-24,)

Eliminating b and ¢ with Eqs. (3.16) and (3.24), respectively, this becomes:

2
hyy, = r—ra cosf— -;-kra - %— + %kzrs + %krAt ,

hi; = asinf,
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hyy = — (kr—-ra"—a'+;> sinf ,

14 (a—kr)cosf+ —l—-aa' - —1--a2 + la'2

h
22 2r 4r2 2

1 1 5
+§aa” —kra' — ka + EkAt + gkzr"’ .
The metric is now given by (1/r?)HH*%:

(Vr)? = 1-2d'cosf+ %(cz')2 —ka+ %kzr2 + kA,
(rVv8.-Vr) = (rd"+ra’ —kr)siné,
(rv6)? = 1+2(a’ —kr)cosf+ %T'Z(a”)2 +2(a")? 4+ rd'd"
—4kra' —ka + kA, + %k%z — kr?d"
or in terms of the shift from the magnetic axis A(r):
(Vr)? = 1424cosf+ %(A’)2 + kA + %kzrz , " (3.29)
(rv8.Vr) = —(rA"+1r4A" —kr)sinf, (3.30)
(rV6) = 1—2(A + kr)cosf + %rz(A")z + 247y
+ rA'A" 4 dkrA + KA+ kA + gkzrz + kr?a” . (3.31)

The shift A can now be calculated from the Grad-Shafranov equation
by substituting the above metric coefficients. Note that these are only needed

to first order in the equilibrium equation.

2 2 ! 2 3
Pl o (LY Ty R
q2A +3q2A +2q (q) A Z- 21‘T2P
This equation can be integrated, giving -
dA(r)

dr ég ' (ﬂn(’”) + %M?‘)) ; (3.32)
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where
__2R3¢* (7 .,dp(fF) .
By(r) = ~E2rt Jo U dar, (3.33)
2 . 23
W) = L[ g (3.34)

rt Jo ¢*(F)
The quantity By is the toroidal magnetic field on axis:

T
BO::R_:))'

This completes the calculation of the metric. These results will be used in
the next chapter to derive explicit linear eigenmode equations for a Shafranov
equilibrium with arbitrary shear. Note that the magnitude of the shear has no
qualitative effect on the equilibrium: It is only for stability considerations that

low shear requires particular attention.




Chapter 4

Mode Equations

4.1 Introduction

The cylindrical analysis owes its simplicity to its high degree of sym-
metry, which allows the reduction of the linearized stability problem to a second
order ordinary differential equation similar to the Sturm-Liouville equation. In
toroidal geometry the poloidal symmetry is lost. Toroidal symmetry can still
be invoked to reduce the problem to a system of two partial differential equa-
tions in the two variables r, 6 4°. In order to study this system analytically one

must use approximate methods. The methods which can be applied fall under

two categories:

(i) WKB techniques, based on the assumption of large toroidal mode num-
ber. This approach provides information on the behavior of the discrete
spectrum near its accumulation points*6~%®, Eigenmodes found by this
method are referred to as Mercier or Ballooning modes according to their
degree of lécalization. The ballooning representation was discovered al-
most simultaneously by several authors?®=5!. Note that the applicability
of WKB techniques to the analysis of modes which vary slowly along the
magnetic field lines is not clear. The proof that perturbations can in fact
be constructed which simultaneously satisfy the conflicting requirements

of periodicity, small parallel and large perpendicular wavenumber, and

42
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that the WKB expansion can be carried out to all orders, has been given

by Dewar and Glasser®2,

(i) Large aspect ratio asymptotic expansions: For large aspect ratio tori, the
geometry of the equilibrium becomes locally similar to that of a cylinder.
The eigenmode equations thus have approximate poloidal. symmetry and
the poloidal harmonics are decoupled at lowest order. The problem can
thus be reduced to a set of coupled ordinary differential equations for
the various harmonics. Note that although the curvature is only weakly
perturbed by large aspect-ratio toroidal corrections, the stability proper- |
ties are strongly affected. In fact, the eigenvalues and eigenmodes for the
toroidal problem are generally quite different from those of the equivalent

cylindrical problem, the only exception being for free-boundary modes?®.

We will restrict attention to equilibria such that the Mercier criterion
is satisfied, i.e. such that high-n modes are stable, and adopt the second

approach.

4.2 Variational Formulation

.In this section we expand the energy principle®, modified by the
inclusion of the kinetic energy, in powers of the inverse aspect ratio. The
eigenmode equations are then derived by variation of the linearized energy
with respect to the displacement £. It is shown that for the Shafranov geometry
introduced above the problem reduces to a system of two coupled second order
differential equations for the m = ng and m = ng + 1 poloidal harmonics of
the radial components of the displacement. We will refrain from muaking any

assumptions as to the magnitude of the shear. This will enable us to obtain
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general equations containing the finite shear equations of Bussac et al. as a
limiting case. We will then discuss the various low shear orderings and solve the

mode equation for n=1 and for the more realistic ordering rq’ ~ (¢ — 1) ~ e.

5

Similar derivations have been carried out by Zakharov®® in flux coordinates

but for finite shear only, and by Crew and Ramos® for general shear but in

Shafranov coordinates.

The total energy of the perturbed plasma is given by
0FE = §W + 6K

where §W is the potential energy and § K the kinetic energy of the perturbation,

given respectively by
_ 1 2 * 2 * :
W = 5 [dar {|QP+3-(6x Q)+ TPV &P +(&"- VP)(V &)} ,
5K = o [drplel, (4.1)
where :
Q=Vx(£xB), (4.2)

and I is the ratio of specific heats. The magnetic differential operator and the

volume element in flux coordinates are given by

T (16 @ R
F.V_.EE<E-5§+-6—(;), dT_Erdrdﬁdw. (4.3)

The fluid displacement & is decomposed as follows:

E=¢,+¢B/B

such that

£, - Vp=0.



The poloidal components of the displacement are defined by
= (T/To) Ep . V’f‘ s

§o = (T/Tp) €, - vV
The poloidal displacement is given in terms of these components by

&, = 22 (6er + Eoes)

Note that &,, £y are not the covariant components. As a first step to calculating

the perturbed magnetic field Q we calculate the vector product
Ty T
ExXB=— (ﬁer —ré VO + —E,.Vap) .
Ro q

Taking the curl of this expression, we find the contravariant components of Q

. Ty (10 3}
Q" = "2 (_q-@ + %) &y
Q° = _h [1.‘1 ré\ _ 10
N R?|rdr\ q rdp|’
o 10 1559
Q - R2 l: ( ér) 60] :

(4.4)
The second term in the potential energy integral is now given by

J-(£xQ7)

\/__q-ﬁijk'-']iéij‘ )
dP . R
— \/gﬁ <_£TQ€ + 66‘@1‘ )

T dT |
L Lt o) vee).

_ TEf1dT [, .d (1 9, 104
—ﬁ{f“f['ff' (q)”&( ae)
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The last term is

. _T:(1dP[e 0 0
(& -vP)V e—-é;{RodF[qar( 5)+s,00( @)]}. (5)
The total energy of the perturbation can now be written
E = §W,+ Wy + Wy +4°N © (4.6)
where
2
N = BO/ 1512< > rdrdode, p=-L (4.7)
Po
W, = lfrp V-£E+B-V 5” rdrd@dgo (4.8)
2 P Ro
19(rg,) | 19 2
/ = _RB2? 4.0)
W, = BRO/ dr df deo ' S +r00 (4.9)

_ 1B2 6£r 1667‘ Té.'r 859

§W, = QRO/rdrdﬁdgo{. V&(a 89)+v (01( ) 8(,9)
T o, d |

+ Rog—F— €x ] Td_r (1> +59(a +——>f + & <— é%) ér:l

dP [18 (R2fE[r? oer ¢, ~
s np iy (T T (e raa) |} e

Here By = Ty/Ro and 4 is defined as in Ch. 2: 4 = y74.
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The large aspect-ratio expansion of the energy can be obtained by
straight{forward expansion of the coefficients in these expressions. We define ¢
by € = na/Ry so that the cylindrical model may be recovered by taking the
limit n — oo, € — k.a. After rescaling r : r/a — r we rewrite the metric in
terms of the normalized shift § defined by § = RoA/a? and in terms of the

subsidiary ble

dé

:E’

so as to make the scalings with the small parameter ¢/n explicit. Thus these

o

new variables are given by

(1(5(7’) = Q‘(T’) — (‘371(7,) + ;)_[1(7)> .p (411)

dr 2

The metric is given in terms of these normalised variables by

S 32 ¢ €\l 5 3, :
(V]‘) = 1—2<E)Q‘COSG+ (;{) |::)-0. +ZT +6], (412)

(90 = 1+2(Z)(a+r)cos0
62.2 Y 9 2 1,2,/2
<ﬁ) [2& -|—47O.—|—ZT‘ +§7 «
+ra’a + rfa’ + 5] (4.13)
(rV0 - Vr) = (%) [ra’ + a + r]siné. (4.14)

The energy can now be expanded in a power series of ¢
2 . ; | R -
E= 6_25“:, -+ (SI’VO + ':,"J\TO + E(SH]T + 62 (5”20 + '7—?—2'51'1’21") . (410)
n ,

The linearized equations of motion can be obtained variationally from the La-

grangian. After substituting the assumed exponential time dependence of the
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eigenmode, the eigenmode equations are given by minimizing the energy given
in Eq. (4.6). The energy is a symmetric bilinear form with respect to the norm
N:

| E(¢,n) = E(n,€) -
Note that the decomposition of the energy introduced in Eq. (4.6) preserves
the symmetry property of E for each of its terms. It is often useful to think of
the energy in terms of the inner product defined in terms of the norm N, and

a symmetric operator F:
N(n) = <&nm>,

6W(En) = <&Fn>=<F&n> (4.16)

This force operator F' is often improperly described as self-adjoint. In
fact the correct mathematical definition of self-adjointness requires the domains
of an operator and its adjoint to be identical. Demonstration of self-adjointness
thus involves rather complicated functional-analytic considerations. This is not
a mathematical fine point: self-adjointness has real physical consequences, such
as completeness of the eigenfunction decomposition. This has bearing on such
important questions as the sufficiency of the energy principle for magnetohydro-
dynamic stability. In fact it is unlikely that a self-adjoint extension of the force
operator can be found for a toroidal plasma. Fortunately a demonstration of
the sufficiency of the energy principle which does not rely on the completeness

of the eigenfunction decomposition has been given by Laval et. al®®.

We proceed by substituting the expansion

{= f: ST W () exp {i(m0 — np)} (4.17)

k=0 m
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into (4.6) and minimize order by order. Note that the symmetry of F' implies
that only even-order minimizations will be necessary. For arbitrary ¢, i.e.
before any minimizations have been carried out, the relative ordering of the

various terms in the energy principle is as follows:
§W, ~ €2, 81 ~6Wy~ N ~ 0.

The lowest order minimization involves a perfect square. The minimum value

61V, = 0 is reached for

o(re®) el ‘
(ai )+ 22 =0. (4.18)

Note that this is precisely the leading order term in §W,, so that 61, will be
of order €? for displacements which satisfy Eq. (4.18). The physical interpre-
tation of this result is that slow plasma dynamics must be area preserving in
‘the poloidal plane in. order to avoid the large restoring forces associated with

toroidal magnetic field compression.

4.3 Cylindrical Operator

The next order minimizations involve terms of order €®. At this order
the forces acting on the perturbation do not include the effects of toroidicity.
The force operator which results from variation of the energy functional is thus
identical to the cylindrical force operator. This operator is of considerable
importance: it plays a central role in ideal as well as resistive stability; in the
calculation of nonlinear corrections to mode growth; and in the study of the
effects of noncircularity of the plasma cross-section. We shall derive its form

variationally, for general m and n.

In addition to the work done by the cylinder-like forces on the low-

est order perturbation £(®, the e®-order terms include terms representing the
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compressional energy associated with the order e and € corrections to the

eigenmode . These terms can be written symbolically
25m/(~2)(§(0), 5(2)) + 5w(—2)(§(1)’£(1)) + 51,1/(9)(5(0),6(0)) )

One of the terms at this order, §W,(£(9,£®) is clearly zero whenever £©) sat-
isfies the incompressibility property, Eq. (4.18). The remaining terms are for-
mally functionals of 550),&50), ¢ and 5,51). However the minimization condition
found above implies that £ and §§0) are not independent. Thus 550) should
be eliminated in favor of £ before minimizing. The first order displacements
551),5(9) appear only in §W, and minimization with respect to these terms is

thus achieved for

1) 9 (1)
(fgm) + gzm =0Vm . (4.19)

The only remaining nonzero terms in E©) are now §W; and N. After elimina-

tion of 5(50) , 6Wy becomes:

Wy =
n?B?
5T, /rdr{

RydT | R 0P
n dF nly dF

2
(mp —1)%6Y" + ((mu 1);‘{(25 D, 55‘?%?) }

P23 o (_—L #> 0 d(rén)
" dr ™m T dr

where 4 = 2. The Zeroth order Grad-Shafranov equation, Eq. (3.10),
dTl’ 1d [ dF
Togr t ROdF - Trdr (’“E)
To |2 d (1
= —— |—4r— |- 4.20
o Lz T (M (4-20)

can be used to simplify 6W,. One finds

§W, = (4.21)
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n®B?
2m2Ro

/ dr { [(m2 —D(mp —1)* 4+ 2(1 — m?p?) - ZmZTp%{-} rffg)z
d(e£”) o (4D
— (mp —1)°r o

after integration by parts this becomes

(1 —m2p2)r?

22
SW, = n'Tg / dr {(m2 —1)(mp — 1)27"{5‘1))2

m2R3

. de© 2
+(mp —1)%r® 2;1 (4.22)

We introduce an inner product defined by

202
< >= ’;500 [ ). . (4.23)

The bilinear form §W(© can be written with this inner product in terms of a

symmetric operator L, as
SWO(€,7) =< &, Ly >=< Lmé,n > . (4.24)

The operator Ly, is easily found by integration by parts of Eq. (4.22).

L = 4 [(,u - i>2 r3 Z—é] —(m? -1) (,u — %)27{ . (4.25)

dr m r

The operator L., is the cylindrical force-operator discussed at the beginning
of this section. It has a regular singular point at the origin with characteristic
exponents m—1 and —m —1, and at the mode rational surfaces, where mu =1,
with characteristic exponents 0 and 1. For m=1, it can readily be inverted by
simple quadratures, but inverting it for m # 1 can only be done for certain
special current profiles. An important case is that of constant current profiles,

for which p is constant, so that L,, is then an Euler operator: that is, it is
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homogeneous in r. It can then also be inverted by simple quadratures. A more
complicated but still important case is that of the power-law current profile for

which L,, is a hypergeometric operator.

The identity of the energy expansions for cylindrical and toroidal ge-
ometries up to this order justifies the use of the cylindrical model to draw
conclusions as to the nature of the possible instabilities. In particular the con-
clusion that the unstable modes are characterized by rigid shift displacements
for sheared equilibria and cellular convection flows within low shear regions is
also valid in toroidal geometry. However, at ‘this order the appropriate dis-
placements are only marginally stable: stability is ultimately determined by
the e2-term in the energy expansion. This implies that 4 is at most of order .
This observation justifies delaying consideration of the kinetic energy terms

until the order €2 minimizations are undertaken.

In this chapter we are primarily interested in comparing the finite
shear analysis of Bussac et. al to the low shear case. Since finite shear equilibria
are always stable to m # 1 perturbations we will henceforth restrict attention
to the m = 1 case. The results of the minimizations carried out so far are

summarized by:

zlfl; (rfm) + szgf,z =0, k=0,1,Ym (4.26)
and ,
n’ B3 . (46X
oWo = >, /rd'r(p -1) (rT , (4.27)

4.4 Algebraic Minimizations

We now consider the order € terms in the energy. After eliminating

§‘{), §§), and ér(é) with Eq. (4.18), the €®-order term can be expressed as a
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functional of £{9, &0 €2, féf), 6,(,3), and £|(|g). All of these variables except

fﬁ?) and §,(.32) can be eliminated through algebraic minimizations. By this it is

meant that the energy can be minimized with respect to these variables without
solving a differential equation. This occurs when a variable n appears in the

energy functional in the form
E = [ar (ar*+0BlE)+¢Bh)
= <nan>+4+<n,BE>+<E B>,

where a is a simple multiplicative coefficient and B is a linear differential op-

erator. The energy is then minimized by
1
n=—-DB[¢
Bl
and the minimum value is

E = —/ dr <§]B[§]]2> .

We now carry out the three algebraic minimizations in turn. The
minimization with respect to £(3) is the simplest, being identical to that in the

cvlindrical case. The relevant terms are
5”!(-2)(5(?), 5(2)) + 25].1;(0)(6(2), 5(0)) '

We define the second-order perpendicular-divergence term X by

ey
Y= — (((7(1;1 ) + Zféf))

so that
(511,7(—2)(5(.2)’ 5(2)) — 625”;(5(2), 5(2))

n?B} / J
= T
2Ry

X2

P




o4

The term linear in £(?) can be separated into a X term and a gfj’ term as follows
SO, £0) =< x, BER > + < €, 1065 >

where B and L are linear differential operators. If X is taken to be zero the
second term in this equation should clearly reduce to the same bilinear form
which was found above for the order €® energy.The operator L(®) must therefore

be the zeroth order cylindrical operator. This implies that
0
L(D)éﬁl) =0 )

so that only terms in X appear in the energy at this order. The operator B is
then found most expediently by setting T(f)‘ =0 and {éi)* =1X" in 6. The
actual value of fiﬁ)" is of course determined by higher order minimizations. One.

finds for B

BED) = |gne) — o)

d
Ro dT £(0) R3dP ©)
+ n C]F [ (iu’ - 1)$Tl ] + 7-T CZF 71

The minimization yields

2 e ld o ey, kISP
x= = =]+ 2L - g + B ol

where the equilibrium equation has been used to eliminate the term dT/dF.

The minimum energy attained for this value of X is

[5].1/(—2)(5(2)’5(2)) + 26T'V(0)(E(2),f(o))]min

n®Bg 2 (©)
= ~3nR, /drr {[((;/ — 1)réy)

1
”

+ () (- 1)§r(?)]

KR AP o)
nT dF°™
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We next minimize with respect to £}y, that is, the first order poloidal
component of the m = 0 harmonic. Note that first order incompressibility

im]I)]ies that the m = 0 harmonic of the radial displacement, ﬁié) is zero.

Before proceeding with the minimizations we introduce the following

compact notation for the various terms in the metric coeflicients:

(Vr)2 = 142 <§> acosl + <§>2‘f

2
1-{—9( >bco<0+< > g

(rv0-Vr) = <£> csin 0

n

(rvo0)?

We write
N = inély
This variable appears quadratically in §1¥},

2
§Wo(n,n) = %%/rdr il (4.28)

and linearly in the term

B2

Wir(en) = 5 [ rdr{=Z0e= D+ F(rue) - (7¢))
Rdp ) .
AT dF \

The minimum is thus attained for

Recall that the first order equilibrium Grad-Shafranov equation implies that

RydP 1, a
L 9 )2 — 30
B dP L+ Bt 22— ) (4.30)
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so that,replacing a and b by their value, 7 is given by
1
n=alp—1ré+ur— g(ra" +3a+ 1)) (4.31)

and tlie minimum is

2

2
a(p—1)ré + [pr - %(_7'&' +3a+ 1)) , (4.32)

1& rdr

Vo) = 55

4.5 Minimization With Respect To Parallel Displace-
ment

We now consider the minimization of the parallel displacement term

€. The divergence which appears in 613 can be expanded as follows:

B

\

V.€ = V-EP+B'V<§H>
= 2§, VR/R-§, - VT/T
R? T
+iey (mu — 1)+ ?V : <-R—2£p> .

The last term is of order €2 by virtue of previous minimizations. The second
term, involving the logarithmic gradient of T, is clearly also of order ¢2. The

remaining terms are all of order e:
V. £=26, - VR/R +ic > (mp —1)¢+ O(€%)

so that 614, is

2

m

n?B2 2 ,
5 Wy = 2 /rdr dOTB|=¢, - VR+iY (mpu —1)g| ,
J¥ a¥s} n .

where the toroidal £ has been introduced

P

f=2m
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The term ), also appears in the kinetic energy,

) n?B? 55
4N = O/Nb do p5* [Z [§|||2+|5;2>|2} .

2R,

The term £, - VR is given explicitly by

26, VR = (=69 + (rel)) e 1 (69 4 (rely) e .
The term to be minimized can be written symbolically as
i1y + g + R?igy*
where
f = (mp-1),

)
g = —€ VR,
n

An2
o= 2
) T3
The minimum is reached for
. Iy
76” - f2 + 122
1 (9 + (reY) , for m = 0

I'B(1-2u 0 0
Nty (67 + (r6)) form =2

The minimum value associated with these terms is

i . : 2p? ) .
5H/d + A/2]\'7” = 7’;]‘2 - rdr Fﬁ (7'.f£|]min) + 9)2 + ]22(5“7111'71)2)
21t
n?B? h?

- ,)RO/ drﬂf“r]?
TR 1,00 |, p(0)y)2
= 9120/ rdr “2+Fﬂ( + (63
rBp3?
P+ I'B(1 —2p)?

. 5 (6 — (re@YY’
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We will see in the following sections that the kinetic energy term only plays a
role in the resonant region, where p — 1 = O(e). This is the case both for low
shear and finite shear systems. This allows us to replace p by one in the above
expression:
oy _ B3 2 2T (0 :
o1y + 72]\]| = 2—]%)0/ rdr P7’27T3‘_'— (( £1))2 + (7'(§£1))I)2) :

This term may be added to the kinetic energy of the perpendicular motion,

2 2
n* B

2R,

AN, =

[ it (€2 + (D)

to obtain the total kinetic energy, extremized over parallel compressional mo-

tion,
W, + 42N =

n?B? ven [(PREH(1+2/0TB v ,
S [ rar e, (EEE G (04 ()

2Ry P2+ Ip
Note that we have not made any assumption of incompressibility. It is cus-
tomary when solving the mode equations to assume that mode growth is slow

compared to sound wave propagation, so that 4?/I'# < 1. This ordering ap-

plies, of course, close to marginal stability, but has more general validity. The

kinetic energy term is then

8§y + 42N =

2

2 A27’1,2.30 1A (0)\2 i (0) o .
(1 + ;1—2> 0l 5h, rdr p ((f,.] )2+ ((r€")) ) . (4.33)

4.6 Final Minimizations

We now approach the minimization with respect to terms which can-
Pl

not be eliminated algebraically. We first consider f,(.;). This term appears in
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the second order energy expansion in the following form:
SO D) Dy gD (e ¢y |

where the term quadratic in {,(;) is of course simply
s, ) =< €5, Lo[ely] >

To calculate the coupling energy 611~ m(ﬁﬂ ,f ) the {following relations are

used

m _ td
562 = 3uar (Tfrz),

(1)
066'2 — _:_l__(]_(rc(l)) .
ds 2dr o

The coupling energy 6U ({Tz) f,l ) is given by

P ) = T2 [ ar 2 - Dl - 172606y
+re/2)(n — 1)ED (1 = 1/2)rlyY
—re(p —1/2)[(e — 1)reRVER
+ral(s : e [(n = 1/2)r€yY
P{ER I (1 = 1/2)67)
+73( = 1)(EDY Ry

where p is defined by

pzﬁ[a (3_[_0“)_1} . (4.34)
2 7 Il
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Note that the term proportional to dT/dJ" does not contribute to the coupling
integral. Define the operator C(1)

PR, &) =< &7, CVIER) > (4:35)

Note that C) is not a symmetric operator. Its adjoint is found by integrating
by parts,

<, cME >=< cOMeRT R > (4.36)

One finds
COt = 2rb(p = 1)(1 = 1/2)6Y0 = [(re/2) (1 = 1)ER) (1 = 1/2)r
—re(p = 1/2)[(1n = DréR) = {ral(p = Dred) Y (e — 1/2)r
—(PED )3 (i = 1/2) + rp(p = 1)(ED)' .
After substitution of «, b, ¢ and p by their value in terms of a this becomes
CO = (= 1)(p = 1/2)ar®(€D)"
+ [2(p - 1'/2)/1/@ = (1/2)(k = 1/2)(1 — 1)(o’ — 3ar/r + 3)
—(p/4)(a’ + (3/r + 2/ p)a = 1)] (7))
— (e =1/2)(%a" + 3ra’ = 3a)r + (= 1/2)u'(2ra’ + 1)r?| €.

The minmization with respect to §£(1J) is accomplished in a sinular
fashion. However, it involves a plethora of terms, of which only a few actually
play a role in the final equations. For this reason we omit the details of the
algebra and simply list the results, along with a summary of the minimizations

performed until now. The results are:

: d 1 -
—ingl) = alp-1)r c€]7 {9(7‘0 +3a+7r)— T/L} ¢© (437
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‘ d !
miy) = =t [ = e = (%) (0 - 168
T CEA PR PR (4.39)
2 IS

. Tp
—277€|([?)) = [*),:,2 + ]‘\ﬂ {ﬁrl + _—( 6(0))} . (439)
L0 I'B2p —1) © _ 4

7.77§“-2 - P2+ I'B(2u — 1)2 &' — ( & ) (4.40)

where 3 = p/BZ. Minimization with respect to the remaining two variables -

finally yields the two coupled second order differential equations.

2L+ 1) =GP € = cWely (4.41)

Loty = e, (4.42)

Here the operators L, are the line-bending operators, T is the kinetic energy
operator, C1) is the toroidal coupling operator, and G is the driving term
containing the cylindrical coefficient g; as well as toroidal corrections. Gt is

the operator adjoint to C), defined by

/ dr f(r)C™M [g / dr g(r)CO [£(r)] . (4.43)

Explicitly,

d ? 5d , 1\* '
L€ = e { (;L - 77_1) zlvé:} - (7772 - 1) (,u - E) ré. (4.44)

The general expression for C1 is

1 d dé;
vt — _ = 3 _- — N Ay
nCl¢ = (/L 9) ar’— {(,u 1) = } + {(/z Dri'a

<

- % <;L - -]:-> (1 — 1)(7‘&/ —3a+3r) - ,41_#(7"&/ 1 8q— 7‘)}7‘2%6—]

P
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— {[(/L - %)27*3 <o'+ -;—)l}/ —3r (/L - %)2 (a+ %)}51, (4.45)

where we note that the coefficient of &; is simply —La(a+17/2). For g —1 ~ ¢,

the kinetic energy operator can be written

d | .. d . d ., .. .
Te = A (0, (4.46)
dr dr h
where )
¢ P+ (142072 T8
pVR+IB

When 4? <« I'f3, p = 1, this expression reduces to

_d 2\ .o 3d€ -

The operator GG can be written

L — 1 1 A
G = (1 — n—2> Ge + ;'L_zGT, (4.43)
. z de N
Gelr = = { = 1)7‘} ~{(r8,) + =D+ 3} &
+ {%(;z — 1) (u*r* (B, — 1))'} &, ‘ (4.49)

where the last (total derivative) coefficient of £; arises from our definition of

& = (T/To) € Vry
. _d 2. 3dG 1 2, 2 T 2 . r :
Grées = a{“’—”“? 7:}*{("'5) [ (a+3) +3<“+z>]

+ </12 — 1) 123 + g (7'20‘2 - 7*3a-)l }fl

+ {ZZ(-Z;— [(/L - 1%+ (;1.2 - 1) 7‘21/)}} €1, (4.50)
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where

o 1,
= —+-r‘=-94
U 2—!—47“

v = i [Sraa' + 30’ + 5ra + 31‘2] + % [;427'4 (B, — 1)]’

wo= % [raa’+3a2 —roz] .

Three asymptotic cases can now be distinguished, according to the

ordering of ¢ — 1 and TZ—Z:

(1) r%} ~ g—1 ~ 1 except in a singular layer of width ¢? where ¢g—1 ~ €2. This
“finite shear” case was treated by Bussac et al.?” for monotone ¢ profiles
and recently extended to more complicated profiles by Hastie et al.’® The
operators in Eqs.‘ (4.44)-(4.50) have been written in such a way that one

can easily recover these results.

(i1) r%’; ~ q¢—1 ~ ¢ In this “low sheajr” ordering.we recover the equations
of Ware and Haas.’” The instability is pressure-driven, including the Jl
contribution arising from the nonzero divergence of j; (Pfirsch-Schliiter

current).>8

(iii) 7"%;1 ~g—1~ €, B, ~ e For this “very low shear” ordering there appears

an additional driving term due to the divergenceless part of j;.>®

The free boundary stability problem for the “low shear” and “very low shear”
cases was studied by Frieman et al.,*® who corrected a small error in the co-
efficient of the current driving term reported in Ref. 58. Their analysis was
restricted to constant g profiles. We present the first complete fixed boundary

stability analysis of the “low shear” case for general ¢ profiles.



Chapter 5

Solution of the Mode Equations

5.1 Finite Shear Solution: The Toroidal Kink Mode

In this section we rederive the result of Bussac et. al. The most
important aspect of this result is the conclusion that there exists a critical
value of B, below which the m = 1 kink instability, and therefore all global ideal
modes, are stable. As discussed previously, the presence of shear stabilizes all
perturbations except the m = 1 kink, for which the lowest order perpendicular
eigen-displacement must take the form of a rigid shift of the plasma inside the
q = 1 surface. This condition can be expressed as

) {50 ,for r < rg

N = 5.1
' 0 ,forr>r (5:1)

where s denotes the radial position of the singular surface where ¢ = 1. The
singularity at the rational surface is resolved by inertia. We first consider the
solution of the sideband equation, Eq. (4.42). Substituting the expression given

above for the main mode harmonic, this equation takes the form

(& —1/2)2r3%¢) — 3(u — 1/2)%ré; =
o=y
-2 (e

64



65

inside the singular surface. Outside of the singular surface the equation is
homogeneous. Note that the right hand side has been written in such a way as

to make explicit a particular solution to this equation:
ézpart(‘r) = _(a + 7"/2) ‘ (5'2)

The general solution is given by the sum of this particular solution and of
a solution of the homogeneous equation chosen so as to satisfy the boundary
conditions as well as the jump conditions at the rational surface. The boundary
conditions are {; = 0 at the origin and either ¢, = 0 at the wall r = q, if there
is no ¢ = 2 rational surface within the plasma, or {; must be taken to be the

small solution at the ¢ = 2 surface,
£y(r)=0,at r=ry.

Let z_(r) be the solution which satisfies the boundary condition at the origin
and z4(r) be the solution which satisfies the right-hand side boundary con-
dition, be it at the wall or at the ¢ = 2 surface. Note that z_(r) and z,(r)
will then be non-zero throughout the plasma, and in particular at the rational
surface r;. Indeed, a zero inside the plasma would indicate instability of the
m = 2 kink*!, and we have seen in ch. 2 that this cannot occur. We may thus

normalize these solutions so that their value on the rational surface is unity:
z_(rs) =z4(rs) =1.

The solution of the sideband equation can be expressed in terms of these func-

tions as

(5.3)

r2

(1) —(a+71/2)é0 + c_x_(r) ,forr<r,
cyza(r) , for r > rg

The first jump conditions at the rational surface is that ¢; be continuous.

The second condition is found by integrating the sideband equation across the
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rational surface. One must thus require
{&) =0 (5.4)
@) = [ +32-1]6, (5.5)

s

where the brackets {-} denote the jump in quantities across the singular surface

{{}=¢&(rs+€) —&(rs —¢) .

Thlese conditions constitute a second order linear inhomogeneous system for

_(Q5+Ts/2)
[0 )e

Ts

the unknowns c_ and cy.

( v ) ( . )
S '
ay o c-

The determinant of this system is

- N Lo
det X =aya. —2_z, .

Following Bussac et. al we define the coefficients b and ¢ by

rs dT_ 1 .
b= T T (5:6)

rs dry 3 -
¢ 4 dr e + 4 (5.7)

The determinant is given in terms of these coefficients by

dotX = 2(14b—c) .

Ts

The solution is then
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Explicitly,
b s+
e = —(M”H)ﬁ(fﬂ +3/4)>rs£o, (5.9)
o (3/4 _i(ip;—s: 3/4)) o (5.10)

where s is defined by

n
Il
o\‘l]

n
ﬁl&.
« |3
S
2
~—

w
~—~
~

I~

]

|
—t
SNa—

1 1
= §l1(rs) —_ Z .

" The boundary layer analysis of the singular differential equation for the m = 1
mode amplitude now goes as follows. Near marginal stability, or for ¢ >~ 3, and

for n = 1, Eq. (4.41) takes the form

3 (Z&(‘(l))

{ . n
—— { (1 = 1)+ 3537 r } = GPED + Wy

dr

dr

It can immediately be integrated once to give

12 A22 .,Bdéi(ln_ g [0 (2)1+0) (1)1¢(1) .
((n=17+3p77]_o== [0 dr {GPIEYI+ CVIERT} . (1)

re—0
The right hand side is proportional to the (small) free energy available in the

bulk of the plasma for the kink:
r:=0
o =é [ dr& {GPEN+ CVER) (5.12)
0
The two terms on the right hand side are as follows:

re—0
[ ar eGP =
) re—0 1 2 9 , 1 2 3 r 2
o/o dr </L—§)7 ? (O'+§> + (a+§)

+£§%{23+3(ﬁp+s+£>2—3(ﬂp+s+%>} | (5.13)
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This integral is clearly continuous at the singular surface. It is not evident at
first that this should also the case for the second term since it involves second

derivatives of a function, éﬁz), which has a discontinuous first derivative. The

second term is evaluated as follows:
re—=0
[ arecWigl) = <R, 00l >
= <cMgdlen’ >
= < L2[€7(~12)]a 1(‘]2) >
2
re=0 1\? 2 dd;) (1)y2

The unknown solutions z_ and z4 can be eliminated from this integral in favor

of the constants ¢ and b by integration by parts. One finds

rs—0
L7 areac®iel)

re=0 2 9 \
o or oY e o]

_ele B[(1 +8)(Bp + 5) + $0l[By + 5 — 3
) 04 l+b—c

(5.14)

(4b+ 1)[3(1 —¢) —c(By + 9)][B, + s + ]
T 1+b—c )

The two right hand side terms in Eq. (5.12) may now be replaced by their
values given by Eq¢s. (5.13) and (5.14). One finds

rs—0
[ e {cfed+ciesh)

_ [8s(14b—¢)+9b(1 —c) — 24bc(B, + s) — 16c(b+ 1)(B, + 5)*. g2
B 16(1+ 0 —¢) >0
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The width of the singular layer is given by requiring that the inertial
term, proportional to 42, be comparable to the line bending term and to the
driving force:

20—1,?2 ~ (;61)2?.0 ~ 62

This condition is satisfied for
w ~ (/1)

Note that for u’ ~ € one has w ~ 1 and the boundary layer analysis is no longer
appropriate. This case will be considered in the next section. In this section

we assume i’ ~ 1, so that the ordering
,31,2 ~ (}1-/)2’102 ~ e-'-l

must apply. In the layer, variations in the right hand side can be neglected and
the equation can be integrated once again. Approximating (u — 1) by —rs¢’a

where @ = (r — r,)/r,, one finds

(0) W rsq'z st
= ————"  arctan | ———— c* .
T B ey T\ B ) T

Matching this solution to the outer solution yields an expression for the growth
rate

. mbliy
T (3p) 23y

melrs [ 8s(14+b—c¢)+ 90(1 —c) — 24be(By + ) — 16c(b+ 1)(3, + 3)2}
(3p)3¢' 16(1+b—c)

Note that this growth rate scales as the square of the pressure for large pres-

sures. The toroidal kink mode has been studied numerically by Wesson et. al®°,

and Sykes et. al®?.
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5.2 Low Shear Solution: The Quasi-Interchange Mode

For the cases of low or very low shear the mode equations can be

written

—B, + ﬁp) -;; (r°6) (5.15)

L (DI

We first remark that the cylindrical equations are recovered in the limit n — oo.
Setting n = 1 we integrate the second equation, assuming ¢; and {; are bounded

at the origin:

dé4 (r)

b= [+ =BG (817)

where e is an integration constant. Thus (5.15) becomes

L 2 | azx2] .39 13 s, _ 4 4

ZZ—'I?{G [(/L—l) —|—37]r—d? —Z(y—l)r 61——5{67 ,Bp}. (5.18)/
In order to determine e we now specialize to the moderately low shear case
for which the current-driving term, proportional to (x — 1), can be dropped.

Equation (5.18) is then easily integrated:

i cerfy (5.19)

dr = (u— 1P +3%
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As in the cylindrical case we now consider two possibilities for the
boundary conditions. In the first case we assume that the low shear assump-
tions are satisfied throughout the entire plasma. The appropriate boundary

conditions are then ¢1(1) = €;(1) = 0. This leads to

eﬂp )
- / =7 el (5.20)

which can only be satisfied by 42 < 0. We conclude that in the absence of
shear the mode is stable. This is due to the stabilizing influence of the m = 2

harmonic which is driven off-resonance by the m = 1 mode.

In the second case the low shear central region is separated from the
wall by a sheared region. We will solve the mode equations by matching the
solution in the inner (low shear) region to the solution in the outer (sheared)
region. In practical terms this procedure can be expected to yield good results
when the transition is sufficiently abrupt. In the sheared region (p —1) ~ 1
but ¢; ~ €. Retaining terms of order 62,\We obtain from (4.42) the following

outer equation for £;:

Ly, = d {(,u — -2—) r Cflé:} 3 (p — l) réy = 0. (5.21)

With the boundary condition &(1) = 0 if ¢(1) < 2 or ¢; bounded as r —

for ¢ (ry) = 2. The asymptotic form of the solution to this equation in the low

€ ~ ( > +o (72)_3. (5.22)

The constant ¢ is determined by integrating (5.21) through the outer region.

shear region is

The dispersion relation is now determined by matching this asymptotic solution

to the corresponding asymptotic form of the inner region solution in the outer

- LA e

region:
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where we have restored the dimensions. Note that the integrand becomes
negligible in the sheared region. Equation (5.23), in which o is implicitly
determined by Eqgs. (5.22) and (5.21), gives the general dispersion relation for

the quasi-interchange instability at low shear.

The qualitative features of the linear growth rate of the quasi inter-
change as a function of the equilibrium parameters can be deduced from the
structure of the dispersion relation. The integral in the right hand side of
Eq (5.23) is a positive definite monotone decreasing function of 42 for 4% > 0.

Two possibilities arise:

o If the plasma contains a ¢ = 1 rational magnetic surface then the inter-
grand in the dispersion relation is singular at 4% = 0. In this case the
integral takes values in the entire positive real axis so that an unstable
root can be found for any positive value of o (Fig.12). Note that o =0
is the condition for marginal stability of the uncoupled cylindrical m = 2
mode. Thus o < 0 corresponds to instability for this mode. We have
already demonstrated, however, that this mode is always stable unless
the plasma contains a finite region with magnetic pitch resonant with
the helicity of this mode, m/n = 2/1. This never occurs in practice and
o must therefore always be greater than zero. We coﬁclude that in the
presence of a ¢ = 1 rational surface a low shear, f, ~ 1 plasma is always

unstable.

e If ¢ > 1 throughout the plasma, however, instability will only occur when
the driving pressure gradient, represented by the term f,, overcomes the
stabilizing effect of field line bending contained in (x — 1). This is the

distinguishing feature of the low-shear interchange instability. Instead of
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a fixed, finite threshold for instability the plasma is found to be unstable

to arbitrarily low pressure gradients provided the shear is sufficiently low.

>
0 Y2
Fig.12: Geometric solution of the dispersion relation
To obtain an explicit dispersion relation, we use the model safety

factor profile = % + (,uo - %) [1 - (7‘/1'2)2’\] , for which Eq. (5.21) is a hyper-

geometric equation. To see this let

1 2
po(i-1)
H 2
In terms of this variable the outer mode equation is written
(Er3¢,) —3Erty, =0 .
We introduce the operator D defined by

DZTE.
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In terms of this operator the outer mode equation is

D%, + (%%—2)1)52—352:0.

Changing the independent variable to z = (r/rz)?* is then easily accomplished

by using D, = 2AD,. The equation becomes

4z
z—1

It has three singular points with characteristic exponents v given by:

1/2X

z=0 4N202 4+ 4\ -3 =0 ; 1/={_3§2)\
2 0 5 0
z=1 v+rv=0; v=9 _; ) (5.24)

z=o00 ; 4A?—(24+4XN)2\v —-3=0 ; I/Z{V+

1 1\¢ - 3
”i—(Hﬁ)i\/(Hﬁ) tDe

These are the only singular points of this equation throughout the entire com-

where

plex plane so that it is, indeed, a hypergeometric equation. Its genéra] solution

can be displayed in Riemann’s notation as

0 1 oo
P{ 1/(2x) 0 w_ ;z} ,

£2

where

a 1 1 1
b}_1+_j\-i\/1+x+)\—2"
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Applying the boundary condition at rp, assuming the existence of a ¢ = 2
surface within the plasma, we must choose the so-called “small” solution at 3,

or, equivalently, z = 1:
€2 =27 1 Fy(a, 5,251 - 2) .

Analytic continuation of this solution into the low-shear region is then given

by

2

o = Az2% 1 Fy (a,b;1+—1-;2> + Bz 55, F (2 —a,2—b1— L. :) ,

2\ 2077
where
B _ [la+b-2) I'2—a)l'(2-0)
AT T2=-atb) T
This expression can be simplified by applying the formula
I'(2) _ 2
f’(—z) =TI (Z+ 1)"4(‘2) )

where A is the airy function, defined as

SIN T2
A(z) = — -
One finds
o= DoAY oy nBEyT, (5.2)

A Ala —1)A(b - 1)
where B(a,b) is the Euler beta-function;

_ I()I'(b)
B(a,b) = T(a 1)
The application of this result to the low shear stability problem is clearly re-
stricted to large values of A such that the above asymptotic solution applies to

a good degree of accuracy away from the magnetic axis. An additional limita-

tion is iﬁposed by the fact that the two characteristic exponents at the origin
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become separated by an integer when A = 2 so that in this case the solution
at the origin involve logarithmic terms and the connection formulas must be
modified to account for this fact®2. It is thus desirable to expand this result for
large values of X in order to have a more readily usable formula. This is given

by

where the error is less than 5% for A > 3. In order to calculate the integral
in Eq. (5.23) we use the pressure profile p(r) = po [l — (r/a)*]. Near marginal
stability (’yz < |po — 1]2), this integral can be evaluated asymptotically for

I'U«O - 1] < 1.
'0- B Cﬂpo 2 (,’,._1)41/—-2 (E)G ./G/Tl x4l/+1 s
"\ (o — 1) a Ty o g2+ (142’
where '
2 42
=3
I (to — 1)

Substituting y = ** and expanding the integrand near marginal stability, the

dispersion relation takes the form

1 T 6 To 2 eﬁpl 2 2
"—4,,+2<;;> (Z) (,uo—l (h=g'L)

where
o o 2log
In=21/+1/ Yy x dy .
AoJo (T+y)
In terms of the parameter (, defined by
2v+1
C - )\ 9

this integral is given by

I, = (B((,2n - ()

1 ,forn=1

= CF(C)F(l—C)(l—C)'{ L(3-0)(2-¢) ,forn=2

3!
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One finds in this way the explicit dispersion relation

5 = E{K(efn) —(ho—1"}+0[(mo—1)*],  (5.26)

where

E = [BA-¢/3)a=¢/2)

¢ = Quv+1)/A

- 1~ g 1/2)
"o Tz(#O‘%) ‘
ﬂpl = ;Bp(rl)-

31,56 a,l—

Equation (5.26) is in good agreement with numerical results,
lowing for corrections related to the current-driving term. An estimate of the
error made in neglecting that term can be obtained from the zero pressure,
constant ¢ solution*?: ¢, = 1Jy(kr) with % = =2 (p —1) [35* + (1 — 1)%7%.
Taking £ (r1) = 0, one finds 4% = (g — 1) (pe — §), where o =1 — 14—3—‘2r (%)2

1,1

The current term is thus destabilizing for ¢ > 1.

We emphasize that Eq.(5.26) apply only to nearly marginal condi-
tions. However, for the particular case g = 1, our model profile also allows a
calculation of the growth rate far from marginality. By integrating Eq. (5.23)

in this case one finds

A2__1_ 2 (_72)2 2 T <z ) 1—1¢2 .
V=5 s r (o) () glec(3e : (5.27)
where fB,2 = B, (r2). Thus, in the flat current profile limit (A > v), the growth

rate scaling is similar to that near marginal stability (6'2 ~ (eﬂp2)2). However,
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for more rounded current profiles (¢ < 1) we find a different scaling, leading

to a reduced growth rate away from marginal stability (e.g., for A =3, v =1,
§ ~ (eBp2)").

-We conclude this section by looking at the “low-shear” n # 1 modes.
Although these rﬁodes remain stable when the m = n = 1 mode reaches critical-
ity, they will be important during the nonlinear development of the instability.
The mode equations for general m, n are’”°:

2

L+ Tn)en — = {% (80 +48,)" + (1 - -52—2) (ré; + 4@;)} m

n2m?
. 1 1Fm ! d 2+m
= Gy A 4) g ()
_ 1 d Bdﬁm:l:l 2
Lingilmer = - {dr (r el [(m +1)" — 1] rémt1
1

d
- —2nm2(1 +m) rﬁ:m;i? {<7ﬁ’/’ t 4ﬂp) ,.1?7n§m} '

The sideband equations may again be integrated:
1 r '
My = —5 (1 £ m)r” @) / di (7B +4B,) F*5 + exr™ 171, (5.28)
0

leaving a decoupled main-harmonic equation:

d m?\ 42 1\?] sdén
zz‘;{[(l”;;?)a?*(ﬂ‘aﬂ"%
m2 ,3,2 1 2
‘(’”2‘1>[<1+2W)m+<"‘a>]’”fm

—6—2-— (1 - n—2> 'j—r (7‘4ﬁp) ‘fm = E—e_—*-i (r4ﬂp) Tm_l’

n?m? m?2
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We solve this equation for constant u = po ~ 1, m = n, and 8, = Bor?* 2.
After imposing the boundary condition &, (r;) = 0 at the transition radius r;
between the low-shear and finite-shear regions, one finds

2 + 1 v 14 m—
€n(r) = (é) 21/2/1/ + m) 392 _:Efo_ 1)2 (r2 —r? ) rm-l, (5.29)

The dispersion relation is then obtained by matching the solution for €my1 In

the low shear region to the low-shear limit of the outer solution equations:

mti(r) ~ <;7~_)m + om <L>_(2+m).

2 T2

€, \?2 1 g
Kn (26,) - (2-1) |, (5.31)
where E = 1/3, '

o i () (3) 6

(5.30) .

We find
=

The value of o, calculated for our model ¢ profile is

m m+1 1
o 2 [1 D) +0 (:\EH . (5:33)

From the large m behavior of K,,,

K,, ~m %exp {—2771

= (5l

we see that the growth rate at resonance (go = 1) for toroidal geometry will

decrease much faster for large values of m than the corresponding cylindrical
result. We note that the presence of the sheared reglion is also necessary for

instabilit‘y with n # 1.



Chapter 6

Nonlinear Growth

6.1 Introduction

Ideal magnetohydrodynamic instabilities, such as the quasi-
interchange mode investigated here, are often invoked to explain rapid, large-
scale instabilities in magnetic confinement experiments. However, in view of
the relatively slow evolution of the equilibrium, it is not clear how such instabil-
ities can appear suddenly as fast growing modes. This difficulty is particularly
acute for the sawtooth crashes observed in JET because of the extreme slowness
of the transport processes in this tokamak. Nonetheless, sensitive diagnostics
are in complete agreement regarding the absence of precursors and the rapidity

of the onset of growth®%3.

In this chapter nonlinear effects on the growth of the quasi-interchange
are investigated. The analysis presented here differs from previous bifurca-
tion calculations®46%20 by the inclusion of toroidal coupling effects. Toroidal
curvature, which is important for pressure-driven modes, destroys the helical

symmetry which is typical of kink-like instabilities.

The nonlinear corrections are evaluated by expanding the equations of
motion for the unstable mode near marginal stability.®® This procedure yields

the following equation for the mode amplitude ¢:

2
T =g 1e 4 0E), (61)

80
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where v is the linear growth rate. The coefficient I' is the main goal of the
analysis. Its sign determines the qualitative behavior of the mode as the linear

stability threshold is crossed:

(1) For I' < 0, the nonlinear terms are stabilizing and lead to the
appearance of secondary, stable equilibria. In this case the plasma will simply
shift adiabatically from the initial unstable equilibrium branch to the nearby

bifurcated equilibrium branch (Fig. 13).

(2) For I > 0, however, there are no nearby equilibria above marginal
stability (Fig. 13). A robust, explosive instability can develop even near the
stability threshold. In the absence of higher-order stabilizing terms the mode
would grow to infinite amplitude over a finite time. These two cases are referred

to as supercritical and subcritical bifurcations, respectively.



v ¢
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' v 7
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t v

Fig.13: Supercritical (top) and subcritical (bottom) bifurcations of
equilibrium. Solid lines indicate stable equilibria, dashed lines unstable equi-

libria.
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The analysis is developed from the high-beta reduced magnetohydro-
dynamic (RMHD) equations of Strauss.?> These equations describe nonlinear
plasma dynamics in large aspect ratio tokamak geometry. They are the result
of a systematic ordering of the magnetohydrodynamic (MHD) equations, in
which only the lowest order terms in the inverse aspect ratio, ¢ = a/Ro, are
retained (here a is the minor radius and Ry the major radius of the torus).
In particular, RMHD takes 8 ~ kj ~ €, where f = P/ B2 is the ratio of ki-
netic pressure to magnetic pressure and k; = B~*(B - V) is the inverse of the

characteristic scale length along the magnetic field.

In order to describe interchange-like instabilities in relatively low-
beta plasmas, we introduce the secondary ordering parameter 6 and assume
B ~ kj ~ €6, with § < 1. Note that a global instability with k) < € can only
occur if the plasma contains a low-shear resonant region where the safety factor
g is close to a rational number: specifically, ¢ — g5 ~ § where ¢, = m/n. The
quasi-interchange model of sawtooth disruptions assumes that this condition

holds in a central region of the plasma with ¢, = 1.

The basic nonlinear interchange equations are then derived by ex-
panding the RMHD equations to lowest significant order in 6. However, con-
sistency with the reduced MHD ordering requires ¢ < 6. This condition is
generally not satisfied, typical values of the inverse aspect ratio being € ~ 1/4.
Nonetheless, one would expect RMHD to remain qualitatively valid, partic-
ularly for pressure-driven modes, when § S e. This hypothesis is supported
by an examination of the linearized MHD equation in the low-shear, low-beta

approximation.®”

The exact (non-reduced) energy principle for these equations contains

the following terms:
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e Cylindrical kink and line-bending terms proportional to (g — g,)*.
o Interchange terms proportional to (p’)?, including the sideband energy.

o A term proportional to p'(¢* —1).

The first two terms are clearly included in the RMHD equationé, but the last
term will be missing. For ¢, = 1, however, this term should be neglected from
-the MHD equations as well. This is of course the case relevant to the sawtooth
problem,. and we thus conclude that the RMHD equations will produce the

correct potential energy for the quasi-interchange in this case.

The RMHD kinetic energy, however, neglects the parallel velocity and
the effects of compressibility. Compressibility is unimportant near marginal
stability, while the neglect of parallel velocity will result in growth rates being
overestimated by a factor of (1 + 2¢2). This clearly does not affect the nature

of the bifurcation.

The RMHD equations are described in Sec. 2. The interchange or-
dering, § < 1, is used in Sec. 3 to simplify the system further. The result-
ing, “interchange-reduced” equations involve only the helically resonant com-
ponents of the fields, but contain numerical constants related to the behavior
of the non-resonant components in the sheared outer region of the plasma. The
perturbation expansion in the mode amplitude is described in the first section
of chapter 8 and the resulting equations will be solved for model profiles in

Secs. 8.2 and 8.3.

6.2 Formulation

The RMHD system is derived in detail in the paper by Strauss®

and is presented here mainly for ease of reference.
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¢

The coordinate system is defined in terms of cylindrical coordinates
(R,(,Z) by z = (R — Ro)/a, y = Z/a and z = —(, where z and y are

coordinates in the poloidal plane and z is the toroidal angle. The magnetic

field is given in sufficient accuracy by
B=2%+e(—2z+ 2B —2x Vi),

where ¢ is the poloidal flux and B represents diamagnetic corrections to the
vacuum toroidal field. All operations involving the perpendicular gradient op-
erator

0 0

Vi—é L 4§ =
+ $3x+y y

are to carried out using the Euclidean metric. The lowest order force balance

equation,

V.(Bj+p/2)=0,

allows B to be eliminated in favor of the pressure p. An important operator

for interchange-like modes is the parallel gradient operator,
B-V= EV“ .
This operator is conveniently expressed in terms of the conventional bracket,

[f)g] = 2'(VleV.Lg))

by

Vi = -l (6.2

Ampere’s law is written

J=V2iy, . (6.3)

where J is the negative of the toroidal current density.
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The principal dynamical equation is the shear-Alfvén law, given by

%g + o Ul = =VyJ = [z,p] (6.4)

where the vorticity U is given in terms of the stream function ¢ by
U=V3ip. (6.5)

The left-hand-side of the shear-Alfvén law contains the convective derivative
of the vorticity while the right-hand side consists of the parallel-current driving

term and the interchange term. The syst:em is completed by the parallel Ohm’s

law,
O
— + V=0, - .
5. tVie=0, (6.6)
and the pressure evolution equation,
9p
£ =0. N
5+ 7] (6.7)

The analysis of these equations is simplified by making use of such

properties of the bracket as antisymmetry and the Jacobi identity:

[f)g] = —[gaf] ’

17,19, ] + [g, (A, fI1 + [, [f,9]] = O .

Tt should also be noted that the bracket is a derivation: it satisfies
[f>gh] = [f»g] h'l' [f,h] g -

The integral invariants of RMHD can also be used to reduce the com-

plexity of the problem. These can be derived from the identities3®

[ flo,blav = [ glv, flav = [ hif,qlav
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which can be seen to hold by writing the bracket as a divergence,

[f,g]=V_|_-(g2xVLf),

and integrating by parts, assuming the vanishing of surface terms. The follow-

ing integral invariants are particularly useful:
C = / F(p)dV , (6.8)
D = [G(Vpav, (6.9)

where F' and G are arbitrary functions.

In the following analysis we will consider only conditions such that the pressure

is initially a flux function: V|p =0 at 7 = 0. Equation (6.9) then implies
Vip=0 (6.10)

at all poésible times (7 > 0).

To summarize, the RMHD system consists of Eqgs. (6.4), (6.6), and
(6.7), with the defining relations (6.3) and (6.5). Equation (6.7) will be replaced
by Eq. (6.10) under the assumption stated above.



Chapter 7

Interchange-Reduced Equations

7.1 Simplification of the equations

The quasi-interchange ordering allows considerable simplification
of the equations of motion. The simplificalion is largely a consequence of the
partial linearization resulting from the small-6 expansion. It is important to
note, however, that no assumptions regarding the size of the perturbation from
equilibrium are made. In this sense, the interchange-reduced equations remain
fully nonlinear.

The analysis in this section follows a similar derivation by Kotschen-

reuther et al.%®

In terms of the normalized variables used in RMHD the quasi-
interchange .ordering is simply p ~ V|| ~ 6§ < 1. The equations of motion
then imply % ~ 6. To zeroth order the plasma is thus in a force-free, closed-
line, cylindrically symmetric equilibrium. Clearly this state is marginally stable
to the exchange of flux tubes. Introducing polar coordinates in the poloidal
plane by £ = rcosf and y = rsinf, we obtain the resonance condition on
interchange perturbations ¢ as

Vi€ = % + g—g =0. (7.1)

It is satisfied by & = f(r,8 — (), for arbitrary f. Thus, the quasi-interchange

ordering describes the evolution of the plasma between states which are, to

88
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lowest order, helically symmetric. This observation motivates the change of
coordinates (r,8,() — (r,a,n), where « = § — ( and n = (. « is a field-line
label for the zeroth-order magnetic field. The bracket in these new coordinates
is simply

_l{@f dg Of ag}

[f,g]—r Br 30 26 o

The parallel gradient is then most simply expressed in terms of the helical flux

defined by

X = ¢+r?)2.
‘We then have
0
Vi = —=[X,1]. 7.2
§= gl (12)

Note that X ~ 6.

The dynamics of interchange perturbations are of course determined
by higher-order terms. For finite §, the helical symmetry is broken by the
toroidal curvature. Nonetheless, the field quantities remain approximately he-

lically symmetric. It is useful to separate them into their n-averaged part,

F o= o § dnftram), (73)

and an n-ﬂuctuating remainder,

F=r-7. (7.4)

f clearly satisfies the resonance condition, Eq. (7.1). Note that the bracket
behaves as a typical quadratic form under helical averaging:

[foo]=F,31+ (£, - (7.5)
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The shear-Alfvén law, Eq. (6.4) and the pressure equation (6.10) are
now separated into resonant and non-resonant parts. The helical average of

these equations is

2 D+ B0 = W7+ - T8, (76)
X,5) + [X,7] =0 (7.7)

The relative magnitude of the resonant terms is as follows:
() p~X~6J=240().
(ii) From the n-averaged Ohm’s law, Eq. (6.6), one finds @ ~ 2 ~6.
The non-resonant quantities are determined by the n-fluctuating part

of the equations. For the pressure law, subtracting Eq. (7.7) from Eq. (6.10)
yields

g% = [%, 5] + %, 7] + [X,5] — X, 5] -

It follows that p ~ 8%, p is thus determined to leading order by
op
— =[X,p] . 7.8
5y = 67 (7.8)
Thus the non-resonant pressure results from advection of the resonant pressure
by the non-helical component of the magnetic field.
From the non-resonant part of Ohm’s law, one finds @ ~ %’TX ~ &%

This implies that the kinetic terms can be neglected entirely from the non-

resonant shear-Alfvén law. The remaining terms are

aJ Vit v T Y fl—1x 1
'a'; = [X,J]+{A7J]+[X’J]—‘[X’J]

— [z, 5] — [z, 8] + [z, 7] . | (7.9)
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The leading order term on the right-hand side is [z, 5] ~ 6, so that J ~ X ~ 6.
The other terms are then of higher order and Eq. (7.9) becomes

oJ _

The current J may be interpreted as a Pfirsch-Schliiter current.®

The non-resonant equations can be integrated:

- Udnip] , 7.11)

= - [ dnx,}')] . : (7-12).

3

Rty

Substituting the result into Eqg. (7.6) and neglecting the higher order term

[3, U], one finds

o172 f{f ] e fanel]

Integrating the last term by parts and using Jacobi’s identity yields the 7-

averaged shear-Alfvén law

L BO-®I-mH=0, (7.13)
where
ho= [a / X . (7.14)

This term may be interpreted as follows:

The curvature in RMHD is given by k = —Va. The function & plays a role
analogous to gravitational potential in a gravity-driven interchange. It can be

shown that, to required order, A is the average of z along a magnetic field line,

h=j{-‘§-x. (7.15)
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Note that only the non-resonant part of the flux contributes at this order, and
that the field lines generated by X alone close after one period. VA therefore
plays the role of an average curvature in Eq. (7.13). Note also that the field
line average is carried out on the potential z and not on the curvature itself,
so that the geodesic curvature is not eliminated from Vh.

7.2 Calculation of the average curvature

The average curvature is calculated by integrating Ampere’s law,

for the non-resonant current given in Eq. (7.12) and substituting the result in
Eq. (7.14). The solution depends of course on the choice of boundary condi-

tions. We are primarily interested in equilibria consisting of two regions:
(i) A central, low-shear region where the quasi-interchange ordering
is satisfled with ¢, = 1.

(ii) A sheared outer region where V| ~ 1, p ~ 8. The appropriate
boundary conditions are then obtained by requiring the solutions in the low-

shear region to asymptotically match those in the outer, sheared region.

The integrations are most easily accomplished after Fourier decom-

position of the fields:

I

+o0 ,
> Da(r)e™™, (7.16)

n=-0oo

p(r, o)

Tz = -;— r {ei(“+") + e"i(a+")} .

The reality condition can be written

—%k -
Pn = P-n -
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Substituting these expressions into Eq. (7.12) one finds

X(rya,n) =3 -*io Xnai(r)exp {i(n £ 1)a+in} , (1.17)

+ n=—o0

where the X, +(r) are determined by

{% % <r %) _:—2 (n+ 1)2} Xns(r) = 517 {r dii ;cn} Pa(r) . (7.18)

The general solution regular on axis is

~

’ 1 - n ’ = 1 On'i n
Rose(r) = 5 #7057 /O PR+ 5 s £, (1.19)

where the last term is the solution to the homogeneous equation. This term
represents the deformation of the field lines caused by non-resonant currents
outside of the low-shear interchange region. These currents are themselves
induced by the perturbations inside this region. The constants C, 4+ are de-
termined by asymptotically matching the inside solution, Eq. (7.19), to the

solution in the outer region.

We now consider the equations in the outer region. Since the shear in

the outer region is now finite, V) ~ 1, while the pressure remains small, p ~ 6,

the equations in this region will reduce to the cylindrical equations to lowest
order in 6. The shear-Alfvén law is given to required order by

N _

55' = [Xa ']] + [Xa ']] + [37717] .

Of course the n-averaged components of the fields are no longer resonant. The

line-bending forces and circular confinement vessel then combine to constrain

the fields so that all the n-averaged components' except n = 0 vanish as the

shear becomes large. Thus, for n 5 0 the shear-Alfvén law becomes

%77- = [Xo, J] + [X, o] , (7.20)
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where X, and Jy are the n = 0 components of X and J, respectively. As the
low-shear region is approached, Xo — O(6) and the solutions to this equation

take the asymptotic form
%n,i ~ An,:{: T'_(nil) + Bn’:i: T(nil) . (72].)

Note that the shear-alfven law is linear in X, so that only the ratio Opnt =
Ani/Bnyx is relevant. The constants o, 4 are determined by integrating
Eq. (7.20) inwards starting from the vessel wall or from the appropriate mode-

rational surface.

‘Returning to the low-shear solution, one finds that the integrand in
Eq. (7.19) will vanish as the shear increases in the matching regivon. It follows

that the asymptotic form of the inner solution in the outer region is

| 1 g 1 C
Xy o[£ Lknz ()] ) T O N e S R
* (2 /0 PR ) A S )T

where the upper limit of integration has been taken to be the confinement vessel

wall. The matching of the solutions is thus achieved when

1
Ont = nC'j; /0 rli”f)n(r)dr , n#0.

The effect of the currents induced in the outer region is thus entirely contained

in the constants o. Note that effects related to the motion of the matching

region are of higher order in §.

The potential function % is now found by substituting Eq. (7.19) into
Eq. (7.14). We find

h = -p+A,

1
2

where
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+0oo .
A = Z /\nemcx ,

n=—0oo
1
Ao = 5 Cugr™ . (7.22)

The terms containing C,, —, corresponding to perturbations with pitch d6/d¢
less than one, do not contribute. This is not a local effect: it is a consequence

of requiring the perturbation to be regular at the origin.

The result of the curvature calculation may now be substituted in the
n-averaged shear-Alfvén law. The resulting, interchange-reduced shear-Alfvén
law takes the form

oU

This equation is completed by
[X,5] =0, (7.24)
and the matching condition
Cnon = (n+1) /01 r™t 5 (r)dr _ (725)

where 0, = 0, +. Equation (7.24) is obtained from Eq. (7.7) by neglecting tiie

higher-order term [X, 7).

The dimensionality of the problem has thus been reduced to two. It
should be emphasized, however, that the plasma does not have helical symme-
try. Significantly, the interchange is found to be driven only by the part of the

curvature which is caused by the currents induced in the sheared outer region.

We conclude this section by considering the n-averaged Ohm’s law:

e A—
8_7'+[90,X]+[99’X =0.
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The last term may be neglected. It follows that, to the order of the calculation,

X is an advected quantity and the quantity
T = / S(X)rdrda (7.26)

is conserved by the interchange-reduced system for any choice of the function

S.



Chapter 8

Solution for Model Profiles

8.1 General Formulation

The equations derived in the preceding section are now applied to
the nonlinear evolution of the quasi-interchange mode. This is accomplished
through a perturbation expansion in the mode amplitude £, where £ is the dis-
placement of the flux surfaces from their equilibrium position. From Eq. (651),
the nonlinear regime near marginal stability is found to be characterized by
v~ d Nl

The following two basic assumptions are made:

(1) The perturbed initial state is taken to be accessible from the equi-
librium within the confines of perfect conductivity theory.?’ That is, the integral
invariants given by Eqs. (6.8) and (7.26) take the same value for the perturbed
initial state as for the equilibrium state. A similar restriction on the initial

conditions has already been used to replace Eq. (6.7) by Eq. (6.10).

(ii) The mode is assumed to grow coherently.. More specifically, the
near-marginal eigenvalue is assumed to be simple, with v < w where w is the

eigenfrequency of the nearest nonlinearly driven mode.

The accessibility constraint requires

C=[ FlpJav=[ F@pav,
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for any choice of F'. To order £3, this condition is equivalent to

Bolr) = pelr) + = = (1 pi) , 1)

r dr \p,
where p, = %”. Henceforth, the overbars will be omitted. The flux conservation

constraint, Eq. (7.26), requires similarly

: 1d{(r
Xo(’l") = Xe(’f') —I— ; 5 <F X%) . (82)

Note that
¢! r — — _1_ .r
Ae( ) (1 Q(T)> ? (83)

where ¢(r) is the rotational transform, correct to first order, of the flux surface
which reduces to a circle of radius r to lowest order in 4.
We now consider the interchange-reduced shear-Alfvén and pressure
laws, Eq. (7.23)and (7.24). To first order in £ they can be written
X;Jl - JéXl = —p;)‘l 5 (84)
Xepr —pX1 = 0. (8.5)

The quantities ¢ and U can be shown from Ohm’s law to be of order &2, so
that the term %—ITJ appears only in the third-order equations, while [p, U] is of

even higher order and is neglected in the following treatment.

In terms of the convenient abbreviation

_F_dF,
XL dx,
Eq. (8.4) becomes
Ji—JX1 = —pei, (8.6)

o= PeXi - (8.7)
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The left-hand side of Eq. (8.6) contains a second-order differential
operator applied to X;. This operator can be inverted for an arbitrary source
function f(r). Let

X (r) = Xl (r) (8.8)
£1(r) is the n = 1 component of the displacement of the flux surface. Substitut-
ing Eq. (8.8) into the left-hand side of Eq. (8.6), and replacing the right-hand

side by the arbitrary source f(r), one finds

-, 1 d e @1\ :
Jl—JeM—TX,e 5(7"(}(5) -&—7:—>_f(r)

Integrating twice yields
6) =~ [ e [ FoXi(o)ods (5.9)
v p(XC(P)) o =

The solution to Eq. (8.6) is now found by replacing f by —p.A1, in Eq. (8.9).
p1, given by Eq. (8.7) can then be substituted into the matching condition.

After integration by parts, this becomes
1 . B.)2
oy :/ —(f———’gp—)—f ridr (8.10)
0
(3-1)
where ﬁp is the RMHD normalized poloidal beta,

R 1
6-Pp=——3 /0 Pre(p)dp -

Equation (8.10) is of course the linear marginal stability condition for the n = 1

mode.

To next order in ¢, the n = 1 mode couples into n = 0 and n = 2. The
n = 0 components have already been calculated from the conservation laws:

they are given by Egs. (8.2) and (8.1). The n = 2 components are determined
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by Egs. (7.23) and (7.24):

J2 ot JeX2 = —peAg + 5 JeX% - pexl)\l ) (811)
A
P2 = Pexz + §pex1 . (812)

Equation (8.11) is a second-order inhomogeneous differential equation for X.
Unlike Eq. (8.6) for X;, however, it cannot be integrated by simple quadratures.
Assuming nonetheless that a solution has been found, the constant C; is then

determined by the matching condition:
1
Cooq = 3/ rpy(r)dr .
0

The third-order corrections to the n = 1 equations can now be calcu-

lated. The corrected source term f becomes
f = —per —Be(Xa 4+ Xo — Xe)A1 + X1 A2) + J XX,

— J.X1Xo + X1 Jo — 5 Je X3 —2J.X3X,

T e i L od (5 d (0
+ 'é‘ P )\1X1 -+ 2p5X1X1A1 + Zpe)\IXl — ;3(—/; % (7’ E 972 8..13)

The corrected pressure fluctuation is
) ) , 1w o
p1 = PeX1 4 Be(Xa X2 + X1 Xo) + 5 Pe Xy -

Replacing these quantities in the matching condition yields the bifurcation
~equation, Eq. (6.1).

It is clear from this analysis that the practical calculation of the non-
linear corrections can only be accomplished for special equilibria such that
Eq. (8.11) can be inverted analytically. The solution of the bifurcation equa-

tions for model profiles is the subject of the following chapter.
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8.2 Constant current case

It is assumed throughout the rest of this chapter that the pressure

profile is parabolic in the low-shear region: pl, = —2pgr.

We consider first a safety-factor profile with constant ¢(r) = ¢ for
r < rs and with ¢ rising abruptly beyond rs. This requires a thin current-sheet
at r = r; and a constant current profile within r < r,. Such configurations
have the property that the equilibrium fields are linearly related in the constant-
current, parabolic pressure region: that is, p. = cst. and J. = 0. The only
remaining nonlinear coupling arises from the flux and pressure-conservation
constraints, which imply coupling to the n = 0 component only. This case is

thus of a quasilinear nature.

The bifurcation equation is obtained by following the procedure de-

scribed in the first section of this chapter. The linear eigenmode is given by

Xi(r) = ——K—%C—l-rs-i—A-r , r<(rs—w),

where
Po
Ko = 77— >
1
(%-1
and w is the half-width of the current sheet. For w <« 1, the integration
constant A is determined by the condition X;(r;) = 0. The third-order accurate

flux perturbation is then

-2 2
, Ko 2 2 1 d (:1
X, = —r-(r— — = -
' g (s r)(cl (fm 1) dt"’)

koC1\? (1 B 4 2.2 4
_( I ) .(—-—1) (r —3rir +2rs)r.
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The matching condition yields the bifurcation equation:

3 s, (1 A\ - 1 ?

S5 (Lo (1) JEo12(= -1 8.14

dr? (2401 Po (qo ) ¢ 9 & ( )
where £ = & (0)/rs. This is thus a supercritical bifurcation. Note that this

result is independent of the precise form of the current profile in the outer

region, since oy does not appear in I'.

8.3 Gausslan rotational transform

Before drawing conclusions, it is desirable to solve the bifurca-
tion equations for a fully nonlinear case. The following g-profiles satisfy this

requirement while remaining analytically tractable. Let

/_lé B 1) _ (ql_o _1> exp <£§> , (8.15)

with 52 = 1(ry)2 |n 2+ (1 — 1/go)][™" < 1, where r; is the radius of the ¢ = 2
surface. In terms of the radial variable z defined by z = r2/s2, the equilibrium

quantities are given by
Pe = 2k0 e,
J. = (44+2)/s*.
The solution of the linear equations is
X, = K 2% 722

where K; = £0C15%/8. The marginal stability condition is

kg = 401/s° + O(€%) . (8.16)
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The equation for the n = 2 flux-perturbation X, is

9‘[(12 _ __z_ e—.32/2

Jo — (44 2)Xy = —skoChz e7/? — (L — ) o ,
%
where
- d®X, dX, 1
= 22722 x,) .
J2 4 (z dz? + dz z 2)
After substitution of y, by
X2 = ze" % -u(z),
the sideband equation becomes
5 &002 9 1{2 -
" _ I = _ Y 1 z
zu” + (3 — z)u 5 1 4(%_1)6

The inhomogeneity can be partly simplified by substituting

_ koCo —z
U= 5 —l—v(z)e' ,

resulting in following the equation for v:

11 9 K1?
20" +3(1 —2)v' + <2z——>v:———-———— .
( ) 2 4 (po — 1)

The inhomogeneous term has thus been reduced to a constant. It can be re-
moved, at the cost of raising the order of the system, by taking the derivative of
the equation. The resulting equation is a generalized confluent hypérgeometric
equation for which integral representations of the solutions can be found by the
method of kernels®”. We write the linear operator corresponding to the third

degree hémogeneous equation L(v).

L(v) = 2"+ (4 = 32)v" + (22 — -12—7)u' +2u=0.



We look for a solution with a laplace kernel.
b
o(z) = / e*w(t) di .
The operator M; such that
Mt(ezt) — Lz(ezt) ,

is given by

dt 2

M(f) =t(£ —3t+2)£+ <4t2 - £t+2) w .

Tts adjoint, M, is

d
Mhw =~ = 1)(6 - 2) + (¢ - §t> w .

dt 2

so that the following identities hold:

Lio(z)] = / L leMo(t) d
= /bMt[e”t]w(t)dt
- /b e M Tw(t)] dt
b

+ [t —2)t - 1)ew(t)]

a

The equation will thus be satisfied if both conditions

]\ﬁ[v(t)] = 0

[t = 2)(t — 1)e™w(®))] = 0

a

are satisfied. The general solution to this equation is given by

w(t) = (¢t - 1) -2)7

104
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The integration bounds ¢ and b must now be chosen so as to satisfy the bound-
ary conditions. The following three choices provide a complete, linearly inde-

pendent solution set for z > 0:

[—o0,0] (1)
[a,8] = 0,1] (2)
[1,2] (3)

The first solution is singular at the origin and so must be rejected on physical
grounds. The third solution behaves as exp(2z) for large values of z and so
must also be rejected. The second solution has the proper behavior at the

origin as well as at infinity. We thus take
1
o(2) = K / (1 — 1)%/2(2 — 1) M2t
0
This yields the solution for Xj:

K,00284 9\/5 1{12 /1 _oy 3 _ ‘ s
Xq = v, 3/2 1/24 /2
2 { 0 + o2 (L — 1) ey (1+y) y » ze

g0

The constant Cs is determined by the matching conditions. One finds

21 kos?K? 1
G = G i) (8.17)
g0 2 5 Y
Note that C; — oo for o, = %385(2,. This is of course the linear marginal

stability condition for the n = 2 mode. Comparing this to the marginal stability

o, 6
condition for the n = 1 mode, o1 = %- k2, one concludes that degeneracy occurs

when 0,/0; = 2.45%. Numerical and analytical estimates indicate that typically

0y/01 R 45? so that the non-degeneracy assumption is well satisfied.

Placing these results in the n = 1 matching condition yields the bi-

-

furcation equation:
d* $° 1 ’ 3
= — = - 1
dr2 8( ) Po <q0 1> £+ 1°¢, (8.18)

where
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— 2 2
P _5.39 (oz 2.9504s ) (—l-—l) . (5.19)

st \ o3 —2.40,5% qo

Thus I' < 0 for o3/0; > 2.95s2. It is noteworthy that |I'| decreases as the
marginal stability threshold of the n = 2 mode approaches that of the n =1
mode. This is also the case for the free-boundary kink bifurcation (Fig. 14).9
However, exterior current profiles with oy/0; < 2.95s? were not found in this
investigation. We must therefore conclude that the fully nonlinear gaussian-

profile case is also supercritical.

+§/——

ff

- ‘t“‘sl\.\ttt\>

(e 4
f‘““.‘ v 2

\_

Fig.14: Effect of near-degenerescence on bifurcated equilibria.



Chapter 9

Resistive Interchange

9.1 Introduction

In this chapter the effect of resistivity on the quasi-interchange is
considered. The primary effect of resistivity is to allow the quasi interchange
to develop in otherwise ideally stable equilibria by relaxing the requirement
that the perturbed radial magnetic field of the m/n = 2/1 sideband vanish
at the ¢ = 2 rational magnetic surface. This effect is very similar to that
found when resistivity is taken into account for balloning modes, to which the
quasi-interchange is closely related. The stability threshold has been shown
numerically to be significantly affected by resistivity®®. Complete simulations
of the entire sawtooth cycle reveal that the quasi-interchange begins growing
relatively early during the ramp phase of the sawtooth oscillations, but is not
the direct cause the crash®®. The failure of this instability to cause a disruption
shortly after the onset of growth can be attributed to its nonlinear saturation.
These conclusions are supported by extending the analytical model introduced
previously to include resistivity and nonlinear effects. We will show that the
quasi-interchange evolves continuously into a m/n = 2/1 tearing mode as resis-
tivity is introduced. The following investigation can thus equally be looked on
as a study of the .eﬁ'ects of low central shear, and of coupling to the m/n = 1/1
mode, on the 2/1 tearing mode. These effects were considered earlier by Bussac

et. al for the case of finite shear. These authors concluded that although the
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effect of toroidal coupling is negligible in the finite shear case, that it could
become significant for low central shear. Later numerical investigations by

Connors et. al confirmed these conclusions.

There have been experimental observations of sawtooth crashes re-
lated to the growth of a 2/1 magnetic island, but such islands are not always
present. Another motivation for investigating this effect comes from the im-
portance of the growth of 2/1 magnetic islands on the disruptive instability.®
Sawtooth activity has been observed in some cases to trigger major disruptions,
and the relationship between the quasi-interchange mode and the 2/1 tearing
mode could provide new insight into this phenonﬁenom. Recent X-ray tomogra-
phy results revealing atypical behavior of the perturbation in the vicinity of the
magnetic islands may also be due to the presence of a large m = 1 component

in the tearing eigenmode.

Resistivity is only important in a narrow singular layer at the resonant
surface where k) = 0. Since tearing mode growth rates are always significantly
smaller than the characteristic rates for ideal motion the ideal marginal stability
equations are appropriate outside of the tearing layer. The growth rate « is
then determined by a process of matching the ideal MHD outer solutions to

the resistive layer solutions. This matching takes the form
A= A7)

where A(y) is calculated analytically for some model of the resonant layer
physics. The outer matching parameter can be shown to be a measure of the
free energy available to drive the perturbation. It is defined in terms of the
ratio of the coefficients of the asymptotically large and the asymptoticaﬂy small

components of the perturbation as the singular layer is approached from the
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outside. In the low beta limit and for finite shear A’ takes the form

where the solutions on either side of the singular surface are determined so as
. to satisty the appropriate boundary conditions at the wall and on the magnetic
axis. This separation of the problem into an ideal MHD outer problem and a
layer problem allows the consideration of quite complex and realistic models for
the processes taking place within the layer. For example diamagnetic effects,
finite Larmor radius effects, collisional and semi-collisional electron dynamics

can be modeled in this way.

9.2 Stability

The dispersion relation is found by asymptotically matching the so-
lution of the low shear mode equations in the center of the plasma to the
solution in the sheared outer region. The m/n = 1/1 Fourier component of
the mode vanishes outside the low shear central region but the 2/1 component
survives and must obey the cylindrical mode equation in the outer region. The

asymptotic form of the outer solution in the low shear region is
L=o0r %47, (9.1)

where &; is the 2/1 component of the radial displacement eigenfunction. The
constant o is found by integrating the mode equation inwards frorn rq, the
radius of the ¢ = 2 surface. Note that ry is a singular point for the 2/1
mode equation. In the ideal model the appropriate boundary condition at r,
is £, = 0. Matching of Eq. (9.1) to the inner solution then vields the ideal

dispersion relation

_ (Cﬂp 7"5 - |
/ 2+ (1/q)? ar- 6-2)
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For finite resistivity one must generalize this boundary condition to
allow for a jump A’ in the ratio of the coefficients of the small and the large
solutions at r,. The constant o is then related to A’ by a Mobius, or affine

transformation:
_ aA" + b
- qA’ +d’

where a,b,c,d are constants determined by continuation of the fundamental

(9.3)

g

solutions of the mode equations at one singular point (e.g. the ¢ = 2 surface)
to the neighborhood of the other (the origin). As emphasized by Connor et. al,™®
thisis a \}ery general relation, dependent only’ on linearity and not limited to the
case of low aspect ratio and circular cross-section considered here. Following the
procedure described in ref. 70, the dispersion relation is obtained by replacing
o and A’ by their values in terms of 4. These are given respectively by Eq.(9.2)
and by an appropriate tearing layer model at r5. Eq.(9.3) is now written in the

more perspicuous form
1—o0/o,
—
1—o0/o;

A=A (9.4)

where A, is the cylindrical A’ which results when f, = 0, o; corresponds to ideal
marginal stability and o, to marginal stability of the tearing mode. The roots
of the dispersion equation can be visualized as the intersection of the hyperbola
given by Eq. (9.4) and of the curve defined parametrically by o = o(¥) and
A’ = A(#). Clearly o is nearly independent of 4 for small growth rates so that
this parametric curve is essentially a vertical line until the instability is well
into the ideal regime. This implies that there is only one root to the dispersion
relation. As f3, rises, a 2/1 tearing mode first appears when o reaches o,. This
instability contains a large 1/1 component and is essentially a low-n resistive
interchange. As 3, continues to rise it evolves into a large- A’ tearing mode,

and finally into the ideal Quasi-Interchange (Fig.15).
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Br e Be

Fig.15: Evolution of A’ with 8, for a low shear equilibrium™

The value of the quantities A., o; and o, can be estimated for the
model safety-factor profiles used earlier as follows. The asymptotic limit of the

sideband amplitude in the low shear region is given for these profiles by
Ea(r) =7 o Fy(a, b, 1+ 2/ 7)) + or™2 ,F1(2 — a,2 — b; 1 — 2/ ) r2)

where r has been normalized to r,, the radius of the ¢ = 2 singular surface,
and ¢ is given by Eq.(9.2) for 4 = 0. The solution of the marginal equation
between the singular layer and the wall is more difficult to obtain. Note that
the solutions on either side of the layer are entirely independent so that A’ may

be decomposed as follows:

A=A + AL



where

Evidently ideal marginal stability for the m = 1 quasi-interchange is charac-
terised by A’ — oo so that near ideal marginal stability one has A’ ~ A”.
The value of A’ and o,, however, depend critically on A’,, which is itself sen-
sitive to the details of the equilibrium configuration on the outer edge of the
plasma. The value of A/, can only be calculated analytically in two limiting
cases: for an infinitely removed wall and for a wall very close to the ¢ = 2

singular surface.

The continuation of the inside solution to the r = 1 singular point is
complicated by the fact that the characteristic roots at this point differ by an
integral value, namely unity. This fact expresses itself in the following relations

between the parameters of the hypergeometric function:

a+b—1 1+2/X,

2—a)+(2-b) -1 = 1-2/),

which can easily be verified from the eipressions for a and b given previously.
This results in the appearence of logarithmic terms in the solution around
the rational surface. It is a generic difficulty inevitably encountered in any
calculation of the tearing A’ and does not pose any fundamental problems.
The continuation of the hypergeometric function to the r = 1 singular point is
given by

JFilaba+b—12) (1 —2)1

Flatb—-1) ~ T(@I{)

1 i (a)n(0)n

T T e—DIG-D & Wmt )l

X[=hn + log(L = D)1 - 2)" ,
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2)

where z = r** and

hn = B(1 + 1) + (2 +n) —p(a+n) —p(b+n) .

The continuation of the solution £(r) to the neighborhood of the ¢ = 2 singular

surface at r = 1 is then given by

_ I'la+b-1) 5 I'B—a-—0) 21
€r) = { NOROR r(z—a>r<2—b>}“‘“)

rl(a+b-1)
IF'la-=1I'(b-1

)
2—a)(2—0
n+ 1)n!

rg(n+1 In!
Z(

)r [hn — log(1 — 2)](1 — 2)™

(@ g1 — )1 - 2
(

)
or2'(3—a—b) &
I'l—a)'(1-%) =
where

hn=v(14+n)+924+n)—p2—a+n)—¢@2—-b+n).

Expanding for large A one finds

NS W ARG I3 11
£r) = —ﬁ{[\(a)ﬁ(b)_JF(Z—a)I;\(Q—b)};v-
1 rs3) _ —log(:
+ 5o { ()F(b)[(z/\ 3) + (4A + 1)(hy — log(2X))]

r(-3)
F(2—a)F(2—b)

- 0

[(2A +5) +4(A + 1) (ha — log(Z/\))]}

The value of A’ can easily be evaluated from this equation for different values

of A\. For A = 3 we find

. —5.32 )
- —1.31 .
AL =gy 13 . (9-5)

The value of A/, can be estimated for an infinitely far away wall in a similar

way. We find

2, = 34 (1-20) 4200+ 1)(log(2)) — 1)
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For A = 3 this is
A’+ =11.2.

In the opposite limit the value of Al for a nearby wall is
A =-1+(ry—1), for (r, -1) <1,

where 7, is the radius of the wall normalised to the radius of the ¢ = 2 surface.

Note that the value of A, is independent of o so‘ that the effect of
this term is simply to shift the entire curve of A’(c) vertically. This will of
course affect the marginal stability point for the tearing mode but will have no
significant effect in the vicinity of the marginal ideal stability point where the
m = 2 tearing mode transforms itself into a so-called infinite-A’ tearing mode
with a large growth rate, scaling as n'/3, in contrast to the usual “finite A"
scaling of /%, For yet larger values of 3, this mode simply becomes the ideal

quasi-interchange studied previously.

9.3 Nonlinear Growth

N onlinear effects on the growth of the m = 2 tearing mode can thus
be deduced from the bifurcation theory developed for the quasi-interchange.
An amplitude-dependent value of A’ can be obtained by replacing o by its
nonlinear value as a function of the amplitude. Note however that to obtain
an expression valid away from ideal marginal stability one must refrain from
making use of the lowest order marginality condition to simplify the third order
equations. The result of the analysis is an amplitude-dependent correction term

to the linear value of o

o =01+ A(B,)é:(0)7 , (9-6)
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where ¢;(0) is the amplitude of the 1/1 component of the perturbation at the

origin. The values of A for the current profiles considered previously are

A= ~39 (9.7)
for the constant current profile and
A=—17 (%“_—76%3) 2 | (9.8)
for the gaussian 1 — 1/g profile, where
Po

KO:l—l/QO'



Chapter 10

Conclusion

.We have re-examined the stability of m = 1 modes in a low-beta toka-
mak, allowing for relatively weak magnetic shear. Our formalism is sufficiently
general to allow previous results?”%3-5456=%9 to be recovered in appropriate lim-
its. However, in the weak shear, |g — 1| < 1 case we obtain a novel growth
rate, given in general by Eq. (5.23), and more explicitly, for a model profile,
by Eq. (5.26). The new quasi-interchange instability displays no threshold
with regard to the poloidal beta. The scaling of its ‘growth rate (¥ ~ €@, for
flat current profiles) and its continuous, cellular-convection type of flow set it
sharply apart from the usual kink mode ("y ~ (eﬂp)z). The quasi-interchange
mode does, nonetheless, share some features with the kink mode, such as a
sensitivity to the location of the ¢ = 2 surface. Our analysis differs in this
respect from that of Ramos’® for noncircular tokamaks in which the sidebands
as well as the principal harmonic were assumed to vanish outside the low-shear
region. Numerical results for the noncircular case have also been obtained by
Turnbull.” Note that the m = 1 kink was shown not to be marginally stable

for shaped cross sections by Laval™ and Edery et. al™

The nature of the marginal stability condition is, however, the most
important characteristic of this model. Indeed, by requiring the pressure gra-
dient to balance the line-bending force at marginal stability, we have taken

a significant step away from the traditional emphasis on ¢ profiles to deter-
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mine critical stability. This trait distinguishes this model from that of Kleva
et al.,”® which is also based on a low-shear central region but which relies on the
line-bending term in a surrounding island to drive the instability. In Wesson’s
model,® thereforé, the evolution of the pressure profile during the rise phase of
the sawtooth becomes as important as the current diffusion. In particular, it
is not clear in this model why additional heating fails to shorten the sawtooth
period.

‘After this work was completed we learned of a similar analysis by
Hastie and Hender, in which equivalent marginal stability criteria were

obtained.”

After reaching the conclusion that the linear theory failed to account
for the suddenness of the onset of the instability we carried out a bifurcation
analysis of the nonlinear equations for a low shear tokamak. We found that the
linearized Reduced Magnetohydrodynamics equations are identical to the full
Magnetohydrodynamics equations in the ordering of Ware and Haas, except
for the neglect of parallel kinetic energy and the effects of compressibility. The
growth of the n = 1 quasi-interchange was found to saturate for finite values
of the perturbation amplitude away from marginal stability, in contrast to the
kink mode which is known to saturate at small amplitudes. The saturation
of the growth is related to the existence of ﬁea,rby bifurcated equilibria above
ideal linear marginal stability. The eigenmode expansion approach used in
this investigation guarantees the stability of these secondary equilibria to low
mode-number interchange-like perturbations. However, these equilibria may be
unstgmble to large mode-number ballooning instabilities. Such a two-instability
mechanism has been suggested by Bussac et al. for rotational transform profiles

with an off-axis minimum.”™ Note that the lack of symmetry of the bifurcated
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equilibria implies the existence of small regions of magnetic stochasticity. It is
unlikely, however, that this effect can account for the sudden onset of growth
during sawtooth disruptions. Such a stochasticily induced crash may however
occur if the safety factor decreases below unity, thereby leading to the growth of
an m = n = 1 magnetic island. The interaction of this island with a saturated
m/n = 2/1 magnetic island could then account for. rapid internal, or minor
disruptions. We have shown that the growth and saturation of such a 2/1

island should be expected for an initially flat, ¢ ~ 1 profile.

Another possibility is that the quasi-interchange is stabilized by ki-
netic effects until sufficient free energy has been accumulated to account for
the large growth-rates observed. However, no mechanism is known by which
the stabilization could disappear sufficiently abruptly‘to account for the obser-
vations. Kinetic effects on linear stability have been considered by Hastie and

Hender.™
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