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ABSTRACT

The nonlinear evolution of the ‘Parker instability’ in an isolated horizon-
tal magnetic flux sheet imbedded in a two-temperature-layered atmosphere
is studied by using a two-dimensional MHD code. In the solar case, this
two-layer model is regarded as a simplified abstraction of the Sun’s photo-
sphere/chromosphere and its overlying much hotter (coronal) envelope. The
horizontal flux sheet is initially located in the lower temperature atmosphere
s0 as to satisfy magnetostatic equilibrium under a constant gravitational ac-
celeration. Idmi MHD is assumed and only perturbations with k parallel to
the magnetic field lines are investigated. As ‘the instability develops, the gas
slides down the expanding loop, and the evacuated loop rises due to enhanced
magnetic buoyancy. In the nonlinear regime of the instability, both the rise
velocity of a magnetic loop and the local Alfven velocity at the top of the
loop increase linearly with height and show self-similar behavior with height
as long as the wavelength of the initial perturbation is much smaller than
the horizontal size of the computing domain. The self-similar acceleration of
the rising loop continues as long as the loop is in the low temperature atmo-
sphere. After the loop reaches the higher temperature layer, the acceleration
of the rising loop decreases, and eventually the loop decelerates. We have
studied this self-similar expanding motion of the magnetic loop analytically,

and find that there is a quasi one-dimensional similarity solution for the ver-




tical variation of physical quantities at the mid-point of the magnetic loop.
Application to emerging magnetic flux in the solar atmosphere and to other
related astrophysical phenomena are also briefly discussed. Similarity to the

ballooning mode is mentioned.




I. Introduction

It has been suggested that much of the ‘activity’ observed in various as-
trophysical plasmas may be due to strong magnetic ﬁelds .(Parker 1979). For
example, almost all active phenomena on the Sun (e.g. flares, prominences, |
corona, jets and/or mass ejections) are caused by strong magnetic fields (e.g.
Priest 1981). Activity seen in some stars (X-ray emitting stars, or stellar
coronae [Rosner et al. 1985], and flare stars [Byrne and Rodono 1983]) are
probably related to strong magnetic fields (Uchida 1986). Magnetic fields
may also play an important role in galactic disks (Sofue et al. 1986, Sawa
and Fujimoto 1986, Fujimoto and Sawa 1987, Asseo and Sol 1987), accretion
disks (Galeev et al. 1978, Takahara 1979, Stella and Rosner 1983, Kato and
Horiuchi 1984, 1985); and cosmic jet phenomena (e.g. Uchida and Shibata,.
1985, 1986, Shibata and Uchida, 1985, 1986).

Magnetic'buoyancy plays a major role in the occurrence of these various

~magnetic phenomena (Parker 1955, 1979) because the magnetic fields cre-

ated by dynamo action are transported from the interior of celestial bodies
to their surface by magnetic buoyancy. Similarl);, if may play an important
role in star formation by allowing the magnetic field to escape. The ‘Parker
instability’ (Parker 1966, 1969, 1979) is a kind éf ideal magnetohydrodynamic
instability driven by such magnetic buoyancy, and is related to the magﬁetic
Rayleigh-Taylor instability. In a narrow sense, the magnetic Rayleigh-Taylor

instability (Kruskal and Schwarzschild 1954) is an interchange (or flute) in-

4




stability which occurs for perturbations with k | B and k L g where k is the
wavenumber vector, and B and g are the magnetic field and gravitational
acceleration vectors. On the other hand, the Parker instability occurs for
long-wavelength perturbations with k || B (i.e. undular mode) even when
the system is stable against the interchange mode perturbations (Newcomb
1961).

In this sense, the Parker .instability is similar to the ballooning instability
in fusion plasxﬁas (Bateman 1978). It is known that the-ballooning insta-
bility sets the largest achievable plasma 3 (= the ratio of gas to magnetic
pressure), the critical 3, in a Tokamak or other toroidal‘conﬁnement &eviqes.
Thus, it is important to understand the physical ,_naﬁuré of the ballooning
instability. Although a large number of linear analyses exxsts, few numericalk
simulations of its nonlinear evolution have been carried oﬁf to date to oxur
best knowledge (Ogino et al. 1981, Brunel et al. 1981). "This is perhaps
because‘in fusion research the linear theory determines'the critical B which
proves to be a reliable predictor of the experimentally observed critical .
In these experiments, once linear instabilities set in, they generally do not
saturate and in fact continue to grow nonlinearly (as we shall see in this
paper), and thus fhe plashla containment eventually is defeated.

| The effective gravity in fhe ballooning instability comes from the “bad”
curvature of magnetic field lines, ér equivalently, from the centrifugal accel-

eration of charged particles moving along curved magnetic field lines. Thus,




the ‘gravitatioﬁai force’ acts outward in a Tokamak. Since the particle num-
ber density is larger within the Tokamak than in the outer region, it can
be said that heavy gas is situated at higher gravitational potential in the
Tokamak. This situation is different from that of the gas layer considered in
_ this paper, in which the density is smaller at higher gravitational potential.'
This is because in many man-made confinement devices it is often topolog-
ically unavoidable to have a “bad” curvature region where denser matter
is in the higher potential, while in natural gravitational settings the natu-
ral equilibrium is such that the oppo.site is the case. If one looks at the
magnetic buoyancy instability locally, however, there exists in fact a region
where denser matter is in the higher gravitational pbtentiai, i.e., just above
the magnetic flux. In spité of this difference, the results in the present pa-
per may prove to be useful to the exploration of nonlinear properties. of the
ballooning instability.
| Parker (1966) originally proposed the undulation (Parker) instability to
| explain the formation of interstell@r clouds (Shu 1974, Mouschovias 1974,
Mouschovias et al. 1974, Zweibel and Kulsrud 1975, Asseo et al. 1979,
~ Elmegreen 1982), but the physics involved is closely related to the rise and
emergence of the magnetic flux tubes in the Sun and stars as well (Acheson
1979, Schiissler 1980, Spruit and van Ballegooijen 1982, Schmitt and Rosner
1983, Moreno-Insertis 1986, Hughes and Proctor 1988). (As for other as-

trophysical applications of the Parker instability, see e.g. Piddington 1970,




Sofue 1973, Tosa and Sofue 1974, Baierlein et al. 1981, Duric et al. 1983.) |

Recently, Matsumoto et al. (1988) have studied the nonlinear time evo-
lution of the Parker instability (Parker 1966) for a maghetostatic gas layer
in a non—unifo;-m gravitational field. Taking two—dimensional Cartesian co-
ordinates (z,z), they assumed that the gravitational acceleration vector is
parallel to the z-direction and anti-symmetric with respect to z = 0, and
that its magnitude is independent of z and has the same z-dependence as
that of z-component of gravity at a point z # 0 and y # 0 in = spherically
symmetric potential proauced by a point mass at ¢ = y = z = 0. Initial
magnetic fields Wére takeﬁ to be parallel to the z-direction, i.e. vertical to the
gravity. Such gas layers may be a model for the local part of magnetized gas
layers around the equatorial plane in accretion disks and/or galacﬁc disks:
They considered only isothermal perturbations in the initial gas disk, with
constant Alfven and sound speeds. Their main results are as follows. As the
instability develops, the gas slides down the expanding loop, forming dense

clouds in the valleys, with rarefied loops between: The expansion of the loop

is decelerated when the maximum velocity of the downflow becomes compa-

rable to or larger than the initial Alfven speed. Shock waves are produced in
the downflow when the‘initial Alfven speed is larger than the sound speed.
The maximum rise velocity of the loop is about 0.3 - 0.4 times that of the
initial Alfven speed. The reason why the expanding motion of the loop is

decelerated is that the gravitational acceleration decreases with height in this




model; i.e. the magnetic loop penetrates into the Parker-stable region (small
g region) in the nonlinear regime. |
Tﬁe purpose of this paper is to extend the work by Matsumoto et al.
(1988) to the situation suitable for the Sun and stars and to extract the
general characteristics of the undulation (Parker) instability in the nonlinear
stagé. We will study the nonlinear evolution of the Parker instability of an
isolated magnetic flux sheet imbedded in a two-temperature layered atmo-
sphere, such as the solar corona-chromosphere/photosphere system, stratiﬁed
under a constant gravitational acceleration. Isolated magnetic flux tubes are
observed in the solar photosphere, and are suggested to exist also in the so-
lar convection zone (e.g. Zwaan 1987). Physically, the isolation of magnetic
flux into tubes implies that the instability develops within a ﬁﬁjte region;
this contrasts with the model first considered by Parker (1966), i.e. a mag-
netostatic gas layer with constant Alfven and sound speeds under constant
* gravitational accélera,tion, where instability occurs in an infinite space, or in
other words, the velocity eigenfunctidn'increases exponentially with height.
Because of various constraints on numerical simulations, we consider only 5,
two-dimensional (2D) flux sheet. Thus, the interchange mode (perturbation
with k | B and k L g) will not be studied in this work (Hughes énd Cat-
taneo 1987). The different functional form of the gravitational acceleration
considered here from that of Matsumoto et al. (1988) allows to study how

the ‘nonlinear evolution of magnetic loop expansion occurs when the loop



rises through Parker-unstable layers.

§8II describes the assumptions and basic equations, and §III presents nu-
merical results. In §IV, we study the quasi 1D self-similar solution for this
problem by analytical methods. According to these analytical solutions, we
could understand physics of our complex numerical results. In fact, the ana-
lytical formula for the distribution of density and magnetic field in equation
(15) and (16) were first derived by this quasi 1D theory. Finally, §V is devoted
to the summary and discussions. Appendix A sﬁmmarizes the main\ charac-
teristics of linear stability for the gas layer considered in the present paper. In
Appenaix B, we investigate other self-similar solutions of the quasi-1D MHD
equation used in §IV for the case of A\ < X0, Where A is the horizontal
wavelength in the initial perturbation, and X, is the horizontal size of the
;:omputing domain. These solutions are useful to understand the physical

meaning of the particular self-similar solution obtained in §IV.



I1. Basic Equations and Numerical Methods

a) Assumptions and Basic Equations

We assume the foliowing: (1) the medium is an ideal gas, (2) the gi;,s
is a polytrope of index y= 1.05 (recall that the larger v is, the larger is the
computational time [Parker 1979, Matsumoto and Horiuchi 1988]; hence, this
value of v is chosen simply for computational convenience), (3) the magnetic
field is frozen into the gas, (4) the gravitational acceleration is constant, (5)
only two-dimensional motion are allowed. Cartesian coordinates (z,y, z) are
adoptéd so that the z-direction is anti-parallel to the gravitational accelera-
tion vector. It is assumed that V,,, B,, and /8y are all zero. Thus, the basic
equations in scalar form are as follows:

Op

§+§<pv>+ (V) =0 ()
0

0 0 2 s " 1 _
at(sz) bz =PV +p+ = 87 (B - B7)] + BZ(PVsz - 47_‘_B=-'BZ) =0, (2)

2 o)+ 2 (Vv - 4133> 2 vz ap+ L (B2 B g =0, (3)
' 5

55 (IB V,B.,) =0, (4)

6 .

~B (VB ~V.B,) =, (5)

0. p 1 2 2 1 2 2
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. 0 2 2 B, ' ‘
+55[—pv + 2pV (V2 +V2) + - (VaB. — V. By)]

B
2 2 T _ _
32[7_1PV+2PV(V +V2)+ 2 (ViB. - V.B.)| + pgV. = 0, (6)

where g is the gravitational acceleration, and other symbols have their usual

meaning.

b) Initial Conditions

i) Equilibrium State

We consider a two-temperature-layered atmosphere similar to the solar
corona-chromosphre/photosphere system. Hereinafter, we call the lower tem-
pefature atmosphere simply the chromosphere, and the higher temperature
atmosphere the corona, although the application is not restricted only to the

Sun. The distribution of the initial temperature is asssumed to be

T(z) = Ton+ (T — Tor)3 tmmh (225 1.1], ™

where T, /T, is the ratio of the tempera,t.ure in the corona to that in the
chromosphere, Z., is the height of the base of the corona, wy, is the tem-
perature scale height in the transition region (= 0.6H for all our calculation,
where H is the pressure scale height of the chromosphere). We have calcu-

lated both cases of T,,,/T:,=100 and 25 in some typical models, and found
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that the résults in both cases are very similar. Thus, we will show only the
results with Tior /7o, = 25 in the following sec;tions;

AWe assume that the magnetic field is initially parallel to the z-axis;
B = (B(z),0,0), and is localizgd in the chromosphere. The distribution

of magnetic field strength B(z) is given by

B(z) = [87p(2)/B(=)"",

where
| IB(Z) = 6*/]((2)’ (8)
(2) = gitanh(22) 4 1) tanh(22) 1,

and where 3, is the ratio of gas pressure to magnetic pressure at the center of
the magnetic flux sheet, zp and 2, = 2o+ D are the heights of the lower and
upper boundary of the magnetic flux shee‘g, and D is the vertical thickness
of the magnetic flux sheet. It is assumed that z, = 4H,D = 4H,wp = w; =
0.5H for all of our calculations. 1

The initial density and pressure distributions are numerically calculated

by using equations (7), (8) and the equation of magneto-static balance

4
dz

B?(2)
8T

I+ J+pg=0. (9)'

ii) Perturbations
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Small velocity perturbations of the form

(z — Xmaz/2)]
A )

V, = #(2)AC, sin[ >~ (10)

are initially imposed on the magnetic flux sheet (z < 2 < 2z;) within the
finite horizontal domain (Xmez/2 — A/2 < 2 < Xpnae/2 + A/2), where X is
" the horizontal wavelength of the small velocity perturbation, X,... is Ithe
horizontal size of thé computing domain, and A is the maximum value of
Vz/C, in the initial perturbation (=0.05). This perturbation is not exactly
the same as one of the unstable éigenfuncti‘on. However, the eigenfunction
is numeri;ally determined, and the growth rate of the perturbation in the
linear regime agrees well with that obtained from the exéct linear analysis

(Apéendix A; see also Horiuchi et al. 1988, Matsumoto and Horiuchi 1988).

c) Boundary Conditions and Numerical Procedures

We assume periodic boundaries for z = 0 and z = X4, 2 symmetric
(rigid conducting wall) boundary for z = 0, and a free boundary for z = Z,qs
(see for example Shibata [1983]): The effect of the free boundary at z = Z,,,,
is small. \ /

Equations (1)~(6) are non-dimensionalized by using the following nor-
malizing constants: H (the scale height of the chromosphere), C, (the sound
velocity in the chromosphere), and po (the density at the base of the atmo-

sphere, z = 0). The units of length, time, and velocity are H, H/C,, C,. The
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- gas pressure, density and magnetic field strength are normalized by poC?, po,
‘and (poC?)*/?, respectively. Equations (1)—(6) are then solved numerically
by using a modified Lax-Wendroff scheme (Rubin and Burstein 1967) with
‘artificial viscosity (Richtmyer and Morton 1967).

The mesh sizes are Az = 0.15 or 0.1 for z < Z, and slowly increasing
for 2 > Z o, Az = Xyp0r /(N — 1), where N, is the number of mesh points in
‘the z-direction. The total number of mésh points is (N, x N;) = (81 x 172)
in the case of models 1 and 2, and (N, X N;) = (101 x 172) in models 3-8.
The total area in a typical case (model 1) is (Xpmaz X Zmaz) = (20 X 35).

The tests and the accpracy of the MHD code have been dgscribed in
Shibata (1983), Shibata and Uchida (i985), Matsumoto et al. (1988) and
Umeﬁlura et al. (1988). Conservation of total mass and total energonbtains

within one percent of their initial values for all models described in this paper.
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III. Numerical Results

a) The case of A = X,,,.. (Model 1) : Bubble-like Expansion

In this subsection, we show the results in model 1 which is a typical case
for A = X,50,. The parameters of this model are as follows: 8, = 1,\ =
20 = X .5z, and Z,,, = 18. This horizontal wavelength (A=20) is close to the
wavelength fox the maximum growth rate for 8,=1, and the growth- rate is

0.121 in the unit of C,/H (see Appendix A).

i) Overall Evolution

Figure 1 shows the time variations of the magnetic lines of force B =
(Bz,B;), the velocity field V = (V,,V;), and the density distribution (log
p). The in;tability grows with the characteristics of linéar instability up
to about t = 35. Since the density distribution has a steep gradient along
the z-direction, the small perturbation grows to large amplitude when the
disturbance propagates from the magnetic flux sheet region to the upper
atmosphere. Thus, at £t = 31.3, we see a large velocity pattern around the
interface between the corona and the chromosphere, which is possibly the
manifestation of the suﬁace wave on the interface.. The velocity pattern
inherent in the Parker instability is seen around the magnetic flux sheet, in

the expansion of the loop and in the downflow along the loop. The dense
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regions are created in the valleys of the undulating field lines, whereas the
rarefied regions are produced around the tops of magnetic loops. These
characteristics are the same as in the nonlinear Parker instability in a non-
uniform gravitational field (Matsumoto et al. 1988). At this time (t = 31.3),
the velocities of the rising loop and the downflow are about 0.5 and 1.0 in

‘the unit of the initial sound speed in the chromosphere.
Figure 1

The rise velocity of the magnetic loop increases as it moves to higher
altitudes. At ¢ = 41.9, the top of the magnetic loop reaches the base of the
corona, and the rise velocity of the loop is about 1.1, _v&;_hile the downflow
velocity is 2.0; shock waves are produced in the downflow near the footpoints
of the loop because the downflow velocity exceeds the local sound speed.
After the loop reaches the corona, the upward acceleration of the loop weak-
ens, and eventually the 106p is decelerated. At t = 47.4, the maximum rise
velocity of the loop decreases to about 06

It should be noted that a neutral sheet (current sheet) is created just
above the valleys of the undulating field lines. Thus, Figure 1c shows at ¢ =
41.9 and 47.4 that in the neutral sheet, the density is enhanced by about a
factor 10 when compared with that of the ambient density. Since our model

does not include a large resistivity and shear, magnetic reconnection does
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not occur. Thus, the neutral sheet survives Beyond t = 47.4. The effects of
a large resistivity and magnetic shear should be invesigated in the future.
Figures 2a and 2b show the one-dimensional z-distribution of the vertical
velocity (V,) and the density at £ = X,n0-/2 (middle of the mégnetic loop).
The velocity figure (Fig. 2a) clearly shows the acceleration of the rise motion
of the magnetic loop in the chromosphere ( t < 39.9) and its deceleration in

the corona (t ~ 45.8).
Figure 2

Figures 2c and 2d shows the z-distribution of the local Alfven speed (V4)
and the magnetic field strength (B,) at & = Xynas/2. As the loop rises, the
local Alfven speed increases due to the evacuation by the downflow along the
loop, and hence the local B (not shown here) decreases significantly. (Note

that 8 ~ (C,/Va)? and C, ~ constant because of v = 1.05. )

ii) Why does the Loop Accelerate in the Chromosphere, and Decelerate in

the Corona ?

We can simply understand the acceleration of the rise motion of the loop
in the chromosphere becéuse the loop is unstable for the undulating perturba-
tion as long as the loop is in the chromosphere. In other words, the restoring
magnetic curvature force is still smaller than the accelerating magnetic buoy-

ancy force (or magnetic pressure gradient force) even in the nonlinear stage.
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On the other hand, the reason why the rise motion of the loop is decelerated
in the corona is that the corona is stable against the horizontal perturbation
for wavelengths examined here; the magnetic curvature force is larger thﬁn
the magnetic buoyancy force in the corona due to the fixed (éma.ll) horizon-
tal wavelength. Hence, we suppose that if the wavelength of the magnetic
loop increases in the corona, the deceleration of the loop may weaken. This
pfoblem will be studied in the next subsection.

Although. this intuitive interpretation about the acceleration and deceler-
ation of the loop is correct, the actual force relation is more subtle. We see
from Figure 2d that the magnetic field strength (B, ) decreases exponentially
With height. The approximate relation in the numerical results, shown by

the dashed line in Figure 2d, is
B, x exp(—Az/H,,) (11)

and H,, ~ 6.4H. This relation is thé same as that of the potential field found
by Parker (1975) for the eéuilibrium field after the Parker instability occurs.

This potential field has the following form:

TAz Az
B, = BF,-cos( 5T )exp(— 5L ) (12a)
. TAz TAz '
B, =B, sm(?L—)exp(—E), (128)

where Az = z — 29, Az = & — Xpnao /2, 2L is the horizontal distance between
grids of slender rods (line currents) (Parker 1979, p.345, equation [13.77]).
Since 2L is equal to A here, we have H,, = 2L/m = Afw = 20H /7 ~ 6.4H,
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which agrees with our numerical results. In conclusion, we find that the
magnetic field is nearly current free (and thus force free) near the midpoint .
of the loop, so that the magnetic pressure force approximately balances the
magnetic curvature force for all times except for initiai short periods. In the
accelerating stage (¢ < 40), the magnetic pressure force is a little bit larger
than the curvature force, because the top of the loop expands freely in the
chromosphere. On the other hand, aftér the loop enters the corona (t > 40),
the magnetic pressure finally balances the coronal gas pressure, because the
magnetic pressure steeply. decreases as p, = B2/8m o exp(—2z/H,,) and the
gas pressure (pg) is nearly constant in the corona (see Fig. 3). Thus, the
top of the loop decelerg.tes in the corona, which makes the curvature force
slightly larger than the magnetic pressure force even in the chromosphere,

leading to the deceleration of the rise motion of the entire magnetic loops.

Figure 3

b) The Cases of A < X, : Self-Similar Expansion

i) The Case of Xpar = 2X = 40 : Model 2.

. We now study the case of A < X,,,.., where the effective horizontal wave-

length of the loop can increase with time. Figure 4 shows model 2, whose
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perturbation wavelength is the same as that of model 1, but the horizon-
tal computing domain is doubled. Other parameters are the same as in
model 1. This model is thus equivalent to a model in which both horizontal
periodic boundaries are moved away from their original position (model 1)
| by A/2. Although the initial perturbation is restricted in horizontal space
(X,,;a,,/2 —A/2 < & < X;paa/2 + A/2), the initially unperturbed part of the
magnetic flux sheet is also disturbed by the influence of the instability in the
| perturbed pa.i't. Thus, the magﬁetic flux in the initially unperturbed part
also expands due to the Parker instability, though the onset of the instabil-
ity occurs later than in the initiaily perturbed part. Consequently, field lines
show the undulating pattern which is more pronounced in the perturbed part

than in the unperturbed parts at ¢ = 30.6.
Figure 4

The difference between the growth of the instability in the perturbed and
the unperturbed parts becomes more significant as time proceeds. At ¢t =
41.8, fhe expansion of the magnetic loop in the unperturbed part is almost
stopped by the lateral expansion of the magnetic flux in the perturbed part.
The magnetic loop in the unperturbed part is siginiﬁcantlj compressed at
t = 49.7. The neutral sheet is formed just above the compressed magneticb

loop and shock waves are produced in the downflow near the neutral sheet.
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The magnetic loop in the initially perturbed part expands very quickly;
and the effective wavelength increases \;vith time. Thus, the downflow velocity
is larger than in model 1 and equals 2.8 at t = 49.7. The evolution of the
" rising loop after entering the corona is also different from that of I;rlodel 1.
Figure 5 shows the z-distribution of V, at z = X,z (the middle of the
loop) at various times. It is seen that the rise velocity of the magnetic loop
increases even after the loop height exceeds the initial coronal base height,
and shows approximate se]f-si-mila.f behavior with height. This is probably
because the magnetic curvature force is smaller in model 2 than in model 1

due to the larger effective wavelength.

Figure 5

il) The Case of X, = 4A = 80 : Model 3

Figure 6 shows the results for model 3, where the horizontal computing
domain is further enlarged (X4, = 80), with other parameters again fixed as
for model 1. In this case, there are four loops (one biggest, two intermediate,
and one smallest loops) whose wavelength is approximately the same as A.
The loop formed in the initially perturbed part, which we refer to as the
major loop,. dominates the other three loops. However, even at ¢t = 51.4,

the major loops do not contact one another. The effective wavelength of
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the major loop becomes larger than the wavelength of the dominant loop of
model 2, so that the downflow velocity is even larger than in model 2; the

maximum downflow velocity at ¢ = 51.4 is about 3.8.

Figure 6

Figures 7a and 7b show the z-distributions of V; and V, at z = X0./2
in model 3, respectively. We find that V, and V, show.self-similar evolution
with height. It is also found that (1) V, and V, increase linearly with height

‘in the chromosphere;

Vi(2) = a:Az, (13)
Va(z) = a2z, ' (14)

where Az = 7 — zg,a1 = 0.062,a; = 0.30, and 2z, = 4, (2) V,/V4 = a;/a,
is about 0.2, (3) V, increases even after the loop enters the coronal region,
though the rate of increase of V, in the corona is smaller than in the chro-

mosphere.

Figure 7

Figures 7c and 7d show the z-distribution of the density (p) and the

magnetic field strength (B,) at = X,,../2 in model 3. It is seen that the
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density and the magnetic field distributions below the top of the loop tends

to the steady state distributions with

pox Az™4, (15)

B, « Az71. (16)

This magnetic field distribution is different from the exponential distribution
(cf. eq. [11]) for the case of A = X,nq, because the effective wavelength of the
loop increases with height in this case. However, this distribution is again

related to the current free (force free) one,
B, « Az/(Az? + AzZ?), (17a)

B, x —Az/(Az® + AZ?). : (17b)
For this potential field, we have Bﬂc x Az7! for |Az| <« |Az|, which agrees

with our numerical results.

iii) Effect of Corona : Models 4 and 5

We now examine the effect of the height of the coronal base, Zeon (models
4 and 5). As seen in previous sections, the corona has a stabilizing effect on
the rising motion of the magnetic loop. Therefore, if Z,,, is larger (smaller),

we expect the rise velocity of the magnetic loop to become larger (smaller).
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Figure 8 shows the results for model 4, where only Z, is changed from
a value of 18 (model 3) to 15, with other parameters fixed. We see that the
size of the loop (in the density figure of Fig. 8) and the velocities at t = 51.5
are somewhat smaller than those at ¢ = 51.4 in model 3 (Fig. 9). This is
due to the sm’a,]ler vaue of Z,. Figure 9 shows the results for ﬁlodel 5, for »
which Z.,. = 12 and other parameters are the same as in models 3 and 4.
It is apparent that the rising motion of the loop is stabilized by the corona.
Figure 10 shows the z-distribution of V. at ¢ = X,,,2/2 in models 3, 4 and
5. From this figure we find that the maximum velocity of model 4 (= 1.05)
is smaller than that of model 3 (= 1.4) and that the rise velocity of the loop
is decelerated for values of z larger than z = 27. We find aléo that in model
5 (Zeor = 12) the acceleration of the rising motion of the loop ceases in the

corona for heights larger than 15.

Figure 8
Figure 9
Figure 10

Figure 11 shows the z-distribution of the initial gas pressure distribution
for models 3, 4 and 5, and the steady magnetic pressure distribution (p, =
BZ/8% o Az7?) in the numerical results. From this figure, we see that in

models 3 and 4 the magnetic pressﬁre is still larger than the coronal gas
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pressure at z = Z,,,,. This is the reason why the rise motion of the loop
is not strongly decelerated in the corona in models 3 (Fig. 10c) and 4 (Fig.
10b). On the other hand, the magnetic pressure becomes equal to the coronal
gas pressure at z < Z,q, in model 5, which explains the strong deceleration

of the loop expansion in the corona in this model (Fig. 10a).

Figure 11

iv) Effect of Initial Magnetic Field Strength : Models 6 and 7

In order to éee the effect of the initial magnetic field strength, ie. 8. (=
the ratio of gas to magnetic pressures at the center of the initial magnetic
flux sheet), we calculate the cases of 8, = 2.0 (model 6) and 0.5 (model 7);
other parameters are the same as in model 3 (3, = 1). The overall evolution
of the system in both models is very similar to that of model 3, and the self-
similar type of evolution characterized by equations (13) and (14) is again
observed. It is found that the values of a; and a, for models 6 and 7 are
different from those of model 3; a; = 0.053, a, = 0.23 for model 6 (3, = 2.0)
and a; = 0.070,a; = 0.39 for model 7 (B, = 0.5). Thus, a; and a, decrease
with B, while the Alfven Mach number a,/a, increases with 3, (Table 1).
We also find that the vaiﬁes of a; are approximately equal to 1/2 — 1/3

times the growth rate of the linear instability; the dependence of a, on S,
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can be ther\efore understood on the basis of the linear instability (Table 2
in Appendix A). A more detailed nonlinear analysis shows that a; may be
determmed by the free fall motion of gas along the curved magnetic loop,
and is of the order of the inverse of the gas element free fall time. This is
also consistent with the fact that the linear growth time is of the order of

the free fall time.
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IV. Quasi-1D Self-Similar Solutions

The most s{gniﬁcant characteristics we observed in the present nonlinear
evolution of the Parker instability is the apparent emergence of a self-similar
pattern of the fluid velocity and the fields in the case of A < X, 0. As
mentioned in §IIIb, the vertical distributions of V, (vertical component of
fluid velocity) and V, (local Alfven spéed) at the middle of the magnetic
loop show self-similar behavior, as shown in Figures 5, 7 and 10. We shall
now look for a self-similar solution of the problem by analytical methods, and
try to shed more light on the physics of the rising motion of the magnetic
loop. | |

Numerical results show that both V, and V, increase in proportion to the

loop height, and that their gradient a; and a, are independent of time,
V., =a,Az, : (18)

V4 = a;Az, -~ (19)

where

Az = z — z,

and z is the initial height of the magnetic loop. We have the following

relation from equation (18),

6V;ZBV+V26

o~ T Va — Vs (20)
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where 7 is the time in Lagrangian coordinates, while ¢ and z are the Eulerian

coordinates. Equation (20) leads to
V. o exp(a;7) | (21)

on a Lagrangian spatial grid. In other words, the rise velocity of each mag-
netic loop increases exponentially with time. In Appendix B, we examine
more general self-similar solutions. Qur observation clearly shows that the -
realized solution corresponds to the case of ZZ /Z =1 in Table 3. By com-
bining equation (18) with equation (21), we obtain an analyticai expression
for the vertical distribution of V, as a function of Lagrangian coordinates ¢

and 7,

V.(£,7) = a;€ exp(ay7), - (22)

- where

£= (2= 2) ~ [Vi(6,T)ir. @
Thus, the relation between Euler variables (z,t) and Lagrangian variables
(€,7) becomes
€ = (z — z) exp(—as7), (24)
T=t : | (25)
We now assume the problem is quasi-one-dimensional (quasi-1D), i.e., Wé '

consider only vertical (z) variations of the physical quantities at the middle

point of the loop. The basic equations for our quasi-1D problem are

Op 0 0 .
i —E(Pvz) - a—w(PVL), (26)

28



3Vz z 1
Bt 0z _;[ ( ) 47rR:| @
0B,

0
‘ 8 bz
where R is the radius of curvature of field lines at the middle point of the

= (B.V,), (28)

magnetic loop. The last term on the right hand side of equation (27) is in
a simplified phenomenological form in order to keep the variation in one (z)
direction (the “quasi” one dimension); a similar treatment may be found in
Brunel and Tajima (1983). Here we neglect the gas pressure gradient and
the gravitational forces in equation (27), and B,-related terms in equation
(28). The neglect of B,-related terms may be justified because B, < B, near
the middle point of the magnetic loop; and the reason why the gas pressure
gradient. and the gravitational forces are neglected will become clear after
the self-similar solutions are found.

A central Ansatz of the present quasi-one-dimensional model is

o (oVe) = (V1) 2 (o). (29)

We further write

R = cAz, | : , (30)
where N and c are the parameters which should be determined from the 2-D
dynamics of the problem, and generally depend on time a.nd.space. However,
N and c are assumed here to be constants. The left hand term in equation
(29) corresponds to fluid leaking away from the midsection of the loop Be—

cause the bent loop allows the fluid to escape along the field line under the
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gravitational influence. In the present quasi-one-dimensional model, we mea-
sure the amount of matter leakage in the horizontal direction in terms of the
vertical flow motion. This Ansatz equation (29) appears reasonable because
in steady state (N = 0), equation (29) reduces to the usual steady state
continuity equation (eq. [26]); if N = 1, no leakage arises, which corresponds
to a pure one d1men51ona.1 motion (see Apeendix E). In order to have matter
leakage, N<1. N—1lisa pafa.meter that measures severity of matter leak- '
age in the z-direction. Equation (30) is a manifestation of the self;similar
evolution of the spatial pattern of the loop.

Since it 1s convenient to use Lagrangian coordinates (¢,7), the quasi-1D
equations are rewritten by using the relations between the Euler derivatives

and Lagrangian derivatives,

0 0
P exp(— cm')66 (31)
0 6
ot ity % "o (32)
We then have equations described by Lagrangian coordinates,
Op _ V, Op p OV,
5 =—(N l)faf Nf 5 (33)
oV, 8 (B2 B?
z — o 4
5r = of [36(871') reordl (34)
8B, B0V,
or ~  f o¢’ (35)
where
f =exp(a;7). : (36)
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When we insert equation (22) into equation (35), we obtain
0B./0t = —B.a,. (37)
Thus, B, has the following functional form,

B(¢,7) = b(f) exp(—ar7). (38)

Similarly, from dimensional arguments (or from equation 14), we have

p(&,7) = r(€) exp(—4a17). : (39)

The unknown functions b(£) and r(£) are determined from equations (33)
and (34). By inserting equations (22), (38) and (39) into euqations (33) and

(34), it follows that
dr
E_ —

—4r = —(N - 1) Z Nr, (40)
and :
., b o,db b
aif = "E(EE + E) (41)

If N # 1, equations (40) and (41) have the solutions

r(£) = ry g~ (NN, 4 (42)
B(E) = bugmCHMI0-N) (43
where
™ = T(& = 1))
8mr 1/2
by =a [—ziT_)sz] :
1-N c
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Summarizing the results, we have the final solution for the quasi-1D self-

similar evolution of a rising magnetic flux tube:

V,= alfexP(alT) = dlAZ, | (44)

p= 7’16:({%? exp(—4a;7) = rlAz'_‘(lli_Alrwi exp[(1 ?)_NN) a1t],‘ (45)

B, = blf';_((lzj_g)) exp(—a,7) = I)IA;:%((igj_;‘\fr)l exp[2—(1—3—__£ma1t], (46)
where N # 1 and Az = z — z,. From these solutions, the Alfven speed
becomes |

Va = Vailexp(a;7) = Va Az, (47)
where
Var = by/(47m )2 = oy [@%—_—f]l/ * (48)

Note that the Alfven sﬁeed, as well as the flow velocity, grow exponentially
in time on each magnetio;: loop, i.e. ona Lagrangian coordinate (§ = const.),
because of the ever diluting atmosphere due to matter leakage by the loop
deformation. Figures 12, 13 and 14 illustrate the time evolution of V,, p, and

B. in this self-similar solution for N = 0 (Fig. 13) and —0.5 (Fig. 14).

Figure 12
Figure 13
Figure 14
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Since Vy; is equal to a; in our numerical results, we can empirically
determine the value of N by equating the theoretical expression for V,/V, =
a;/a; = a;/Vy to the empirical value @, /a; >~ 0.2 = ¢ for the case shown in
§11Tb)-ii). Consequently, we have

_2-2(1-1)
T 2241+ 2

(9)

If ¢ ~ 1 in the nonlinear stage and e ~ 0.04 € 1, we find N ~ 0. The
analytical solution with N = 0 (p o« Az™*, B, x Az™!) agrees well with
numerical solutions as shown in Figures 7c and 7d. It should be noted that
the solution with N = 0 corresponds to the steady state solution in Eulerian
coordinates. |

Let us now consider the validity of the assumption that the gas pressure
gradient force and the gravitational force may be neglected. From our self-
similar solution, the ratio of gravitational force to magnetic force is estimated

to be

Py =1
8/62(52f8m) < 27 (50)

and the ratio of the gas pressure gradient force to the magnetic force is

Op/0=z
————~ (C,/V4)? x Az72. 51
5/52(B2j8m) = (Col Va)" x Az | (51)
Hence, as the magnetic loop rises (i.e., as Az increases), the gravitational
force and the gas pressure gradient force decrease more rapidly than the

magnetic force. If the force ratio is evaluated on the Lagrangian spatial co-

ordinate ¢ = Az exp(—a;t) = const., then the above force ratios decrease
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exponentially wit.h time. Consequently, we confirm a posteriori that as long
as both force ratios are less than unity at ¢t = 0, the neglect of the gravita-
tional. and the gas pressure gradient forces is valid.

(It should be noted that it is the gravitational force which drives the slid-
ing motion of gas along magnetic loops. Since the evacuation of loops by this
_sliding‘ motion is the cause of expansion of magnetic loops, the gravitational
force is the ultimate cause of our magnetic loop expansion, even if the grav-
itational force can be neglected in.the analysis discussed above. In fact, the
growth rate of the linear instability as well as the coefficient a, is a function of
the gravitational acceleration according to more cieta.iled nonlinear analysis.)

We briefly comment on the question why V, increases in proportion to
the height. More general analyses (Appendix B) show that the solution with
V. oc Az (6 # 1) diverges at a point with finite Az, except for the case of
N = 0. Although our numerical solutions show N ~ 0, N may not be exac’.cly '
equal to 0. Thus, the solution with § = 1 appears in the numerical results,
and simulations show that such a solution is stable and proves to be an
attractor. (When the numerical results correspond to the solutions deviated
from the ideal self-similarity, the above argument may not necessarily hold.)

Appendix B also shows that there is another class of similarity solutions
with power-law time dependeﬁce, in addition to our solution with exponential
time dependence. Although such power-law solutions cannot be applied to

the rising motion of magnetic loops in the chromosphere, it may be applicable
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to the later phasé of the rising motion of loop, i.e., after the loop enters the
corona. For example, Figure 10b (model 4) shows approximately V, o< Az/t
between ¢t = 45.6 and 56.4, which agrees with the power law solution in the
case of ZZ/Z #1,6§ =1,N# 1in Table 3.
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V. Summary and Discussions

a) Summary of Numerical and Analytical Results

In this paper, we have reported results of simulations of the nonlinear evo-
lution of the Parker instability occurring in an isolated magnetic flux sheet
imbedded in a two-temperature-layered atmosphere under constant gravita-
tional acceleration. Such an atmosphére may be a highly simpliﬁed_ model
of solar and stellar corona-chromosphere/photosphere systems, and may be
aSO applied to corona (halo)-disk systems in galaxies and in accretion disks.

The most important results are for the nonlinear kinematics of the rising
magnetic loops. These are summarized as follows:

(1) In the nonlinear regime, the rise velocity (V,) of the magnetic loop
- and the local Alfven speed (V,) at the top of the rising magnetic loop in-
creases with height as long as the. loop is in the low temperature atmo-
sphere. When the horizontal size (X,n,.) of the computing domain is fixed
to the wavelength () of the initial perturbation, the expansion of the ma;g—
netic loop is not self-similar, and the magnetic field is nearly current free
with B, o exp(—Az/H,,), where Az is the height from the base of the
initial magnetic flux sheet, and H,, ~ 6.4H =~ (A/n)H. On the other
hand, when X,,., >> A, the expansion of the magnetic loop shows self-
similar evolution with height: B, o« Az7!,p o« Az™%, V,/C, = a;Az/H,
and V4/C, = a,Az/H. Thus, the local Alfven Mach number V,/V, = a;/a;
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is nearly constant with height. Both a,(= 0.05—0.07) and a,(= 0.2—b.4) de-
crease with 8,, while a; /a»(= 0.18—0.23) increase with £, for 0.5 .5 B. < 2.0.
The values of a; are approximately equal to 1/2 - 1/3 times the growth rates
of the linear instability. ‘

(2) After the loop enters the corona, the acceleration of the rising motion
of the loop decreases, and the motion eventually decelerates. The deceler-
ation is not as strong if the eﬁ‘ectiv; horizontal wavelength increases as the
loop rises (models 2 and 3). When the height of the coronal base (Z.) is
larger (smaller), the maximum rise velocity of the loop is larger (smaller)
(models 4 and 5).

(3) A quasi one-dimensional self-similar solution isb found analytically,
which describes the vertical Ava.r-iation of physical quantities at the center of a
rising magnetic loop in the case of A <« X,,.... The solution has the character-
istics that in Eulerian coordinates V, o« Az and V,; o Az are stationary., and
p Az;g‘l—__l*}’v‘2 and B, « Az%f—%v} have exponential time dependence (inclu.d-
ing the special case of steady state [N = 0] where N is the parameter defining
the strength of downflow along the loop [ﬁote that N = 1 corresponds to the
case of no downflow.]) Our numerical simulations show N ~ 0. From these
results, we find that the rising velocity (V,) and VA of each magnetic loop
(i.e., in Lagrangian coordinates) increases exponentially with time, while p
and B, decrease exponentially with tim_e. |

Let us now discuss qualitatively the physical reasons for the above results.
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First, the lreason why the rise velocity of the loop increases with height is
the steep pressure (density) gradient of the background atmosphere. That
is, when the magnetic flux rises to a new position which is at a finite dis-
tance from the original position, the new state is still Parker-unstable, e.g.,
magnetic buoyancy is larger than the restoring magnetic curvature force.
(Inﬁr;itesimal displacements correspond to the linear instability.) Thus, the
continuing acceleration occurs as long as the loop is in the lower tempera-
ture atmoslphere. If the magnetic loop enters the Parker-stable region, such
as the corona (when the larger scale height is due to high temperature; this
paper) or small gravity region (when the larger scale height is due to small
é; Matsumoto et al. 1988), the magnetic loop is decelerated. However, if
the effective wavelength of the magnetic loop can become larggr than the
critical Wa;relength of the Parker instability in the new state by e.g. lat‘eral
expansion of the magnetic loop as shown in models 2 and 3, 'ghen continuing
acceleration will be realized. .

The self-similar solution reveals that in the fully nonlinear stage of the
magn(‘_etic loop expansion in the low temperature atmosphere, the magnetic
force dominates the gravitational and the gas pressure gradient forces. Thus,
the word ‘magnetic buoyancy’ is not strictiy suitable to describe the dy-
namics in the fully nonlinear stage; we should say that the magnetic loop is
accelerated by the magnetic pressure gradient force. In this sense, the pro-

cess is similar to the 1D free expansion of magnetized cold gas into vacuum.
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It should be, however, noted that the expansion velocity of the 1D free ex-
pansion of magnetized gas is constant, while expansion speed increases with
height in our case; this is because there is a downflow along the magnetic
loop in our models: The downflow evacuates the loop and increases the local
Alfven speed. This latter effect is another reason why the expansion veloc-
ity increases with height. We can also understand the deceleration of the
magnetic loop after it enters the corona from these points of view: Since the
scale height is large in the corona, the pressure does not steeply decrease;
hence the expansion of the magnetic loop is not ‘free’ in the corona, i.e. loop

suffers deceleration by the gas pressure force.

b) Application to Emerging Magnetic Flux in the Solar

Atmosphere

There are suggestions in available data that the calculations reported here
may be relevant to solar magnetic flux emergence (Suematsu 1987, Chou
1988). Consider, for exa.mple,» the AFS (Arch Filament System), which cor-
responds to the later phase of magnetic flux emergence. Bruzek (1967, 1969)
found that the velocity kOf the rising loop is about 10 km/s, approximately 0.2
times of the Alfven speed in the middle chromosphere, and that the velocity
of downflows along the loop is about 50 km/s, roughly equal to the local
Alfven speed. These phenomena are fairly well represented by model 3 of
this paper. Furthermore, if we apply our results to the emergence of mag-

netic flux tubes in coronal holes, we predict that the rise velocities and the-
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downflows in AFS filament are larger in coronal holes than in quiet regions
by 10 - 20 percent, because the height of the coronal base in coronal holes is
larger than in quiet regions by 2-3 (low temperature domain) scale heights
(e.g- Shibata and Suematsu 1982).

Our simulation results are also consistent with the observed small rise
velocity of magnetic flux tube at ;che photospheric level (Chou and Wang
1987); Kawaguchi and Kitai (1976) reported velocities < 0.2 km/s, and
Brants (1985) found velocities =~ 1 km/s. For example, if we assume C, ~ 10
km/s, H ~ 200 km, Az is the height from the photospheric base, and uée
the relation V,/C, = 0.06Az/H in model 3, we find that V, < 1 km/s at
Az < 400 km and V, ~ 10 km/s at Az ~ 4000 km. The former velocity
and height correspond to those of photospheric emerging flux and the latter
to those of AFS. We also find transient strong downdrafts at the footpoint
of the magnetic loop in the numerical results of model 3: V, ~ 1-2 km/s
at Az ~ 200-600 km/ s in the initial stage of the magnetic loop expansion.
These downdrafts may correspond to those observed by Kawaguchi and Kitai
(1976) (see also Shibata 1980). |

| It should be noted that the actual process of magnetic flux emergence in
the solar atmosphere is a three dimensional process. Thus, the interchange
mode (k, # 0) will couple to the undular mode, and the processes may be
different from those (for k, = 0) studied in the present papef. ‘Although we

think that the interchange mode is essential for the creation of isolated flux
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tube from the sheet, the essence of the dynamics of the flux emergence is not
so different from that foﬁnd in this paper. This is because for finite turbulent
viscos\ity, we assume that the growth rate for k, ., is comparable to that for -
k,=0 (Schﬁﬁtt and Rosner 1982).

The dynamics studied in the present paper may also be related to the
energy storage process in the solar flares. Steinolfson and Tajima (1987)
examined the nonlinear twisting process of magnetic flux tube by the pho-
tospheric footpoint motion; and Bekki et al. (1988) studied the nonlinear
evolution of force free field associated with the shear motion of footpoints.
In these studies, the footpoint motions are assumed to be given as the bound-
ai‘y condition. However, it is possible that these photospheric motion may
be a result of the emergence of Aa twisted magnetic flux tube (Tanaka 1987,
Kurokawa 1988). In order to discuss the relation of flux emergence with

flares, a more detailed study including 3-D processes will have to be made.

c) Application to Other Astrophysical Loop-like Phenomena

Finally, we comment on the application of our results to loop-like mass
ejection from astrophysical objects. It is well known that coronal transients
often show a loop-like (or bubble-like) configuration (Wagner 1984, Sime et
al. 1984). In some transients, downflow-like features are observed along the
legs of the transients in the inner corona (R < 1.6Rg). These characteristics

are consistent with those seen in our simulation results. Thus, the essential
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Appendix A

Characteristics of Linear Instability of Isolated Magnetic Flux
Sheet

We here summarize the main characteristics of the linear instability of an
isolated magnetic ﬂux sheet considered in the present paper.

We have performed a linear stability analysis using the normal mode
method similar to those of Horiuchi et al. (1988) and Matsumoto and Hori-
uchi (1988). That is, we first linearize the basic equations (1)~(6) by assuming
B, = By + b, lbz/BOI < 1,and b, = b, exp(iwt + tkyz + ikyy), etc. After

some manipulations, the linearized equations become

d E] [Dee D&;HE]
dz[ﬂ Dpe Dypilnl’ (A1)
where
D 1 dlnﬂ_dlnT
& 1+8 dz dz
g By (14 Py B — 2K "
CI1+B (24 fy)w®—2k2C2
By Pywt — w2+ k*C? + 2k?K2C4
D, = 2181 (2+87) (A3)

CZ (2 + By)w? — 2k2C2)[Bryw? — 2k2C2]
_ 2 2.5 1 dlng dlnT
D = =g KOs — %)
1 g By(1+By— B +2(14+ 8- By)kC? (A4)
1+pC? (2 + By)w? — 2k2CE ’
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Pryw? | (A5)

D, = &
™ T TG R+ Byt - 2kCT

and

£ = povs,
. ~ BOI;:B
o= w(8p + ——),
kK = K+E,

and po and By are the quantities in the unperturbed state, and v,,§p, b.m
are perturbed quantities. Here, we used the equation (9) of magnetostatic
balance for the unperturbed quantities, and 8 = B(z) and T = T(z) are
given in equations (7) and (8) in the text. If we assume dIlnf3/dz = 0 and
dInT/dz = 0, the equations (Al)—(A-5) are the same as those in Horiuchi et
al. (1988), and if we assume only dInB/dz = 0, the equations are the same
as those .of Matsumoto and Horiuchi (1988).

The boundary conditions are ¢ = 0 and dn/dz = 0 on z= 0, and £ and
7 should vanish at z — oco. The equations (Al)-—(AS) are solved numerically
for prescribed k. and k, using the Runge-Kutta method to find an eigen-
value w and the corresponding eigenfunctions which satisfy these boundary

conditions.

Figure Al
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Figure Al shows the growth rates iw as a function of the horizontal .

wavenumber k; for three cases 8, = 0.5,1.0, and 2.0 for k, = 0, and Ta-
ble 2 shows the growth rate as a function of 3, for k. = 0.314 (A = 20)
and k, = 0. Note that the horiéontal-wavelength (A = 20) considered in the
present paper is close to the wavelengths for the maximum growth rates for
B« = 0.5, 1.0, and 2.0. From Table 2, we see that the growth rates tend to
a non-zero value when g, becomes 0 for D = 4 and 8 in the case of T, /Tes,
= 25, and for all finite D’s in the case of T, /T, = 1. This behavior is
quite different from that for the case of a non-isolated field (Parker 1966,
Horiuchi et al. 1988, Matsumoto and Horiuchi 1988), where the growth rates
tend to zero when (3, becomes 0. This is because in the case of isolated
field the density is ldcally larger just above the flux sheet than in the sheet,
i.e., the density inversion occurs locally as in the case of a f;':uniliar magnetic
Rayleigh-Taylor instability (Krﬁskal and Schwarzschild 1954, Parker 1979,
Priest 1981). When the magnetic field is confined in the half space z < 0
with a sharp boundary at z = 0 by the heavy material in z > 0, aI;d Wheﬁ the
plasma (3 tends to 0 in the lower layer, the growth rate tends to a non-zero
value \/m for k, = 0 and v = 1, where C, is the sound speed in
the upper layer (Parker 1979, Priest 1981). /

Figure A2
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Figure A2 shows the 1-D eigenfunctions (as a function of z) for some
physical quantities. It is noted that both velocities v, and 7, are maximum
at the height near the top of the flux sheet (z ~ 8), and that they have
non-negligible values even above the flux sheet. The same is true for the

magnetic field, density and gas pressure.
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- Appendix B

General Self-Similar Solutions of Quasi-1D MHD Equations in
| the case of A\ « X,
1
In this Appendix, we shall show that there is another class of self-similar
solutions with power-law time dependence, in addition to the empirical so-
lution with exponential time dependence discussed in §IV.
As 4in Zeldovich and Raizer (1967)‘, we seek a general self-similar solution

by adopting the new dimensionless independent variable

- Az —
r=1, (B2)

. where Z (t) is the scale function, with dimension of length, and ¢, is a nor-

malization constant for the time. We further assume

V= 2O, (B3)
p = X(r)o(¢), - (B4)
. B, = (4nZZ%)"/?p(¢) /to, (B5)

where v, 0, and b are nondimensional quantities with only ¢-dependence, and
the dot represents d/dr. Substituting equations (B1)~(B5) into equations
(26)—(30), we have
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xZ , d
it =)= = B
2Z'f‘JV'U +(NU C) 0, ( 6)
zZZ , B 1
‘ZT;”'i‘('U“C) +;(g+z)_0, (B7)
ZZ 1%Z ¥ o
?2‘4-55“2“ (”_O'g“}'v =0, (B8)
where ' = d/d(.
We adopt the boundary condition for v(()
w((=0)=0 (B9)

because there is no magnetic flux below ¢ = 0, and thus the fluid is stationary
there. Thus, v(¢) may l?'e written as a self-similar function that satisfies
equation (B9),

(B10)

where 6 is a positive real number. Several solutions satisfying equations (B6)-
(B8) and equation (B10) are summarized in Table 3 for both ZZ/Z2 =
and # 1.
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Table 1°

Models examined in this paper (y = 1.05, D = 4, T,,, /T, = 25) and results

of nonlinear simulations

model name | A | Xpo [ By | Zeor | Vimaz | @1 a, a;/a,
model 1 20|20 |1 |18 |1.25

model 2 20 1 40 1 18 14
model 3 20 | 80 1 18 1.4 0.062 | 0.30 | 0.21
model 4 20 | 80 1 15 1.1
model 5 20 | 80 1 12 045 |
model 6 20 | 80 2.0 18 — 0.053 | 0.23 | 0.23
model 7 20 | 80 0.5 | 18 — 0.0701 0.39 | 0.18

Note: A is the wavelength of the initial perturbation, X,.q. is the horizon-

tal size of the computing domain, 3, is the plasma 3,(= gas pressure/magnetic
pressure) defined at the center of the initial magnetic flux sheet, Z., is
the initial height of the coronal base, V, mq, is the maximum velocity at
T = Xpmas/2, a; and a, are defined by a; = V,/Az and ay, = V;/Az, where
V. is the rise velocity of the magnetic loop, and Vj is the local Alfven speed

at £ = X,,../2. The units of the length and the velocity are H and C,.
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Table 2

Dependence of Linear Growth Rates on 8., D(= z; — %), and Tpop/Top,,
when k, = 0.314,k, = 0,y = 1.05, Z,,,. = 35, Z.,, = 18, w;. = 0.6 and

W =wW; = 0.5.

B. 4.0 2.0 1.0 0.5 0.333 | 0.1 0.01 |0.001
Teor /T, = 25

D=4 0.008 | 0.080 {0.121 | 0.150 | 0.162 | 0.181 | 0.190 | 0.192
D=8 0.047 | 0.104 | 0.144 | 0.169 | 0.177 | 0.189 | 0.192 | 0.191
D=12 0.041 | 0.097 | 0.120 | 0.100 | 0.049 | stable

D=16 . 10.033 | 0.087 | 0.097 | stable

Teor/Ter =1

D=4 0.008 | 0.080 | 0.121 { 0.150 | 0.162 | 0.181 | 0.190 | 0.192
D=8 0.047 [ 0.104 |0.144 | 0.169 | 0.178 | 0.189 | 0.193 | 0.194
D=16 0.063 | 0.119 | 0.155 | 0.175 | 0.181 | 0.190 | 0.194 | 0.194
Parker stable | stable | 0.158 | 0.191 | 0.188 | 0.137 | 0.049 | 0.012

The unit of the growth rate is C,/H. The growth rates obtained by

equation (13.34) of Parker (1979) are also shown.
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Table 3

Summary of Self-Similar Solutions

2722

N

characteristics of solutions

ZZ|Z? +1

[Z x 79

5§41

N#0

no solution

N=0

steady solution in Eulerian coordinates
a=1/(1-6)
§<1:V,x 75/0-8)¢6 o AP

B, ox 7780=8)¢—6 & Az~F

E>1: Vo (1o — 1)U o« A2t

B, o (1o — 7)Y/ ¢ o« A28
(note that Z o (7, — 7)* when § > 1)

N#1

nonsteady solution with power law time dependence
V, x 71 o Az/t

B, o 7Y o =Y+ AZY

where Y = [2 — N + (2 — 4a)/a]/[2(1 — N)]

nonsteady solution with power law time dependence
a=2/3 '
V., x 773¢ o Az/t

B, o T78(37% ot AzE-

o =t

ZZ|7? =1

[Z x exp(aT)]

any N

no solution

N#1

solution with exponential time dependence
V; « (exp(ar) o« Az

A —(2+N'2
B, occf((T_N)l exp(—at) x AzZ1-N) exp| 2(1— N)::t]

no solution
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Note: ( = Az/Z(7) and T = t/t, are Lagrangian coordinates, and Az
and t are Eulerian coordinates, where Az = z — zp 1s the height measured
from the base of the initial magnetic flux tube, and Z = Z(t) is the scale
function defined in equation (B1). B, is the strength of horizontal component
of magnetic field at the midpoint of the expanding magnetic loop. § is the
exponent of velocity function (V, « Az?®) defined in equation (B10), N is the
parameter defining the strength of the downflow along the magnetic loop (eq.

[29]) in §IV], and ¢ = R/Az, where R is the radius of curvature of magnetic

loop (eq. [30]).
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Figure Captions |

Fig. 1 Results for model 1, where 8, = 1, A = Xpngo = 20, D = 4, v = 1.05,
Zeor = 18, Teor/Ter, = 25. The unit of the length is H, the scale height in the
lower temperature atmosphere (chromosphere). (a) the magnetic field lines
B = (B., B.), (b) the velocity vector V = (V, V;) (c) the density contours
(log p). It should be noted that the size in the z-direction of these figures
corresponds to twice of X;... The magnetic flux between each magnetic
field line is logarithmic. The scale of the velocity vector is shown below the
frame of t=47.4 in (b) in the unit of C,; VNM = 2.0 indicates that the arrow
with the length of this line has the velocity of 2.0 x C,. Similarly, the scale of
the length is shown also by this short line and XNM in the unit of H. Total
illustrated area is (2Xmaz X Zmaz) = (40 X 35). Contour level step-width is
0.25 for (c) in the unit of logarithmic scale. Numbers in the lefthand side of

each frame in (a) represent the time in units of H/C,.

Fig. 2 The distribution in z of (a) the vertical component of velocity V;,
(b) the density (logp), (c) the local Alfven speed (Vj), (d) the horizontal
component of magnetic field (log B;), at ¢ = X,5,0-/2 (imiddle of the rising
loop) for model 1 (the case shown in Fig. 1) at ¢t = 0.0, 31.6, 39.9,45.8. The
dashed line in (d) indicates the line of B, « exé'(—Az/Hm) with H,, =
20/ ~ 6.4. |

Fig. 3 The distributions in z of the initial gas pressure (p,) and the

steady magnetic pressure (p,,) for model 1 at z = X,,o./2. Note that p,, =
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B2/8n o exp[—Az/(Hp/2)] (cf. eq.[11]) and H,, = 20/7 ~ 6.4, and the

proportional constant is the same as that of numerical results in Figure 2d.

Fig. 4 Time variations of (a) the magnetic field lines B = (B,, B,), (b)
the velocity vector V = (V,, V) (c) the density contours (log p) in model
2, where X,.,; = 40 and other parameters are the same as in model 1. The
total illustrated area is (Xmaz X Zmar) = (40 X 35). Other remarks are the

same as in Figure 1.

Fig. 5 The distributions in z of V, at ¢ = X,,,,,/2 (middle of the rising
magnetic loop) for model 2 (the case shown in Fig. 4) at t= 0.0, 33.2, 40.8,
48.7, 55.1. |

Fig. 6 Time variations of (a) the magnetic field lines B = (B,, B,), (b)
the §elocity vector V = (Ve, V2), (c) the density contours (log p) in model
3, where X,... = 80 and other parameters are the same as in model 1. The
total illustrated area is (Xm,,; X Zmaz) = (80 x 35). Other remarks are the

same as in Figure 1.

Fig. 7 The distribution in z of (a) the vertical component of velocity V.,
(b) the local Alfven speed (V4), (c) the density (logp), (d) the horizontal
comi)onent of magnetic field (log B,), at z = X,,,2/2 (middle of the rising
loop) for model 3 (the case shown in Fig. 6) at ¢ = 0.0, 33.4, 40.0, 47.0,
51.8. The dashed curves in (c) and (d) represents the curves of p ox Az™*

and B, o< Az}, respectively.
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Fig. 8 Time variations of (a) the magnetic field lines B = (B,, B,), (b)
the velocity vector V = (V,, V), (c) the density contours (log p) in model 4,
where Z.,, = 15 and other parameters are the same as in model 3 (Z,,, = 18).
The total illustrated area is (Xynar X Zimaz) = (80 x 40). Other remarks are

the same as in Figure 1.

Fig. 9 Time variations of (a) the magnetic field lines B = (B,, B.), (b)
the velocity vector V = (V,, V,), (c) the density contours (log p) in model 5,
where Z,,. = 12 and othér parameters are the same as in' model 3. The total
illustrated area is (Xmae X Zmaz) = (80 X 44). Other remarks are the same

as in Figure 1. o

Fig. 10 The time evolution of the distribﬁtions inzof V; at z = Xp0/2
(middle of the rising magnetic loop) for (a) model 5 (Z.,, = 12; Fig. 9), (b)
model 4 (Z.,, = 15; Fig. 8), and (c) model 3 (Z,,, = 18; Figs. 6 and 7). The

dashed line in each figure indicates the height of the coronal base (=Z,,).

Fig. 11 The distributions in z of the initial gas pressure (p,) and the
steady magnetic pressure (p,,) for models 3, 4 and 5 at z = X,,0./2. Note
that p,, = B2/8w ox Az"2 (cf. eq.[16]), and the proportional constant is the

same as that of numerical results in Figure 7d.

F ig.A 12 Tlustration of the time evolution of the z-distribution of V, for
the quasi-1D self-similar solution in the case of a; = 0.06 in equation (44).

2o is assumed to be 4H. The shock-like front corresponds to the top of the
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magnetic loop which is equavalent to the contact surface. (Here, it is assumed

that there is a vacuum above the magnetic loop.) The unit of time is H/C,.

~ Fig. 13 Ilustration of the time evolution of the z-distribution of (a) log p
and (b) log B, for the quasi-1D self-similar solution in the case of a; = 0.06

and N = 0.0 in equation (45). Other remarks are the same as in Figure 11.

: Flg 14 Nlustration of the time evolution of the z-distribution of (a) log p
and (b) log B, for the quasi-1D self-similar solution in the case of a; = 0.06

and N = —0.5 in equation (46). Other remarks are the same as in Figure 11.

Fig. Al The linear growth rate (iw) of the Parker instability of the gas
layer considered in this paper as a function of the horizontal wavenumber k..

Three cases 8, = 0.5,1.0, and 2.0 are shown for k, = 0.

Fig. A2 The 2-distributions of the linear eigenfunction in the case of k, =

0.314 and k, = 0. The magnitudes are normalized so that (i9,/C,)maz = 1.
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