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Abstract

We consider an FRC conﬁguration whose current is maintained by a steady state
beam. Without quadrupole fields, back current can be inhibited by the Ohkawa effect
if Zy < Zeg, where Z, and Z.g are the beam charge number and eﬁ‘ective_ charge
number of background ions. However, the resulting rotation of the plasma often leads
to instability. For systems with a large bootstrap effect, the rotation can be moderate,
but it is then difficult to contain fusion products. An additional problem is that the
Ohkawa effect due to alpha particles tends to disassemble the equilibrium. It has
previously been shown that the presence of a qﬁadrupole field inhibits back current.
Here we show that a steady state flux can be maintained with moderate input power
in both reactors and present day experiments with the resulting rotation slow enough
to fulfill stability conditions. However, experimental means must be devised to supply

a continual source of particles and additional energy.
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1. Introduction

Steady state operation is one of the highly desirable properties for a fusion reactor. For
a field steady state reversed configuration (FRC), it is essential to maintain the toroidal
current which creates thé reversal. A steady state beam-driven FRC has been considered
by Baldwin and Rensink [1], Pearlstein et al. [2], Hammer and Berk [3], Hirano [4], and
Okamoto [5]. Neutral beam injection is relatively straightforward if back current against
beam current can be avoided. Ohkawa current [6] has been suggested as a means to maintain
the toroidal current [1,2,4,5]. However, in axisymmetric systems, Ohkawa current created by |
unidirectional beam injection can induce rotation of the plasma which may lead to rota,tiona.l
instability. In an ignited plasma, it is difficult to obtain large 3; (the ratio of plasma radius
to the Laﬁnor radius of fusion products) to retain fusion products. In such a case fusion
products create a large amount of beam current. This problem has been considered in detail
by Berk, Momota and Tajima [7]. However, in a D — T ignited plasma a difficult problem
arises in that the Ohkawa current generated by energetic alpha particles flows in the opposite
direction of the plasma curreﬁt (if Zy > Zegr, where Z, = 2 and Zg is the effective charge
number of the background ions). Such a situation tends to disassemble the equilibrium. -

On the other hand, several solutions may be offered in the configuration examined by
Hammer and Berk [3] where the FRC is embedded in a multipole magnetic field. Their theory
predicts that in a neutral beam driven system multipole fields induce annihilation of back
current due to magnetic pumping mechanism [8], and field lines do not open appreciably. In
their theory, a unidirectional beam current is a seed, but the rotation rate remains moderate
in the favorable curvature of the multipole field, theréby avoiding the rotational instability.
There is no tendency to disassemble the equilibrium of a burning plasma, since the beam
generated by fusion products has negligible back current.

The most dangerous n = 2 rotational instability of FRC plasma has been experimentally




controlled by the application of quadrupole fields [9,10] or helical fields [1 1].‘ The theoretical
basis for multipole field stabilization of the rotational instability has also been analyzed by
Ishimura [12]. |

Recently, Okamoto [5] considered the relationship between a seed current (Ohkawa cur-
rent) necessary to sustain an FRC and the transport. To avoid plasma rotation, Okamoto
analyzed a balanced beam configuration first suggested by Ohkawa [6] and the steady state
configuration that can be achieved with a given seed current and particle input rate was
determined. It was found that the amount of seed current depends strongly on 75/7x, where
7p and 7y are the magnetic diffusion time and the particle confinement time, respectively,
and the importance of bootstrap current effect was emphasized.

In this paper, we consider how much rotation is induced’in a beam driven steady state
FRC where an input beam gives rise to a seed current (or equivalently an effective voltage)
due to either the Ohkawa effect, or due to magnetic pumping of an FRC imbedded in a

quadrupole field. We show that in a standard FRC, significant rotation rates develop that,

in large system, violate rotational stability criteria. In contrast, with quadrupole fields, the

rotation rates are moderate; low enough to avoid rotational instability and large enough to
m— ponedrehy
produce a skin effect that prevents open field lines $o-peretrate into the plasma.

In Sec. 2, basic equations for an FRC without a multipole field are derived in the limit

of infinitely axially elongated FRC. In Sec. 3, the magnitude of plasma rotation is evaluated
based on the equation for the rotation derived in Sec. 2. Plasma rotations in an FRC with
multipole fields are considered in Sec. 4 and the results are compared with that in Sec. 3.

Section 5 is devoted to conclusions and discussions.




2. Basic Equations for an Axisymmetric FRC
Plasma

In this section, we consider a plasma in an axisymmetric FRC without a multipole field.

The equations of motion for electrons and plasma ions are given by

ov;
njmj—L +nim; (vi - V) vj = =Vp; + eZin; (B+v; x B) + R; + §;, (2.1)

with

& =M; -V 7 ' (2.2)
where j stands for electrons or plasma ions, nj,m;,v;, and p; are density, mass, velocity
and pressure, respectively. E and B are electric field and magnetic field and Z; is the charge
number of jth species (Z, = —1, e > 0). R(R;) is the rate of electron (ion) momentum
density due to collisions with ions (electrons) and R.+R; = 0. M; is the input of momentum
density to the jth species (electrons or plasma ions) from the externally driven beam and
7; is the stress tensor of jth species.

- We' assume that the FRC is infinitely elongated in the axial direction (z-direction) to
simplify the anaiysis. The set of basic equations will be reduced to a one-dimensional problem
in the radial direction (r-direction). All the variables are independent of axial z-direction
and a,zimﬁthal 6-direction. In order to solve Eq. (2.1) with (2.2), we make an assumption
that collision fre'quencies are small parameters. If v ~ O(€), where 1/ is a collision frequency
and € is a small parameter, we can order so that v% ~ O(1), vj, ~ O(e), Rjg ~ O(€), Mjp ~
O(e), Rjr ~ O(€2), Mj, ~ O(e*) and 8/t ~ O(€). The lowest order of Eq. (2.1) gives |
— njmgi—g = —'—% + eZin;(E, + vjsB.,), - (2.3)
and the first order equation becomes

Ov; 190, - 4
njmja—;e +nymvj; === (rvje) = eZini(Es — vjrBz) + Rjo + &jo- (2.4)
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Electrons are treated as massless particles (m, — 0), but the inertia of ions are taken into

account. From Egs. (2.3) and (2.4), we obtain

E, 1 Ope :
Vet = "B, en.B, or’ (2.5)
T 41 E, 1 Op;
Vipg = —Eﬂi{l —Jl-i-;ﬂ—i (_E+m—6_7"—)}, (2.6)
Eg ReG + Me& - (V ‘7?3 P '
Ver = 'B: - eneBz N (27)
o — Ey n Rig + Mg — (V' ?z)e 1 Oy 1 (2.8)
T \B. eZniB. Q 0t ) 1+ (1/%)(1/r)(8/0r)(rvie)” *

where ; = eZ; B, /m; is the cyclotron frequency of plasma ions. The changes in momentum

‘density are given by

1 3\
Reﬁ = Rei = __.neme(veé - vi@),
el

Ry =R = —Re,

L (2.9)
Me& = eb — _Mbe = —’7__bneme(v69 - vbe)a
1
My =My =—My=——n;m;(vie —ves), J
Tib

where T.;, Tep and 7y are the momentum relaxation times between electrons and plasma ions,
electrons and beam ions, and plasma ions and beam ions, respectively. The explicit forms
of these functions will be given later.

- We suppose that the beam is injected into the plasma in the azimuthal §-direction to
generate a net seed current. We assume that energetic beam ions are born between the
null point 7y and the separatrix rs(ro = r,/4/2), and slow down to be thermalized near ro.
The Larmor radius of beam ion is comparable to the major radius (=~ ry). To model their
dynamics we assume that they are injected in concentric orbits. To the extent that only

drag is taken into account in the collisions they remain in concentric orbits, and we can use




a simple orbit equilibrium to describe their dynamics. A single orbit of a beam energetic ion

is described by
eZg,

mp

rf +2/0 = —O4i + fop +

E, + Qré

F—rf? =
ZeEy (2.10)
mp

where Z, is the charge number of beam ions and Q, = eZ,B,/m; with m; the beam ion

mass. E, is the radial electric field, Ey the toroidal electric field, and fys is the drag force
due to collisions with electrons and plasma ions. We solve Eq. (2.10) assuming the nearly

- concentric orbit (7 =~ 0) and fyy is approximated by
1

fb0 = __'(Mee + MiQ)’ (211)
npmy

where n; is the beam density. We obtain

vy = P = —g—g-z nb"’;zbﬂb (Mes + M), (2.12)
vy = réz—%m,,{u h%ﬁj. ' (2.13)
Here, g is given by
g= L ,
10509 {1+ e (=) <00/ - Rt ()
(2.14)

where 0% = Q;,0(rQ;)/0r is the square of the betatron frequency (in absence of E,). Since
E,/B, is comparable to the plasma rotation, E,/(rB,) is much less than unity, except
near the null point (B, =~ 0). In the limit of small E,/(QrB,),

0

Continuity equations for electrons, plasma ions, and beam ions are given, respectively,

by

on.
ot

+ V- (neve) = Zb%ﬂr ~ rp) + SEXUR, (2.16)
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8n, <) Zb Sb _ extra |

W + V (n,,V,) = Z., '—6(7‘ T‘o) -+ Si ) (217)
on S

B_tb + V- (npvy) = j‘-&(?~ —rp) — Tb5(r — 7). (2.18)

We have assumed that energetic beam ions are born at ry(rg < 7, < ) and slow down to
be thermalized at ryp. Extra particle sources, such as by pellet injection, are expressed as
Gextra and Sgxtra (Gextre = 7,Gextr2) - From Egs. (2.16) to (2.18) and the charge neutrality

condition, the r-component of total current density, J, should vanish;

Jp = —eneVer + €2;n:0;r + eZpnpvp, = 0. (2.19)
This equafion gives, together with ‘Eqs. (2.7), (2.8) and (2.12),
8v,~ 1 8
nimz’a_te = —ely {anb(l +g) + (n. +§anb)§—;—r va)}
+ (Meﬁ + Mzﬁ) {1 +g |:l + == Tvzﬂ ] }

+ (Reo + Meg)-éj—l-é—(rvzg) ( p ) (V 5) [1 + ﬁl—(rmg%Q 20)

This equation can be written as

a?)z‘ - —
z‘a—te (Mes + Mig)(1 + g) — eZyns(1 + g)Eg — (V~ W‘)e — (V. we)e
+ [—(ene + egZyny) Eg + (Mep + Mig)g + Res + Moo — (V- ‘7}'6) 9]
110
X G B V)

n;m

(2.21)

| If we use Egs. (2.7) and (2.12) to replace the terms (Mg + Mip)g and Reg + Mg — (V- ;é)a

in the bracket on the right hand side of Eq. (2.21) by n;, and ve,, respectively, we obtain

n;—(rmvig) + nsve— (rmyvig) =

or
r [(Meg + Mig)(l + g) - eanb(l + g)Eg — (V ‘7}'2)9 - (V ;e) «9] . (222)

at

Here, we have used the charge neutrality condition given by Eq. (2.19) to obtain the second

term on the left hand side. This term represents the convection of angular momentum
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rm;v;e by the radial transport of plasma ions. The first term on the right hand side stands
for the momentum input from the beam to thé plasma corrected by the betatron effect of
the beam ions. Tllis term drives the plasma rotation in the direction of the injected beam.
The second term is the effect of the inductive electric field. Using that vy is negative, the
inductive field term tends to cancel the first term when B, increases and adds to the first term
when B, decreases. Neglecting the inductive electric ﬁéld and viscosity terms, we observe
that Eq. (2.22) impiies that momentum transfer of the beam to electrons and ions cause
increased spinning of the ions as well as radial convection of the spin. Even the momentum
input from the beam (the g-term) adds to the spin as a result of the electric_: fields arising

from the qﬁasi—neutrality constraint. The ion viscosity term is given by

(V-7), = alra)

Trg = —7727'56; (%ﬁi) + ey (T) ) (2.23)

where 1, and 73 are coefficients of shear viscosity and gyro-viscosity, respectively [13]; 7, =

n; T3/ (Q37), ns = nTi/(29%). In Eq. (2.23), shear viscosity damps the rotation, however,

the collisionless gyro-viscosity term damps or enhances the rotation; according to the details

of plasma ion radial transport. The electron viscosity term in Eq. (2.22) is negligibly small
when compared to ion viscosity term.

If |E./B.| > |(1/eZn;B,)0p;/0r| and |E,/(QurB,)| < 1 (this is valid except in the
vicinity of field null), it follows from Eq. (2.6) that Ovi/0t ~ —9(E,/B,)/0t. It is clear
as mentioned above that Eq. (2.22) determines the plasma rotation. The rotation equation
(balance of angular momentum) which corresponds to Eq. (2.22) in the absence of externally
driven beam was first derived by Hamada and Tomiyama, [14].

To complete the set of basic equations, we require Maxwell equations;

———(rEy), (2.24)




OB,
polo = — or

(2.25)

~

with

Jo = —€nevep + €Z;n;vi9 + €Zynpvpg. (2.26)

We restrict ourselves only to the case when the electron and plasma ion temperature, T,
and T; are assumed to be spatially uniform without solving energy balance equations. Equa-
tions (2.5) to (2.8), (2.12), (2.13), (2.16) to (2.18), (2.22), (2.24) and (2.25) form the set of
basic equations.

Equation (2.7) can be rewritten as

1

ene

R d

(V- 7.), —verB. = n(Jo = J5), (2.27)

where 7 is the Spitzer resistivity, n = m./(e’n.7.;), and the seed current density Jj is given

by

neZ 'I'LeZ
J; = eanb’Ubg (1 —_ nZg) —_ GZbTLb ('Uig — rZ;Ueg) . (228)

If ny < ne ~ Z;n; and vy and ve are much smaller than vye (small rotation case), Eq. (2.28)

is reduced to the so-called “Ohkawa current” [6];

Ji = eZympves <1 _5 ) . (2.29)
Zeff

Here Zg is the effective charge number of the background plasma ions. In the strong rotation
case, plasma ions and electrons are accelerated in the beam direction (vig ~ veg ~ —F;/B,),

resulting in reduction of the net seed current.

3. Rotation of a Steady-State Plasma

We now study steady state rotation in an FRC when current is maintained by a steady
state beam. In this section we consider a plasma in an FRC without a multipole field and

solve Eq. (2.22) to estimate the rotation. In Eq. (2.23) the term 720/0r (vig/r) forces a

9




relaxation to rigid motion where v;p/r = w is independent of r. Thus we conclude that the
plasma is stationary and rotates rigidly; Further, in the stationary case Ey = 0, we neglect
the electron viscosity, which is smaller than that of ions.

Integration of Eq. (2.22) multiplied by r over r = 0 to r = r, (r, the separatrix radius)

yields
Vig _ _for’ My(1 + g)ridr + rixi,(r,) 3.
o 2 [ nim;vir3dr ’ ’
with
M, = —(Me+ M) = —venymyves, . (3.2)

where vy = n./Tens + 1;/Tipnp, is the momentum relation rate of beam ions and M, is the
momentum loss rate of beam ions. Let B, > 0 for r > ry and B, < 0 for r < rg, where rg
is the field null point (ro = r,/+/2). Then J; < 0 and the beam is injected in the negative
direction of f(vey < 0). The beam ions slow down from drag forces due to collisions with
electrons and plasma ions in the positive direction (M} > 0). The first term in the numerator

of Eq. (3.1) can be written as

—_— e 2
A = /0 My(1+ g)r*dr

Ty vb
= - NpMpUpe (l/b —_ -—T) 7‘2d7'
70 T

R

— /Tb(rz/bnbmbvbg + rQynymyvy,)r dry (3.3)
0 .

where we have used Egs. (3.2) and (2.12) and assumed vpg =~ —r Y (this is valid, except near

the null point). The first term in Eq. (3.3) is the total rate of beam angular momentum, |
which beam ions lose directly to the background plasma. The second term represents beam
angular momentum lost due to beam convection. In Eq. (3.3), A stands for the total angular
momentum input which drives the plasma rotation in the beam direction (negative direction

of §). Therefore, one can set A to the direct beam angular momentum input rate as we will
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subsequently do below. The term
wB = 2/ ) nimi VT2 dr w (3.4)
0

represents the effect of transport of plasma ions. This term appears to represent the con-
vection of angular momentum of the background plasma, although the factor of 2 is difficult
to interpret. The second term of numerator of Eq. (3.1) is the effect of viscosity. Under the
approximation of a rigid rotor, the collisional shear viscosity term is zero and the remaining

term can be expressed as

i d Vir
C= 7”527%0(7}) =r; [’735 <T>Jr=u ) F3-5)
T
=90

This term damps or enhances the rotation according to the plasma ion transport.
First we estimate the value of A given by Eq. (3.3). We replace variables in the integration
of A by averaged values to obtain
Ts
A = A (1 + g)Myr2dr
: : -

~ —(1 —i—g)%mmb{}bg/ ridr

70

= —(1 +§)175ﬁbmbﬁbg X 1.2('!‘1, — T'O)T‘g, ‘ (36)

where, for simplicity, we have taken ry ~ (ro +r,)/2 = 1.2r,. On the other hand, total
angular momentum input from the beam can be given in terms of the initial beam speed v?

and neutral beam equivalent current I?,

A= —rb—Iimbvo—-—l— (3.7)
eZ, - drL’

where L is the half-length of the FRC. Equating Eqs. (3.6) and (3.7) yields

Iy
(1 + 5)17(,(7‘5 — T‘g)Terbllﬂ'L'

Nplpg =

11

(38)




We assume that the rotation speed |vjp| is small enough to express the seed current density

by Eq. (2.29);

Jg = eZisVos (1 B Zeﬁ‘) T @+ 9)m(rs —ro)ro - 4L <1  Zes

where we have used Eq. (3.8). The total seed current I, is given by

IO’UO Zb
I.=2L(ry — J*=#<l-——>. 3.10
(Tb 7‘0) . 21(‘7'0271,(1 + g) Zeft ( )
Eliminating Ifv{ from Eq. (3.7) using Eq. (3.10), we obtain
0.60522%5,(1 + 7) I
PR ~ AL G 2y (3.11)

- (1-2)

The total plasma current inside the separatrix I; is obtained by integrating Eq. (2.25) to

yield

_2LrdBe,  Alp (3.12)
Ko Jo dr Ko

where B, = /1 — B,B,, (B; is the beta value at the separatrix and B, is the magnetic field

It=

at the wall). This relation comes from the fact that the pressure balance d(p + B2/2u0) =0
holds since there are no beam ions, and inertia effects are assumed small at the separatrix.

Finally we obtain _
mpri By — _
A Z%Z'ﬁ)ﬁ‘/l — B.s(1+3) L

Zeﬂ'

(3.13)

Note that if 1 — Zy/Zeg > 0, I, <0, I; <0 and A > 0.
In order to ekpress B given by Eq. (3.4) in terms of particle input rate (), we combine
Egs. (2.16) to (2.18) to get
V. (v) =0, (3.14)
p = neme+nim; + nymy ~ nym,
V= MeNeVe + MiNiVi + MpNe Ve

&~ MmN Vi + MpnpVy,

12




where
S b : extra
Q= mb—Fb"(r —rp) + my SR, (3.15)
The first term is the beam particle input rate and the second is the extra one such as that

from a continual pellet injection. The ion continuity equation (2.17) becomes

'];i(rmzn 'Uz'r) Q + mb% {5(7‘ - TO) - 5(7‘ - Tb)} . | (316)

rdr
The parallel flow term 9(n;m;v;,)/0z can be approximated by n;m;w/L (v;; = zw/L) in
the present one-dimensional treatment [15], but we have neglected this term in Eq. (3.16),

assuming |vi/r| > |w/L|. Then

B = Z/OTSAr.dr [/OT Q(r")r'dr’ + myS, /: {8(r' —ro) — 6(r' — 1)} dr']
= 2 /(:s rdr /OT Q(r)r' dr' + mySy(r —rd). , (3.17)

The first term corresponds to v,, and the second is attributed to the presence of beam ions.
It is noted that the second beam term produces the difference of n.ve, and Z;n;v;, and.
“enhances the ion particle diffusion. It is then clear that the presence of beam ions tends
to reduce the rotation in the denominator of Eq. (3.1), whereas it enhances the momentum
input to the plasma as we have seen in Eq. (3.3). |

The ﬁrst term of Eq. (3.17) can be expressed in terms of the particle input rate. We
define, as in Ref. [5],

_ 2uir? _ ZiIT +T;
o= e QO, ©= > (3.18)

where the resistivity n is decomposed as: 7 = nonr(y) with 7o constant and nr(y) ~ O(1),
but spatially varying. Though our analysis is classical, we will consider the possibility that

n be anomalous. The first term becomes

B = 2/T8rdr/T Q(r")r'dr' = 7:2—;1/: dy/on(y')dy'

= Lol Lo [ D) (319)
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As in Ref. [5], we define

Sly) = niR flyZ(y’)dy'

_ So v Q) dy
B WR/l @ (3:20)
with
_ 2pr
So = ﬁ@ (@), (3.21)

where (Q) = [5° Q277 dr/(xr?) = [; Q dy. Equation (3.19) becomes
B?
B, = T4Z(; / dy [=5(y = 0)nrly = 0) + S(y)nr(y)]- (3.22)

It is well-known that the p = const. surface shifts from the flux surface when inertia is
taken into account. However, we neglect this shift in our rough estimation assuming that
the inertia effect is small. In such a circumstance, we choose Q(y) and > (y) to be an even
function around y = 1/2 (null point) as indicated in Ref. [5]. From the definition of S(y)
given by Eq. (3.20), 7r(y)S(y) is an odd function and fj nr(y)S(y)dy = 0 in Eq. (3.22).
Equation (3.20) gives the relation nr(y = 0)S(y = 0) = —S,/2 and B; becomes

T 77082

By = 8u2O

(3.23)

The second term of Eq. (3.17) can be expressed in terms of A given by Eq. (3.13). The
relation of S, and the equivalent beam current I? is | |

Sp A IO '
uL—%&—wﬁdV— =+ (3.24)

r
where dV = 4nLr dr is the volume element. This relation gives

‘B, I?
pol; meZy

Sy = — (3.25)

The second term of B given by Eq. (3.17) becomes

B, = mbSb(rf—rg)
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0
Bely (2,2 (3.26)

bumreZbIt
Using Eq. (3.10) we obtain
mpBs(r2—r2)rg — _
I (14 7)1,

Bz -
(t-£)
2 _ .2
= —og =0l 4 (3.27)
where we have used Eq. (3.13). The Larmor radius of initial beam ions is 7, = —v?/Q, with

Q) = eZyB,(r = ry)/my. Equation (3.27) becomes

2 2
i-r3 4
TpTo Qg

B, = 0.826 (3.28)

We have obtained the expression for B; B = B + B, where By and B, are given by
Egs. (3.23) and (3.28), respectively.
Finally we estimate C given by Eq. (3.5). C is evaluated at the separatrix where beam

ions and particle source are assumed to be absent. Therefore, from Eq. (3.16) we obtain

Vips = 1 /“Q(r’)r'dr', (3.29)
TsMys™; JO
and
dv'i'r Ts dni Virs :
e ) a3

where v;.s = v;(7,) and n;s = n;(r,). Equation (3.5) becomes

¢ = 7"?7":9(7'3)

= —(ms)r, <2 + 2

Nis ar s

) VirsTs. ) (331)

It is straightforward to express vi.s in terms of So defined by Eq. (3.21) for @ in Eq. (3.29)

and transforming the coordinate from r to y(y = r?/r?), we obtain

o - no B2 [@ _ _ J
Vire = L miGng, L2 T oW T Umaly =1} (3.32)
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We again assume that Y (y) is even and S(y) is odd around y = 1/2. Then S(y = 1)

nr(y = 1) = So/2 and v;;s becomes

77033 |

Virs = -4-/133‘3??%5@”{3 So- (333)
Substituting v;,s into Eq. (3.31), we obtain
1 nisfrisno . ’
= |14+ = 3.34
o 2/1,0 Q,‘sﬁs ( + 5> SOa ( 3 )

where T, is the ion temperature at the separatrix, s = 8 (rs) = 2ponism;© /B2 is the beta

value at the separatrix and ﬂ; = df;/dy. We define the particle confinement time by

o _JedV _lopdy _ {p) _ 1slp)
YTTQAV T FQdy (Q) 2psvirs’ (3.3

where we have used Eq. (3.29), p; = ni;m; and (p) is the average mass density. Very near the
separatrix there are no beam ions and the inertia modification is small. Using the equilibrium

dp/dr = JyB,, Ampere’s law poJy = —dB,/dr and Ohm’s law —v;, B, = nJy, we obtain

__mdap| _ _mnr_ 1 2,
Virs = Bg d’T' . - 2#0 1 _ ,35 rsﬂs- (3-36)

We have used the relation B?2/B% =1 — 3,. The particle confinement time is given by

et (B)(1-5)
= " on R (EB (3:37)

where (B) is the average beta value. As indicated in Ref. [5], So defined by Eq. (3.21) can

be written as So = (B8) 75/ 7N, Where 75 = por2/no. We obtain for 8./8, in C

:6; _ SO 1-—- :Bs
b= T2 e (3.88)

Hamada and Tomiyama considered that the intrinsic or inherent rotation of the existing
experiments is attributed to the gyro-viscosity effect and explained the rotation speed ob-

served in the experiment from NUCTE-FRC [14]. The results given by Egs. (3.34) and (3.38)
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agree with those by Hamada and Tomiyama. Neglecting the beam momentum input for the

moment, we observe that the rotation speed due to gyro-viscosity is given by

w = Vigs _ _2
B Ts B Bl
VthisPis— 2 ( g ) (339)

where vy, = /2155 /m; and p;; = Vipis /s are the ion thermal speed and ion Larmor radius
at the-separatrix, respectively. For present experiment and a reactor plasma, 1 < |8./5s/,

and we have .
Pis IBI Tlis 1 dni
Vigs = —Vthis —_—

Ts Bs

o (3.40)

rT=Ts

m,-ﬂis Nig dr
which is just the ion diamagnetic flow velocity at the separatrix. This is in the beam direction

(negative 6 direction) and enhances the rotation. Substituting Eq. (3.38) into Eq. (3.39), we

Vigs _ Pis Sp 1 1- ﬁs>

— ==l —=————. 3.41

Vthis  Ts ( 2 nr(1) B2 (3.41)
It is apparent that this value depends strongly on fs.” The value of f; is determined only

obtain

when we consider the plasma outside the separatrix. Hamada examined this problem solving
transport equation together with equilibrium and obtained the result that B, < 0.1 for a
D-T reactor plasma [15]. If we assume that Bs=01,T;, =1keV, r; = 1.2 m, and B, =
2T (Bs = B,(rs) = v/1 = B,B, = 1.8T), resulting in vs/vinis = —0.1550/nr(1). If nr(r)
is proportional to the spatial variation of electron temperature, nr(r) = To3/2(r)/T:%/%(0),
we obtain ng(1) = 58.1 for T; = 15 keV. Thus [vigs/venis| = 0.013 ~ 0.13 for Sp of § to 50.
However, we are primarily concerned about the effect of the steady beam input in inducing
plasma rotation. Since the inherent rotation due to the gyro-viscosity is beyond the scope
of the present paper, we will only estimate the rotation speed due to beam injection only.
We define the radius of rotation by

. Ts 3
R )
o° prdr
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This gives that rp = r,/ /2 = ro. Then the average rotation speed normalized by the ion

thermal speed vy; = +/2T;/m; is

o A
<——”"9 > n T By (3.43)
Vthi (1 + %)

We assume that the constant part of resistivity is given by

P4 MeVe;

mn=ant , 5= (3.44)

e2n, ’
where « is the anomaly factor (o > 1) and 7% is the Spitzer classical resistivity. We
also assume that the dynamics of the resistive anomaly does not effect the beam plasma

interaction. We define rr by

\/(:)— GZiB.U_,
rp ==, Qi=—"
Qi m;

(3.45)

The collision frequency of beam ions with electrons and plasma ions (the reciprocal of beam

il

thermalization time), v, is given by

vy, = vs(l49),

vy = szmev-
s = 7: m eis
3 1/2 T. 3/2 )
o= (e ()7 (5) (346

where v, is the reciprocal of slowing down time, E, is the beam energy and é comes from
collisions between beam and plasma ions. Using these variables from Eqs. (3.43) to (3.45),

we can obtain

To A
v, = 2
! Vini By

Zo

_ 1 ZT. re I, 1 :
= 342(1+g)(1+ 5),/5 + 57 V1= B (B) N _Z_@ (3.47)
t Z,

eff

By, r? my | T; .
B, = 0.826 (;—g - > ME”EbVi' _ (3.48)
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In order to estimate g, we assume that g is given by Eq. (2.15); ¢ = Q}/Q% = 1/(1 +
(r/B.)dB./dr) and B,  r —ro. We define § = [ gr®dr/ [ r¥dr to obtain § = 0.09 ~ 0.15
for ry = (rs +10)/2 ~ 0.857,. . |

Calculation parameters chosen for an ignited D-T plasma supported by a steady beam
injection are ry =1.2m, L=6m, B, =2T, T, =T; = 15 keV, Z; =1, A; = 2.5 (A; is the
mass number of plasma ions consisting of equal deuterium and tritium), and parameters of
a deuterium beam are Ay =2, Z; =1 and Ey = 225 keV. We use the results for Sp, (f) and
I./I; from Ref. [5] assuming that the rotation speed is small enough for these results to be
approximately valid.

Table I shows the calculation results. The values of So, (,8), L/ILi, 3, (TN)min and cimax
are employed from Ref. [5] (5 is the average ratio of r, to plasma ion Larmor radius). It
should be noted that the value of Sy is uniquely determined only when particle and energy
transports are known. A set of values in each row in the Table I is obteﬁned to satisfy
the ignition state provided that all the fusion products (« particles) are confined to heat
the plasma. The values of (7n)min and Qmax are the minimum of particle confinement time
required to achieve the ignition and the permissible maximum enhancement factor « for
each Sp. The values of o'V; are calculated from Eq. (3.47) and (vis/vsn;) shows the rotation
speed for @ = amax calculated based on Eq. (3.43) with Eqs. (3.47) and (3.48). It is seen as
expected that the rotation becomes large as I../I; becomes large or as 3 becomes large. The
reciuired beam power is given by

1
B =ZLE], (3.49)

where I} and EQ are equivalent beam current [in amperes] and initial beam energy

(E,? = %mb(vg’y). Substituting Eq. (3.10), we obtain

P 775Uy (1 + )3/ mp B (3.50)
b C(I—Zb/Zeﬂ‘) ) v Y

The thermal fusion output power is Poyy = 1GW and the values of ratio P,/Pyy: are shown
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in Table I. The required circulation powers are moderate even for large rotation case. The
last column indicates § (vig/vsri). Since the rough stability condition [16] is 5 (vig/veni) < 1,
the FRC’s with 5§ larger than 6 are unstable due to large rotation. We also note that the
smaller the resistive anomaly factor, the larger the rotation. Thus, a comprémise is needed
between good overall containment and a slow stable rotation rate. In an FRC With small 3
(say, below 5) or large particle input rate Sy (equivalently with a large bootstrap effect), the
rotation can be moderate. In such the case, however, the intrinsic gyro-viscosity rotation
may become dominant. Further, there appears another problem that it is difficult to contain
high energy fusion products (alpha particles), which are needed to heat the plasma for small
5. Figure 8in Ref. [7] shows the containment rate of fusion products as a function of Urnax.
This parameter Upmay is just the 3 value of alphas, 3, = (Z4 /Z‘)W - 5, where
Zo =2, E, = 3.5 MeV and m, is the mass of alphas. If § = 5, then 5, = 0.15 = 0.5 and
it is seen from Fig. 8 in Ref. [7] that very few alphas will be confined to heat the plasma.
An additional problem is that if alphas confined in the plasma make a beam as indicated
in Ref. [7] to produce a net current, the Ohkawa current flows in the opposite direction of

plasma current if Z, > Z.g. This phenomena tends to disassemble the equilibrium.

4. Multipdle Field Effect

It has previously been shown that the presence of quadrupole fields can inhibit back
current and a steady flux can be maintained with moderate input beam power in both
reactors and present day experiments [3]. In this paper, it is shown that the back current
against the input beam current is inhibited by magnetic pumping By transferring electroﬁ
momentum due to the external coils when the toroidal symmetry is weakly broken by the
application of multipole fields. |

In this section, we evaluate the magnitude of rotational speed of the plasma in an FRC

with multipole fields based on the paper by Hammer and Berk [3]. According to this paper,
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the seed current is given by

1
Jg = eny(vpp —vig) = Efmpv (4.1)

fmp

e? ( ro )2 Mivevig P M.
2 >y} V2. :
672 \2mA e B2 (1 N 4m2,,w0)

Here, fmp is the effect of magnetic pumping. In Eq. (4.2), A is the radius of the plasma

edge (A ~r,/2), M = vy/c, is the Mach number with ¢, = \/2(133 + p;)/m;n, p. and p; are
electron and ion pressure at the null, 7 is the density at the null (Z, = Z; = 1 in this section,
so that n = n, ~ n;), € is the size of symmetry-breaking perturbation and 2m is the order

of the multipole field. From Eq. (50) in Ref. [3], we obtain

Ubg ﬁfmp |
e 4.
Cs pins Vs By (43)

m;Cs _
<pi " eB, \/érL)

Substituting f.., given by Eq. (4.2) into Eq. (4.3), we obtain |

’vbg_ﬁllei€2<?’o)ﬂ —M—S
cs My vy 127 \2mA e<1+ VZ;T§ >’

4m2M " c?

(4.4

where B, = 2up./B2. The magnitude of required multipole field is given by Eq. (74) in
Ref. [3]; ’ '

4 954 ‘
7r2(5B”> geM (4.5)

BzO'u 47’7‘1,2 ’
where 6 B, is the multipole field and B.q, is the vacuum field at the wall without the multipole
field (B,oy ~ B,). Eliminating €? from Eqgs. (4.4) and (4.5) yield

_— yz.r2 ‘
M (1 + —_"2—) = My (4.6)
4m2 M~ c? ’
1 [(6B,\* ¢, 7 v
= =] =——=8.. 4.7
Mo 192 (Bzo‘u) Upg Ty Vb g (4.7)
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If the beam ions extend to the size of A, we can express nyvpg by L./ I,

enbvbgA = Bw!:-, (48)
I

where we have used the relation of Eq. (3.12). Eq. (4.7) becomes

1 (6B, \"L,Amy 1
M= \5-) TPrmiss 4.9
° 192\/2- (BzOv) L " "rym,s146 ( )
where 6 is given by Eq. (3.46). From Eq. (4.6), we obtain the Mach number,
T MO Mg 1/821:7'(2) .
M= 2 + \j 4 4m ' (4.10)

It is readily shown that the solution given by Eq. (4.10) with the positive sign is unstable
and the solution with minus sign is stable. Then, choosing the stable solution, the Mach

~ number is given by

M = \%(1—\/@), (4.11)

VeiTo
—e 0 4.12
mes Mo ( )

It is clear that solubility condition is ¢ < 1.

It is an essential point that the skin depth of multipole fields remain small enough to

maintain the reversal. The skin depth is given by

5= V%€ » (4.13)

 (4rweo)/?’
where wy = ¢,M/rg and 470 = wze /Vei (wpe is the electron plasma frequency). The skin

depth becomes

5 — V2o rovei (4.14)

T (Cs—M)l/zwpe.
Hogxi,

S~ dy/m (%)1/2 (4.15)

6.
TL i

S/
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The stability condition against the rotational instability given by Ishimura [12] is

6B, > -;—(m 1) g (pgnema) 2. (4.16)

This condition can be rewritten by

6B,

M<M, = 2(m—1)B .
20v

(4.17)

We estimate M, 6, and Ishimura’s condition for both reactor (D-T ignited plasma) and the
- present day experiment. We employ the same parameters as in Sec. 3-for a reactor with a
quadrupole field (m = 2).

Figure 1 shows the results for M and &, for the reactor case. In Fig. 1, the abscissa is
z = (6B,/ Bon)4 I;/I, and the measures of 6B,/ B.o, are drawn in percentage for each value
of I,/I,. The solubility condition g < 1 corresponds to = < 0.06. It is remarkable that A7 .
is very small. The maximum M is 1.57 x 10~2 when g = 1 and decreases rapidly as 6B,
increases. The skin depth increases as the rotation decreases, but it remains small; §, becomes
comparable to ion Larmér radius rp when z = 0.18(6B,/B,o, ~ 15% for I, = 16 MA and
8By/Boy ~ 5% for I, = 0.2 MA). The stability criterion against the rotational instability
is M, = 1.46B,/B,0,, which is far above M. The required beam equivalent current is
I, = 0.211, amperes and the beam power is P, = 4.7 x 10%I, watts. (I, is in MA units),
which is very small.  Figures 2 and 3 are the results in the case for FRX-C experimental
parameters [17); rs = 1 m,2L = 1.3 m, B, = 087, T, = 175 eV, T; = 625 eV, n ~
1.9 x 10*! m~2, deuteron beam with I, = 50 A and E, = 60 keV, I, = 10 kA, I; = 1.67 MA,
m = 2 (quadrupole) for Fig. 2 and for Fig. 3, r, = 1 m,2L = 1.3 m, B, = 0.47, Te‘='
200 eV, T; = 630 eV, n'~ 4.5 x 10%° m~3, deuteron beam with I, = 10 A and E;, = 30 keV,
I, = T kA, I, = 830 MA, m = 2 (quadrupole). In Fig. 2 (B, = 0.8T case), M becomes
smaller than M, when 6B,/B,q, exceeds 18%, whereas in Fig. 3 (.Bw = 0.4T case) the
minimum 6B,/B,q, necessary to be stable is 12%. The skin depth is well below the ion

Larmor radius at the separatrix for both cases.
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5. Conclusion

We have analyzed the steady state rotation established by a neutral beam injected into

an FRC, in the case where multipole magnetic fields are either present or not present. In

" the latter case an equilibrium can be established by the Qhkawa effect if the charge Z; of

the beam is less than the Z.g of the background plasma. If inertial effects are ignored,
the‘ configuration would spin-up to the speed of the injected beam. However, here we have
included inertial effects of the background plasma, as well as déveloped a self-consistent
model to treat the dynamics of the injected beam. We are able to predict the rotation rate,
which is essentially determined by a balance between the input beam angular momentum
and the convective outflow of the angular momentum flux of the background plasma. The
more rapidly the background plasma can diffuse out of the system, the slower is the rotation.
We find that the criterion for stability to rotational instability is readily violated for reactor
systems that are large enough to contain alpha particle fusion products. If a resistive anomaly
exists to provide a rapid particle loss, the rotation rate can be slow enough in moderate and
small sized systems to be compatible with stability theory, but the lack of retention of alpha
particles would prevent ignition. Hence, a neutral beam driven FRC in steady state may have
difficulty achieving désirable reactor conditions. It is also noted that the Ohkawa effect from
alpha particles would tend to drive reverse currents that disassemble the system. Further
quantitative study on this aspect is needed.

The difficulty with rotation is considerably ameliorated with the presence of multipole
magnetic fields. With multipole fields, one can exploit magnetic pumping to slow the plasma
rotation and an injected beam particle becomes a completé seed current, even if Z, = Zg.
Further, the multipole fields provide for an intrinsic bias to help MHD stabilization as has
already been demonstrated experimentally. Hence, we find a steady state equilibrium is

possible at a rotation rate compatible with the MHD stability criteria. The study was made
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for reactor grade and present day experimental parameters.

The main difficulty with multipole fields is the penetration of open field lines into the
plasma. With neutral beam injection a remnant rotation rate exists that provides for a skin
effect that prevents the penetration of the multipole fields into the bulk of the plasma. If the
resistivity determining the skin effect is classical, we find thg,t the penetration depth of the
multipole fields at the plasma édge can be less than an jon-Larmor radius at rotation rates
that are compatible with MHD stability. Hence, a beam driven FRC in a multipole magnetic
field appears to have very desirable steady state and stability features. Improvement of the

calculations from the rough methods described in this paper is desirable.
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Table Caption

[1] Rotation Speed and Stability Criterion vs. Particle Input Rate in Ignited States

The definition of symbols are as follows:

So (particle inpu rate), () (average beta), I./I; (seed current/total current), 5 (ratio
of r, to average ion Larmor radius), (7n)min (minimum particle confinement time in
seconds), and @ (maximum anomaly factor) are employed from Ref. [5]. P,/ Py
is the ratio of beam input power to fusion output power (Poyy = 1GW), aV; is given
by Eq. (3.47), (vig/vhi) is the average rotation speed divided by ion thermal speed
for o = Qmax (minimum Mach number for a given Sy), and § (vig/ven:) is the stability

criterion against rotational instability.

Figure Captions

[1] Mach number and the skin depth for a reactor case in the presence of quadrupole field.

M = v/ cs‘ is the Mach number of plasma rotation and &, /rL is the skin depth of
quadrupole field divided by ion Larmor radius r;,. The abscissa is z = (5B,, / Baow) L/ L,
and field ripple. depths at the wall §B,/B,o, are shown for I, = 16 MA and 0.2 MA.
There is no solution below g = 1. The stability criterion M, is far above M. The
parameters for the reactor are: B, = 27T, r, =1.2m,2L =12 m, T, = T; = 15 keV,

| e = 3 x 10 m™3, I, = 36 MA. A D%beam is injected with E, = 225 keV and
I, = 0.211, (in MA) Amp.

[2] Mach number and the skin depth for FRX-C parameters in the presence of the quadrupole
field.
M = vy /cs is the Mach number of plasma rotation, M, = is the Mach number of

the stability criterion against rotational instability, and 6,/ry is the skin depth of
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8]

quadrupole field divided by ion Larmore radius 7. The abscissais z = (6B, /B,0,)*1;/ L,
and field ripple depth at the wall 6B,/B,q, is shown for I, = 10 kA. There is no
solution below g = 1. The parameters used for FRX-C 5 mm Torr discharge are:
B,=08T, ry=01m,2L=13m, T, =175.eV, T; = 625 eV, n, = 1.9 x 102! m~3,
I = 1.67.MA, and I, = 10 kA. A D° beam is injected with E, = 60 keV and
Iy = 50 Amp.

Mach Number and the skin depth for modified FRX-C parametefs in the presence of

quadrupole field.

The magnetic field strength is small compared to Fig. 2 to reduce the Mach number
of rotation. The density is also reduced to keep the beta value below unity. The
parameters are: B, = 047, r; = 0.1 m, 20 = 1.3 m, T, = 200 eV, T; = 630 eV,
ne = 4.5 x10° m™3, I, = 830 kA, and I, = 7 kA. A D° beam is injected with
FEy =30 keV and I, = 10 Amb.
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