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Abstract

We consider magnetic field diffusion in the presence of strongly magnetized electrons
(weeTeo > 1) as a mechanism for the rapid field penetration observed in cross-field flows
of high-# plasma beams. The diffusion has been investigated in several cases which are
amenable to analytic solution. The flux penetration times are found to be insensitive
to the particular configuration. Comparison with two experiments is made. Agreement
within the limits of the experiments is found. Both require an anomalous collision rate

which is consistent with observed fluctuations in one case but apparently not the other.

9)University of California, Irvine




I. Introduction

Active injections of intense beams of neutral plasmas (sometimes alternatively called plas-
moids or plasma jets) into the near earth space environment are of interest in the simulation
of phenomena associated with naturally occurring events. These events include aurorae,
magnetospheric substorms and comets, and the phenomena include wave generation and
emission, particle precipitations associated with these! and the interaction of the solar wind
with cometary bodies.? In order to interpret these active injection experiments, the dynamics
of the flow of the jet across the geomagnetic field must be understood. To this end, laboratory
éxperiments investigating the cross-field flow of plasma beams are aléo beiﬁg conducted.?*

Of particular interest, both in space and the laboratory, are jets of sufficient intensity that
the ram kinetic energy, pv® exceeds the magnetic pressure, B?/4r of the ambient field; this is
called the high-f regime. In this case, the conventional picture holds that the external field
will be excluded from the interior of the jet and the jet propagates byﬁplowing the ambient
field aside. A significant finding in both the space based and laboratory experiments is an
anomalously rapid penetration of the ambient field into the plasma beam. The penetration
rates considerably exceed those based on a classical collision frequency. Some evidence
exists for enhanced levels of turbulence in some of the active injection experiments,® and
mechanisms for an anomalous collision frequency have been suggested.® Recent laboratory
experiments* also have observed field fluctuations although their interpretations are not yet
complete. An anomalous resistivity could give an enhanced field diffusion. However, it has
been noted by Rostoker and co-workers that even with an anomalous collision frequency
v which could be expected based on observed fluctuations, the electrons are magnetized,
Qe JvE > 1.

In this paper, we obtain estimates of the diffusion times to be expected, based on the




aﬁomalous resistivity in the presence of magnetized electrons. These estimates are obtained
from analytic solutions of the magnetic diffusion equation in several cases. In general, the
electron magnetization makes the diffusion equation nonlinear. We have obtained an approx-
imate solution in the slab limit. By comparing the diffusion times from this solution with
those obtained by imposing linearity on the diffusion equation in both the slab and cylindri-
cal limits, we can independently get some measure of influence of geometry and nonlinearity.
It is found that both increase the diffusion time over the linear theory in the slab. The dif-
ferences are measurable in principle but probably not within experimental uncertainties in
practice. In considering some particular experimental situation, it is likely to be reasonably
safe to use the simple linear slab estimates. The differences are expected to be comparable
to the factors of 1.5-2.5 found here. We have also eveﬂuated the absolute diffusion times
for several cases of interest to space and labératory experiments.The diffusion times are

consistent with observations. We will now describe the model and present our solutions.

I1. Diffusion Model

The transport in the beam is taken to be standard Braginskii, with collision times reduced
by turbulence from the Coulomb value. The transport model neglects the effect of inertia
and this imposes a constraint on the solution which, because we are not considering time-.
harmonic phenomena, takes the form Q.7p > 1, where ), is the electron gyrofrequency and
7p is the diffusion time. Diffusion times based on Coulomb collisions alone are too fast to
satisfy this condition and the model breaks down. With an anomalous collision rate, the
inequality can be satisfied. The jet is taken to be homogeneous so the VP term does not
appear and thermoelectric terms are neglected. In this case, the currents in the beam are

related to the electric fields by

J=0,F +ogE x#  where




is the jet velocity and taken to be along the z-axis,
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the Pedersen conductivity,®
g = Q ‘7' 0L . (3)

the Hall conductivity, where
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We further define E, = E, + E,2 and we see Jj; = 0.
It is observed in the experiments that the motion of the beam particles are essentially
force free in the beam frame. This implies £ = —B x B and therefore E is parallel to the

z-axis. Ampere’s law in cylindrical geometry give the three equations:
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The z-component of displacement current has been neglected relative to the conduction

current. This constrains the solution and must be checked a posteriori. In the r and 4 |
component equations, the terms in the spatial derivatives of B vanish identically by virtue
of the symmetry. The current responsible for the diamagnetism is a Pedersen current® driven

by the electric field induced by the penetrating flux. The self-consistency is obtained from
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Faraday’s law which closes the system. After some straightforward algebra a pair of coupled

nonlinear diffusion equations for the r, § components of B are obtained:
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where dimensionless variables have been introduced by the definitions
p=rfa, T=t/Tp, b=B/By, 7p =4iwd’oy/c’,
K= (QBOT:;)Z and e = eBy/mc .

Here By is the magnitude of the applied magnetic field far from the beam where B = B;

initial condition is then

by = (1 —1/p*) cos }p>1. (10)
by = —(1—1/p*)sinf (11)

The boundary condition at p = 1 is found by matching to a vacuum solution for p > 1 which

satisfies for all time

b, — cos @ (12)
— 00 .
bg — —sind

In the slab limit, the pair of equations, Eq. (8) and (9), reduce to a single equation for b,

8/8z [(1 + kb?) %J = % (14)

subject to the boundary condition b, = 1 at £ = £1/2 and the initial condition b, = 0,
~1/2 <z <1/2.
We will now consider the solution of the cylindrical system in the linear approximation

and the solution of the nonlinear slab model.




I1I. Linear Solution in Cylindrical Geometry

The solution of the problem in cylindrical geometry can be more readily obtained by intro-

ducing a scalar function, X through the definition
b=2xVX. (15)
(X is essentially the z-component of the vector potential.) In terms of X, Eq. (8)-(9) become
10 %X 0 ox
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These equations can each be integrated once. Because the integrated equations resulting

from Eq. (16)-(17) are the same and X must satisfy given boundary conditions the arbitrary |

functions, otherwise resulting from the integration, vanish. Thus X satisfies the nonlinear

diffusion equation

MX[or'= (14 &VX - VX)V?X . (18)

The boundary condition at p = 1 is obtained from a solution in the vacuum region of

Laplace’s equation

VX =0 (19)

which satisfies

X — —psinf as p—co. - (20)

That is our boundary condition is imposed by the essentially cartesian nature of our magnetic
fleld system. Hence, this problem is different from the standard mixed problem solved in the
textbooks. Thus the solution is only obtained by solving simultaneously Eq. (18) for p < 1

and Eq. (19) for p > 1 and matching the solutions at p = 1. We do not know how to do this



in general but will obtain the solution in the linear approximation where Eq. (18) is replaced

by
oX/or = KVX, (21)

1+ s~k since typically x> 1.

x>
I

In the outer region, p > 1 a solution of Laplace’s equation satisfying the condition, Eq. (20)
is
X=—psinf+> ayr)ptsinld, 7' =«r. (22)
¢
(The cos£6 terms turn out to be unnecessary.)

In the interior p < 1, the solution is found by taking the Laplace transform of Eq. (21).

The solution is

X(s,p,0) = ci(s)sinlb I(+/sp) , (23)

£

where I, is the modified Bessel function of the first kind, and the transform variable is s.

Taking the Laplace transform of Eq. (22) gives for p > 1

X(s, p,0) = L2 L S zy()ptsint0 | (24)
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Now matching 0X/dp, 6X/30 from Eq. (23) and (24) at p = 1 gives, ¢ pairs of equations for

the @, ¢y which are satisfied by

a = ¢ =0 for £>1 and
—2/s
a(s) = =L (25)

Vs Io(+/5)

where in @ the prime denotes differentiation with respect to the argument of the Bessel

function.



These can be substituted back into their respective equations for X and the standard

Bromwich inversions of the Laplace transforms done. The solutions are then p < 1,
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where a,; is the j™ zero of Jy and the Bessel function notation is standard.

For p>1
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We will use these to obtain numerical estimates of diffusion times following our discussion

of the nonlinear diffusion in the slab.

IV. 1Nonlinear Diffusion in a Slab

In this case, the evolution of the field inside the beam is given by Eq. (14):

0 0b 0b

— |1+ &) —| = =—. 14

Oz [( e >6:c} or (14)
Nonlinear diffusion equations of this kind are known to produce solutions with front-like
behavior. Because typical cases of interest have £ > 1, we neglect the constant term relative

to xb® in the diffusion coefficient. This is not quite right just at the front but the effect is

the elimination of a small foot (~ 1/4/k) right at its leading edge. The finite thickness of the
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jet means self-similar solutions do not exist for our problem. However, until the fronts from
the two edges meet, neither edge can know about the other and the problem is the same as
the semi-infinite one. Thus we use the self-similar form of the solution b = (1 — z/§(7'))*/?
where §(7) will be determined by imposing an integral constraint on the solution; the method
of moments.? The resulting constraint equation is an ordinary differential equation in time
for 6(7). It will be found to be proportionai to 71/2 which is consistent with self-similarity.
Putting 7" = k7 and integrating Eq. (14) in & over (0,6) we have

29, § 6
%—b ob/ oz » where (I):./o bdz . (33)

With b(z, ') = bo(1 — z/6(7"))*/2, this becomes
d&(r) 3B

= —, 4
dr! 2 (34)
The boundary condition at £ = 0 = by = 1, at the solution is
! 3 1/2
8ty = /=7 and (35)
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This solution breaks down when the fronts meet in the center of the slab at z = 1/2. This
occurs at a time 7, = 1/6. After this time, the solution is no longer self-similar. We will
again use the moment method to obtain an approximate solution in the case 7 > 7.

It is convenient in this case to shift the coordinate axis by half a unit and place the origin
in the center of the slab. The solution is symmetric about the origin. It is also convenient
to rescale so that the boundary conditions are again at z = +1. To return to the original

system, ¢ — 2z —1 in the solution. We also shift the time origin by 7,, and scale by a factor

of four, to have, for 7 = 47 > 0:

9 8 (,,0h
5%—37(1’ a_) (37
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We look for a solution of the form

b= (Bo(T) + Bu(7)z?)" . (38)

This is the simplest solution with the appropriate symmetry about z = 0, the required
smoothness at # = 0 and which will let us impose the necessary physical constraints. One
constraint is the moment integral. This will give a differential equation in time for either

Bo(T) or B1(T). The other is determined from the boundary condition:
bz =41)=1 which implies
Bo(T)+ B1(T) =1 forall7>0. (39)

Furthermore, at 7 = 0, b(z = 0) = 0. That is, just as the diffusion fronts meet, the field
at the slab center is zero. This implies 3;(0) = 1. The second constraint is a condition on
% at ’{nhe slab edges at 7 = 0. This is essentially a constraint on the “flux” (actually edge
current density) which does not instantly change when the diffusion fronts meet. This will

fix the value of « as we now show. From Eq. (38)

_8_6
Oz

1

= 2apz (/30(?) + ,31(?)5"'2) ”
= —206:(0) at T=0,z=—1. (40)

From the similarity solution, written in the present coordinate system, for —1 < z <0

b(z,7 = 0) = (—z)*/? (41)
=
ob _1/0 B
= ~1/2(—z)7Y = -1/2. (42)
Therefore .
—2af1(0)=-1/2; =>a=1/4. (43)
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In fact, with o = 1/4, the second derivatives at the edges also match. Thus we have

b(e,7) = (1-By(7)(1 - a:z))l/4 : (44)
The moment integral gives
b1t Bi(T)
2
a—/ bz =] =2 (45)

Now
/ bdz__/o 1+ 4 (F)e” — 1)) da . (46)

This does not have a closed form expression. However, we know that for 7 > 0, £y < 1 and
also clearly for z € (0,1), 1 — 22 < 1 so we will approximate the integrand by the first two

significant terms in its Taylor expansion. The differential equation which results is

o _phdh Py (47)

—1/6 dF 10 d7 2

This can be solved by quadratures and a transcendental equation for () results:
Brexp (3/5(B1 — 1)) = exp(—37) . (48)
To solve this, we again expand to O(f;)? and find, on solving the resulting quadratic
Bu(m)=1/3{-1+[1+ 15exp( —37)?} . - (49)
This solution has the appropriate limiting values:
For =0, A0)=1/3{-1+[16]"*} =1

and as T — oo f; — 0. The full solution is then, in the original system of units with
I<z<l:

For 0 <7< 1/6k

bz,7) = (1 - (i>1/2 x) o <z <1/2 (50a)



1/2

= (1 — (_2_)1/2 (1- :c)) 1/2<z<1 (50D)

kT
1/6 < 7
1/4
bz, ™) = {1-%[—1+(1+15c—“"“‘1/6"))1/2] sl-a)} (50¢)

These solutions are sketched in Fig. 1 as a function of z for several values of 7. In the next
section, we discuss numerical estimates of diffusion times from the models considered. We

will also compare these with a solution of the slab model in the linear limit.*°

V. Numerical Results

Here we will use our results of the previous sections to obtain some estimates of the pene-
tration times of the field. First we will make some relative estimates simply to have some
measure of the effect of the different physics we have been considering. We will then use
parameter values appropriate for the laboratory experiments of Ref. 4 and space experiment
of Ref. 5 to obtain some absolute diffusion times.

In the following experiments, the penetration of the field is determined by the decay of
the diamagnetic signal and a concurrent rise of the polarization field as measured on floating
Langmuir probes.* The experiments in space generally observe the field within the jet by
means of satellite borne instruments.® As a basis of comparison, both with experiment and
the different theoretical solutions, we adopt the central field 90% return time (the time at
which b(z = 1/2) = 0.9) as a measure of the diffusion time. There is no particular justi-
fication for this. Given the experimental uncertainties (finite beam risetimes, approximate
geometries, etc.) and the relative insensitivity of the diffusion times to the central field frac-
tional value if it is sufficiently near to one, this seems to be as reasonable measure as any.

From Eq. (2) of Ref. 10, for example, for the slab in the linear approximation and Eq. (49)
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in the nonlinear case, we find

Too = 0.26  (linear)

T = 0.30 (nonlinear) .

The closeness of these values is striking considering the difference in the diffusion profiles at
early times. (Compare Fig. 1 with Fig. 8 of Ref. 10, for example. This also shows that the
evolution of the linear problem at late times and the nonlinear solution, Eq. (50), at late

times have very similar profiles). In the cylindrical case, Egs. (28) and (29) give
T = 0.48 .

The diffusion in this case is significantly slower, by about a factor of two, than that in
the linear case. (This is a consequence of the planar geometry in the large p limit. If
a dipolar field were composed at the edge of a cylindrical plasma jet, the diffusion times
would be much closer to the slab values.) In view of the slab results, it seems reasonable
to expect that, even in the cylindrical case, the nonlinear diffusion times will not differ
s‘ubsta,ntia,lly from the linear case. Numerical solution of the nonlinear diffusion have proved
to be frustrating and difficult in that parabolic solvers typically are based on an iterative
application of elliptic integrators. The front-like solutions of the nonlinear diffusion are a
problem for these methods.

We now return to the dimensional form of the diffusion times by reintroducing the scaling
7' — kt/7p and evaluating these for the UC Irvine experiments,®* and the AMPTE artificial
comet experiment. The diffusion model is not applicable to the Porcupine experiments in
that the Pedersen current does not dominate the displacement current in that case, even
with an anomalous collision frequency.

In the experiments at the University of California-Irvine, a neutralized ion beam of several

hundred keV energy and density n ~ 3 x 10'cm™ was injected across a magnetic field
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whose value was varied from several tens to several hundreds of Gauss. The details of these
experiments have been reported elsewhere (Refs. 4 and 11-13). For the plasma parameters
there, the classical collision frequency ve; &~ 10/ sec and the displacement currents are not
negligible compared to the conduction currents in the model. If diffusive processes are to
be responsible, an anomalous transport must be taking place and evidence of electrostatic
turbulent fluctuations has been observed in the experiments.!!*® The fluctuations are higher
frequency than would be expected of the lower hybrid; they are more in the ion acoustic range.
The role of these turbulent fluctuations has not yet been investigated in detail experimentally.
However, turbulence of the ion acoustic type could be expected to produce an anomalous
collision frequency v ~ w,; which is, for the parameters of the UC-I experiments, somewhat
larger than the anomalous collision frequency of Ref. 6. If we use this value of ¥, with

By =200G, a = 10 cm, we find
T =~ 1.5x 107" sec
Kk = 24
fooo =~ 3ns.

This diffusion is very fast but is within the condition imposed by the neglect of the z-
component of the displacement current. This result is qualitatively consistent with the
experimental observation in which fast diffusion was seen relative to the 0.5u sec duration of
the beam.

We now consider the AMPTE artificial comet experiment.? Here a rapid penetration of
the interplanetary magnetic field was observed as well. If a diffusive process is to be respon-
sible, some turbulent enhancement of electron-ion collisions is also required here too. If we
again look to an ion-acoustic enhanced resistivity reasonable agreement with the experimen-

tal return time is obtained. The parameters'® are n = 1.2 x 10*cm™3, By = 1.3 x 1073 G,
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a = 80km and a plasma composed of B} (A = 137). If we take v ~ wy;, then

Kk ~35

tgo =~ 30 sec,

compared to an experimental field return time of 17 sec. The value of x only marginally
satisfies our requirement x > 1. But, as the anomalous collision frequency is only an order
of magnitude estimate in any case, the values derived there must be considered in the same
way. Nevertheless, it would appear on the face of it that diffusive transport of the field would
be a plausible mechanism for the observed rapid field penetration. Unfortunately the real
puzzle (and problem) for the model lies in the observation of fluctuations in the ion-acoustic
range with amplitudes too small to be expected to lead to anomalous resistivity. This has led
to the suggestion that hydromagnetic mechanisms may be responsible.!® However, it seems
that these should be subject to interchange instabilities which have been found to be able to
grow even in the case of unmagnetized ions. Indeed, an interchange instability of this general
kind is now believed to be responsible for the fast field penetration in numerical simulations®
done by our colleagues of high-# plasma beams crossing a magnetic field in vacuum. In these
simulations, the plasma temperature was sufficiently high (ion masses were artificially low,

a standard technique in simulations) that ion acoustic instability was not expected and no

evidence of it was found.

VI. Summary and Conclusions

In this work, we have considered the diffusive transport of magnetic fields in the limit in
which the electrons are strongly magnetized and applied the results to the problem of field
penetration into high-f plasma beams. Because the magnetization of electrons makes the
diffusion coefficient nonlinear, the solution of the problem is non-trivial and numerical meth-

ods can have difficulties even in simple geometry.l” We have constructed analytic solutions
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under different approximations and have shown that while there are differences in the details
of the solutions, the gross measures obtained are quite similar. In particular, measures of the
diffusion times are the same to within any reasonably expected experimental determination
and are about 50% of the values simple scaling arguments would give. We have applied tflese
to two experimental cases of plasma beams in a transverse field. The diffusion times in the
laboratory experiment qualitatively agree with the observations which essentially establish
an upper bound to the field penetration time. There is reasonably good quantitative agree-
ment with the space experiment (AMPTE) penetration time. Both require the existence of
an anomalous collision frequency. Given the strong diamagnetic currents which must flow to
shield the field, it is not unreasonable to expect such. This is consistent with the laboratory
observations but not the experiment in space. The fluctuations in the laboratory experi-
ments need to be investigated in more detail in order to come to quantitative conclusions.
These could be supported with some numerical simulations as well. The space experiment
remains a puzzle. We anticipate that some simulations extending the work of Ref. 16 will
provide some insight into this problem. In general, the microscopic dynamics in the bound-
ary layer between the plasma beam and field is likely to be where the action is. The physics
of this region is complex and needs considerably more work. Interestingly, this was an area
of interest early in the magnetic confinement fusion program and is again becoming the focus

of increased attention.
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