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ABSTRACT
The spectrum of electrostatic universal mode fluctuations

due torelectron phasé'space correlations (clumps) in a sheared

‘magnetic field is 's'elf—”é’dns"i“sﬁéﬁéiy.\”‘c‘aléﬁ'i'aﬁéd; ' The pair
correlations equation for electrons in a sheéred field is
~derived and renormalized{ and an approximate solution for the
correlation function is obtained. ' Using the phase incoherent
density correlation funcﬁion as a source term in Poisson's |
equation, the renormalized dielectric operator is inverted

to obtainrthe turbulent spectrum. Self-consistency is imposed
by requiring that the diffusion coefficient derived from the
calculated spectrum equals that used to obtain the spectrum
originally. The diffusion coefficient obfained in this way
is in close agreement with that calculated from one-point
turbulence theory. The calculated spectrum is rapidly

convergent for large wavenumbers.




I. Introduction

The nonlinear dynamics of electron orbits in a sheared

.magnetic field were recently shown to significantly modify

drift wave turbulence and stability};_ In comparison with'thé'
uniform magnétic field case, where ions nonlinearly decorrelate
at a rate ka (D' is the cross-field turbulent diffusion coefEfi-
cient), electron free streaming along the magnetic field in a
sheared field combines with turbulent radial diffusion to

produce an enhanced shear decorrelation raté‘wc = [(kﬁvé)zD/3Jl/3

which typically exceeds the shearless rate for tokamaks. Here,

|
length fluctuations (klpi > 1) thought to be responsible for

kf = ke/Ls’ where Ls.is the shear length. For short wave—

~anomalous electron transport in tokamaks, w, can also exceéd

the mode frequency.

Strong plasma'tutbulence-theory.has,been used to calculate..
self—cansistently the anomalous diffusion ééefficient from
considerations of single-mode nonlinear marginal stability.
Howevet, the state computed from the one-point theory is not
a true steady state, since most modes would be damped in the
absence of sourcés. A turbulent, steady-state spectrum results
from the detailed balance of energy emission and absorption
and cannot be determined from the one-point theory.

In a turbulent plasma, emission is due in part to phase
space structures called "clumps'!, which are produced by strong

mode coupling and incoherent harmonic generation. These




clumps behave like dressed'macroparticles, which accounts for
their importance in the energy balance of a turbulent plésma._
The resonant wave—particle interactions associated with clﬁmp,
formation result in dissipation of mode energy throughbut the
spectrum,'in contrast to an undamped energy cascade, and
result in the fine scale rearrangément of the average phase
space gradients.’ | |

In the present paper, Dupree's clump theory is used to
obtain the potential fluctuation spectrum of drift waves for

a plasma in a sheared magnetic field. The theory of clump-

;generatéd spectra has been previously described for one-

dimensional velocity space turbulence2—4'and low and high

frequency three-dimensional turbulence in a uniform magnetic . . |

5,6

field. Also, several authors have calculated correlation

lengths (or K-entropy) for test particles in a sheared
magnetic fielél.7.'8 In contfastvto the test particle problem,
the self-consistent theory developed here accounts for the
reaction of the clumps on the electric fields which are
-producing them, thus allowing the calculation of a self-
consistent potential spectrum. A steady state is achieved by}
a balance of clump emissidn and energy absorption through
turbﬁlently enhanced damping. |

The role of phase space granulations in the turbulent
steady state can be underétood by decbmposing the total electron
density fluctuation into a coherent partepé?é, with the same

phase as the potential fluctuation o 0’ and an incoherent
14
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piece ﬁf " which represents the fine scale phase space granulation.
, :
Quasi=-neutrality then yields??¢2>+ = <ﬁ§ >/1€(§,w)|2, ' I
k,w k,w
where € is the dielectric operator for a sheared magnetic field.
Thus, the density correlation function is required to compute ]
the spectrum.

In Sec. II, the renormalized equation for the prhase space

correlation function, whose velocity moment yields the density‘

correlation function, is derived. Section ITT presents a solu- H

tion for the equal time correlation function. In Sec. IV, the

two=time density correlation—function—is—obtained—and—used—to

- —»»In~=se d. V,M—D~an d “the —mean—wavenumbers ‘_',":'"Whj:ch'f_a:re"_’"”w' - e e

compute the spectrum in terms of the diffusion coefficient D and.

mean squared wavenumbers characterizing the clump dimensions.

defined as averages over the spectrum, are self-consistently

détermined. In contrast to previous studies of turbulence in
a uniform piasma, the fact that W, Z k“ve ovei much of the \
radial extent of thé drift modes and We > w in a sheared :
field (i.e., the nonlinear broadening dominates the ballistic
wave-particle resonance) allows the calculation of an explicit
value for D, rather than a regeneration criterion. Indeed,

D obtained from the two-point theory exceeds only wvery

slightly D obtained from the one-point marginal stability

analysis. The excess in D 1is due to'the additionalldamping

required to balance clump emission.

In this paper we assume a low B (vector: potential R = 0)




plasma,model. Consistent with the fact that the dominant
resonant processes affect the electrons, the ions will be
treated linearly. Ion nonlinearities could, however, affect
‘the mode structure, and hence the shear damping, and remain
to be considered. The presence of many modes and phase space
island overlap is used to justify a diffusive treatment of
electron orbits and the replacement of sPectral sums with 7.

integrals.




II. Derivation Of Two-Point Correlation Equation For Electrons

The drift kinetic eqution for electrons with phase space

position (fl,gl,t) is

cVO (1) x n
B

0f (1)

T - VE(1)

lﬁ . VE(1) -

ho- vo(1) 2E(L)

Bel

=0, (1)

T Y

where f(1) = f(f ,gj,t) and n = §/B;

X driftkinetic cumulant hierarchy is generated from Eg. (1)
b§ ihffod&cing the ensemble average operation. [Later, following

Eg. (8b), the ensemble average operation will be identified as

an average over the wave phases of the potential fluctuations ¢].
The electron distribution function may then be expressed as

the sum of its ensemble average <f(l)> and a fluctuation &f(1):

("

£(1) = <£(1)> + S£(1) - (2)
where <§f£(1)> = 0. Taking the average of Eg. (1) vyields
a quasilinear,équétiOh for <f(1)>: o

3Lkt (1) >

'—>. _C g .2 >
ST n-v<f(l)> B Vie n x <SBSF>

TV

0
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+ evy B ggz ( <8 (1)8£(1)> ) ,
(3)




Thus, <f(1)> is coupled to the mixed "correlation" function
\

X, = <SESE> (4) |

where 6 = - V& and <8E> = 0 was assumed for simplicity. The
vector %2 is related to the equal time two-point functions
'(j-=eli)
(5)\
L (1,2) = <6f.(1 §f£.(2)>
gj( ) j( ) j( )

by Poisson's equation or quasineutrality.

To obtain an equation for g(1,2), Eg. (1) is multiplied

by £(2) and then symmetrized to yiéld:

['3 + (1) + L(2)]f(l,2) - [% V6 (1) X n - v,

3t
\
+ ev”lﬁ "V®(l) 52; % (1< Zﬂ. £(1,2) =0 (6)5
where
£(1,2) = £(1) £(2)
= <F(1)> <£(2)> + g(1,2) + £(1,2) (7

and 5(1,2) = §E£(L)SE(2) - <8£(1) 86f(2)> is the fluctuating
part of the two-point correlation function. Here, (1#»2) indi-
cates a symmetric term obtained by interchanging the coordinates

1 and 2. At this point, we apply standard renormalization




procedures to Eq, (6). In particular, Eg. (6) will be decomposed
into a quasilinear diffusion equation for the phaseanveraged

part of £(1,2),
<£(1,2)> = <£(1)> <£(2)> + g(1,2) (8)

and an equation for the fluctuation %(1,2). Averaging Eg. (6)

over wave phases yields a 'quasilinear equation for <£f(1,2)>:

0 - -

. o o) i
<8t T Y Vz}'<I(L,4)>

r ~ ~ o
=§- <v<1>(;) X n - v, E(1,2) + Vo(2) x n - V‘2f(1,2)>]
» [~ 4 . . a - > . a - .

(2)

_The first group of terms on the right of Eg. (9) produces spatial
diffusion'of the correlation function in (1,2) phase space,

and is the dominant nonlinear turbulent effect considered here.
The last group of terms produces energy diffusion of the pair
correlation funetion and will henceforth be neglected. Note that
the right side of Eq. (9) is driven by the correlations between
the potential and thé fluctuation E(l,Z), i.e., tertiary corre-

lations. To evaluate these terms, the part of E(l,Z) which




is phase coherent with ¢ is required. An equation for this
phase coherent part of %(1,2) is obtained by subtracting Eg. (9)

from Eq. () to yield

-
la s S o cve(l) X &

2 B 1

_cVe(2) x B .
B

vz]%(l,z) = n(1,2,t)£(1,2)

= [%V@,(l) x5 - v, +(1<—+2H' <f(1,2)>

—|Vev”13 - Vo (1) -2572—1-+<1'<+>2§ <f(1,2)> . (10)

The phase-averaged component of the left side of Eg. (4) is
assumed to be omitted.
It is convénient to introduce the two-point particle

propagator,téuqz,t,t'), defined such that

CLU,(L,2,t,t) =0 - o ' (1la)
U(l,2,t,t) = 1. - (11b)
u(l,2,t,t") = U(l,t,t")U(2,t,t") . (llc)

NéEé that %Jl,Z,t,t') is exactly factorizable into the product
of one-point propagators. In terms of U, the solution of Eq.(lO)

is formally
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~ t _ . >
£(1,2,t) =j[ dt{U(l,z,t,tf) L[CVQ(lrt ) X n . v,
0

B
- ev E ©Vo(l,t") —ET]+ (L+2)y <£(1,2,t")> (12)
1 Bel , , ,

where U(j,t,t) = land Ly U3, t,£1)=0, for j=I,2, with

+
) T - N
Lj s * v”j n ij C{V@(j) X 3 ] Vj.

Consistent with the physical notion of a "clump" as a

- long-lasting phase $pace structure iwith a lifetime Td%—

exceeding the single-particle decorrelation time Tc=w;l% it

may be noted that in Eq. (12), <£f(1,2,t')> changes on the

T -scaley -whereas—the-orbits-appearing-in- & -diffuse -on-the -

T, Scale. For.times:.greater:than.t 7, U{l,t,t") actlng on

c.; cl”
<f(l 2,t! )>produces a- negllqlble effect Thus,-lgnorlng the

varlatlon of the average two—p01nt function over the orblt

1

‘dlffus;on time Tor EQ. (12) becomes:

e

~ e (- | ' N
£(1,2,t) =/ at! {U(l,t,t') l:cvq’(lrt ) *x n . v,

- ev” n '1W®(l,t')§%T} + (14*72)}<f(lt2't)>° (13)

1
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The potential fluctuations in Eq. (13) may be

expanded as follows:
=~/gm }i: @K,w(r) exp [1(k§yj+ kzz - wt)] (14)
‘ky*kz‘ .

where'®? w(r)‘oc exp (—isﬁ) and”’BE is the (random) phase of
~y ' 3

the kth Fourier component of ®. Here, ky=m/r, y=ré, kz=n/R,
and z=R;.' Then, the phase-coherent part(z) of E(l,2)

may be defined as follows:
| : S2m - - e
. g N . o .
zc (1,2,t):~§F./~f(l,2,t)exp(1BK)dBE . (15)
o ' '
Applying this averaging procedure to Eq. (13), the

Qresultlng expression--for- f+ (l 2)-y-the-Laplace-transform=of -~}

k,
I+d(1 2,t), becomes:

-7

fﬁ;w}l,Z) exp (iBﬁ) = {f exp [i(kyyl + kZZl)lgg w(l)

1

Ty, ) 2 T2y (x 5)‘—8* (Lo Dl
B k,w(rl‘ 3—-1_'-? g( k,w""1 386 2 ) <f(112)>l

(i6)
>where gE'w(l), ﬁhe Fourier;Laplace.transform of-ﬁhe phase-
averaged one—point propagator <U(1, t)>. is the renormallzed
| one- p01nt resonance function for a sheared magnetlc fleld L
Physically, the phase-averaged 51ngle partlcle propagator
replaces the exact particle orbits with ensemble-averaged

diffusive trajectories.

[
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‘Using Eg. (16) to evaluate the right side of Eq. (9)

/ finally yields the desired quasilinear diffusion equation for
<E(1,2)>:

e (o 7y el s o
= = rl rr,rl r.. Brl rl, 11'2 3]:‘2
_ 9 . . ] ] 3

e = D,

) 3
3y2 : arlwrlfxl Byly

D . —D
0V Y3/¥§ 93 9yq Y1¥Y,

T T SO W 2 )
T T1Yy Yy ¥¥p¥yeTy 8Ty 3YyYyTp B

+ (1fﬁ'2)] <E(1,2,8)> = 0. (17)

The diffusion coefficients in Eq. (17) are defined as

follows:

o
il
™
Q
1N

R _ ; > > * . %
0y 087 37 1AL B X Vo, (DIIBy R Teg ()] \
X gg;w(J) exp [lky(yi - yj) + 1kz(zi - zj)]l (18)

‘ N ,
‘where arand f are unit vectors in the ;—§'plane. For
spectrum densities which are even functions of ky and kZ;

both one-particle cross diffusion coefficients (Dr - )

- i'+i

vanish. Furthermore, D and D ‘ are small for the
Yy F21¥3

same reason, when Ar = ry- I, and Ay = Y| -~ ¥, are on the

order or less than the clump correlation length in r and y-

The evenness of the spectrum can be verified a posteriori.
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Thus, the diffusion equation for <f(1,2)> reduces to

0 ( > 9 0 0
_— v, ,n « V. - —j—D T T R
[Bt |1 1 Brl ry,ty Brl or

D - 9 oz 9
1T

D
EPILEP D CI TR €]

Syl
EQ—D | wé_). + (L 2)} <£(1,2)> = 0.
Y1 ¥q,¥, 9, |

(19)

Notiing that <f> obeys the single-particle gquasilinear

equation, Eg. (19) can be rewritten as an equation for,the

-correlation function g:

3 > 3 5 5
‘£§E * (ann Y17 3, ry P

= (gf”D . 9 4 _E_D Bi ) <f(l)><f(2)>; (20)
1t 2 T2,51 9F1)

The operator on thé left side of'Eq. (20) is the renormalized

two-point evolution operator. Thus, for drift wave ExB turbu-
leﬁcé, the average spatial gradients drive the evolution of
the two-point correlation function.

/ The diffusion coefficients in Eg. (20). may be evaluated

from Eg. (18) (discrete spectral sums are now replaced by
integrals) :
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2] aw ©Kg
_ ko W \% . - ‘
Dr .y "/(,ZTF),‘Z /(,211),, B2 0 f,rgw('l)g]%,w(l) CDEI,;@ (1), (.2vla)

D, ., = [ _d’k  [dw:. c?[ 3 9 . (1N
Yllyl /(21-[)2/( ) 2(3rl <I>:*k_,7\_;w(l)>g]'€,w(l) (-——-arl QE;w )I

. (21b)

@k [dw  C %y . .
2w)2_/}2w) gz exp [ik (y) - yy) + ik (z; - z,)]

X i (l)g-> (2) o> (2) (21c)

BV K (23 :

It is apparent that the strongest spatial variation of
g(1l,2) occurs through the relative separations x_ = (r2 - rl)/2,
¥, = (y2 - yl)/2¢‘and z_ = (z2 - 213/2. Note from Egs. (Zlc,d)
that for y %'k_l or z 2 k_T, where k T ~ 1/m and X~1 A~ 1/n

- oy - oz oy oz
are average spectral wavelengths, D_- r = D 2 = 0.

1,52 Y1,¥2
Thus, the presence of large poloidal and toroidal wave
numbers in the spectrum implies a fine scale structuve to
the phase space correlations. In contrast, the radial extent
'of the clump is limited by the radial width of the nonlinear
one-point resonancé function 9z o’ appearing in the diffusion
3 14

coefficients in Eg. (21). Particles separated by a distance

greater than or equal to Ar determined by k”(Ar )v” &= 1.

will be decorrelated in a time less than or equal to To-
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Since the clump lifetime exceeds Tar the relative radial
separation x_ must be less than Art. Otherwise, the clump
will be destroyed by free streaming along the sheared mag-
>ne£icrfield. Alternatively, since the radial extent_of the
potentials appearing in the diffusion coefficients is
approximately Art, phase mixing‘reduces Drl’ré and Dyl'yz
to zero for x_ > Art.

'In ordeg to emphasize the salient dependence of the
correlation function on the relative coordinates, it is

convenient to transform to (x_,y;,z_)and v”_ = (v”2 - v”l)/zf

and the mean coordinates (x+,y;,z+,v“+) [(rl + r2)/2,

(yl + yz)/2, (zl +¢22)/2, (v”l + v”2)/2]. Then, neglecting:

Tthe weaK “dgpendendd ot G (172) in EQ. (20) “on the mean T

coordinates, the two-point relative diffusion equation

becomes

_X_v,7 _— - — e ——— — - [P

9 =00 r 39 ) _ 9 9

[E'E VI+Eg 3ys T V- (_Rq_,..ay_ ¥ az_) Txzox_ BX_

3 5 1= I 9.

- 5y 3] ati.2) =(—-——D 2 e ——
A e = R R
+ gi;D 5%;> E(L)>< £(2)>, (22)
2 Tast1 1/

where LE—l = (rq'/q*R), and X, Z r was used to evaluate LS

and x+/Rq. Since the mean coordinates correspond to "clump
center" coordinates, and noting that clumps resemble macro-

particles, the phase spac¢e motion of these coordinates is
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adequately described by the one-point turbulence theory.
The relative radial diffusion doefficient DX is defined

by

D =7]4-‘—(_D . $D_ - =D -D_ ). (23)

Because of shear decorrelation, y_ diffusion has a negligible
effect in comparison to x_ diffusion and will henceforth
be neglected in Eq. (22).

‘Equation (22) indicates that g (1,2) evolves by relative
free streaming and relative diffusion. The second term,
(x_ /L )o/dy_, corresponds to loss of correlation in y by

M
parallel motion of partlcles located at dlffelent b'e p051tlons.

lhe destructlon of a clump by thlS process; together with
the turbulent diffusion of x_ (shear decorrelation) is not
present in a uniform magnetic field. . The third term,
v"_[(r/Rq)B/By_ + 9/3z_], corresponds to loss of correlation
by streaming at different velocities along a fiéld line
(at the same radial location). This effect is present in
shearless systems.

Using the forms for the two-point diffusion coefficients
in Eg. (21), the relative diffusion coefficient defined in

Eq. (23) D = D_ may be written

c?k?
v
][(ZW)Z ][ (2m) B2 (11,2 + 12,1)1 (24)

where
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11’2 = @—E,—w(rl)gﬁ,w(l)Qﬁ,w(rl) - exp [—21(kyy_ + kzz_)]
O 4 ('rﬁ)‘gﬁ.,w('l))@l?,w('rl) (25a)
I2,l = Q-ﬁ,-w(rz)gﬁmw(z)®E,w(r2) - exp [2l(kyy_ + kzz_)]

x & > (rl)gﬁ,m(2)®i,w(r

-k, =W (25b)

2)'
Note that D_ vanishes for small separations (x_+0, y =+0, z_-=0),
which corresponds to the physical fact that adjacent particles
experience the same turbulent field and therefore do not
diffuse apart. Furthermore, D_ reduces to the sum of

uncorrelated one-point diffusion coefficients in the limit

the order of the clump dimensions, D_ may be expanded as

follows:

D_ = (x_z_kéx + y_z_k_Z + zing)D, (26)

oy

where

/(21r)2 /(27r) 5T @_ﬁ,_w(r)gglwm@g’w(r) (27)

is the one-point diffusion coefficient evaluated at the

average clump coordinates, and

of.large.phase. space..sgparations....For.small. separations..On. ...
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2 _ 1 3?2 .

kOX = 5-5 @D_ 0 v (288.)
2 _ 1 52

koy - 'é-fj ayED_ O ! (28b)
2 _ 1 32 -

Koz = 2D §zzb- a (28c)

where D D_(x_=y_=z==0). In Eq. (26), terms of first

1,
order in x_,;y_, and z_ vanish explicitly. Terms proportional
to x_y., X _Z_, and y_z_ vanish by spectrum symmetry. The

'quantitiés k%', k2 ’ and k2 are mean Square wave numbers

COX oy oz '
characterizing the clump dimensions in the x, y, z directions

and will be self-consistently computed once the spectrum,

--which..itself..depends..on-.these..quantities,.-has.-been..determined...

The Taylor expansion of D_ in Eq. (26) assumes the finiteness
- 2 2 2 . , .

of the quantities kox’ %qy’ and koz’ which in turn requires

that the potential spectrum converges sufficiently rapidly

for large wave numbers. The reguired convergence propertieés

of the spectrum can be verified a posterionrt.
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I1T. INVERSION OF THE CORRELATICON EQUATION

An approximate solution of Eq. (22), neglécting Dy '

will now be obtained. Consider the two-point Green's function

operator, Gﬁ(t,T), which satisfies the equation

9 - r 3 3 3 3
2 4 - _° xr _ _
5t T VI+E By, T VI- (Rq oy az_) 5% - dx_| CrltrT) =0

(29)

with initial condition
G (t,8) = §(x_ - x")8(y_ - y')&(z_ - zl)ﬁ(v“; = Vﬁ_). |
' (30)

Then, the solution of Eg. (22) is

- or

Here, @r =Jax! Jay! fdz! G_~ 1 for t x 1 _; and G_~ 0 for

1

T ¥ 1 _, where the clump lifetime T . must now be computed.

cl cl
This eétimate for @% is equivalent to an approximate integration
of Eg. (29) over turbulent orbits, with To1 the coherence time
(lifetime) for the c¢ilump.

A heuristic derivation of the correlation function may

be developed2 using the fact that, according to the Vlasov
equation, phase space density is conserved along particle
orbits. The phase space density fluctuation at r is given by

§f(r) = <f(r~=A%)> - <f(r)>. This fluctuation is due to

rearrangement of the average phase space density in pieces

. 2 , .
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of size Ai. It follows that the correlation function
<$f6f> = g(l,2) is given by g(l,2) = <AxAx> (3<f>/6r)a.
Now <AxAx> = DTCl},Where .1 is the lifetime of the
iphase space region of size Ax. Then <8f(1,2)> =
{ﬁDTcl(8<f>/8r)2; which has the same form as the correla-
f tion function in Eqg. (31).

To computef%l, a set of averaged relative coordinate
evolution .equations is derived.by taking moments of Eg. (29).
[This.is a method fér obtaining an approximate steady-state
splutibn of Eq..(22)}] For any'quantity Q,,an average is
defined as.<Q[x_(t),_y_(t),_z_(t),vv”_(t)]> =
Jowr, yr, 21, vy6, (£, 1)dxldyldzlav) 1. The required

-.second-order.moment.equations.are.readily.obtained s ... i

9 w2(t)> = 2V”“<x (By_(8)> +Zw (0y_(e)> (32a)
TE Y- - I Y. Rg lI=HY-MET

9 _ . X
-é—E<X (t)> = 2 <D_> (32b)
3 M r

e (Bly_(t)> = -T_.';"<X— (£)> + Rg %~ (&) vy (£)> (32¢)
3 )y (8> = e () vy _ (&> + v _(£)> (324)
FE AR Ty ==t I~
3 —<X (t)v” (t)y> = 0 (32e).

2t
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0 _.2

gEgv”_(t)> =0 . (32£)
§E<z_<t)x_(t)> = w_(t)x_(t)> | (329)
FE_(B)v)_(8)> = <wf_(£)> (32h)
2e<a?(t)> = 2<z_(t)vy_(t)>. (324)

Note that Eg. (32a) includes contributions from both relative
ballistic free-streaming and shear-induced separation.

Equations (32a=-e) can be combined to obtain

4v?
98 oD I+
ot ;Lé .

Apart from the v2 factor, which accounts for particle motion

Il +
along the magnetic field, Eg. (33) is identical to the equation

describing the exponentiation of two adjacent magnetic field
lines, which has been previously obtained by several authors.7_9

Since <D_> .i§ an explicit function of <x2>, <y2>, and
<zi> given by Eg. (26), it is possible to solve Egs. (32D,
g~i) and (33) simultaneously. Combining Egs. (32b) and (33)
and integrating once wields

LZ 32<y?(t)>

<xZ(t)> = %, E + ¢, (34)
N 2

where the integration constant ¢ is determined from initial
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conditions:

, ( rLy Vi_ _)2
c=x" - |x + =] . . (35)
Rq Vi +

Using this result in Eg. (33) yields

3%, 2 32 ., 12 2
sery(t) > To pez Y. (B)> = e | (8)>
k2 k?
+ k‘§Z<zf(t)> +mE%§«J}, (36)
oy oy

where <z2(t)> = vﬁ_t2 + 2z_v“_t + z2 is determined from

- : = (12 2 2y=1/3 — 2 -1
Egs. (32f-i). Here, Teo (koyv”+D/3LS) and To = (kOXD)

are the shear and shearless decorrelation times, respectively.

The Timit where the shea¥ decorrelation trequenéy”l7fgo )

exceeds the shearless decorrelation rate kéxD will be considered
here, since this is *the case of interest for tokamaks.l The

asymptotic solution to Egq. (36) for times comparable to or

greater thant__ is
CO

w2(t)> = (3k2 y L

v I(x_,"Y_» Z_;-?_r V"_)eXP (t/to)- (37)

Information about the initial phase space pbsitions is

contained in the quantity

— 2 2 - . s
I = [k”oV”_T + kozz_/k + ko rY_/(qu”O),]2

o lo

y

2 2 L2 2 2 1.2 2 _ 2
* koREL F gk YE ¥ (2K K2 /K[ ) (xz_/Rg - Y_/2)%,  (38)
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: 2 . (9252 /122y 4 k2 YV o=
where.k“o —‘(Zr koy/R.qﬂ.+.ka,'Y_ y_ +t 2% V“+T /L and
Ty =,Tco/(12)1/3 is the orbit exponentiation time. Terms
.of order TCO/TLO'have been neglected in Eqg. (38).

The relation. TCO/TO ~ 1 results from the fact that
~the two—particle propagator in Eq. (12) is the product.of .one-
particle prepagators, as lndlcated in Eqg. (l1lc). Note that in

comparlson with results prev1ously obtalned for unlform mag—

netic field systems, the addltlonal terms in Eqs. (37— 38) reflect

the enhancement of clump destructlon due to shear decorrelatlon.

To determine Tcl,_the clump lifetime, recall that

ké ' k;y,_and kéz characterize the dimensions of the clump

in the x_, y_, and z_ directions, respectively. Thus, the

.
condition Lkox<x_(iél -1
v 2 2 .

determines T¢l:. The term kox<x_(Tc1)> is of order To/?fo

in comparisén to the term kéy<yi(gjl)>. The physical reason

for this can be seen by noting from Egs. (32a,b) that (Ax_j2 v
4 3 2 2 2.2 2

DTCO (d2ffusion) and (Ay_)° v“+(Ax_) TCO/;S (shear

decorrelation). Using Eg. (37), To1 is given to within

logarithmic accuracy by

N
w

T n(3/1I) I
T, = : : (39)
el | 0 I

Y
w

As noted previously, the term driving the correlation function

vanishes in Egq. (22) for phase space separations on the order

1T

1]

)5“%f£éy 72 (T ) " k2 e E e
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of or exceeding clump dimensions, since Dr v and
' 1, —2
Dr r vanish in this limit. Thus, the vanishing of the
2,71 '
logarithm in Eg. (39) defines an ellipsoid in phase space

demarking the extent of the clump.
The correlation function is finally obtained by using

Eg. (39) in Eg. (31):

. 2
g(1,2) = 2t_n(3/1) D(a;£>)a. ~ (40)

The correlation function in Eq. (40) includes contributions
from both the phase—-coherent and incoherent phase space density
fluctuations. 1In order to isolate the incoherent fluctuation

cotrelation function, the distribution function fluctuation

~isdecomposedasfollowss "

SE> = £4C) 4 (41)

k,w ko ﬁ,w

where féc) is gafined in Eg. (15b) and féc) and fE"are

uncorrelated. Thus, the correlation function may be written

as
g(1,2) =¢S(1,2) +§(1,2) | (42)
where
61,2 = <( (1) Lhay> C asa
c) _ [ &%k [ dw ic 3 <f

>
—=— . (43Db)

(
£ or

—4:(2ﬂ)2‘ 2m) E; exp [l(kyy + kZZ)]gﬁ,w
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LR
Noting that 9% W% 5 = T.Re g v the coherent correlation.
-7 -y & S At

function is
g (1,2) = T D(I<E>/dr) 2. ' (44)

Note that in the limit of small phase space separation,
there is no singular behavior in Eq. (44). The incoherent

correlation function is, therefore,

a<f>)2

g(1;2) = -t (4n I)D ( e

(45)
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Iv. ' SELF-CONSISTENCY AND THE DETERMINATION OF THE
CLUMP-DRIVEN FLUCTUATION SPECTRUM

Equation (45) gives the equal-time phase space corre-—
lation function for low frequency electron clump turbulence
in a sheared magnetic field. To calculate the self-consistent

spectrum, one must obtain the Fourier transformed density

ccorrelation function from Eg. (45) and treat that as a source

{in Poisson's equation. Specifically, the quasi-neutrality

condition can be written

A =n, -n_ '/, (46)

(c)

where ﬁe and n, refer to the phase-~incoherent and cbherent

.mconsiiiuenismofwthewéLectronwdensitwaluctuation,“respeciiyely,mum"WLH

In transform space, Eqg._ {(46) is.eguivalent to

n_dle|
(ne)ﬁyw ) Te LEKNQEIM ' (47)
where
— «2} 32 _ _ ]JZXZ
I, ~ {pi dx2 [A ”;;- + o(x) (p;/x)| (48)
I )

is the turbulently broadened one-point dielectric operator

for a sheared magnetic fié%dl and x = X(ky,kz)'is the distance
from the mode rational surface where k*B = (BZ/Rq)[m—nq(r)] = 0.

Y

Y

" -1
Here, A = [1 + (1 - PO) - Fow*e/w]d ,

w= TR /L) (/) [T (i w, Jw)a T2,
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(W weg = l)ad_l,

Q
il

0 2l(x, + ix )/ |x]], of

1/2

Q
il

T(1/2 me/mi] Ly/Los T = T /T, 1Ky = (aw/wy )os
R = (a0 /ug)oys amd @ = (Tg = T (T + uyg/v)
+-3ﬂ(l - w/w;e)(w*e/wé)(xc/pi)2 -

Then, the spectrum is given formally by

: T 2 .
5 ( _(_Te V.31 - o~ o~
<@(1)e(2)>y —.(E;gqaj) Lz w(Z)L_%,_w(l)<ne§1)ne(2)>£,w. (49)

44

' The Fourier transform of the tweo-time density

correlation function required in Eg. (49) is:

<ne(l)ne(2)>]—§'_w = Zné /ZWJ_Ldv_L /dfle [ exp (iwoT)dz

* - OO

x/dy_ exp [-ikyy_] /dz_exp [—ikZz_] V/dv”_g(l,z;fr) ’ (50)

where T = Tl - T2 and dv”l

correlation function &(l,Z,T) is obtained by propagating the

dv) , = 2dv”+dv”_. The two-time

equal-time correlation function computed in the previous

section;[Eq- (32)1 with the one-particle propagator.2 The

¢

resultiﬁg transform of 5]1,2,T) is

~ _ ' * o _ . +)~ :
(1,2 = 19z, (1) + 95 (D] §(1,2)3 = 2 88 g3 1)5(L, 205+

(51)

where 5(1,2)% ig the Fourier transform of the equal-time
correlation function. The time separation T results from the

.propagation of particle (1) forward along its trajectory by an

H
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amount T and of particle (2) backward by an amount —f.

Performing jthe v”_ integration in Eg. (50) yields

lav, 1,20 = (22} b (2£2) 1@ - )22 - |x|cos™ k]I, (52)
I kﬂo dr |

where k? = k? x2 + k2 vi/2 + (2k2 k? /k?
- oy oz’ "o’

Performing the remaining integrals in Eq. (50) yields

<ﬁe(l)ﬁe(2)'>+ = (9.1) no ": 2nvldvl/dv
k,w H

x iféz;z'Re gr (+) fexp (-ik y_)dy_ fexp (-ik_z_)dz
\ or kyw' " F C Tyt - =] S z - -

X [ (1 - k%)

)[ (x/Ra)z_ - ¥_/2]%.

k|cos tlk[1. (53a)

The symmetry in x_, y_, and z_gapparént in the quantity k

‘suggests that Eq. (53a) can be evaluated by first Fourier

transforming in x_ and then inverting :the result. The details

of this procedure are carried out in Appendix A. The result

is: .
ng | 2 <> )
~ ~ “ _ fo) L . ‘ . (3 <FE> & -
<he(l)ne(2a>%~“ = (9.1) <. )]3./.2”Vldvi : dv“+ (_§E—)
krw. ! “O . .
o a ST g T L
i : "X__Re'gﬁf$)“fﬁ - exp clkxXQ)M(kx'ky'ké)dkx (53b)
where
o Ky \ [
Mk, k sk = kl ( flo §§33<%;>exp [ -(b/4) %] .
Y OX oy 5z \vT & oy 7\

(53¢)
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The velocity factors vﬁ+ in the quantity b?, which is

defined in Appendix A, are to be evaluated at the electron

thermal velocity Vih* “To perform the Vil + integral, note

LIy s | ' -1 oy 2 2 -1 _
that 3<£>¥/or fno(/ﬁ— vth) exp [ Y| /yt ] where L~ =

1
%

dlnn/dr and V.= (2Te/me)_. Thus,

: . w2 2
{@<E (¥ )% n
) B ”+ - . ->(+) — 0 X .
./éwvldv£-j{dv”*(———sz———w) Re 9, = yﬁ—g—ff,Q(w,X) (54a)

where:
0(w,x) = —E Tnz Bm + iwc)/[k“|vt]. (54D)
lk”[vt T
_Equation (53b) then becomes:

2 .
o n . Rg -1 =2 -1 .
eﬁe(l),ﬁe(,2)>§’w =:~(0.l4)<f§+—) D (k) o) .(,k'Z)"w Q

\ L& v, v
+w
;S . b\*] a

n t
[ee]

Using this result, Eg. (49) may be rewritten
,

, T. Rq
_ | e D -1, .. =2 -1
W@, = (0.14) <e2vtL;rJd42> i gy ) Uty ™) e ™)
L o -1
W, Q./~ . [LE,Q(Z) exp [iksz/Z] L-ﬁ,—w(l)
(56)

X exp[—ikxx&/zﬂéxp [—'(b/4)2]dkX .
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It remains to compute the one-point quantity

L exp (iikXX/Z). This is accomplished by constructing

-1
-
ik, tw

a Green's function G(x,x'), which satisfies the equation

Lﬁ,w G(x, x") = §(x - x") ' (57a)

with outgoing wave boundary conditions.lo' In Appendix B,

the Green's function is obtained:

-1 (iyu 1/2 iy
Gix,x") = 3. (Ef> exp [ - jf-(xz + X'z)/pi]
1
) Z Hn(/“i'ﬁx’r/pi)ﬁn(/ﬁ x/0;) , _ (57b)
n =
1=0 n! 2 €, (w,k)

where Hn are Hermite polynominals and

‘_>‘ . [ )
en(w,k) = A+ (2n + 1)ip + 1oo(pi/xc). (57¢)

Here the physically relevant limit x < x/ was used to simplify
the electron function o(x) appearing in Eg. (48). It should

be noted that the imposition of outgoing wave boundary

conditions excludes convective amplification effects. However,
since turbulent modificaéion of the well structure in Eqg. (48)

ih the vicinity of the rational surface may be interpreted as
preventing the trapping of a convecting wave packet, the life-
times and hence the amplification, of such a packet will be dras-

¢ tically reduced. ' Thus, neglect of convective effects in the

presence of turbulence is justified. Indeed, for the parameters
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typical of tokamaks (most significantly LS/LhY convective

%hgmpliﬁication has been shown to be negligible even in the

(12)

absence of turbulence . Noting the relation

oo : oy
e xt xR == %"\ e dkt
ij exp (t o /iy 5; - in EE%) H (Vly 5;) é mipi“
s v7w (-0™?% exp (0?/2)H_(Fia) , (58)

it follows that

1l exp (sikx/2) = 2 exp [a%/2 - dux®/(2eD)] -
tk, w0 X | i
= B (VI x/p ) E_(Fia) (i/2)° |
X j{: z ‘p"‘pl'{n""" — (59)
n.e
n=0 "

where a = (kxpfa)(i/ﬂ)l/z. Using the relation

S
E—-=.[. dt exp (—enr), (60)
n 0. .:

where Re e, > 0 was assumed (corresponding to outgoing waves),

Eg. (59) may be rewritten:

-1

L, | exp (iikXX/Z) = - /2 exp [a2/2 - iﬁxz/(Zpi)l»
k., *w i
% 2V H (/I§ x/p)E_(Fia) [ Tn
X ./. exp (—EOT) ji:» n n! 1" n" -[% exp (—2ipT)} ar.
0 . e :

n=0 (61a)
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Using Mehler's formula,ll the Hermite series may be summed
to yield
L_i exp (*ik_x/2) = - /7 exp [02/2 - inx?/(2p2)]
tk, o X i
X j{ exp (—eor)s(T)dT, (61Db)
where
s(t) =[1 + exp (-4ipT)]_l/2'

2/1p ax exp (-2ipt) + (iux®-=-g?) exp (=4iuT)]
exp : ——
1+ exp (-4int) J(GlC)

Note that as T approaches infinity, s(t) approaches one.

_Therefore, the n = 0 mode dominates the asymptotic behavior

of the integral in Eg. (61b). Retaining only this dominant
contribution finally yields

-1

>
k., tw

This result is physically plausible.since € is the dielectric
response of the most weakilwy damped modes in a sheared magnetic
field.

Noting the complex conjugacy relations:

a, =4, (62a)

-K,~w k,w

N = -u, (62b)
*

(0 /%)y = ~(oy/x )f , (624)

L  exp (iikXX/Z)ﬁ;—N/Q.exp [a2/2_--iux2/2pi)]és;l . ¢61d). .

e e
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and inserting Eg. (61ld) into Eq. (56) yields -

e?<d(1)0(2)2 | .
R ©.03) |~r—r ALERAN ° Uss ) (kOY)'("k’O'Z')'

Ta £
e
X Wy Q exp [—]pil (_'"x'_i + xi)/pi - 23_1_1 X /pz]
oo
X [_w dky exp [=(B/4)* —~|ny| kZei/4|nl?1. (63)

Here X, = .(,Xl + xz)/z, where %q and X, now refer to t}he
distances from the k * B = 0 surface, and U = P + illi,
Performing the k’x integration, the spectrum correlation

function is ¢

220 (1) 0(2)> ' C =20, =1.]
e~ R " Rg - D \ (‘K'oy)-(k@:z#)‘
_ = (L3 o || 2, :
‘2 Mg e Idg ]
.T £t n ] ol =
€ ' P
-1/2
O 2 2 2 1;77,1,\"
x w, Q (Jus ;1620 JL/l}il + 1/4) s
X  exp [--lii.i,l (x3 + x2) /0% - 2iAux+X_/p§_ -al , (64a)
' IJJ Ip + : kﬁo , ,'];2
4|]J|2+ IU lpl ox ‘ 132]<_2y z
k)2
+ 2 + Ix o= . (64b)

6 \"y " 2%z B
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Here,_ky ='ky/kby and kz_=.£k24koz)(Rq/r).

Equation (64a) gives an explicit expression for the

fluctuation spectrum in terms of the'parameters‘D,,kdx,_ko '

y
and ka (which are independent of the spectral guantities ky,

kz,,kx,.and w) . These parameters will now be determined

in terms of fundamental plasma guantities.
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V. DETERMINATION OF AVERAGE SPECTRUM PARAMETERS

In this section, the parameters D, k* , kZ , and
ox’ Toy
kéz, which characterize the spectrum given in Eq. (64) will
be determined in terms of local equilibrium plasma gquantities.
Using Eq. (64), it can be easily shown that the defining
Egs. (27) and (28). for these parameters are equivalent

to the following spectrum averages:

. 2

K2 P e
2 ) '“"2‘ kI Regz (%)
k.oy f(zm /(2w) BZ fy o ool

¢

142

o o 2 2 2 o~
Here, w, X and (1/4 + Iuilpikox/iul ) =~ ] were assumed

and Py = (T /’I‘..)l/zpi . Both assumptions may be verified
a,mmteauyu, The two contrlbutlons to kz represent nonlinearly

enhanced mode broadening (lu I) and a WKB wave number (p 2y.

Also, D(v”)'is evaluated for V) ='vt\,

The strongest w—dependence in Eg. (65) comes from the
zero of the real part of the dispersion function 80, which

occurs for

Wy, -
:__ O*e ..... ) 66
wEeETrYya@-r) ° (66)

I;
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Thus, expanding ]deoi2 about w yields -
2

¥ B 1%, (67)

BA
dw

il

|dso|2 (w = w)? -

where A = Ad and EI = Re (nd) -+ dcopi /xc. Note that the
frequency line width is Auw =_|EII|8A(8w|fl. Therefore, the
w integral in Eg. (65) can be performed, evaluating all other

w-dependent quantities at w, with the result:

D
2
ox | azx
oy f (2m) =2
k2
[e¥4 .
c2. 2
e Bo Y
x erfc

where (3A/3w)lw = (1 + TF /T ws,-
Next we perform‘the.kz inqegral. Moting That
n = m/q(r ), it follows that dk,, = (|k [/L ydx, . Thus,;the

; kZ 1ntegratlon tends to smooth out rapid spatlal dependence.

fAlso, since the two dlmen81onal spectrum is broad in comparlson

f>to the w1dth of the resonance functlon gE —(+), it is

;perm1551ble to approx1mate the resonance functlon by

TS (w - k”v”). Performing the x integration yvields:

+

T




/v
pZ ' : v “ ) k}zr\
= (o_l)(Bﬂ) e dk lHll/Dl .
r L‘ﬁ' . L \ [olH
N k22‘ 1 i
v Y/
1
X ~ -
§£|l§ - exp [-Al
Jwl ! TTw
=
- k2 v21?
r o= |JLd + X E0O
32 2
T a L
7 4+ é S
(69a)
The fourth term in Eg.-(68) yields
o k2 Mﬁ'(r/Rg?ﬁgzwww:”ymwwﬁM“““““*“‘”W“““”“““”T69b?““““”W”““L

0z oy

In obtaining Eq. (69)"kz ~ kyr/Rq(r) was used to treat non-
rapid kZ dependence. Also, xc]>fxe,]ui4xér/pi <1 and
2u§xe2/p;y <Tlgi|/pit were assumed. These follow from
estimates of typicai furbulence:-levels and the spatial

§tructure of the drift mode eigenfunctions.
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To perform the remaining ky integral, it should be
noted that the El term, which represents a balance between
electron growth and nonlinearly enhanced ion shear damping,
is the only term in the integrand in Eg. (69a) which exhibits
a resonance structure. Indeed, the one-poiﬁt theory analysis

of €_ indicates that below the maximum value of the diffusion

I
coeffi.ci.ent,EI always goes through zero for a certain value
of (kypi)z = b. Above this critical value;_EI remains nonzero.

Thus, in order to balance the two gides of Eg. (69), it is
necessary that the turbulent diffusion coefficient be somewhat
larger than the maximum value computed from the one-point
thédry; Thus, it is appropriate to expand [EI[ in the

vicinity of the maximum D and the associdted maximizing poloidal

A

. wavenumber. In#iroducing the normalized variables B =b/b_,

R _1/6 A R A . . o N g
(wc/w*e) = b W, By (note that 6, is ifidependent of b),

where
— '3/2
o] 3 2 :
o
_ 1 [ -1/3%=5/6 . -1/4]
W, —A;I7gv[ﬁ Mg (1 + 1) r (70Db)
and 1 = /(L _/TL.) (1 + T)3/2 €z can be written
Ug L, g ] r Eg e wri
p ooy 1/27 1/2
S 172 )1, (1, aanB73)
€ = 1 (1 + 1) {[§-+ (Z + 47b ) ]
- (b;lb.l/G} : | (71)

Here Fo(b) ~ (Zﬂb)_l/2 was used for b Z 1, which is the regime

of interest. The extremizing values of b and ﬁc which satisfy




g =

T 0 .and ch/ab,=AQ
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.are readily obtained:

b= 47332 L9077, (72a)
w =343 2 g 83 (72D)
cm ;
In the vicinity of bm and Woyqr W therefore obtain |
T L\ 1/2 13(5 - B )2 3
e, = po(l + 1) [l 67( cm) + 0.13(b bm) 1 .(7‘)
Using this result, Eg. (69) becomes: j
2/ P\ 5/2 37 1 R
_ 01 [Rgy =) - [ N N - (L 4
- (’f‘) (T )(1 F 1) (,koygi) ot LT
e fon22/3 FEET(8 =0 );+.0;13(£;”b_)2].rl“..,w.,,wA.AH",M;
X db 5o L ° C cim m ‘
c

X

. 2
239 bo/pi-

It follows from Eqg.

k2 p.2 =5

(74) that

& cm

Mg (L /1) (1 + 1) 5/2 .

6., — w )_1/2'

(74)

(75a)
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> 2 . -1 3 5.2
koypi‘ ?_0,47-APB(;.+ T) /T, (75b)
where APB —_(me/mi)(Ls/Ln) ~v oL, for tokamaks. The normalized

diffusion coefficient is ‘determined by

b, = 0.83 + e? , | (75¢)
where
| ‘ 5 o217 1/2
2 = '(E )4 (59 o 39/”61 - ] (I:E> < TE) . (75d)
‘' fo Ln) €1 %_T%55/4J Ln m,

Physically, the turbulent damping in this two—point thebry

must balance both the clump emission as well as the one-point

2

electron growth. Thus, €° is a measure of the clump emission

e LA EE~-COMpPared-to—the--l-inear-growth--and-damping-procegses- near--

the marginal stability point of the most unstable mode.
Through order e?, the diffusion coefficient is determined by

& = 0.83, or
c

_ . 3/2.5/2; ~9/2 5 .
D -,15(mi/mH)APB /0.5 + )] T ke /L, | (75e)
where Cy ='(Te/mi)l/2° This result is in agreement with that

obtained from the one-point theory.l Finally, since << 1, it

is clear that the fluctuation spectrum is peaked around the

2
+
-y

nonlinear resonances where']qo] approaches zero.

A
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APPENDIX A

FOURIER.TRANSFORM OF CORRELATION FUNCTION

Consider the integral

(k k k) / / dyf dz’v exp[-l(kx +kyy

+kz) (f—“k““ |k[cos k), (AL)

 which is the Fourier transform of the spatially dependent part

of the correlation function in Eg. (53a). Here,

.O 7
where Y_ = y_ + 2_x_v“ _I_T(')/L,..ﬁ. Defining the spherical coordinate
system (K,€,¢), such that
k‘oxX- = k sin 6 cos ¢, (A3a)
. i | | . . |
~—k vy =%k sin 6 sin ¢, : (A3b)
/2 %Y T ' :
’ Z]S ; k o . 'Y...A : ' |
—2y o2l Lty - ) =k cos 6,, (A3c)
k“o Rq - “‘2

Eg. (Al) becomes:
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(Ad3a)

kX/kOX"k' =‘ky/kby,,k21=.(kg/koz)(Rq/r),,and

!
}

a¢

Here, ki =
%

Jd =

x exp (-ikif k + : Z - sin O cos ¢
«_ \ x koXLs .

sin 6 sin ¢

1
(ky + Ekzkoz/ )

(AdDb)

: +Lkzkuo/(/§.koy) cos e]; .

Performing the ¢ integral ydelds

e o e 2 B T e e e 'n'
4Tl‘j k.z-('_w/;"*l - k’z’ -k cos:_"l k) dk / sin § do

J

x Jo(klk,sin 8) exp [-ik E;k“ocos 8/ (/2 koy)] , (A5)
2 2

T /L% + [ky + k k ./ (2K y)]

2 _ A /. v
where ki = [kX + (kOZ/k )k I1+%o
The ® integral is most readily

is a Bessel function.

and J
o
performed by letting x = cos 0,, with the result
-1 S
= 8m 2 (T .. -1 ., {sin bk\
where
(A%)

b? = kF + k? kf /(2k2 )
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Finally, the k integral can be performed by repeated
integration by parts, i.e., k sin bk = d/dk(sin bk/b?)-
k cos bk/b), ete. The result is -

J = 8m[1 - J_(b) - 36T (B)1/b*, (28)

where Jn(b)Aare‘BeSSel functions of order n; for n =.arl;

A graph of J is shown in Fig; l: Note that for very large
b > 8, corresponding to very short Wavelengths, J begins to
oscillate (with small amplitude) about zero. This spurlouS'
oscillation is ‘due to the abrupt cutoff of the correlation
function for k > 1. This can be traced to the present |

improper treatment of particle orbits which have diverged

significantly so that D_ ~ D. Had this orbit divergence and

subsequent decorrelation been retained in our analysis, the .
correlation function would have_gone'émoothly to zero and
the large wave number oscillations in Eg. (A8), which give
an unphysical (butAvau/small) negative transform of the
correlation function, would be absent.

To maintain the physical positiveness of J, the

following Gaussian approximation was introduced::
5= Lexp [ —(5/4)21 . (A9)

This approximation is graphed in Fig. 2, and the values of
the exact function from Eg. (A8) are indicated at representative

points. Its agreement with the exact function over a broad
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range of b, as well as its positive definiteness,
make Eg. (A9) a suitable approximation for analytic

applications.




"k - B = 0. Transforming td‘y7= Ciﬁ)l/2(X/p£)}“Whéfé:"W'"
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APPENDIX B

DERIVATION OF GREEN'S. FUNCTION FORlLEYw
S W

C Consider the equation

I
g
¥

0}

52 . " . e -

2 & . - 1122 2 . < I

[Bi e (A X /pi.+.lqopi/x0{] G(x,x").
=.pi&(x - x") , (B1)

where x is measured from the mode rational surface where
Re fy?*) > 0 corresponds to the choice Im ﬁ_< 0, i.e., outward

propagation of wave energy, and letting G = exp (ﬁyz/ZLé(y,y'),

 Eq. (Bl) becomes

éyy_ - -2yéy — (14 A/ipe = (i) Y% exp (v2/2)8(y - ¥').  (B2)

~

where A = A + lgopi/xc' Expanding G = ézglgan(y) in a

complete set of Hermite polynominals and using the equation

satisfied by Hor.

xﬂn)yy "ZY(Hn)y_+ 2nH, =0, (B3)

yvields upon substitution into Eq. (B2)

;:0, git (% + 2n + l>: H (y) = - (.i.ii).—l/z-eXP (¥%/2)8(y = y"). (B4)
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Multiplying Eq. (B4) by exp’(ﬁyz).Hh (y) and integrating

fromy = 0 to y = «yields -

s ,_lHn (’Y') exp ;(—;;Qlj.‘:llizr); P,

(i) Y 2n12P (B/ip + 20 + 1)

(B3)
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FIGURE CAPTIONS

FIG. 1 - The functionv(S/ﬂz) J(b), where J(b) is defined in
Eg. (A.8).

FIG. 2 - The function;exp[—(b/4)2], used to approximation J(b).
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