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Abstract: A 2N dimensional symplectic mapping which satisfies the
twist condition is obtained from a Lagrangian.generating function
F(q.q’). The q's are assumed to be angle variables. Reversible maps of
this form have 2N+1 invariant symmetry sets which are Lagrangian
manifolds. We show that such maps have at least 2N symmetric
periodic orbits for each frequency w=(m,n). Furthermore we show
there is at least one orbit which minimizes the periodic action for
each W, and generically at least 2N-1 other "minimax” orbits. There is
"dominant” symmetry plane on which the minimizing orbit is never
observed to occur. As a parameter varies, the symmetric orbits are
observed to undergo symmetry breaking bifurcations, creating a pair
of non-symmetric orbits. A pair of coupled standard maps provides a
four dimensional example. For this case the two dimensional
symmetry planes give a cross section of the resonances and a
visualization of the Arnold web.



§1. Introduction

Symplectic maps are useful for the description of many physical
problems, including the motion of the asteroids,! particle
accelerators,? plasma wave heating,® and the restricted three-body
problem.%® In particular any system described by a time independent
Hamiltonian with N+1 degrees of freedom generates a 2N dimensional
symplectic map by the Poincare surface of section.® Similarly an N
degree of freedom, periodically time dependent Hamiltonian flow
generates a symplectic map of the phase space by strobing at the
forcing period.

A great deal is known about the periodic orbits of two-
dimensional symplectic maps (area preserving maps). Poincare
proposed, in his "last geometric theorem” that a map on the annulus
which rotates the upper and lower boundaries of the annulus in
opposite directions must have a fixed point. This was later proved by -
Birkhoff, and implies the existence of at least two periodic orbits for
each period. For the case of twist maps on a cylinder, Mather and
Aubry proved the existence of periodic orbits for any rotation
frequency.b:7 The mapping preserves the cyclic order of points on
these orbits; this implies that a limit of frequencies approaching an
irrational gives a quasiperiodic orbit. '

The quasiperiodic orbits either densely cover invariant circles,
or invariant Cantor sets. If the frequency is sufficiently irrational,
the Kolmogorov-Arnold-Moser (KAM) theorem? guarantees the former
occurs for small enough perturbations from the integrable case. The
invariant Cantor sets, called cantori, are the remnants of the
invariant circles after they have been destroyed. Knowledge of the
properties of such orbits is extremely useful in understanding the
break-up of invariant circles,® and the transport of orbits in the
stochastic region of phase space.® In particular cantori are the
dominant barriers for the flow of trajectories through phase space.

For higher dimensional mappings, much less is known. Recently,
Bernstein and Katok'0 have shown that for C1 perturbations from the
integrable case there exist at least N+1 periodic orbits in a
neighborhood of the unperturbed torus for any given commensurate
frequency. However, the properties of incommensurate frequency
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orbits are less clear. For many systems it can be shown that the KAM
tori are destroyed for strong enough perturbations,'! and it seems
reasonable that, by analogy with the area preserving case, they will
be replaced by remnant quasiperiodic orbits. In some cases these do
exist and can be shown to be cantori;'2 however, whether this
typically occurs and how the transition from the KAM regime occurs
remain to be understood. |

In this paper we consider symplectic maps with special
properties: positive definite twist, and reversibility. In §2 we
introduce our notation and the twist condition, which guarantees the
existence of a Lagrangian type generating function. Positive definite
twist is the analogue of the Legendre condition for continuous time
systems. Orbital stability is discussed in §3, and in §4 we review the
notion of reversibility: a system is reversible if each orbit is related
to its time reverse by a symmetry transformation. Symmetric orbits
must have points on N dimensional symmetry planes, and can be
classified by which of these planes they intersect. This property is
especially useful to reduce computational effort. An invariant torus
must be invariant under the time reversal symmetry, and can be
studied by considering nearby periodic orbits which are also
symmetric. : :

Orbits of special interest occur at minima and minimax points
of the action. For the area preserving case Aubry and Mather have
shown the existence of global minima for each frequency. In our
computations we easily find orbits which are locally minimizing for
any rational frequency. Minimizing orbits are not always symmetric:
we discuss symmetry breaking bifurcations in §5.

As an illustration we use a four dimensional generallzatlon of
the standard map due to Froeschle'S. The configuration space is the
two dimensional torus, and we use coordinates (g, qo) With unit
periods. The momenta are designated (p, py), and the map is given by

T, p':p-VV(CI)
1q'=q+p’ (1)
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V(q1.9z) = ;1—5 {k1cos(2TEq1)+k2cos(2ch2)+h COS[ZTE(Q1+C|2)] }
(27

When only one of the three parameters (k;,ks,h) is non-zero this map
has a global invariant: for example, if only h is non-zero then py-ps is
conserved. If h = O then the map is separable into uncoupled two

~ dimensional standard maps for (gy.p;) and (q,,p,). When h and at least
one of K1 or ky is non-zero it appears neither to have global

invariants, nor to be separable.

For the four dimensional case, the symmetry planes are two
dimensional, and thus in §6 we construct the orbital skeleton by
plotting symmetric orbits which intersect a given symmetry plane.
We find two distinct structures: resonances and channels.
Corresponding to each periodic orbit with frequency @ = (my/n, my/n)
is a resonance; its intersection with the symmetry plane is a two
dimensional neighborhood in which there are no other rotational
periodic orbits. Points initially in this region oscillate about the
resonance for long periods. Corresponding to each commensurability,
W11 + Wajg + j3 = 0, for integers ji.j2.j3. We find a channel on the
symmetry plane. These channels are the directions along which orbits
“diffuse” by Arnold diffusion. Resonances occur at the intersection of
an infinite number of channels. Outside the resonances and channels
are closely packed periodic orbits, as well as the invariant tori or
their remnants.




§2. Symplectic Twist Maps

Consider a dynamical system represented by a Lagrangian
L(q.q.,t). Here q is a point in some N-dimensional configuration space.
The action of a path q(t), ty <t <ty is defined as

WIq(t)] [ L(q.q,t)dt (2)

Extremal paths, determined by setting the first variation, §W to zero
for q(ty) and q(ty) fixed, satisfy the Euler-Lagrange equations of
motion. If L is periodic in t with period one, then these equations can
be formally converted into a mapping of the configuration space onto
itself. A discrete Lagrangian can be defined by integrating L along an
extremal orbit segment, q(t), which.begins at the point q at t=0, and
ends at q’ at t=1

1
F(q.q9") Ef L(q.q,t)dt
q(t) ext?’emal (3)

The action of an orbit segment from t=i to t=j can now be written

j-1
W(ql ’qi+1 ,qj) = ZF(qt ,C|t+1)
t=i (4)

Variation of W with respect to the intermediate points yields the
mapping equations

o
—(F(q, .,q,) + F(q,,9, )| =0
39, FRIA R Qq qm]

(5)
This equation locally defines a unique mapping, T, from (qt_1, qt) to
(qt, qt.1) providing det(32F/3qdq") is never zero. We make a stronger
assumption, the twist condition: the mixed partial derivative matrix
is assumed to be uniformly negative definite, i.e. there exists a B>0
such that for any 8q, q. q°




8q:b(q.9')°8q >B|sq|2

b(q,q“) = - 0%F(q,q")/3q9q" (8)

It can be seen that this globally implies the existence of T.1! The
twist condition is the analogue of the Legendre condition in
continuous time.

Equation (5) can be converted to Hamiltonian form by noting that
F(q.q’) can be taken to be a canonical generating function where the
momenta are defined by

o D) )
oq
oF(q.q") .
- i F (q.q9")
P oq 1144 (7)

where the subscripts Fy and F, represent the partial derivatives of F
with respect to its first and second arguments, respectively. These
equations are implicit, but Eq. (68) implies they can be inverted to
obtain an explicit mapping z' = T(z) where z = (p,q) represents a
phase space point. In phase space, the twist condition has a simple
geometrical interpretation: an increment, §p, in momentum results in
a position change in the same half space:

éSp-éSq‘lgq:O >0

A mapping is symplectic if it preserves the symplectic form w,
which is defined for two tangent vectors §z = (§p,8q) and §Z as

w(82,62) = 8zl wij8z] = 8p-8q - §G°8p (8)

so that in canonical coordinates wij is the matrix

- . 01
'_-10 (9)

Thus if (DT)ij =9z'1/8zi represents the Jacobian matrix, or tangent
map; then T is symplectic providing
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DT*WDT = (10) -

where "+ designates transpose. If T is obtained from a canonical
generating function, F, then it is automatically symplectic.

. The symplectic form can also be expressed in terms of
configuration space tangent vectors (8q,8q’'), upon noting that
8p = -F118q - F128q':

w(8z,52) = §q'b*8q' - 5q'b*8q" (11)

where b is b(q,q’) defined by Eq. (8)
‘ We will assume that the configuration variables represent
physical angles with period one (@ + m = q, where m is an integer
vector); thus the configuration space is the N-torus, 7N, and the phase
space is gNx7zN. This implies that the map commutes with translations
by any integer vector m. Defining the translation operator Ry by

Rmg = q-m, (12):
then TRm = RmT. This implies that the generating function satisfies
F(g+m,q'+m) = F(q.9") + Fm

where #m is a constant. To interpret #m let ¢ be a curve in the phase
space which connects (p.q) to (p,q+m), and ¢’ = Tc be its iterate.
Parameterize these curves by Ae [0,1], so that q(0)=q, q(1) = q+m,
etc. Using Eq. (7) we can show that the Poincare invariant between ¢
and ¢ gives #m:

1
o | e , )
[ paa-f paq -f Flao.500 on = 7,

or that #m is the sum of the areas which move through the projections
of the curve ¢ onto the canonical planes; i.e. the net flux of
symplectic area. The net flux clearly depends only on the homotopy
class, m, of ¢; since there are N independent loops on 7N the net flux
has N independent components. We will assume, as in example (1),
that the net flux is zero.



An orbit is a doubly infinite sequence of configurations
...Qt.qt.+1, qt.2.... such that every finite segment {qt,qt,1....qs} is a
stationary point of the action W(qt,qt.1,...q9s) for given qt and gs.

[t is convenient to think of these orbits as occurring on the covering
space of the N-torus, gN. Then the frequency (if it exists) is defined
through a 1ift of the mapping as

q(t) - q(t")

W = i
m t-t (13)

t-t' =0

(and is unique up to an integer vector).
An orbit is periodic with period n if

Qt.n=R_mdt . Pt.n - Pt (14)

for some integer vector m. Thus, every periodic orbit has a frequency

® = m/n, which we also write as @ = (m,n). The action for a periodic:

orbit is
W (Q0.91,...90) = W(qQ0.91,...9n-1.G0+M) (15)

Equation (15) gives a variational principle for periodic orbits: a
periodic orbit of frequency w is a critical point of W¢ wWhere all
points qq.q91....qn_1 are varied freely. This is true because criticality
of We implies Eq.(5) for O<t<n, and variation with respect to qq
implies F1(qq.,q71) + Fo(Qn_1.q9+m) = 0, or by Eq.(7) Py = Pn.

An important class of symplectic maps are those with constant
twist, i.e. b is a constant matrix. Such maps are of physical
relevance because nonlinear maps typically have twist at least
locally, and furthermore because an arbitrary twist map can locally be
approximated by a map with constant twist. This is discussed
extensively by Chirikov for the area preserving case.!

For the special case of constant twist, and zero net flux we
show in Appendix A that the most general form for the generating
function is ’

=;—(q’-q)~b~(q'—q) - V(q)
(16)

where b is a symmetric matrix. The mapping generated by (18) is



P' =p - VV(q)

q‘=q+b'1-p‘ (17)

For N=1 the twist, b, can be scaled to unity by a (non-canonical)
change of coordinates; however, this cannot be done in general for
N>1. The example (1) is of the form (17) with b chosen to be the
identity matrix.



10

§3. Bifurcations and Loss of Stability

The stability of an orbit is determined by the tangent map DTN =
dzn/dzy, Which is a symplectic matrix. As is well known,4 if A is an
eigenvalue of a symplectic matrix then so are A-1 and A™. This
implies that the \'s come either in reciprocal pairs which are real or
of modulus unity, or in a quadruplet with Aqy= Ap-1= Xz" = A4 -1. We
will call the eigenvalues of DTN the multipliers, to distinguish them
from a later use of "eigenvalue”. Let Xy, 1/Xq, ...AN, 1/A\N represent
the complete set of multipliers and define the traces, pi, and
residues, Rj, as '

Pi = Aj + ]/)\i

Ri = 1/4(2 - py) (18)

The orbit is stable only when all the traces are real and fall in the:
interval [-2,2], or equivalently the residues are real and in [0,1]. An
orbit with a quadruplet of complex multipliers has a pair of complex
conjugate residues; the residues are otherwise real.

In terms of the traces, characteristic polynomial is

N
A" det (DT™-AI) = TT(p-p) = O
| =1 (19)

In general the coefficients of pi, j=0,1,.., N-1 in this polynomial give
N parameters which determine the stability of the orbit. For N=2, the
polynomial is quadratic :

p2 - Ap + B-2=0
A=tr(DT") = pq + Py
T
B = E{[tr(DT”)P - trI(DT")21} = pq pg + 2 (20)

Consequently, the two independent real quantities A and B determine
the stability of the periodic orbit.’> There are seven different regions



11

in the orbit stability diagram in the A-B plane, as shown in Fig. 1. The
only stable region is the central area labelled "££"; it is bounded by
the period-doubling bifurcation line (B=-2A-2), the saddle-node
bifurcation line (B=2A-2) and the complex instability parabola .
(B=A2/4+2). All the \'s have modulus one in the stable region, thus
the orbit is doubly elliptic. The other stability regions are labelled
using  for an elliptic multiplier pair, # for regular hyperbolic, r for
inversion hyperbolic (a pair of negative multipliers). The final region,
cQ corresponds to a complex quadruplet of multipliers. These seven
regions can be mapped onto the parameter space for a given orbit, as
shown in Fig. 2 for Eq. (1).

An alternative construction of the multipliers can be given in
terms of the configuration space representation of the linearized
mapping DT, which i{s obtained by linearizing Eq. (5):

t
-Dy¢,1 80y, ¢+ 8 8Q;- D 8qy 4 =0
by=-F,(q;4.9¢

ap= Fii(a.0¢,¢) « Fopldy_1.qy) o (21)

giving a linear second difference equation. The multipliers of a period
n orbit are determined by the eigenvalue problem

Sqt+n= A Sqt

which closes the recurrence relation (21). In matrix form, this can be
rewritten as M8Q = 0 where 8Q = (8qg, -+, 8qn_1) and the (Nn)x(Nn)
dimensional matrix M(\) is
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M) = 0

an.2 -bp_q

\__Xbo - " _b;_1 an_1/
(22)

Thus the multipliers are obtained by solving detM = 0. This equation
is an Nth order polynomial in A and in 1/X; and since the mapping is
symplectic we know this polynomial must be reflexive. Its roots are
the multipliers, which are given by Eq. (19); thus it must have the
form

N
det M(X) = C TT(p; - p)

i=1

where C is a constant independent of X. In fact, C is precisely the
coefficient of (-A)N which is easily obtained from Eq. (22) by
inspection, thus we obtain

n-1 N
M(N\) = det M(X\) = [Tdet(b,) TT(p, - p)
0 -1 : (23) -

We will discuss these relationships further in §5.

When (1) = 0, the orbit has a pair of multipliers at +1. If, upon
variation of parameters, a periodic orbit reaches a point where a
multiplier is unity, then one of two things can happen. The orbit may
collide with another orbit of the same period in which case the two
orbits could be annihilated in a saddle-node bifurcation or they could
pass through each other. Secondly, there may be a new pair of orbits
created (or annihilated); this is the Rimmer bifurcation (see §4). It is
commonly observed (i.e. co-dimension one) in the reversible case.
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When a4(-1) = O the orbit has a pair of multipliers at -1. Upon
variation of parameters such an orbit typically undergoes a period
doubling bifurcation. These bifurcations have been studied for the four
dimensional case by Mao and co-workers.!5

The set #(\) = O for real p is a one parameter family of co-
dimension one surfaces in the N dimensional stability parameter
space. The envelope of this family, given by #/= a4, = 0, is the co-
dimension one complex instability surface, since these equations
imply that # has a double root. For the four dimensional case this
surface is the parabola B=A2/4.2.

On one side of the complex instability surface there is a
- complex quadruplet of A’s. This boundary contains both the case of
collision of two pairs of unit modulus multipliers (Krein collision),
and of real multipliers (Fig. 3). Loss of stability by passing through
this surface can occur only when the “Krein signature” of the two -
multiplier pairs on the unit circle is mixed.!® Conversely, when the:
signature is definite, such a collision cannot lead to the complex
instability: such an orbit is strongly stable under small perturbations.
In the case of mixed signature, collision leading to the loss of
stability typically occurs in one parameter families of maps, while
for definite signature collisions are less common (co-dimension
three).!” However, for the case of the "in-phase” orbits of a coupled
quadratic map, definite signature collisions without splitting off the
unit circle naturally occur in the successive stable regions of the
period doubling bifurcation sequence.!® ~

For example (1), there are four fixed points, all at p=0, and
corresponding to @ =m/2. Stability is easily determined analytically.
Figure 2(a) is the stability diagram when k,=0 for the point q=0. The
stability diagrams for the other three points are obtained from this by
flipping the signs of kqy and/or h:

q (0,0) (0,1/2> (1/2,0) (‘/2,1/2)

signs (k1,h) (k1.-h) (—k1,-h) (—k1,h)

The stable region is labelled ££. For any given parameters only one
fixed point can be ££; when kq and h are positive, this is the point
q=(0,0). In this case the point (1/5, 0) is always hyperbolic. The other
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two fixed points have one hyperbolic direction (negative residue) and
one direction which is either elliptic or inversion hyperbolic (positive
residue). Complex instability does not occur since the signature of the
stable region is definite.

There are also four period two orbits with frequency (1,1,2). The
stability of the period two orbits can be analytically determined for
the two orbits at q = (0,0)=(1/5,1/,) and at (1/,,0)=(0,1/5). The
diagram for the first orbit is Figure (2b); for the second reverse the
signs of both kq and h. In region ££; the multipliers have definite
signatures, and there are no collisions except at A = +1, hence there
- is no complex instability boundary. However there are two more stable
- regions for the period 2 case (region ££, and ££3 of (b)) for which the
signatures are mixed, and for which there is a boundary leading to
region cq Note that a bifurcation to ¢cqQ can not only occur from an £z
region, as sketched in Fig. (3a), but also from ##, as in Fig. (3b), or Ir.

- In numerical computations for higher periods, we commonly
observe (upon the variation of a single parameter) the collision of two
multiplier pairs either on the unit circle or the real axis leading to
the cqregion. We will discuss this further below. '
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§4. Reversibility

The flow generated by the simple Hamiltonian H = 1/,p? + V(q)
is time reversible; for every orbit [p(t),q(t)] there is another orbit
[-p(-t),q(-t)], which is i{ts time reverse. Time reversal is
accomplished by reversing the momentum. In general a map is
reversible if there is an anti-symplectic involution, S, which reverses
time:18:19

STS = T (24)

S is anti-symplectic if DS*wDS= - w, and an involution if S2 = I.
Equation (24) implies that the map can be factored as

T =(TS)S

showing that TS is also an anti-symplectic involution. Since it
satisfies (24), it is also also a reversor for T, called the
complementary symmetry to S. In fact, each operator TKS is also a
symmetry of T, with complementary symmetry TK+1s.

A set invariant under the symmetry operator is called a
symmetry set. Near a fixed point of S, symplectic coordinates (§,n)
can always be found such that S(§,n) = (-£,1).20 Thus the symmetry
sets are N-dimensional submanifolds, which we will call symmetry
planes. In fact they are Lagrangian manifolds, since if §z and §z are
tangent vectors at a point z; in Fix(S), then 8§z = DS8z, and therefore
§2DS«wDS8Z = §2uw8Z; the anti-symplectic condition implies this is
equal to its negative and therefore $§ztw8sz = 0. We will assume that
these manifolds are graphs over the momentum plane.

As an example, the map generated by eq. (18) is easily shown to
be reversible if V(q) = V(-q); a pair of symmetry operators is

S, p'=p - VV(q)

F e =g
P =P

TS: _] ' .
q'=-q+b p (25)
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The fixed sets of these symmetries are the N-planes, Fix(S) = {q = 0},
and Fix(TS) = {p = 2b'q}. This applies to the Froeshle example (1).

Due to the periodicity of T, there are other symmetries obtained
from the above by translation: the translation of a symmetry by an
integer vector m, the operator SRy, is also a symmetry. It is easy to
see that upon translation the fixed sets are translated by half integral
vectors; for the example (25) this gives

Fix(SRm) = {p.q| q = /,m}

Fix(TSRp) = {p.q|p = 2b<(q - 1/,m)} (26)

These fixed sets are indeed Lagrangian manifolds since b is
symmetric.

On the torus, there are 2N symmetry planes for S, obtained by
letting the elements of m be either 0 or 1, and the same number
generated by TS. Of course each symmetry family (TiS,Ti+1S) has such -
a set of symmetry planes.

Symmetric orbits are those invariant with respect to time
reversal, which means that for the symmetry S and an orbit {zt} each
point zi has a symmetric counterpart: there exists a j such that Zj =
Sz;i. : '

The importance of symmetric orbits arises from three facts.
Firstly, it is easy to see that every symmetric orbit must have a point
on a symmetry plane.'® If z; = Sz; and k = j-i is even, then Eq. (24)
implies

Zi.k/2 = T-k/2zj - T-k/2sz; = STK/2Z;

or that zj,x/o 1is a fixed point of S. On the other hand if k is odd then
Zi,.(k.1)/2 is a fixed point of TS. This greatly simplifies finding
symmetric orbits by limiting the search to the symmetry planes.

Secondly, each symmetric periodic orbit of frequency (m,n) has a
second point on another symmetry plane. Suppose zi is a fixed point of
some symmetry, S'. Eq. (24) implies

Zi,j=S'Zj_j : (27)

Applying the periodicity condition, Eq. (14), to this yields
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Zi,j = Rm T-"8'Z{_j = R_jpy S'Zn.i-j

= S'Rm Znsi-j (28)

Now pick j = k = [(n+1)/2], where [] represents integer part. Equation
(28) implies that zi,k is a fixed point of S'Ry, for n even and of TS'Rpy,
for n odd. ’

Conversely, suppose we have an orbit segment {zq, z4, ... 2k}
such that zgeFix(S'), and zxe Fix(S'Rm) for some symmetry S’'. A
periodic orbit of period n=2k is obtained by using Eq. (28) with {=0 to
define the zj for jelk+«1,n]. This implies that zn = S'/RmZy = R_m 2Zg. SO
that the orbit is indeed periodic and has frequency (m, n). A similar
construction applies to the odd period case, for which zxe FiX(TS'Rm),
and n = 2k+1. Thus a symmetric orbit of period n can be obtained by
searching for a segment of length k which has end points on two
symmetry planes (see Appendix C).

The final reason for the studying symmetric orbits is that every
invariant torus which is homotopic to p=0 and which has a dense
orbit, must be symmetric, since it must intersect the symmetry
planes. Thus it seems reasonable to use symmetric periodic orbits to
approximate quasiperiodic orbits.

Classification of the symmetric orbits is attained by considering
the the phase space &NxaN where there are 2N+1 distinct symmetry
planes generated by S and TS. Each symmetric orbit as a point on two
of these planes, and so there are 2N types (with one exception, see
below). Using the above relation, the classes can be easily obtained
for each (m,n); they depend only on the evenness or oddness of the
components of the frequency. In table 1 the classification is given for
N=2 where there are eight frequency types. For example when the
frequency is of the type (even,odd,odd), then the symmetric orbit with
a point on the Fix(S) plane, also has a point on the Fix(TSR(o,1)) plane.
These two symmetric points are indicated by open circles on each
canonical plane in Fig. 4. The other three symmetric orbits are also
shown in the figure. The case (even,even,even) in Table 1 refers to an
orbit which has a minimal period which is even, and yet the elements
of m are also even; such orbits arise, for example, from period
doubling bifurcations.
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In Appendix B we show that there will be at least one orbit of
each symmetry class for each frequency. Therefore a reversible,
symplectic twist map has at least 2N symmetric periodic orbits for
each frequency (m,n).

For the four dimensional example (1) we routinely find all four
symmetric periodic orbits for any given frequency. The simplest
technique is to begin with a point in the first symmetry plane in
Table 1 and vary p until the orbit returns to the second symmetry
plane in Table 1 after k iterations. This requires a 2D root finding
routine; we use Broyden's method (see Appendix C), which is a
. generalization of the secant method. This method fails to converge
‘when the parameters (kq,ky,h) are large because the orbits are
strongly unstable, but reasonably large parameters can be obtained by
using extrapolation from small parameter values to give good initial
guesses.

A more sophisticated technique is based on Newton’s method for:
extremizing the action W¢. We use this method when the orbits are
strongly unstable; however, it also requires good initial guesses. The
details of this method will be discussed in a future paper.

Figure S displays a projection of the four symmetric orbits of
frequency (12,21,49) onto the q-plane. Note that, except for the point
at q = (0,0), the orbits tend to avoid the region near the origin. This
phenomena will be be explained in terms of the action function in the
next section.

Typically, when the parameters (kj,ky,h) are not too large, one of
the symmetric orbits is of type =z, another is ##, and the remaining
two are £# (we observed this already for period one and two in §3).
This is the analogue of the familiar island chain formed by an
elliptic-hyperbolic pair for the area preserving map. As the
parameters increase various bifurcations can occur as shown in Fig. 6.
For example in Fig. 6(a), the (2,3,4) orbit on Fix(S) first undergoes a
period doubling bifurcation, then regains stability by its inverse (thus
the period eight orbit only exists for a limited range, forming a
"bubble”), only to loose it again by a complex bifurcation. The
multipliers coalesce on the real axis in an inverse Krein collision. The
resulting # orbit then undergoes a symmetry breaking bifurcation to
£ When a pair of multipliers passes through +1.27 When this occurs a
pair of non-symmetric orbits with the the same period is created, as



19

shown in Fig. 7(b), and the residue corresponding to the original orbit
changes sign. There is a corresponding change in sign of a(1). Finally
the orbit reaches the s#rregion. Similarly the orbit on Fix(SR(1,0))
undergoes the normal symmetry breaking bifurcation shown in Fig.
7(a). Spiraling in the A-B plane like that shown in Fig. 8 is common,
and becomes more rapid for longer period orbits.

Symmetry breaking bifurcations of the ordered periodic orbits do
not appear to occur for the standard map (the minimizing orbit always
appears to be symmetric), but can occur for a more generally, for
example, when the potential is V(q) = a;cos(271q) + ascos(41tq) and a,
is large enough.
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§5 Minimizing Orbits

For area preserving twist maps, existence theorems for periodic
and quasiperiodic orbits are based to a large extent on the properties
of the action. Aubry and Mather prove, for example, that an area
preserving twist map has a minimizing orbit for each (m,n).8:7 An
orbit is defined to be minimizing if the action of every finite segment
of the orbit is not larger than that of any variation with fixed end
points:

W(qj.....qk) < W(qj, qj.1+AGj.1, - Gk-1+AGk-1. k)

for all j<k. Aubry shows that an (m.n) minimizing configuration is
ordered on the circle in the same way as a simple rotation with
frequency m/n. This implies that there also exists a second periodic
orbit of frequency (m,n) because if the the orbit of qo is minimizing,
then so is that of Ttgy. If we choose t so that Ttqq is the nearest
point on the orbit to the right of qq, then between these neighbors
there occurs a point which is minimum in all directions except one;
this is the minimax configuration.

For N>1 the straightforward generalization of Aubry’s
minimizing condition does not appear to be fruitful. We use a weaker
definition: a periodic orbit {qt} is a minimizing if its periodic action
(15) is not larger than any other periodic configuration

Wo(qt) < Welgt + Agy) (29)

This does not in general imply that the orbit is minimizing in Aubry's
sense: a counter-example is given by Hedlund for geodesics on a three
torus.22 He shows that a geodesic of given winding number @ which
minimizes the analogue of W¢, may not be a minimum of the periodic
action for some multiple of the winding number: Wjew. In this case
minimizing orbits (in Aubry's sense) do not exist for each w.

A periodic orbit is locally minimizing if the second variation of
the periodic action about the orbit is positive definite. This latter
concept is all that we can check numerically.

The Morse index of the action is defined as the number of convex
directions at its extremum, i.e. the number of the negative
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eigenvalues of the quadratic form §2W¢ .25 A minimizing orbit has
index zero.

In Appendix B we show that there exist minimizing periodic
orbits for each frequency. This result follows from a bound on the
growth of the generating function with | q-gq ] entirely analogous to
the area preserving case. Furthermore, there exist orbits with non-
zero indices as well (Appendix B). The minimum of the periodic action
for a given value of qq exists, and gives a function on the N-torus.
Each critical point of this function gives a periodic oribit. Generically
the critical points of such a function are non-degenerate, and in this
case Morse theory implies that there are at least 2N. Thus there are
- typically at least 2N orbits for each frequency (m,n). The indices of
these orbits range from O to N, and there will typically be at least
N!/i{(N-1)! orbits with index i.

There is a close relationship between the stability matrix (22)
and the second variation of the action (15) about the periodic orbit:

1 t

82W,, 5q ° 580 M(1)8Q (30)
where 8Q represents an arbitrary variation. Thus M(1) is the Hessian
matrix corresponding to the quadratic form 8§2W¢. For the area
preserving case the stability type of a periodic orbit is characterized
solely by the determinant of M(1),24 however when N>1, this is no
longer true. We can combine (23) and (30) to obtain a relation which
generalizes the area preserving case:

" 1_)'“ 24(1)
4] Tdet b, 1)

1‘[Ri=(

i=1

where the Ri are the residues (18). Since b is assumed positive
definite, Eq. (31) gives a relationship between the sign of the product
of the residues, and of the determinant of the second variation of the
action: ‘

If the index is odd (even) then there must be an odd
(even) number of residues which are real and positive.
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For the area preserving case, a non-degenerate minimizing orbit must
be regular hyperbolic. For four dimensions a minimizing orbit falls in
the region B>2A-2, i.e. above the saddle node line in Fig. 1; this does
not completely determine its stability type, excluding only the cases

EHand AI.
We often find that as the parameters (kq,ko,h) are increased

from zero one of the symmetric orbits is minimizing and of type ##.
This orbit can undergo a symmetry breaking bifurcation, however, and
its index will become one. The action as a function of a configuration
variable will undergo an evolution like that shown in Fig. 8. The two
newly created non-symmetric orbits are now minimizing, and of type
- ##; as indicated in Fig. 7(b). Similarly, the non-zero index, symmetric
orbits can also spawn non-symmetric orbits.

The symmetry plane which goes through the maximum of F(q.q).
plays a special role, and we will call this plane the dominant
symmetry plane.'® In particular the index N fixed point occurs on the:
dominant symmetry plane. Furthermore F has critical points on each of
the other symmetry planes Fix(SRm), and so there are fixed points on
each. In general there may also be other critical points of F, which
give non-symmetric fixed points. |

Now consider periodic orbits of other frequencies w. For large
enough potential V(q), a minimizing orbit should have most of its
points near the minimum of -V, since the potential dominates the
action, Eq. (18). An orbit with dominant symmetry, however, must
have a point on the plane where -V is maximum, and thus ought to
have an action larger than those without points on this plane. It
certainly seems reasonable that the minimizing orbit will not have a
- point on the dominant symmetry plane, and we conjecture that the
minimizing orbit never has the dominant symmetry. For the case N=1
this conjecture is supported by extensive numerical evidence.9:19

Our scans of parameter space for the example (1) have never
given a minimizing orbit on the dominant plane. For most cases the
index two orbit has the dominant symmetry for small parameter
values; however, as the parameters increase the orbit on the dominant
plane can undergo a symmetry breaking bifurcation, and then will no
longer have index 2. We also see, as in Fig. 5, that the minimizing and
index one orbits tend to avoid the dominant plane, leaving a hole
inside of which sits a single point of the index two orbit. As the
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parameters are increased this hole grows in size until it encircles the
torus producing a stripe which is seen in Fig. 5. We suspect that a
similar phenomena for quasiperiodic orbits is responsible for the
destruction of an invariant torus.
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§6. Simultaneous Rational Approximations and Resonances

In this last section, before discussing the structure of phase
space in terms of resonances and stochastic layers, we briefly review
some results of the theory for the simultaneous approximation of sets
of irrationals by rationals.

In studies of dynamical systems, many results from number
theory have been used, sometimes in the proof of theorems, but also
for the purpose of practical calculations. For example, the observation
that an irrational number can be far from rationals (theorem 23 in
Khinchin2®) was one of the key ideas in the proof of the KAM theorem?
» Which asserts that most non-resonant irrational tori survive for
nearly integrable systems.

The continued fraction algorithm is one of most frequently used .
tools in the study of area preserving mappings.2® It is a scheme for
systematically generating a sequence of rational approximations,
mi/n; to a number w. It has many important properties of which we:
mention three. Firstly, it is strongly convergent (i.e. for any € 3 j
such that the norm Imi-wni | <e V i>j. Weak convergence uses the
norm [m-mi/ni | ). Secondly, all the rational approximants to an
irrational number are best approximants in the strong sense (given an
approximant m/n to w, there are no m’'/n’ with n'<n satisfying lm‘-
wn'| < |m-wn| ).25:28 Another merit of the algorithm is that the .
quadratic numbers (roots of a 2nd degree monic polynomial) are
characterized by the periodicity of their continued fraction
(Lagrange’s theorem).

For the higher dimensional case, one would like to approximate a
vector @ by a set of rationals with common denominator, m/n. For the
case N=2, such a continued fraction algorithm was first given by
Jacobi (1868). His idea has been extended for general N by Perron
(1907) and the algorithm is known as the “Jacobi-Perron” algorithm.2’
It is weakly convergent for all N; however, it does not generate all
the best approximants. Furthermore, the characterization of numbers
for which the Jacobi-Perron algorithm is periodic is unknown.

Many other algorithms have been devised to approximate
irrationals with simultaneous n-tuple rationals. Among these, the
work of Brentjes may be valuable for application to dynamical
systems.28 His algorithm produces all the best rational approximants
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for N=2. However the sequence of approximants also contains other
rationals besides the best and, consequently converges more slowly
than optimal. The implementation of this algorithm on the computer is
straightforward except that one must do inordinately long calculations
to determine the direction of successive approximation at each level.
No algorithm has yet been shown to be suited for the characterization
of numbers analogous to Lagrange’s theorem.

The Farey tree*® is well known as an alternative scheme for
approximating irrational numbers; it is strongly converging for
irrationals, and gives all the best approximants. Even though it
- converges more slowly than the continued fraction, it is often more
valuable due to its elegance in organizing the real numbers. The tree
generates all rational numbers together with the irrationals as limits
of paths, and every number is associated with a unique path.
Furthermore this path provides a binary coding for the reals.

Recently, this algorithm has been successfully extended to the
N=2 case by Kim and Ostlund.?® Even though it does not generally
produce the sequence of best approximants, it presents a very elegant
way of organizing simultaneous rationals. The tree is obtained from a
set of three integers vectors (a, b, ¢) in %%, which satisfy a*bx¢ = 1,
for example (1,0,1), (0,1,1), and (0,0,1). Each vector represents a pair
of rationals with common denominator, a = (aj/az,ap/az) . The vectors
can be represented symbolically as the vertices of a right isosceles
triangle, as shown in Fig. 9. The level zero rational is obtained by
vector (Farey) sum of the hypotenuse vertices: a+b =
(ay+bq.ag+bg,az+b3), and is represented by the midpoint of the
hypotenuse. The original triangle is now divided into two right
isosceles triangles, each of which can be used to construct a new
vertex on level one, giving four triangles for the next level. The
vertices of each Farey triangle satisfy abxc = 1 by construction. One
can show that every rational pair (in the convex hull of (a,b,c)) is
obtained by a finite path on the tree; however, every one inside the
triangle (a,b,c) is obtained by two paths. This multiplicity is
inconvenient, but not crucial in the manipulation of the algorithm.
Furthermore every rational pair is in lowest common terms. It has
been also shown that the numbers can be addressed by binary codes so
that the algorithm can be handled with the shift operation on the
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corresponding address. This coding scheme makes the computational
implementation of the algorithm very convenient.

The symmetry and the self-similar structure inherited from the
binary construction is shown in Fig. 10 which displays the rationals
w=(w1,w2) in the range [-1/5,1/2] x [-1/2,1/5] produced by the
generalized Farey tree algorithm up to level 13. On the w plane each
triangle is not actually right isosceles; for example, one of the level
two triangles has vertices (0/1,0/1), (1/2,9/52) and (1/3,1/3). Notice
that the sampling is extremely non-uniform, with sparse regions
around every rational pair. These of course will be densely filled by
higher level rationals, and in the limit of infinite level, by
- incommensurate pairs.

Our numerical results suggest the close contact of the
generalized Farey tree construction to the dynamics of four
dimensional mappings. The points in Fig. 10 are equivalent to the
intersections of periodic orbits of the frequency ®w on a constant
angle plane for the integrable map: for example (1) with k1= k2= h= O,
a periodic orbit with frequency w occurs at p=w. This symmetry is
broken as soon as the parameters are non-zero, as shown in Fig. 11
for the same set of periodic orbits. The orbits are obtained by using
~ Broyden’s method (discussed in Appendix C), and are all symmetric
since they are either (a) on the Fix(S) plane or (b) on the Fix(SR(1,1))
plane. Now the sparse regions are larger, and are not filled in by
higher level orbits.

The structure is analogous to that for area preserving maps.
Figure 11(a) corresponds to the dominant symmetry line of the
standard map. Every ordered minimax orbit of the standard map seems
to have a point on this line, and each corresponds to the center of a
resonance.®! There are no other ordered orbits for some interval
around minimax periodic orbit. These intervals are bounded by the
minimax orbits which are homoclinic to the minimizing orbit of the
resonance. Sequences of symmetric periodic orbits which limit to a
rational, for example the sequences +1/n, 1imit to homoclinic orbits
as n—w, and not to the minimax periodic orbit. In the full two
dimensional phase space, we define a resonance as an area bounded by
segments of the stable an unstable manifolds of the minimizing orbit.
Thus the structure on the symmetry line reflects this partition of
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phase space. If there are rotational invariant tori, they must exist
outside the vacant intervals on the symmetry line.

For the four dimensional mapping, higher period orbits also tend
to be expelled from the vicinity of shorter periodic orbits on the
symmetry plane to form resonance zones around each periodic orbit.
Orbits in the resonance zone tend to remain trapped in the zone for
long periods. The resonances occupy four dimensional volumes, which
cut the symmetry plane in two dimensional regions. In Fig. 11, we
associate the empty region surrounding the (0,0,1) orbit, with the
(0,0,1) resonance. Many other such region are visible in the figure. The
boundaries of the resonances, which should be three dimensional, are
- not easy to define; they do not consist solely of stable and unstable
manifolds of the ## orbit, since these are merely two dimensional,
but appears to include many other orbits, as we will discuss below.

There appear to be channels which connect the resonances, each
corresponds to a commensurability relation, wqj; + wajs + j3 = 0, or
equivalently w-j = O for the representation w= (mq,my,n). For example
the horizontal and vertical channels corresponding to j = (0,1,0) and.
(1,0,0) have widths controlled by the parameters k, and Kk,
respectively. Similarly, the major diagonal channel, with j= (1,1,0),
corresponds to the coupling term, h, in Eq. (1). Other channels are
generated by higher order commensurabilities, and their widths could
be obtained from perturbation theory.' Along the channels there are
an infinity of resonances which satisfy the commensurability relation;
in fact, as we will see below the channels seem to be composed of
these resonances. '

Orbits initially in a resonance zone may eventually leave the
zone, even if they are started arbitrarily close to the central £ orbit:
this is the process called Arnold diffusion.’''* Similarly an orbit in
the chaotic region outside a resonance can wander into resonances
since invariant tori do not separate the phase space. The transitions
from resonance to resonance occur along the commensurability
channels, which form the so called Arnold web. However central
portions of the resonances are difficult to enter.

This is shown in Fig. 12, which is a thin slice of the phase
space near the dominant symmetry plane. Two initial conditions were
iterated for 2x108 iterations, and only those points which fall in the
slice are plotted (an equivalent figure is given in Ref. 30). Many of the
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resonance zones shown in Fig. 11 are inaccessible on this time scale.
The inaccessible regions appear to have fairly sharp, but irregular
boundaries. On these there are many sticky points, corresponding to
dark spots on the figure: these points correspond to invariant tori
trapped in the resonance. Figure 13 shows one such torus in the
primary resonance. There are many irrational tori around each
resonance; however, they do not form a complete barrier: transition
into a resonance occurs through the gaps between tori.

To attempt to delineate the resonance boundaries more precisely
we could consider the homoclinic orbits. However, there appear to be
only a few (perhaps four) homoclinic orbits on the dominant symmetry
plane. For the (0,0,1) resonance these correspond, to the 1imits of the
sequences (m1,m2,n) with mi=%1 and n~. In Fig. 11 these sequences
are visible as the traces down the middle of the diagonal channels.
Other sequences of periodic orbits, for example those in the vertical
~and horizontal channels given by (0,+1,n) or (+1,0,n), seem to limit to. .
these four primary homoclinic orbits, or sums of these orbits.

A frequency analysis can also be used to find the resonance
boundaries. All orbits trapped forever inside a resonance will have the
same frequency, Eq. (13), as the resonance. So wWe can approximately
delineate the resonance region by computing the frequency for some
finite period of time; let p be this finite time frequency. Since, as
Fig. 12 shows, Arnold diffusion is quite slow from the resonances, we
can expect to obtain reasonable results even for modestly long times;
we choose a time interval so that it would be shorter than an Arnold
diffusion time scale but long enough to give statistical average.
Typically we use t=103 with the parameter values we present. Figure
14 shows pq calculated for a set of initial conditions on the line pq=-
P2 and gy=q2=0. A similar figure is obtained for p,, except with
negative slope. These initial conditions lie in the diagonal channel
corresponding to j=(1,1,0) which is seen in Figs. 11(a) and 12. There
are flat steps in p(p) corresponding to resonances of the form (m,-
m,n) showing that the channel is actually a collection of many
resonances stacked closely together. The scattering of points near the
edges of each resonance correspond to highly stochastic orbits.
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Similarly, Fig.15 shows regions which have frequencies
corresponding to low order resonances; it is a complementary view to
that in Fig.12. To construct Fig. 15 we consider initial conditions on a
grid on the =0 plane. Each is iterated 10°% times, and points are filled
in only if |p(p) - [ <€ for w on the generalized Farey tree up to
level five. The size of each resonance area on this plane depends
weakly on the time scale we use to define the rotation number, but
they correspond closely to the avoided regions in Fig. 12. The boundary
of a resonance is not smooth, due to the stochastic orbits near its
edge. The closer to the boundary an orbit is, the faster it escapes out
of the resonance. '
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§7 Conclusions

We have shown that reversible, symplectic, twist mappings of a
2N dimensional phase space have periodic orbits which can be
classified by frequency, symmetry, and Morse index. Such mappings
have 2N different types of symmetric orbits for each rational
frequency vector ®. For each frequency we also find 2N orbits for
which the action function has indices ranging from 0 to N. For small
deviations from the trivial twist map (k;=ky=h=0) these two sets of
orbits often coincide; however the symmetric orbits commonly
- undergo symmetry breaking bifurcations which change their indices.

The existence of symmetric orbits is helpful for several
reasons. It allows classification of orbits by symmetry properties.
Furthermore symmetric orbits have points on the fixed planes of the
symmetry; this reduces the numerical computations needed to find the
orbits. Symmetric periodic orbits give useful information on the
structure of phase space since they form the centers and edges of
resonances, and can be used as approximations to quasiperiodic orbits
such as the KAM tori.

Orbits which are local minima of the action appear to often be
- hyperbolic, though counter-examples can be constructed. Equation (31)
implies only that the product of -Rj must be positive for a non-
degenerate minimum. In the area preserving case, this implies
hyperbolicity.

A projection of periodic orbits onto the configuration space (e.g.
Fig. 5) shows that as the system becomes more nonlinear (e.g. the
potential energy becomes larger), the orbits with index less than N,
tend to avoid the symmetry plane on which the -V is maximum. This
is the same mechanism which gives rise to the formation of cantori in
the area preserving map, so it seems reasonable to speculate that
something similar happens here. When an avoided region is formed
around the dominant plane, other such regions are formed by iteration.
The index N orbit seems to have a single point in the center of each of
these regions. The resulting picture, for an incommensurate orbit,
would seem to be a set which is connected, but has an infinity of
deleted holes. This is not a Cantor set, but probably a Sierpinski
carpet.52 We hope to present evidence for Sierpinski carpets in a later
paper. ,
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A cross section of the phase space structure is obtained by
plotting the intersection of symmetric periodic orbits with the
symmetry plane, Fig. 11. This shows that the region around a periodic
orbit is avoided by orbits with different frequencies. We interpret
this region as the cross section of a resonance. Orbits in a resonance
can remain trapped for long periods, and while they are trapped have
the same frequency as the resonance. Collections of resonances which
obey a commensurability relation, w*j = 0, form channels on the
symmetry plane. Chaotic motion appears to take place along the edges
of these channels. The collection of channels gives the Arnold web. A
description of Arnold diffusion in terms of transistions from one
:resonance to another would require a better understanding of the
resonance boundaries, and a definition for escaping flux like that for
area preserving mappings.9:31
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Appendix A: Constant Twist Case

Lemma: A mapping with constant twist and zero net flux has a
generating function

F :L—(q'-q)-b(q'— q) - V(q)
(A1)

where b is a symmetric matrix, and 4 and « are periodic functions.
Proof: If the twist is constant then the generating function can
be written as

;—[qu « 1(a) + g(q")

where B is a constant matrix and f and g are arbitrary functions.
Periodicity of the mapping implies that the net flux, Fm=F(q+m,q’+m)-
F(q.q') is independent of q and q' for all integer vectors m, or

Fm = T(qem)-f(q) + g(q'+m)-g(q’) - ¢-B-m - m-B-q' - m-B-m (A2)

This implies that f and g can have arbitrary periodic parts, call them
v and u respectively, and that the remainder must be at most
quadratic, thus

f(q) =44q) +qCq +qD,
a(q’) = u(q’) + ¢"E*q'+ q'°F

for matrices C and E and vectors D and F. Substitution into (A2)
implies that B = C + Ct = E + Et, and that m*(D+F) = #m. Therefore for
a solution to exist, the matrix B must be symmetric. Furthermore, if
the net flux is zero, D+F = O, and the generating function takes the
form

F =%<q'-q>-a-<q'-q> + (9-9)D - Uq) - wq’) (A3)

Equatlon (A3) can be simplified by the canonical coordinate change q =
q, p = p + /oD +1/,Va(q) which gives Eq. (A1) in the new
coordinates, with V(q) = 1/,[%(q) + u(q)]. m
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Appendix B: Existence of Periodic Orbits

The existence of a miminum for the periodic action Wy is
guaranteed by the following'?

Lemma: Let F(q,q’) have zero net flux and suppose Fqy is
uniformly negative definite, i.e. 3 B>0 such that X'F{,(q.q"')'X < -
B | X | 2. Then 3 «, and positive § and & such that

F(q.9) > - B|q-q'| +¥|q-q"|2 (B1)

Proof:
1
F(9.0) = F(@.0) + [ dAFa(q.8,)(q'-0)
0
where &x = (1-X)g+ Aq'. Similarly applying this to F, yields
1
F(q.9") = F(q.q) +f dNFy(E,.E,)(q'-q) -
' 10 A
j} dxfo dp (q°-q)F (& ,E,)7(q'-q)

>o- Blq'-q| + ¥|q’-q]?
where o = min F(q,q) and § = max l Fz(q,q)[ exist since F(q,q) is
periodic for zero net flux, and &=1/,B. B

Corollary 1: There exists a minimum of W¢ for each @ = (m,n).

Proof: Equation (B1) implies that F has a lower bound, thus W
does as well. Furthermore, the set {q.q'|qe 7V, q’e &\, F(q,q’) < C} is
compact since (B1) implies that F<C corresponds to bounded Iq-q‘ ]
Similarly the set '

(n-1N .
s ={q0,q1,...qn_1| Qoe T (Qq.q Je R, W (q0,81,.0, ;) < C }
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is compact. Wg is continuous and bounded on s, thus a minimum
exists. H

Corollary 2: There exist at least N+1 (and generically at least
2N) periodic orbits for each @ = (m,n).

Proof: Consider the constrained minimization of W¢ for fixed q,.
Such a minimum exists by virtue of the preceding considerations.
Define the function

F(gp) = min W (q,q-..9,_)
941929 0y

to be this mininum. Of course a critical point of W¢ for fixed qg
gives an orbit segement, but not generally a periodic orbit. However,
zero net flux implies F is a function on 7N; such a function has at
least N+1 critical points. In fact, Morse theory2’® implies that if the
critical points are non-degenerate, there must be at least 2N;
furthermore, non-degeneracy is generic. In this case there are at least
NI/11(N-i)! orbits with index i. Each critical point of F gives a periodic
orbit. m

Corollary 3: There exist at least 2N symmetric periodic orbits
for each @ = (M, n), one for each symmetry class.

Proof: Consider the minumum of the half orbit action:

Wi (41.92.....9, ;) = W(Qo.q1.-..q; _1.q))

qoeFix(s)

q,&Fix(s’)

where S and S’ are two symmetry planes and S’ is SRy or TSRm for n
even or odd, respectively, according to Eq. (28). Critical points of Wk
give a periodic orbit of period n by using Eq. (28) with i=0 to define

the zj for jelk+1,nl. Such critical points exist because Wk is bounded
from below and the set W < C is compact. &

The symmetric periodic orbits of Corollary 3 do not necessarily
coincide with the orbits of Corollary 2.



36

Appendix C: Numerical Techniques

Finding an orbit for given frequency and parameters is equivalent
to solving a system of nonlinear equations. By definition, a periodic
orbit of frequency (m,n) is obtained by finding a point z, such that its
n-th iterate is R_mzo,, Where R is the translation operator defined in
Eq. (12). Namely, the system to be solved is f(zo) = RmT"20 - 2o = O,
where T is the map. This requires a 2N-dimensonal root finder for the
2N dimensonal mapping. However, as will be shown below, it is
possible to reduce the search to N dimensions, providing we consider
only symmetric orbits. Note that the evaluation of the f(z,) involves
{terating the map n times, the period of the orbit. Alternatively, one
can search for stationary configurations of the action function
according to the variational principle presented in §2. In this case the
set of equations to be solved is T(qo, q2, ..., Qn-1) = VW = O, where
We is the action. This involves solving a system of N x n nonlinear
simultaneous equations.

For the fixed point and period two orbits, either system of
equations can be solved analytically as shown in §3. For longer orbits,
i.e. the typical case, one must rely on numerical computations. There
are many methods in the literature for iterative solution of a set of
nonlinear equations. One of them, Broyden’'s method, has been used to
find most of the periodic orbits in our present work. However, we do
not claim that this method is the optimal choice to our problem. In
general, for iterative algorithms of this kind, there is no sufficient
test for existence of solutions. Convergence of an algorithm to a
solution is guaranteed only when the solution exists and the initial
trial solution is within the basin of attraction for the desired
solution.’%:This basin typically has a very complicated structure;
however, if the trial solution is chosen sufficiently close to the
actual solution, this algorithm has been shown to exhibit excellent
convergence.

In our case, the orbits are known to exist. However, the
equations are so complicated that it is hopeless to analyze the
behavior of the function in the neighborhood of a solution. Thus the
best procedure is to try several methods to find the most suitable one
to our particular problem.:
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Broyden's method,3? is a quasi-Newton or variable metric
method. Briefly, the algorithm is

problem: Solve f(x*)=0
Define fx=T(Xk), Sk=Xk-Xk-1 and Ug=Tk-Tk_1
Input: XO, Bo

Do loop for k from k=1

Sk =- By Ty (C1)
’ -1 b -1
f.s _ _ B, .f,s.B
B =B, +——F or B =B Xl Kkk
- 2 - ¢ -1
Iskl s By 1Yy (C2)

Continue until | sk] < given tolerance

Here the vector sy is the correction to the approximate root Xy and the
matrix Bk is an approximation of the exact Jacobian at X.

It has been shown that this algorithm converges superlinearly to
the solution x*, if a converging sequence {X¢} exists.® That is,

X - X*
, k+1
Iim = 0

The Byg's are uniquely determined by the following two
conditions:

Bk « Sk = Uk (C3)
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Bxk+2z=Bk.1-2z foranyzsuchthatsgk-z=0 (C4)

Equation (C3) implies that By is an approximate Jacobian at xi. For
the one dimensional case, the approximate Jacobian corresponds to
using the secant line to determine s¢ at each stage. For the multi-
dimensional case the first condition does not uniquely determine By.
There are various ways to fix By; for Broyden's method the
approximate Jacobian is determined using Eq. (C4). This condition
together with Eq. (C3) uniquely fixes Bg. The resulting B's satisfy the
recursion formula (C2). This recursive relation offers significant
reduction in the work involved in the calculation of the Jacobian,
Wwhich usually requires o(n2) function evaluations at each stage. There
are also several alternatives to (C4) which give a symmetric Bx.%8 In
our case, we observe that the latter methods involve more
computations and do not give any improvement in convergence.
, We employ Broyden's method to find periodic orbits by solving.
f(zo) = RmT"2o - 2, = 0. As mentioned above, the required four
dimensional search for z, can be reduced to a two dimensional one for
symmetric periodic orbits. This is done by utilizing the properties of
the symmetric orbits discussed in §4. For a given frequency, the
symmetry plane of z, determines the symmetry plane of z¢ by Eq.
(28). Choose a symmetry plane of z, and let po be, say, the momentum
of a point 2z, on the plane. The function f depends only on p, i.e., T =
f(po). Its value is determined by the equations for the symmetry plane
of zy; for example, f = gx - 1/om for z¢ on Fix(SRm) or T = px - 24k +
m for zx on Fix(TSRm) (See Eq.(28)). Therefore the function f is a two
dimensional vector. The explicit form of f varies depending on the
frequencies and the symmetry plane of z, as shown in Table 1. All
cases can be neatly combined into one formula as follows.

‘f(po)=pk-C-(m+R-2qk_1) (C5)

where C = 1/gg -TS'0E/5, Here OE=z1 for odd n and OE=2 for even n, and
TS=1 when z, is on the symmetry plane of TS symmetry family (TS,
TSR(0,1), etc.) and TS=0 otherwise. R represents the translation of the
symmetry plane of z,, i.e., R=(1,0) for SR(1.0) or TSR(1,0), R=(0,1) for
SR(0,1) or TSR(o,1) and etc. Finally the other half of the orbit is
obtained by using the symmetry relation (27). Numerically this method
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can converge to the half orbit for cases when iteration of z¢ fails to
converge to the second half of the orbit.

Choosing a good initial trial, po, is critical for the performance
of any iterative solution technique. In the small parameter range, we
choose po = M/p, i.e., the rotation number of the orbit. This works
well as long as the orbit is not far from the uniform rotation
configuration. For an orbit in a large parameter, po can be chosen by
extrapolating the orbits obtained in smaller parameters. We use the
identity matrix for Bo. Using a Jacobian for B, usually does not give
any improvement in convergence. The recursion relation for By rather
than for its inverse (see Eq. (C2)) is used because the former involves
less computations and the step (C1) can be easily done for a 2x2
matrix By.

The mapping iteration scheme becomes impractical for a
strongly unstable orbit because upon iterations of the map an initial
numerical error grows exponentially. However, as long as the

magnitude of the smallest multiplier is sufficiently large compared to

the computer precision, this scheme works and is the simplest to
implement.
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Table 1
(m4,ma,n) (d0,Po) (ak, PK)
(0,0,8) S SR(1,1)
SR(1'0) SR(0,1)
TS TSR( )
TSR(1,0) TSR(0,1)
(e,0,e) S SRo,1)
SR(1,0) SR(1,1)
TS TSR(0,1)
TSR(1,0) TSR(1,1)
(0,e,8) S SR(1,0)
SR(0,1) SR(1,1)
TS TSR(1,0)
TSR(OJ) TSR(1,1)
(0,0,0) S TSR@,1)
SR(-],O) TSR(OJ)
SR(0,1) TSR(1,0)
SR1,1) TS
(e,0,0) S TSR(o,1)
SR(1,0) TSR(1,1)
SR(0,1) TS
SR(1,1) TSR(1,0)
(0,€,0) S TSR(1,0)
SR(1,0) TS
SR(o,1 TSR(1,1)
SR(1,1) TSR(0,1)
(e,e,0) S TS
SR(1 ,0) TSR(1,0)
SR(0,1) TSR(0,1)
SR(1,1) TSR(1,1)
(e,e,e) S S
SR(1,0) SR(1,0)
SR(0,1) SR(O’1
SR(1’1) SR(1,1)
TS TS
TSR(1,0) TSR(1,0)
TSRyo,1) TSR(0’1)
TSR(H) TSR(1,1)
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Table 1 Caption

Symmetry Planes for the four symmetric orbits with frequency
(mq.my,n) of a 4D reversible map. There are eight classes of
frequencies depending on whether the frequency components are
even “e” or odd "o0”. Each orbit has its first point on the plane in
the column (qq.po) and its kth point on the plane in the column
(qk, Pk). Here k = [(n+1)/2].

Figure captions

1)

Stability regions in the A-B plane. Stability type for each region
is determined by two multiplier pairs whose natures are
represented with symbols; £ for elliptic, # for regular hyperbolic,
rfor inversion hyperbolic and cqQ for complex quadruplet.

2a) Stability diagram for the fixed point at p= 0 and g= O as a

function of kq and h for ko=0. Diagrams for the three other fixed
points are obtained by flipping this vertically and/or horizontally.
No region of complex instability (cqQ occurs. The Krein signature
in the region £z is negative definite.

2b) Stability of the orbit with frequency (1,1,2) on the Fix(S) plane

for k9=0. The diagram is symmetric under k; = -K4. To obtain the
corresponding diagram for the orbit on Fix(SR(; o)) let h = -h.
There are three elliptic regions; the Krein signature in the zz:
region is negative definite and in ££2 and ££3 is mixed.

Collision of multiplier pairs on complex plane. The multipliers of
mixed Krein signatures split off to form a quadruplet after
collision. (a) Collision on the unit circle causes the stability to
change from £ to ¢q (b) Collision on the real axis causes a
transition from ## to cq for the positive axis and from Ir to cqfor
the negative axis.

Symmetry planes projected onto the canonical p;-q; and po-Qs
planes. For example, Fix(TSR(y,q)) is projected onto p1=2q¢-1 on



5)

10)
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P1-q¢ plane and py=2qQs; on py-q, plane. The symmetric points for
the four cases of an orbit with frequency type (e,0,0) are shown.
Each orbit intersects two symmetric planes. The orbit on Fix(S)
has one point(zg) on Fix(S) and its kth iterate (zg) on Fix(TSR(g.1)).

Configuration space projection of the four symmetric orbits with
frequency (12,21,49) when ky=0.4, k,=0.3, h=0.65 . Each orbit is
represented with symbols; “o" for the orbit on Fix(S), "e” on
FiX(SR(,1)), “A" on Fix(SR(; o)) and "@” on Fix(SRq.1)).

Sketch of the evolution of the stability of two symmetric orbits
with @ = (2,3,4) (a) on the Fix(S) and (b) on the Fix(SR(y,0)) plane
as the parameters vary on the path k1=10h, k,=0. Bifurcations
occur each time a stability curve is crossed.

Symmetry breaking bifurcations. Bifurcating orbits are of the
same frequency as their progenitor. The example shown is for the
transition between €4 and ## (a) direct process. (b) inverse
process. -

Inflection of the action function upon symmetry breaking
bifurcation. Here "q" represents one of the configuration

‘coordinates of the orbit, and the dotted line represents the

symmetry plane. Prior to bifurcation (a), the orbit is minimizing
the action and its index is zero. After the bifurcation (b), the
action acquires one convex direction at the extremum point on the
symmetry plane. The index of the symmetric orbit becomes one,
and the two new minimizing orbits are not symmetric.

Kim-Ostlund tree construction. At each level a new vertex is
obtained from the Farey sum of vertices of the hypotenuse of the
preceding triangle. This gives two new isosceles triangles for
which the tree can be continued.

Pairs of rationals (w;,w,) generated by the Kim-Ostlund tree up
to level 13. Equivalently, each point represents the intersection
point p of a periodic orbit with the frequency p = (wq,w5) on a
plane q= constant for the integrable system.



11)

12)

13)

14)

15)
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Periodic orbits with the frequencies in Fig. 10 for k¢=0.5, k9=0.3,
h=0.2. Higher period orbits are expelled from the vicinity of
shorter period orbits creating resonance regions. Furthermore,
commensurability lines are expanded into channels which connect
the resonances. (a) on q = (0,0) plane. (b) on q = (1/,,1/,) plane.

Sectional view of two stochastic orbits on the q = O plane.
Parameters are the same as in Fig. 11. The initial points are
(p1.P2.91.99) = (0.10,0.34,0.0,0.0) and the orbit is plotted
whenever it falls inside the slice; -.005 < g4,99 < .005 up to a
time 2x108.

Projections of one of the irrational tori surrounding resonance
zones with frequency (0,0). The initial point, (0.1271, 0.1672,
0.0, 0.0 ) is selected from one of the stuck points at the edge of:
the primary resonance in Fig. 12.

Staircase of rotation numbers for initial conditions on the line
(p1.-P1. 0,0). Shown is the frequency p; versus p;. An iteration
time of 109 is used to define p. :

Resonance zones for rotation numbers up to level S on the Farey
tree (where (1,1,2) is level 0). A grid of 200x200 initial
conditions is taken on q = 0 plane. Points are filled in if they
give a rotation number in one of the 81 resonances on the tree
within a tolerance €=0.01.
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