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Abstract

The global effective diffusion coefficient D* for a two-dimensional system of convective
rolls with a time dependent perturbation added, is calculated. The perturbation produces
a background diffusion coefficient D, which is calculated analytically using the Menlikov-
Arnold integral. This intrinsic diffusion coefﬁ;:ient is then enhanced by the unperturbed
flow, to produce the global effective diffusion coefficient D*, which we can calculate theo-
retically for a certain range of parameters. The theoretical value agrees well with numerical

simulations.



The problem of diffusion of a passive tracer in a periodic two-dimensional incompress-
ible flow has recently received considerable attention'~". The problem is closely related
to the action of turbulenée on a convected field,®~!! and is of interest to a wide variety
of physical systems, as for instance Rayleigh-Bénard convection® and the Taylor vortices
in Couette flow, various magnetohydrodynamic instabilities!? and the saturated state of
the ion temperature gradient driven drift wave instability!®. Thé passive tracer has an
intrinsic diffusivity D, while the global effective diffusion coefficient D* scales, in the large
Peclet limit (P = Lu/D > 1) as D* ~ (DLu)'/? where L is the size of the roll and u the
mean flow velocity. The D1/2 scaling was proposed in a related problem in reference [14],
and the proportionality constant has been calculated in references [2]-[4]. Reference [2]
also discussed an initial value Monte Carlo method for calculating D* numerically. The
method, which will also be used in the present work, allows an initial particle distribu-
tion to develop in time and relates the running effective diffusion coefficient D*(%) to the
second moment of the distribution. The effective diffusion coefficient D* is then given by

D* = limy—,eo D*(t).

It is interesting to note that many hamiltonian flows lead to stochastic background
diffusivity, as for instance in the problem of the drift wave instability with more than one

13,1516 ' To study this stochastic diffusion we start with a two-dimentional periodic

wave
incompressible flow described by the stream function ¥ = (uL/7)sin(nrz/L) cos(fny/L).
The size of the cell is L, the aspect ratio is £, and v is the maximum flow velocity.
We choose dimensionless units such that the size of the cell is L = 7, and the linear
frequency of circulation around the O-points is wo = 1, so that 2w /L — z, fyr/L — By,
wot = 7ut/L — t and ¥r/uL — V. In these dimensionless units the stream function

becomes ¥ = (sinz cos fy)/B. The equations of motion of a passive tracer being advected

2




by the flow described by ¥ are

. ov . .
x=—a—y=smwsmﬂy

(la)
'—a—w—lcoswcosﬂ

These equations can be viewed as Hamilton’s equations deriving from the hamiltonian

Hy = —;—sinw cos By (1d)

if we identify < p and y « ¢. So the stream function for the flow is also the hamiltonian
describing the motion of a pasive tracer in the flow. A phase space plot for the hamiltonian
in Eq. 1b is shown in Fig. 1, for 8 = 1. The frequency of circulation around the O-point
of a particle with energy H < 1 (motion close to the separatrix) is calculated for =1 in
[13] and [17] and is given by

wom W
A

“H) = 35 my ™ Fia(a/H)

for HK1 (2)

where m = 1 — H? and K(m) is the complete elliptic integral of the first kind. Particles

follow the streamlines around the elliptic fixed points, and are confined to one roll.

No net transport is possible in the absence of collisions in the flow described by Eqs. 1,
but the flow enhances any background diffusivity so that the global effective diffusion
coefficient D* is given in terms of the background diffusion coefficient D by an asymptotic

series? whose first term is

. J/BPID
D= amy ®)

In the above expression, u is the maximum velocity of the flow, and A(f=1) = 0.749 is

calculated in reference [2]. The background diffusion coefficient D, is modeled by a random

walk, and is given by D = [2/27), where [ is the length of the random displacements that
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produce the background diffusivity, and 7 the time between successive displacements. In

the dimensionless units used here, Eq. 3 becomes
D* = aVD O

where D — ufSLD /7, a = \/5/—%(1/14([3)) gives back Eq. 3. In these units, the theoretical
value of a for the ﬂQW described by Egs. 1 for 8 = 1, is a = 1.06. The expansion is
a good approximation to the global effective diffusion coefficient for large Peclet number
(P =uL/D > 1), and for small kick length?. Here we add a time dependent perturbation
to Eqgs. 1, calculate the resulting stochastic background diffusion coefficient D using the
Melnikov-Arnold integral and compare the theoretical D* with numerical results from a
Monte-Carlo simulation using the initial value method. We restrict our numerical inves-
tigation to the case f = 1. An important point that has to be mentioned here is that,
although the theory in [2] was developed with a collisional background diffusion coefficient
in mind, all that is actually required is that the particles are well mixed within the cell.
The mechanism by which this mixing is achieved is not important, and it can be either

collisional (as assumed in [2]) or stochastic (as is the case here).

The hamiltonian we use to describe the perturbed flow is
H =sinz cosy + esin(kz + 0, ) cos(qy — Ot + 6,) (5)

where € < 1is the amplitude of the perturbation, and k and ¢ are the z- and y-wavenumbers
of the perturbation relative to the wavenumbers of the unperturbed hamiltonian which are
equal to one (cf. Eq. 1). The frequency of the perturbation is Q, and 6, and 6, are the
relative phases of the two oscillations in the z- and y-directions. Once the perturbation is
added, the system becomes stochastic'® (see also [6] for a similar system). The change in

the energy of a particle as it moves close to the separatrix from the vicinity of one X-point
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to the next (e.g. ABC in Fig. 1) is given by

T/8
AH = / ﬁ dt
T/8 d

(6)

T/8
— e / sinfka(t) + 6,] sinfqy(t) — Q¢ + 6,] dt
T/8

where the integration is taken along the unperturbed particle trajectory z(t), y(¢). Ap-
proximate expressions for AH exist in closed form for ¢ > © and for ¢ < 2, and are given

in references [16] and [18] as

(29)

AH =~ 2me—=— I ) e 9m/2 sin(km 4 6, )sin §, Q>q (7a)
q
207 12
AH =2¢ [——]
1_ R2?
it ()

-1
cos [(cosR R _ ln')/) Q- %] sin(km + 6;)sinf, Q<gq

where R = Q/q and ¥ = R/v/1 — R2.
It was shown analytically in [15], and confirmed numerically in [16], that most of the
contribution to AH comes from a short interaction time of a particle’s trajectory around

y = mm at £ = n7 (point B in Fig. 1) so that we can write to first order

AH = —Q?Aw + a—;-{—o-Ay = cos(nm)Az + sin(mm)Ay = (—=1)"Az. (8)
z

We therefore see that the change in energy of a particle moving close to the separatrix
is equivalent to a ‘kick’ in z of magnitude AH. We then estimate the local background
diffusion coefficient to be given by

L, {any)

27,

(9)
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where (AH)? is averaged over the phase §,. We estimate the characteristic kick time 7,
by
1 2 4
re=5T(AH) =~ (ﬁ) (10)
i.e. half the period around the O-point of a particle that is AH away from the separatrix,

and therefore can cross the separatrix in one jump (cf. Eq. 2; the value of H on the

separatrix is zero).

The global effective diffusion coefficient D* is given by Eqs. 3 and 9 only if the flow
is stochastic throughout the cell, so that there is good mixing of the particles in the
cell. If the flow has a regular, as well as a stochastic part, we expect the global effective
diffusion coefficient D* to be enhanced by the ratio of the stochastic to the total area
of phase space, so that D* = D}, (As/Ast) where Df, is given by Egs. 3, 9 and 10.
The width of the stochastic layer and the ratio of stochastic to total area Ag;/Asot, is
estimated by superimposing a Poincaré surface of sections plot with a contour plot of the
unperturbed Hamiltonian (cf. Fig. 2), and calculating the area enclosed by each contour

level numerically.

Another approximation of the theory is that we treat D in Eq. 9 as we treat a molecular
diffusion coefficient in the diffusion equation. This is certainly correct qualitativelly, but
not necessarilly quantitatively. Thus, in the empirical scaling D* = aD/2 the 1 /2-power
is expected, but it is surprising and pleasing that the data in Fig. 3 give Gpym = 1.0040.01

while the theoretical value is as, = 1.06 (only a 6% difference).

We use a test particle code to evaluate the global effective diffusion coefficient for
the perturbed system. Particles are loaded at time ¢ = 0 along the separatrix of the
unperturbed system (cf. Fig. 3a) and the running effective diffusion coefficient is given as

a function of time by

D*(t) = %Z (=) ;t(wi>

=1



where n is the total number of particles in the simulation. The global effective diffusion
coefficient is given by

D* = lim D*(%)

t—o0

For appropriate parameters, stochasticity quickly distributes particles evenly throughout
| phase space (cf. Fig. 3b), and the value of the running diffusion coefficient D*(¢) settles to a
constant value D*. A statistical test (the x? goodness-of-fit test) is also used to determine
if the particle distribution is a good fit to a gaussian, and reject the values of D*(¢) that
came from a: distribution with a bad fit?. The results are plotted in Fig. 4. The region
of applicability of the theory (AH < 0.05) is expanded in Fig. 4b. As we see in Fig. 4a,
for small enough kick length (AH < 0.05, or v/D < 0.012) the numerical results are in
good agreement with theory. For AH > 0.05 the theory overestimates D*, probably by
underestimating 7. in Eq. 9 (a large AH will take us deep into the roll and will therefore
overestimate the frequency of ‘kicking’; cf. Eq. 10). An interesting feature of the simulation
results, not accounted for by the theory, is the significantly enhanced diffusivity for k = 1
(k is the x-wavenumber), while all cases with k¥ > 1 are in much better agreement with
theory. This enhanced diffusivity may be due to a long range correlation effect (k = 1
means that the perturbation has the same x-wavenumber as the main Wave). Fig. 4c
finally, shows a plot of D* against \/D for the k # 1 cases for the range of applicability of

the theory, AH < 0.05. The solid line is the least-squares fit to the data.

Recent analysis!® that takes into account the fractal properties of the long trajec-
tories along the separatrix (AH — 0) using percolation theory, gives a new scaling law,
D* ~ wL(D/uL)**3 which arises from fractal particle trajectories with average length
L(uL/D)**3. We found some correlation between this scaling law and our numerical da{;a
for v/D > 0.012 (where the present theory overestimates D*) but more work is needed for

a more definite statement.



We have therefore demonstrated that even in the absence of a collisional background
diffusivity, the system can exibit behaviour very similar to a collisional system (the particle
distribution functions are good gaussians, and we get a well defined diffusion coefficient).
Furthermore, the resemblance is more than phenomenological, since, at least for a certain
range of parameters, we can model the effective global diffusion coefficient by small ‘kicks’
the particle receives as it moves close to the separatrix. It should also be noted that,
although the choice of perturbation in the present work was motivated by the study of
the saturated state of the ion temperature gradient driven drift wave instability!®, the
qualitative results are more general, due to the universal aspects of the stochastic transport
produced by separatrix crossing (see eg. [18], [20]-[23]). The scaling of the diffusion
coeflicient predicted here for instance (D* ~ ¢, cf. Egs. (4), (7) and (9)) was observed
experimentally for Rayleigh-Bénard convection in reference [6], and numerically for Taylor-

Couette flow in reference [5].

This work supported by US Department of Energy Grant number DE-FG05-80ET53088.



FIGURE CAPTIONS

Fig. 1 The phase space for the unperturbed hamiltonian.

Fig. 2 A Poincaré surface of sections plot, superimposed on a contour plot of the unper-
turbed hamiltonian. We can estimate the area of the stochastic part of phase
space by numerically evaluating the area enclosed by each contour.

Fig. 3  Poincaré surface of section plots for the full hamiltonian. a) At ¢ =0 particles
are loaded along the separatrix of the unperturbed system. b) At a later time,

global stochasticity sets in.

Fig. 4 a) The stochastic global effective diffusion coefficient D* plotted against v/D. The
range of applicability of the theory (AH < 0.05, v/D < 0.012) is expanded in
(b). c) Plot of D* against +/D for the k # 1 cases for the range of applicability
of the theory (AH < 0.05, VD < 0.012). The solid line is the least-squares fit

to the data. The perturba,tion amplitude is in the range 0.05 < e < 0.30.
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