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Abstract

The theory of overfocusing is developed for a self-colliding storage ring (Exyder)
and for a classical migma configuration. Forces due to external and self-generated equi-
librium magnetic fields are considered. The band of energy containment is calculated *
for a model external magnetic field configuration. The forces due to self-generated
magnetic fields in migma and Exyder can also cause overfocusing, and thereby set a
beta limit on a migma disc and a luminosity limit on Exyder. The luminosity in Exy-
der can increase substantially if the self-colliding storage ring is partially unneutralized.
The beta condition of a charge neutral thin migma limits the self-generated magnetic

fleld to a fraction of the externally imposed magnetic field.

I. Introduction

In the migma concept [1] it is desired to store energetic ionized particles in an axial disc
so that their orbits focus close to the axis of symmetry. This can be done with particles in
a vacuum magnetic field that is similar to a mirror machine. These magnetic fields allow
for orbit containment according to the principles used for confinement of plasmas in mirror
machines or for confinement of accelerators with weak focusing fields. For the nearly ideal
case, particles are almost monoenergetic, with an angular momentum distribution in pg

peaked about ppy = 0 and the axial velocity, the velocity component parallel to the magnetic
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field lines, much less than the velocity perpendicular to the magnetic field lines. The orbits
have the pattern shown in Fig. 1, where all orbits pass very close to the origin, the radial
extent of particle confinement region is two Larmor radii, and the spread in axial speed is
so small that the axial extent of the migma, (Az) is much less than the Larmor radius (rz).

The energetic ions stored in migma establish “diamagnetic” currents that tend to cancel
applied vacuum magnetic fields. In order to reduce the synchrotron radiation of a charge
neutralizing electrons, a diamagnetic migma [2] has been proposed, in which the self-ion
currents cancel the vacuum magnetic field in the bulk of the ion containment region.

Recently Blewett has suggested how a vacuum magnetic configuration can be designed so
that magnetic fields are near zero throughout most of the ion storage region. His suggestion
is the basis of Exyder, a proposal for a compact self-colliding storage ring [4].

In a proposed diamagnetic migma or Exyder, the absence of magnetic field in the-bulk
of the containment region means that magnetic focusing forces are most significant when
an ion reaches the radial periphery of the containment region. At the radial periphery an
ion feels a magnetic force that focuses its orbit radially and axially. The radial containment .
condition is stra,ightfbrwé,rd; there needs to be enough magnetic flux to radially reflect the
particle. The pﬁrpose of this paper is to discuss why axial focusing is a more subtle problem.
There of course needs to be a net inward axial force. However, somewhat paradoxically, one
can have a condition where there is too strong an inward axial force, which leads to axial
expansion. We call such an effect “overfocusing.”

In the Exyder configuration, ions move radially from the center, with negligible ben&ing
if the vacuum field is small, and turn around in the periphery where a magnetic field is high.
Electric forces can be neglected when neutralizing low energy electrons are present that
can be contained by an electric potential energy that is much less than the ion energy. A
schematic of the orbits is shown in Fig. 2. Inside the dotted circle of radius R, the magnetic

field is considered negligible and ions move in straight lines. The magnetic field abruptly



rises to a mean value By outside the dotted liine (more discussion of this magnetic field
is given in Sec. II). Outside R the particles turn in a semicircular orbit, where the radius
is approximately the Larmor radius, (rz), and rz, is small compared to R. In the Exyder
proposal it is also assumed that the axial width, Az, is small compared to R.

The focusing forces occur outside the radius R. The magnetic field is assumed to be strong
enough to radially reflect the particle. The axial force felt by the particle is F, = @5}2
(go is the ion charge, B, the radial component of the magnetic field, vy the §-component of
the velocity and c the velocity of light). This force is felt during the relatively short time
" interval (compared to the time to move a distance 2R) in which the particle is outside the

radius R. Thus, in the time interval to radially turn around the particles receives an inward

impulse per unit mass, given by

Ap — _% dtqz‘Br’Ug
yme

1
(1 —v2/2)2
We shall show that if this inward impulse is too large, then the next time the particle

where m is the ion mass and v =

returns to the focusing region at the opposite side of the z-midplane, it will have a larger
amplitude. Orbit instability arises when this amplitude continues to increase with multiple
passes. If we assume that the axial impulse received in the focusing region is proportional
to z, i.e., I, = —zAv/Az with I, the axial impulse per unit relativistic mass, and Av the
axial velocity increment received at z = Az, then we derive from an impulse model that

overfocusing arises, if
AvT
Az

where T' is the radial period of oscillation.

> 4,

In this paper we describe in Sec. II how overfocusing can arise in a vacuum magnetic
configuration which is relevant to the self-colliding storage rings concept. For a model mag-

netic field we determine the energy band of good containment. We then show in Sec. III how
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diamagnetic effects in a standard migma configuration can also cause overfocusing. For a
highly focused migma disc, the overfocusing criterion places a restriction on beta (the ratio
of average kinetic energy density to magnetic field energy density in the region occupied by

energetic particles) that can be achieved. The beta limit, 3., is found to be given roughly by

2
In(1/€)’

where € = b/ry, with rz the ion particle Larmor radius, and b = by + Az, with by the

Be =

mean “impact parameter” which is the mean value of the distance of closest approach to the
axis of symmetry, and Az the axial extent of the disc. The calculation also shows that the
self-magnetic field of a thin axial disc-like migma conﬁgurafoioﬁ can produce only a fraction
of the vacuum magnetic field. Thus, overfocusing by magnetic forces in a self-consistent
equilibrium prevents the self-induced magnetic field from shielding in a substantial way the
vacuum magnetic field. This means that a diamagnetic migma, where the magnetic field in
the bulk of the containment region is much less than the magnetic field at the periphery,
can not be achieved for a thin charge neutralized migma. In principle, in order to achieve a
diamagnetic migma as described in Ref. 2, the axial width, Az, has to be large compared to
the ion containment radius.

It should also be noted that in the self-colliding storage ring, as the particle number
increases, the self-consistent axial self-force can also violate the overfocusing condition and
thereby set a limit to the total particle storage number; hence the luminosity of the stored
particles’ interaction rate. This limit is calculated in Sec. IV, and it is shown that the limiting
luminosity of a large charge neutralized storage ring does not increase with radial size. The
limiting luminosity, L, scales as L, o< Boy/m? = 3Az/ry, x10%cm2 /séc ifBg ~ 5T and v =~
10, where By is the magnitude of the external magnetic field, ymc? the energy of the ions
with mass m, Az the axial extent of the disc and r7, the Larmor radius in the magnetic field.

However, a larger luminosity can in principle be obtained if one introduces compensating



defocusing forces. One obvious way is to control the charge imbalance of the energetic ions
and background electrons. To take this possibility into account we have included in Sec. IV

a model for self-generated electric fields arising from a lack of charge neutrality.

II. Overfocusing in Vacuum Magnetic Field

Let us consider an azimuthally symmetric magnetic field which is small and nearly constant
at small radii, and changes rapidly in some interval around r ~ rq, within a distance Ar,
as shown in Fig. 3. Such a field can be constructed by splitting two concentric solenoids as
shown in Fig. 4. We shall use such a field for our modelling studies. The field is By in the
solenoidal shell, ABg, near the axis, and significant field variation exists near r = roy when
z S max(z1, 22).

In practice there are many variations of magnetic field coil designs to produce the fields
of Fig. 3 at the z midplane. The ultimate choice should be made to economize on magnetic
field energy and to optimize orbit stability [5]. However, for model studies we use magnetic
fields that arise from the configuration shown in Fig. 4.

We only consider magnetic forces where kinetic energy does not change. Hence relativistic
orbits can be evaluated from nonrelativistic theory if the relativistic mass is used instead of

the rest mass. To consider orbits, we write the Hamiltonian per unit relativistic mass as

1
2H = = (pe — g/ (yme))? + v2 + 02,

where H and py are the energy and angular momentum per unit relativistic mass, and v,

and v, the axial and radial velocities. 9 (r, z) is the magnetic flux, and the magnetic field is

given by
_ 1oy 10y

Bz”‘_ ) r — .
r Or r Oz

To solve the orbits we assume py = 0 and the axial speeds v, to be less than the perpendicular

speeds v, ~ (2H)'/2. Then we assume that in a single radial pass through the interaction
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region around r =& rg, we can neglect the z motion and consider v, constant. In this
approximation, the time increment d¢ is

dr ) dr

dt = 177 — 172
[2H — 2 — (1) (ps — qi(r,2)/(yme))?] " [2H = (1/72) (ps — qib(r, z)/(vmc)ﬂ( ;
1

where z and v, are fixed. The axial acceleration is

w . q (pe ) qw,z)) 5

Ay = ———LDp = —
yme ymer yme

and the impulse per unit mass, Av,, during a transit through the interaction region is

T/2 q
Av, = -— dt——vy B,
~T/2  ymc

_2q dr (po — q3(r, z)/(yme)) B, @2

= 172"

e Jrain 1 [2H — (1/1%) (s — qio(r, 2)/ (yme))’]
where T' is a radial bounce period, r; and rpy, are the outer radial turning point and inner
turning point, respectively. Our expression is still valid if z varies appreciably in a radial
bounce period, as long as z is nearly constant in the interaction region. Also note that the
factor ‘2’ in the r integral arises from accounting for positive and negative radial velocities.
To simplify Eq. (2) further, we set ps to zero, which is approximately valid if py <

q(r,0)/yme. Further, given B,, we can approximate B,, (using V x B = 0):

0B, 0B,
0z  Or’

which, upon integrating around the midplane, gives

zBBz(r, z= 0)‘

B, = or

Then using ¢ = / drr B,(r,z = 0) and approximating % about r = ro,
0

Av,

1/2

2¢°z /Tt dr(0B,(r)/0r) [y dr'r' B,(r")
(yme)? Jo [2Hr2 —(¢/(yme) [y dr’Bz(r’)r’)z]
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- 2¢%zry [Tt dr (0B,/0r) [y dr' (B.(r") — B,(0)) + roB,(0)/2] (3)

(rme)¥o {2818 — (gro/(yme)) LI dr' (B.(r') — Bo(0)) + Bo(0)ro/21*} "

Note that if the fields increase at small r, the numerator is positive, and the contribution
to Aw, is positive, and therefore axially defocusing. At large radii 0B,/0r is negative,
which contributes to axial focusing if the particle can reach this region. The stagnation that
arises in the region where a particle turns radially tends to be strongly weighted because
the denominator of Eq. (3) vanishes there. If this region is where 0B,/0r > 0, one tends to
obtain a strong axial focusing contribution that overcomes the defocusing contribution from
the smaller radii.

To cast the expression in a more dimensionless form, we define b(r) = B,(r)/Bo, weo =
gBo/yme, with By the characteristic magnetic field at r ~ ro, and rp = (2H)Y?/w, = the

Larmor radius of particle of energy H in uniform magnetic field By.

Then we find ‘
Av, 22 / dr&E {17 dr [bo(r") — b(0)] + (ro/2)b(0)} n
waro ~ oo {3 (17 am (b(r) — 5(0)) + (rab(0)/2)}

~]‘z

o

This expression depends strongly on energy. The low energy particles are turned before
they reach the region 0B,/0r < 0 and, hence I is intrinsically negative for such particles,
and they cannot be contained axially. Higher energy particles have I positive, hence axial

focusing properties. We also restrict rz, so that

1y 1 feo
rr < max (?/o drrb(r)) A E/O drrb(r),

which guarantees radial focusing. This follows from the Hamiltonian when py = 0, as then

a \* L ?
v <2H — (mvcr) =W} [r% —3 (/0 drrb(r)) J .




T 1 7o
As we assume r7, < max (/ drb(r)r), there is a point ro where r} = = [ drrb(r). For
0

‘ o JO
L [ fro . 5 (0)r? 2 ) . .
small r, — drrb(r) =b*~~— |, hence v? > 0 for small r, and v? must vanish at a point
r? \Jo ' 4 " r
r =7y < ro. Thus, the radial containment region (the region where v? > 0) is limited to a

radius less than rg.
We now develop a mapping technique to study axial focusing if I > 0. Suppose a particle
is at z = z, with an axial speed v, = v, when it is about to enter the interaction region

r o~ ro. Upon passing through the interaction region it receives an impulse
Av, = —weol 2y,

so that its coordinates will be z = 2, and v,y = v, —w.[z,. If now a radial bounce period
T nearly elapses (T' & (4/ we) sin™'(Aro/2r) and ABy is the magnetic field at small radii),

the particle will again be ready to enter the interaction region, and its coordinates are,
Zpnyl = 2+ 'Un-}-lT
Unt1 = Up — chZnI (5)

The stability of this difference equation is found by seeking normal mode solutions z,4; =

Az, vny1 = Av,. Then solving Eq. (5) leads to the dispersion relation
A?—(2—-4f)A+1=0,
where f = Av,T/4z, = w,T1/4. The solutions for A are
A=1-2f %2 (f - )"

Stability requires |A| > 1, which restricts f to the interval 0 < f < 1. Satisfying the left side
of the inequality is the condition for focusing. Satisfying the right-hand side of the inequality

is the condition for avoiding “overfocusing.”



In overfocusing, the impulse is so large that a particle achieves a larger amplitude in
|2n| with each axial impulse, with the sign of z, alternating with each kick. It can be
readily shown that for the critical case f = 1, a particle with a velocity v, = 22,/T and
axial position z = z, receives an impulse —4z,/T and at its next interaction its coordinates
are Vpy1 = —22,/T = —v, and 2,41 = —2z,. It also follows that at f = 1 the particle
passes through the origin when it passes through the axis. Any larger impulse will cause
an exponential increase of the coordinates with successive interactions. These observations
are consistent with a physical interpretation given by Blewett (private communication) for
overfocusing. He considers a particle moving from the origin at a point 0 in Fig. 5. The
particle moves in a straight line until it reaches the point B at radius Ro. For r > Ry, the
particle feels a strong focusing force causing the particle to reflect radially, and having its v, ”
component changed. The particle returns to r < Ry near the point B. The line BC' is the
line of specular reflection. If the reflected trajectory returns on the dashed line, to the right
of the line BC, we have a defocused system, while if the trajectory returns on the dotted
line, to the left of B we have an overfocused system.

It can also be shown that if a continuously applied focusing force is added to the impulsive
focusing force considered here, the value of f for which overfocusing occurs decreases. Hence,
the external mirror fields makes the overfocusigg condition slightly more restrictive. To
counter overfocusing, one must compensate with defocusing forces.

It is also interesting to study Eq. (4) when f is small, where the difference scheme can

be converted to a differential equation. We have

dz L Zpg1— Zn .

dt T 7
dv, . Upp1—vn . 4fz

dt - T T (6)



Combining these equations yields

Hence, the solution is

z = zgcos(w,t+ ¢)

v, = —wyzgsin(w,t + @), (8)
with
2f1/2
Wy = ? .

In practice, one may have a condition that particles must be stored within a distance Az.

The axial spread in velocity then must satisfy

v, AWl A2 ] (9)
vio vio r? weol
z A
A_22 I, if Ao ~1
- 2rry 2ry,
7] AT ARq '
if — K1
27"1,7'0, lf 27"[, <

To illustrate the relevance of the orbit stability criteria, we consider the model field
considered at the beginning of the this section and illustrated in Fig. 4. Away from slots,
the magnetic field in the sleeve is By and the magnetic field in the central region is ABy.
Thus, the current density at r = ro+ Az is ¢By /4w while at r = ro — Az the current density
is ¢cBo(1 — A)/4mw. We calculate the magnetic flux ¥(r,z) = [5 drr B,(r,z) in the vicinity
of the slit assuming 22y & 2z¢ < ro. The solution consists of the superposition of current

densities

J=J,+J,

where

J; = C—B06(7"—7°0 —20)8 — (i:i;—)?—Bﬁ

I 8(r —mrg —I-:co)g (10)
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and

B ~
J, = ——2—71_05(1' — 1o — %0)0(|z| — 22)0 +

(1 — )\)CBO

v 8(r —ro + 20)0(|z| — 21)0. (11)

The exact solution, as well as the approximate solution in the vicinity of r & rq, for the

magnetic flux function v, is (we define z = r — ry),

(a) r <ro— o

Wy (r, z) = ABOT; = ABoroz + AB‘;”%
(b) ro+ 20 <r <rg—2o
i(r,z) = /\Bog”_o__—;_o)z -+ % [7"2 — (7o —wo)z]
= /\B;rg + Boro(z + z9) — ABoro®o
(c) r>ro+ .
hi(r,z) = BO@—%EO—)—% + 2Boroo
= )\B;Tg + 2Bgrozo — ABgrozo, (12)

where in the approximate forms we have neglected term O(z3).
For the currents J,, we neglect cylindrical effects for evaluating 1, in the vicinity of

r & 1o |2] & 21, 25. Then treating the J, current to be in a fixed direction we have

- —CT‘oBo i #2 dZ/
s dz'(1 =)

. (13)

- 1/2

- [l = 2P+ + (@ +o0)
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These integrals can be performed straight-forwardly. For the integrals in Eq. (3) we then
find

5 [41(,0) + 2(1,0) = ro{%m [<" -+ _}

1 " 1.7
Bo/o dr' v’ B,(r,0) - p
— 2 2
_ (= Nroz [(3_+1> +z_;}
Zo

27 G
+ %(w — ) tan™" (:z: i2w0> _a ; ) (z — @o) tan™ (x i2w0> }
N zbg:), (14)

with 94(r) given in Eq. (12);

Eo Or N Boaz N Bo’r'o 022 N ;

z—z) +22  (z+20)*+2]

10B, 0B, 1 & 1 [( 23 1=Nz ] (15)

We substitute Eqs. (13) and (14) into Eq. (3) [or Eq. (4)] and evaluate the integral for I
numerically. The relevant integral for orbit stability is f = w.T'1/4 so that stable orbits lie
in the interval 0 < f < 1. f < 0 is an unfocused orbit and f > 1 is an overfocused orbit.
The values of f as a function of rz, is given in Figs. (6a) and (6b). In Fig. (6a) z; = 2
and the various curves are for different values of z;/zo. In Fig. (6b) we choose z; = zo and
the curves are for various z;/z;. The most dramatic aspect of those curves is the steepness
of curves as a function of r;. Roughly, these curves indicate that focused orbits occur in
an energy interval AE/Ey =~ 10% where AE is the spread of energy about an energy FEy
(where, say f = 1/2). This steepness in the energy dependence of f can be mitigated with
careful magnetic field design as indicated by Blewett [5]. Nonetheless, the example shows

that overfocus/ing is an important phenomena for orbit stability.
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ITT. Overfocusing by Self-Magnetic Fields in Migma

We now show how overfocusing can arise in a self-consistent equilibrium, and we take a
nearly ideal migma disc as an example. An ideal migma is a thin axial disc with axial
“length Az much less than the radius ro =2r;. All particles are nearly monoenergetic with
a speed v and have p, values close to zero. The equilibrium density, n of an ideal migma
is determined from the condition nv, = constant with v, = [2H — (g3b/m~?]/2. In a nearly

uniform magnetic field By, i.e. 2rp(1/B)(0B,/0r) < 1, n is then given by

L 2anso(r) »

3
r

qBo

with o(r) = (1 —r?/4r2)~1/2 where r7, is the ion Larmor radius, r;, = v/w,, and w, = po
m

7 is the mean density averaged over a cross-sectional area

Notice that the density of an ideal migma is singular at the origin and at r = 2ry. There
are no particles for r > 2ry. By considering a distribution function of finite Widtil in pp and
energy, these singularities are replaced by finite peaked function. Examples of such finite
| peaked functions can be found in Ref. 6, and a nonsingular form for o(r) can be used when
there is é, small spread. For example, given a distribution of particles with a characteristic of
the impact parameter b (i.e., b is the characteristic distance of closest approach of a particle
to the origin) one finds that

o(r) 1

if b 2rr, — b
r _—)7"(1—7"2/47%)1/2 LA

a(r)

r

if rSb

o
~

[~

o(r) 1
r rpbl/2

2

if 27‘1,—7'%[)

@—)0 f r—2rp,>0
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The directed speed is vy = —w,r/2, so that the current density j, is

_ﬁquL;ca(r) ' (17)

Jo =nqup =
Note that for an ideal migma, jg is singular at » = 2rz. For a distribution function with a
spread in py and energy, jg is peaked but finite around r = 2ry,.

For simplicity we take @ constant between —Az/2 < z < Az/2. Our model can be
further refined to allow Az to be a function of r, and we can even attempt to find an explicit
distribution function whose density will replicate this property. However, the essential aspect
of our model is that we have a thin disc of characteristic width Az < rr, and On/0z vanishes
on the mid-plane. The induced magnetic fields produced inside the containment region of a

general distribution will be quite similar to what is produced in the model we analyze.

The induced magnetic field, By, is determined by the equations,

0By, 0Bi, _ 4n.  4drpqueo(r)
5z or VT T ¢ (18)
v.B, = 2B 100B) (19)

0z r .0Or
As the axial variation is rapid, we can neglect (0B;,/0r) in Eq. (18), so that B, is found to

be

By = _4nrpqwezo(r) _ _BOEza(r) < %, (20)

c 27rg

where B = y8rfimuv?/B? is the mean beta, averaged over cross-sectional area of the particles
in migma. We note that the evaluation of By, given Eq. (20) fails near the edge of an ideal

migma when 2r;, —r < Az as then 0B;,/0r cannot be neglected in Eq. (18) (as can be

aBlz: Blz . 4 .
5, ~ A, B Eq. (19)). However, the expression for By, at

r & 2rg is valid if Az < 0/(8g/0r), and this can be achieved if there is enough speed in say

ascertained by calculating

bg-
We note that By,/Bo ~ fz/rr, which needs to be small to justify neglecting self-fields

in the equilibrium. Thus consistency requires fAz/r;, < 1. It can also be shown that
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Bi,/By = E’Azln(Az/rL)/rL. Thus, with 8 ~ 1, we still have small self-field effects if
Azlrp < 1.

The axial acceleration on a particle is

2 .2
a= Fe _ _ v By, = _ﬁw’ (21)

ym yme i rp

where we have used Eq. (20) and vy = —w,r/2. The axial impulse per unit relativistic mass

this particle receives in passing through the outer radial periphery is, using Eq. (12),

3 o2
Av = /adt = —ﬁ%/dt zro(r). (22)

Let us assume z is nearly constant in passing through the outer periphery. Then,

2dr

dr
o = : 23
dt " Up lz=const. wc(4’l“% —‘r2)1/2 ( )
Thus,
-9 ] 27y —er d o a
Av = — ﬂzwc L—eTL 2?“7' = ﬂwczlll (l), (24)
: T o (4r} —7r?) - 7« €

where dt is multiplied by a factor of two to take into account the positive and negative
radial velocities. Thel cut-off ery, is introduced in order to take account of the logarithmic
singularity and rp > 2rr — ' >> € the natural spread that exists in a nonideal migma.
With the natural spreads, the expression for Av is not divergent. By determining the
limiting values where Eq. (24) is applicable, the magnitude of the large logarithmic response
is found. Our calculation is only accurate to the extent In(1/€) is large. Two natural spreads
determine the cut-off; Ar(Ar & o(r)/0c/0r at r = 2rz) and Az with ery < max(Ar, Az).
To logarithmic accuracy we can choose ery, = Ar + Az and incorporate both cases.

We have noted that when Az > Ar owur expression for By, fails when 2r; —r S Az.
A proper evaluation of Bj, would lead to a contribution in Eq. (24) for r=2r; that is
not divergent; the appropriate integration of this term would correct the logarithmic term

proportional to In(1/€). We do not attempt to find this correction. If Ar > Az the cut-off
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parameter can be calculated relatively simply. In this case we note that B;, can be obtained
without any local breakdown of the expression and we have near r = 2rr,

driy . —2
By, ==z ?9 = —chrqn(r)z.
: C

We define a phase space mean of a physical quantity G(pg, H,r) as

[ dped HGF(pg, H)
[ dpgd HF (pg, H)

G= (25)
For highly peaked distributions all particles have nearly the same G value so that, G' char-
acterizes the typical value of G. Now let G be the impulse Av, so that the mean impulse
Av is

- —fdpgdHF(pg,H)fdtq‘UgBlr/’)’CTn
[ dped H F(py, H)

—(2mqzwi/cBy) [ dpgdHF (pg, H) [y dr r?n(r) /v,
[ dped H F(pe, H)

_ 2mqzwd  [o7 drr®n®(r) (26)
cBy [dpedHF(pg, H)’

where ruy;, should satisfy the condition

Tmin 2""L
Tmin o 2L,
Ar < Ar

1K
However, the logarithmic accuracy of the last term in Eq. (26) is not affected by replacing
Tmin DY zero where we have used /(dpgdH/v,)F(pg, H) =rn(r). We note that / dr r*n(r)
0
is logarithmically large from the contribution near r & 2ry. For example, the following
distribution function
B3 v\, (P8 2
FpgH) = ———6 | H—— |0 |—= —b
(po ) 4 2oy, W, 2 vz °)7
characterizes a distribution function with a spread of impact parameters of width by, and

the normalization constant is chosen to produce a migma with a mean beta value, § (if
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bo < rr = vo/w.). Here 0(z) is a step function. Using Eq. (26), the mean impulse on a

particle is then found to be

— A3 2+4-¢
Av = _2ﬁwcz/ dzz® c(z,€)
r Jo

where ¢(z,€) is a normalized density which is a function of the radial coordinate r = zrg
and the parameter by = ery. Specifically, ¢(z, €) is given by [6]

1 e de'd (4 — L(2? - 26’)2)
c(:l:, 6) = -2_52/_5 [4__ 2017(772 _26)2]1/2

4

T, 0<z<e

- L sin~! [ﬁ (5 — —””—)] +sin™* [Q—ge—) (—

x 24¢€

sin’l[z—‘;i(i—ﬁ;)]-i—g; 2—e<z<2+e¢

To compare the result of a finite density profile with the ideal case, with cut-offs intro-

duced as given by Eq. (24), we compare the function Q;(¢) = 1In(1/e) with the integral

Qs(e) = /02+6 dzz® c*(z,€). We find Q7(.001) = 3.45, Q(.01) = 2.30, Q7(.1) = 1.15 while
@5(.001) = 4.55, @,(.01) = 3.40 and Q,(.1) = 2.25. Empirically, we find the difference
@s(e) — Qr(e = 1.1, independent of e. Note that the numerical results gives a slightly larger
Av than the analytic estimate by an amount independent of e. Thus we see that the re-
sults obtained by taking into account finite radial spread, yields results compatible with our
cut-off procedure. |

We now determine the overfocusing condition using our analytic estimate. The radial

bounce time is T' = 27 /w,. Thus, using AvT > 4z, we find that the overfocusing instability

arises in a disc-like migma when

or
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(27)

™I
\Y

In(1/e€)’
The validity of this prediction requires

~Az 2¢

T_L- _n(l/e) <1, (28)

where ¢ = Az/rr.
The overfocusing condition then indicates that the disc must swell axially if B is to be

increased.

IV. Overfocusing by Self-Magnetic Fields in Storage
Rings

The self-consistent overfocusing condition from magnetic fields in a nearly charge neutralized
self-colliding storage charge neutralized ring configuration (Exyder) is now estimated. For
simplicity we consider a system where particles are stored within a region 7 S rg, where the
magnetic field is negligibly small and the particles are turned éround by a uniform vacuum
magnetic field By, that is taken as constant for » > ry. The turning radius in this magnetic
field is 7, = v/w. with w, = ¢By/yme. We assume rr, < ro, and the focusing forces due to
the vacuum magnetic fields is ignored. It can be shown that such focusing force causes a more
restrictive overfocusing condition than we calculate. It is possible that a self-colliding system
will not be totally neutralized. The space charge density is then ggn, where g is the fraction
of non-neutralization. If this non-neutral component can be controlled, we can compensate
the magnetic overfocusing forces with defocusing electric forces, as will be illustrated.

The magnetic flux function for the configuration described is

0, r < o
Y= (29)

1 .
530(7"2 — ?’3), r > To
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The particle and current densities are taken constant in z between —Az/2 < z < Az/2

and zero otherwise. The radial structure is given by,

n = nvry (30)

2r [0 — (qyp(r)/(ymre))]

i = — ?_?,’L)Toqz'%b(’l") . 7, (31)
2ymer? [v? — (gih(r)/ (ymre))?]

where 7 is the average ion density in the disc, i.e. 7= Nr/(7riAz), where Ny is the total
number of particles stored. We have used the density and current of an ideally focused
system. Using distribution functions the formulas can be modified (asin the previous section)
to take into account peaked but finite spreads in phase space.

Substituting for ¥, we have

0, | r <o
- 32
78 garovw,(r? — r2) (32)
— 73 To+7rL>T>T0
472 [v? — W2(r? — 2rg + rg/r?) /4]
Using 0B, /(0z) =4mjg¢/c and OF./0z = 4rngqz, we find for —Az/2 < z < Az/2,
0, r<To
B, = ) ' , (33)
- 71;~ch‘)°77,(7*)(7"2 —rg)z, To+TL>T > T
E, = 4mn(r)g(r)zq.
The axial force per unit relativistic mass on a particle is
2
_4mn(r)q g(r)z, r < g
Ez_ - ~q(veB,/c — E,) _ my
ym m - 2,2 2 '
7 i L;°2n(r)(r2 —r2)22 + —_4-7rn(7')q g(r)z, ro+rp>1>T10
ymc?r mey
(34)

19



If g(r = 0) = 0, we can use the impulse method developed in Sec. II for determining
the overfocusing condition, as then the most significant axial forces occur near the outer
particle turning point. If g(r = 0) # 0, the use of the impulse method is more complicated
as particles can move an appreciable distance in z between impulses at r & ro + rz, and near
r & b. For simplicity only the case where the impulse is only at the outer periphery will be
studied.

The axial impulse, Av, is

T/2
Ay = / FE, dt
-T/2 Ym

2@l protrr(i=¢) dr [w2n(r)(r? — r2)20(r — 1o)/r%c® — 4g(r)n(r)]

ym Jo r? [v? — w2(r —ro)(r? — r2)2/4r?"/*

_mg*fvrez [rotri(i=9) dr[(r? — r§)*f(r — ro)wl/c? — 4g(r)r?]

- T S e D

where 6(z) is a step function. These integrals have logarithmically divergent parts near
r =1+ rr, and near r = 0. For r & rq we use 7 = rg + = and r? — r3 =2roz, and assuming

z K 1o, we find

Ao — drg*nvz /TL(l—E) dz w2az?
v ym 0 (vV?2 —w2z?) \ ¢ 9
. 2rg’hwr 1 ? 3 1
Bty (1) - S - - S (3), (36)
ymec € v €

a=1-gc?/v? e= Az[r+b/rg, g1 = g(ro=ro+rz), bis the spread of the impact parameter
and B = 8nfimyv?/BZ. The cut-off parameter is determined as follows. At r ~rq+ry =1y
there is an axial width Az. Our expression for B, and E, requires Az dn/0r < n, which
restricts r;y —r > Az. In addition if there is a spread, at the impact parameter b, the turning
points near » = rg + 7z, is smeared by a distance = brp/ro. Thus the expression for the

impulse near the outer periphery breaks down a distance erp & Az + bry/ro from ry. The
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period of a radial bounce is T' = 2r¢/v, hence stability to overfocusing, |Av/z|T' < 4, requires

= L 8

Equation (37) implies a limit on the luminosity of the Exyder storage ring. The luminosity

is defined as

L = c/d3rn2
L 2me_g 4 /"0 dr
= " roAz o T
_2mc_, < 1 ) . 27 B2BiriAzIn(1/e)
= " roAzIn o) ST (s (38)

where €; = b/ro, and we assume v > 1. Thus, using Eq. (37), the luminosity is limited to

BiriAzIn(l/er)  eln(l/e) B
orIn?(1/e)m242c3a?  In*(1/e) 2mwd m2a?’

L< (39)

where €, = Az/rr, and w,, = (¢B/mc). As an example, consider By = 5 x 10* gauss, v = 10,

and m = protons. We find

3.1 wéIn(l/e) cm™2
L< a? x 10 In®(1/e) sec (40)

Note that for a charged neutral self-collider, the overfocusing condition limits the luminosity
from scaling with radial size. However, a significant increase in luminosity can be achieved
if o can be made less than unity. Care with charge neutralization is needed, however, since

a < 0 causes defocusing.
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Figure Captions

1. Schematic diagram of a thin migma. The ion orbits are nearly circular in shape and for
flow in the direction of the arrows the circular shape presesses in the clockwise direction.
Peak currents develop at the plasma edge at r = 2ry, in the clockwise direction, where rz,

is the ion Larmor radius. The thickness Az of this migma is assumed small compared

to ry.

2. Exyder Configuration

Schematic orbits in the Exyder configuration. In the low magnetic field » < rq region,
ions move radially with little bending. At r > ro, the large magnetic field bends the
ions in an approximate semicircular orbit of radius ry (the Larmor radius). Currents

develop for r > rq, and peak at » =ry + rz. In this work the thickness Az is assumed

small compared to rr.

5. Focusing, defocus and overfocusing trajectories.

If point 0 is the origin of a “lens” with reflection symmetry, then a trajectory emerging
from 0 is a focusing one, if on reflection at B, it lies within the angle 0BC; the trajectory
is a defocusing one if on reflection at B it lies to the right of BC (as the dashed line);
the trajectory is an overfocusing one if on reflection at B it lies to the left of 0B (to

dotted line).
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