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Part A:
Trapped Particle Instability and Flute Instability

In Tandem Mirror

Chapter I. Introduction

Tandem mirrors have been one of the major concepts on which fusion
research is carried out. The idea of tandem mirrors is aimed at providing
significant improvements over simple axisymmetric mirror machines. This
part of the dissertation is devoted to investigate the underlying physics
of tandem mirrors, particularly the stability properties.

It has been well-known th\at simple axisymmetric mirrors have ob-
vious shortcomings. A device having the open magnetic field and ax-
isymmetric configuration must have convex magnetic curvature at its
mid-élanel, so the equilibrium structure of the machines does not satisfy
the fundamental MHD stability principle?, which demands the confined
plasma have min-B configuration (at least in the average sense). Both
theoretical analysis and experimental data have indicated the existence
of the MHD fast-growing interchange modes in the machines3~5. In ad-
dition to the ins£ability problem, a single-cell mirror machine loses its
plasma in a relatively fast time scale even as in a min-B mirror field.
Particles in the loss-cone are not trapped by the equilibrium field and
the collisions constantly scatter more particles into the loss-cone. The
particle-loss process has to be compensated by particle injection from

the outside machine. The detailed calculation® shows that the factor Q
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(roughly defined as a ratio of the energy output to the energy input) is
at best maginally bigger than 1, which makes the mirrors economically

not acceptable.

The concept of the tandem mirror was proposed”'® as an attempt
to overcome the particle lifetime problem. Magnetic quadrupoles, which
have favorable concave curvature, are added at both ends of a long conven-
tional mirror to anchor the inside plasma against MHD instability. The
positive ambipolar potential, which is created by more rapid electron loss,
peaks in the added anchor cells and ‘fphigs” the ions inside the central
cell to avoid further loss. For the whole machine the particle loss can be
lowered to a much more acceptable level an’d the factor @ enhanced about
an order of magnitude. Favorable MHD stability features arises beciauvse
the global curvature averaged over the whole field line can be concave,

which can help to suppress the most dangerous MHD interchange modes.

-

Many innovative ideas were also put forward to gain further improve-
ments on the basic tandem mirror configuration. Among them, employing

a thermal barrier and having hot particle ring were investigated.

The quadrupole field cells, although they effectively form min-B
configurations, require rather complicated exiernal coils (like ying-yang
coils or baseball-shape coils). Since the fields are not axisymmetric,
the induced radial transport deteriorates the energy confinement of the

9-11

machines . One promising alternative is to utilize the energetic par-

ticles, particularly hot electrons, to create a min-B configuration for the
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background plasma. As their rapid drift motion through the plasma does
not allow them to respond to slow MHD motion, the mechanism of the
hot electrons might decouple from the core plasma. Since the energetic
particles have diamagnetic nature, a concave magnetic field can be estab-
lished inside the plasma without breaking the axisymmetry. The initial
approach was promoted by Christofilis'? for the Astron concept, and
continued by Fleischmann.!® The application to tandem mirrors has also

been proposed and evaluated.!*

It is trivial to show the MHD stable system can be achieved if the hot
e]ec’pron current is treated as a rigid non-interacting ring'®*®. However,
the complete picture is not that simple. Krall'” and Berk!® studiea the
interchange modes with the existence of the hot particles and concluded
that the ratio n,/n; can not be too large for stability. Lee-Van Dam?!®
and Nelson?° observed that there is an upper limit for the background
plasma beta to keep the decoupling condition valid. It is also pointed
out?! that negative energy wave related to the energetic particles may
exist and be excited. However, a thorough investigation is beyond the
context of this dissertation and refered to the references (for instance,
see Ref. 22). In'this thesis, we check the decoupling condition simply by
calculating the grad-B drift frequency of hot electrons to see whether it
exceeds the typical MHD frequency. After justifying this condition, we
take full cre‘dit of stabilizing effects of hot electrons, which include the

curvature enhancement and charge uncovering mechanism.
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Physics in the tandem mirrors has its own characteristics compared

to that in the closed (toroidal) system. The density gradient and tem-
perature gradient exist along the field line as well as across the field line.
The longitudinal physics appears to be very important in tandem mir-
ror analysis. The ambipolar potential; though desirable for confinement,
leads to a major density difference between the central cell and anchor
cells. It was concluded?3~ 25 that the density of the plasma inside follows
a Boltzmann-type law. Then the density of the anchor cells has to be

higher than that of the central cell by an order of magnitude or more.

With a motivation to ease the critical requirements for the machine, Bald-

win and Logan?® proposed to set up a negati.ve poten‘;;ial well between the
central cell and the anchor cells. The potential is supposed to reduce the
passing electrons so as the thermal contact between the cells. Combin-
ing the “thermal barrier” operation with appropriate electron heating in
the anchor cell, the reqﬁirements for the tandem mirror can be lowered
significantly. The schemes to form the thermal barrier were studied both

theoretically and experimentally.

Experimental devices like TARA anleMX-U are designed to be the
“tandem mirror coﬁﬁgurations and can be used to stuciy the fundamental
physics of the tandem mirror and the relavent innovative ideas (the basic
. configurations of both machines are in the Fig. 2 and Fig. 3). In both
the devices, thé so-called “sloshing” ion injection has been employed to

create the thermal barrier and the electron cyclotron heating in the anchor
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region is also arranged with motivation to verify the stabilizing effects of

of hot electron ring.

Observation®?8 in both experiments shows that the plasma in the
machine is sometimes subject to a low frequency oscillation. In TMX—U,
the modes, coherent m = 1 and the mode frequency f ~ 3 — 7TKHz,
appear particularly when the ion cyclotron heating or neutral beam in-
Vjection heating in the central cell are on. Experimental data exhibits the
modes during the electrostatic plugged and unplugged operation and the
disturbance can be detected in the central cell as well as in the anchor cell.
However, in most opgrations, these oscillations \vefe purposely avoided by

reducing the heating of the central cell ions.

To investigate the origin of this mode is quite important. The opera-
tion at high central cell density requires increasing the heating to reduce
Coulomb collisional filling of the thermal barrier. Thus, it is crucial to
know whether there is intrinsic conflict between controlling this mode and

having an eflective “thermal barrier”. .

There were two apf)roaches to study the instability. One is to assume
the modes are basicly a flute-like oscillation, and then the MHD theory
(sometimes inc.luding a few kinetic corrections) is employed to examine
the mode features. Another one is to speculate the modes can be the

trapped particle modes and then a kinetic formalism is used.

Previous MHD investigations®?3° concluded that the conventional

interchange modes has been stabilized in the tandem mirror and can not




6

account for the observed instability. Except near the ma#imum central-
cell beta, the ratio of the central-cell beta to the anchor hot-ion beta was
not a constant at the stability limit and was smaller than the theoretical
limit. Usually, the hot-electron beta greatly exceeded the ion beta in the
anchor, further increasing the discrepancy with MHD theory. Neglecting
the hot-electron \beta, the data at higher central-cell beta (therefore higher
density and lower potential) were cqnsistent with stability limited by
MHD interchange, but much of the data were unstable at as much as an

order of magnitude below the MHD limit.

Recently, there was an attempt3! to interprete the modes based on
a MHD stabiiity analysis. By including the decoupling effect of the ener-
getic particles and E x B rotation effect, the theory seemingly finds the
results which are relatively consistent with the experimental observatic;ns
in the TMX-U ﬁlachine . .The major driving force to the m = 1 flute-like
mode is E X B rotation and the central-cell pnfavorable curvature. The
modes can be destablized when ion charge uncovering caused by the finite
Larmor radius cancel the negative effects of the hot-electron charge un-
covering. The theory predicts a mode frequency and instability threshold,

which is somewhat larger than experimental results by a factor 2.

Nonetheless, the possibility of the trapped particle modes can not be
excluded. Theoretically, if the number of passing particles is too small
and the connection between the central cell and anchor cells is too weak,

the convex curvature in the central cell will definitely drive an instability.
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The inc'rea,se of the central cell beta by heating puts more weight on
unfavorable curvature of the central cell so that the instability is more
likely. In the observation of TMX-U experiments, the modes really tends
to be strong when the ambipolar potential in the anchor cells becomes

higher.

In the early classical paper on the trapped particle modes by Berk
et al®2, a variational structure of the linear dispersion for tandem mirrors
has been used to study the rel.ation between the MHD flute modes and
trapped particle modes. The discussion was developed to analyze the tan-
dem mirrors where axicells are interposed to produce the thermal barrier.
The paper shows that in tandem mirrors with the éxicell thermal barrier
the growth rate of the trapped particle modes can approach that of the
MHD instability. In addition, the study uncovers several specific effects
such that the kinetic charge uncovering dynamics can provide a potential
stabilization for the system and that the equilibrium E x B drift, if large
enough, may cause a flute-like instability. Those analyses, though based
on the collisionless theory, remain instructive and qualitatively correct in

our discussion.

The theory was extended into the collisional regime.33:*% Introducing
the collisional effect alters the quantitative characteristics of the modes
and, more importantly, revealed a dissipative mechanism, in which the
negative energy modes can be destabilized, and a relaxing mechanism

which can equilibrate the microdistribution of the different cells. The
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analyses definitely show more complexities of the tandem mirror system.

On the other hand, Berk and Lane3® deyeloped Wong’s work®® and
achieved an appropriate variational form which is particularly suitable to
analyze machines such as the tandem mirrors. In the approach, though
the collisional effects are not covered, the ion Landau-damping effects are

explicitly evaluated.

In this dissertation, basicly following the approaches in the Ref. 32-
35, a more comprehensive variatipnal quadratic form is constructed, and
then used to analytically and numerically study the dissipative trapped
particle modes as well as the lute modes. As for evaluating the collisional
effects, the approach in Ref. 37 is extended to cover cases of arbitrary-
length anchor cells. In the numerical study, special attention is paid to
understand the physics behind the instability features. To achieve that we
often compare our results with the those the previous theories obtained

and study limiting cases.

The parameters used in our numerical investigations are collected
from the TMX-U machine. However, there is seemingly no , in princi-
ple, difficulty to apply the calculations to other type of tandem mirrors,

though some modification may be necessary.

The terminology of the instabilities in this dissertation should not
be misleading. The flute modes or the trapped particle modes only ex-
hibit their typical features when the parameters are taken to unrealistic

extremes. In the context of this thesis, the name of an instability mode




is based on which branch it belongs to in the parameter space.

Numerical study reveals many features of the collisional trapped par-
ticle modes as well as the flute modes. The conclusions are summarized

briefly as the follows.

1) Flute mode theory gives predictions of frequency and instability
threshold which are reasonably consistent with the experimental results.
Destabilizing effects of the central-cell heating and the E x B drift are con-
firmed. Higher m-modes which have higher frequency are also predicted

and detected.

2) Trapped particle mocie theory reveals that the mode has many
features which are similar to those of the flute mode. Factors like favorable
curvature in the anchor cells and the hot electron diamagnetic current
tends to stabilize the mode as it does to flute modes. Factors like E x B
drift and central-cell heating tends to destabilize both the modes. The
oscillation frequency does not differ from that of the flute mode. As
realistic parameters are considered, even the disturbance of the mode
spreads into the anchor region, which is the characteristic of flute modes.
Those similarities result in difficulties to distinguish those two modes.

3) Diamagnetism provided by energetic particles does stabilize the
mirror system. For the flutelike modes it raises the instability thresh-
old a substantial amount. However, for the trapped particle modes the

stabilization is not very eflective.

4) It turns out that the flute mode theory gives more optimistic
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predictions than the experiments suggest. The oscillation persists in sit-
uations where the flute mode is supposed to be suppressed by limiting
the central-cell beta and lowering the E x B drift. The trapped parti-
cle mode theory, though having difficulties to give an adequate stability
region, seemingly provides an explanation for the instability. The fea-
tures of the modes revealed by this study serve hints to understand the
experimental observations.

The structrure of the remainder of this part is as follows: in Chapter
II, general review on the variational form with collisional effects is given.
The collisional effects in tandem mirrors afe analyzed. Particle loss rate
and energy loss rate for simple mirrors and tandem mirrors are estimated.
In Chapter III, the experimental device in TMX-U is described. Then,
various numefical studies are conducted and their results are discussed.

In Chapter IV, we summarize the results.




Chapter II Variational Dispersion Relation

I1.1 Introduction

The use of the variational dispersion functional is an elegant and
powerful way to analyze the linear response of a plasma systerm. Due to
the compactness of the formaiism, the variational form is often a better
physical mean to gain insight into the sf;ability properties of a system
Withbut solving the normal mode equations. As far as numerical works
are concern, the variational form is even more desirable. Based on the
variational form approximation procedures are usually easier to be devel-
oped.

In this chapter, we first review the general formalism of the varia-
tional principle and discuss its application to the plasma physics briefly.
The foundation of the method is established basicly on the self-adjoint
operator theory. For the ideal MHD system, since the normal mode equa-
tion has been proved to be self-adjoint, the method was well developed to
be a powerful energy principle (see review paper by Freidberg®®), which
is very effective to analyze the stability features of a MHD system.

For kinetic systems, following the approach in Ref. 33, it is shown
thaf the variational dispersion relation for the electostatic perturbgtion

can be described by a relatively simple expression Q = — ZJ. %qjﬁth.

Starting from this expression, we derive an appropriate variational form

for analyzing the instabilities of tandem mirrors.

The collision effects as well as many other kinetic effects are included

11
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in deriving the variational quadratic form. To evaluate the collision term
in the quadratic dispersion relation, we will discuss the Fokker-Planck col-
lision operator and calculate the endloss in mirror machines. The endloss
problem with the existence of the ambipolar potential was solved clas-

sically by Pastukhov3®.

The method is based on squre-well assumption
and by introducing a fictitious source (sink) of particles. The particle loss
rate and energy loss rate are given in terms of the density , ambipolar

potential and mirror ratio. The solution is used to determine the collision

effects on the trapped particle modes.

II. 2 Variational Formalism

In this section we briefly review the general principle of the varia-
tional form. Then we actually derive a variational form for analyzing

tandem mirrors.
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I1.2.1 General Principle

From a rather mathematical point of view, the dynamics of many
physical systems can often be described by a self-adjoint operator equa-
tion

Lé = Ao, (2.2.1)

where the variable ¢ is the eigenfunction of the system and the parameter
) the eigenvalue, where both the quantities need to be determined.
The definition of self-adjoint operators is related to an appropriately

inner-product which may be defined differently . For now, we use

(6,9) = /¢>*¢dr- (2.2.2)
The operator being self-adjoint means that

(¢, L9) = (L¢,9). (2.2.3)
Then, a variationgl form

5(¢,0) = (¢, L¢) — (¢, 78) (2.2.4)

can be constructed. By requiring the form to be extreme and applying
the Euler-Langrange equation, one simply reobtains the eigenequation
(2.2.1). So, one can analyze the variational forrﬁ to study the system
instead of solving the individual equations obtained from the variation of

the quadratic form.
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An important advantage of the method is that one can devel(;p a

trial function procedure to obtain approximate solutions. Assuming a test |

function.gb has a first-order error 63 compared to the exact eigenfunction
Yo

P = o + 69, (2.2.5)

one can substitute the test function into the form and require the form
to be stationary to calculate the parameter A. The virtue of this method
is that the determined )\ has only a second order error from the exact

eigenvalue Ag. To see that, one has, from S being stationary (65 = 0),
S = S(to) + o(|6%[?). (2.2.6)
The expression (2.2.6) implies that the error 6§\ can be expressed by

6 o< o(]6%]?), (2.2.7)

which is second-order.

For the non-self-adjoint operators, the situation may not be as simple
as above. However, if one assume the opérator can be explicitly separated
into two parts, one is. Hermitian and another one anti-Hermitian, a vari-
ational form can be established?®.

Using the variational form to study instability features of a plasma
system is very productive®!.

In the ideal MHD stage, the method was successfully developed to be

a very powerful and effective energy principle3®. In the energy principle,
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the variation form may be rewritten in terms of the perturbation type,
which is very intuitive itself. Besides that, if one has some speculation
about the expression of an unstable perturbation, this expression, which
needs not be too close to the real eigenfunction, can be substituted into
the variational form. By minimizing the variational form to see under
what condition the form varies from negative to positive, one can deter-
mine how the system can be stable in terms of the perturbation. Some
important stability criteria for plasma systefns were derived. with this
method*2, |

In kinetic theories, sometimes it is not very obvious that dynamics of
a system can be described by self-adjoint operators. However, Dominguez
and Berk*? explicitly showed that for Vlasov system with desirable prop-
erty being described by self-adjoint operator can still be maintained if
one takes broader definition for the selt-adjointness.

In the next sections, a variational form which is suitable to analyze
the mirror machines will be derived and discussed. The derivation as-
sumes that the quadratic form with collisions still maintains a self-adjoint

operator. The self-adjointness of the system was shown in Ref. 33.
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I1.2.2 Variational form for Electrostatic Perturbation

To analyze the instability problems in tandem mirrors we construct a
variational form from the gyro-kinetic equation and quasineutrality con-
dition.

In the derivation, we assume that the perturbations (both field and
distribution) can be characterized as having relatively short wavelength
across the confining magnetic field and relatively long wavelength along
the magnetic field. Thus, the perpendicular variation of the modes is
described by the eikonal description and the parallel variation by the
non-eikonal description.

The perturbed electric field is described by

é = ¢(s) exp(ik | - r — iwt)
) (2.2.11)
¢! = &(s) exp(—ik, - r + iwt),

where s is the length along a field line. The perpendicular wavenumber

k, in the eikonal approximation is

s oS

with B = Va x V4. In mirror machines, if the axisymmetry is roughly

kept, then

where @ is flux of magnetic field and 6 is azimuthal angle. So,

oS m
ki ~ Br—=¢, + —éy, (2.2.13)
Oa r
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where m is the azimuthal wave number.
From the standard gyro-kinetic theory®**5, the linearized perturbed

distribution function f;(v) takes the form
- fi = —4;[8(s)/ T3] F; + h; F (2.2.14a)

with F; being local Maxwelliam distribution

F, _ No; exp(_[ijz/z_i_qj(I)(S”).
T;

3 (2.2.14b)
(27T /M;) =
Here Mj,qj' and ng; are the mass, charge and density factor of the Jj-th

species and & is the equilibrium electric potential along the field line.

The function h; satisfies the equation

. 0 8 . h:
_z(w—wdj)hj_E.Dij.E;(ﬁ)z
I J

—i(w — wi)(g;8/T;)Jo(kLp;),

(2.2.15)

where D; is the velocity space diffusion coefficient of the species j, p; is

the gyroradius, Jy is the Bessel function of zeroth order, and

T;k x b - VF, |
wp = XX ! (2.2.16)
9; BF;

is the diamagnetic drift frequency which is a constant along a field line
b = B/B.

The appropriate expression of the drift frequency wy; is

wg; = qLB(k Xb-x)(2E — uB — &)
! (2.2.17)

L Nk xb. (VP - B2),
g; B ;
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with
1 2 1 2
:(bV)b, H = Eﬂfj?)_l_/B, EZEM]"U -{-qJ@
and P, ; is the perpendicular pressure of the jth species.
Since the mode frequency is significantly lower than the plasma char-
acteristic frequency, the quasineutrality condition is considered to be

valid, which demands

Z qJ/d3 ( + h; Jo(’ﬂp;)) =0 (2.2.18)

where the Bessel function Jy stems from that the function h; is given in
the guiding center coordinate system.

Now, we can introduce the following quadratic form33

[ dl F; w— wg;)T?g?
Gl =5 [ 4 [ (g 2
Jj J

’ (2.2.19)

iT?(8/6v)g; - D, - (80/0v)g;
+ —2 —— - - 2Qj¢JO(k_LPj)ngj)’
(w— wj)
where g; = h;/F;.
It is readily shown that varying the form with respect to g and ¢ re-

produces the gyro-kinetic equation (2.2.15) and quasineutrality equation

(2.2.18). The quadratic form is also equivalent to the following form
ds _ - ,
j

where 72 is related to the perturbed distribution fj- The equation (2.2.20)
is symbolicly more concise and will be used to obtain more explicit for-

mulae in the next sections.
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I1.3 Collision Effects

As far as the dissipatiye mechanism in a plasma system is concerned,
two processes are needed to be considered: collisional effect and the Lan-
dau damping effect. For electrons, collisional effects tends to dominate
the dissipative mechanism. For ions, the Landau damping is more im-
portant For ion Landau-damping, the Bel;k-Lane formulas will be used35.
The electron collisional effects will be discussed in this section.

The collisions provide a dissipative mechanism which can be a damp-
ing factor to many waves. However, for a negative energy wave, the mech-
anism may become the destabilizi‘ng factor. In mirror machines, particu-
larly, when rotational modes are potentially important, this kipetic effect
can be essential.

The connection between the different cells in tandem mirrors are kept
by collisions between passing particles and particles trapped in the central
cell and anchor -cells. Without this connection (or if the connection is too
weak), thé different cells in the tandem mirrors become isolated ones and
the interchange modes driven by unfavorable curvature of the central cell
will occur in a fast time scale.

In this section, we investigate the collisional operator and aiscuss the
particle loss and energy loss of a mirror which will be used to determine

collisional term in the variational form.
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I1.3.1 Time Scale of Collisions

It is useful to briefly discuss the time scale for the involved collisions
in tandem machines.

The fatest collision process in the mirror conﬁnement' is that of

6

electron-electron scattering. From Spitzer*® we can take the average

“relaxation” time for a 90° deflection in a velocity phase space as the

following
_ L1x 10073/

nen* In A

S, (2.3.1)

TE&

here n.(cm™?) is the electron density and T, (KeV) electron kinetic tem-
perature. The parameter InA is typically about 20 for magnetic fu-

sion plasma. Thus, for a mirror fusion plasma in TMX-U device with

T, = 0.1KeV and n, = 102¢m 3,
Tee = 0.017ms v,_. ~ 60K H .

For singly charged ions, electron-ion scattering occurs on virtually
the same time scale i.e. Tei X Tee-

The ion-ion 90° scattering time is much longer than that of electrons
of the same mean energy, since the ratio (M/m)*? =~ 60 or deuterons.
In this dissertation, we omit the ion-ion collision effects when analyzing

instability modes.
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I1.3.2. Fokker-Planck Collision Operator

The Fokker-Planck collision equation has been long recognized as
classical means of evaluating the collisional effects. The equation is es-

sentially equivalent to the kinetic equation derived by Landau?*’

OF; , b, 8 Ig?—gg
o= (%) - fovr i e
J

col m; ov g3 .

(2.3.2)

where

g=v-—-v'
;= 2wzfzfe4n* In A;;

After the early pioneer work by Rosenbluth et al*® the collision term

in the Fokker-Planck equation can be conveniently written as the follow-

ing
8F1> 0 th 1 62 Bzgi
< ot col Bv( ov * 2 Ovov ovov ( : )
where
I 27rZ§e4n* In A;;
7 TTL2

k2

and the functions A and g are called “Rosenbluth potential” and defined

as _ )
Z; o, m; F;(v")
hi: =3 2__1/d3 1 7
Z(Zi) my; ? v — v/
; j
and
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The formalism is very useful to calculate the collisional effects, when
certain symmetries of particle distributions can be utilized.

When the distributions in the operator are not too far from the

Maxwellian one, the collision operator can be linearized. In particular, if

the electrons and ions are considered to satisfy the gyro-kinetic equation
fj = —e[¢/T]}FJ + hFJ (_] = e,i) (2.3.4)

The linearized Fokker-Planck operator C) operating on the electron dis-
tribution f, is given by
b, & Ig?-
Ci(he) = /d3v'z 3 7. g_sﬁ

m; ov
8 (2.3.5)

—

( 1 Oh(v) iM)Fe(V)Fj(V')-

me OV m; OV’

Now, we observe several properties of the linearized operator. Notic-

—1

¢ so that the electron-ion energy exchange rate is

ing that m;1 <<m
negligible and g ~ v — v/, we can easily prove
2

MV

C’l(vz):(), Ci( 5

+ed) =0, (2.3.6)

which will be used to assure that the mode solution in the work is con-

sistent with the global energy conservation of the collision operator.
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11.3.3 Loss Rate of Mirrors

Estimating the particle loss has been a classical problem for both
simple mirrors and tandem mirrors. The solutions can also be used to
determine the number of passing electrons in tandem mirrors, which will

greatly effect the stability problem.

The electron scattering-loss rate in a mirror configuration without
an ambipolar potential can be evaluated in the way described in Ref. 49.
The method is based on treating the background particle distribution as
Maxwellian. As the mirror ratio R = Bmax/Bmin goes high, the distri--
bution function of the trapped particles tends to approach Maxwellian.
As far as the collisional effect on lifetime of a test particle is concerned,
the distribution function of the background particles can be taken as
Maxwellian without introducing too large errors. So, by introducing a

source term S, we have a simplified Fokker-Planck equation

D, o6 . of 10, , of
gp SmO05- + S [ (D) == - = — 2.3.
v2sin 6 66 s 06 + v2 Ov [v°( 50 Af) S, (2.3.7)

where

D_L _ Z *‘n‘(ec*)n* lnA[¢(b*v) _ m]

m2v 2b*29p2
LT(ee”)n*In A ¢, (b*v)
Dy = Z m?2v b*2yp2

mevD”

A=
T*
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with
v BO
6 = arccos
'U.BO
b* — (m*/2T*)1/2
2 N 5
¢($) = 71_1/2 0 exp(—g )dé
2z 5
¢1(z) = ¢(z) — 73 exp(—z°).
T
where “*” refers to the background particles.

For a simple mirror, the general solution of Eq. (2.3.7) can be ex-

pressed as

mev?

2T

f=0(8,v)exp(— ) (2.3.8)

As the large mirror ratio is assumed, the distribution f can be relaxed to
near Maxwellian in terms of the speed v, and then, the function © can
be expected to depend on 6 mainly. Thus, the Eq. (2.3.7) can be further
simplified to be

D, 0o of

— sin §—

= -8, 2.3.9
v2sin 6 66 oo S ( )

Assuming that the source term S can expressed by
S = x(v)$(8), | (2.3.10)

we can integrate the equation and obtain

] dal w/2
f= c/ $(0")sin 6"dg", (2.3.11)

sin §'
where 6y is the loss-cone angle, C' a constant independent of v,0. The

source ¢-dependence can explicitly be assumed to satisfy*®

$(8) = 6(6 — -;1). (2.3.12)
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From Eq. (2.3.9)-(2.3.12), the function x(v) can be expressed as

D, mev?

x(v) = CUT exp(— T

). (2.3.13)

Now, we have
tan(6/2) mev?

an(6,72) P o) (2.3.14)

f=Cln

The electron loss rate v can be obtained by calculating the following

/Sd%

For future use, we explicitly calculate the electron loss rate Ve_e Which is

expression

v =

(2.3.15)

defined as the loss rate due to electron-electron collisions. After substi-

tuting Eq. (2.3.12)-(2.3.14) into Eq. (2.3.15), we have

/Se_evz.sin 6dvdb

Ve—e =
/ fv? sin 8dvdl
. i o m.v? (2.3.16)
= 1 / D exp(— 5T )dv
(27T /m.)3/2 In — 0
sin 6y
= 0.615T,,
with
oo 25/271'1/264neAee
R VNV
1 2

R = Bmax/Bmin = (

sin 8,
Similarly, the electron loss rate v,_; due to electron-ion collisions is

8 /‘°° . mev?
s = : DE'L o d '
g (27T /me)? /2 I R J zen 1/ rexp(= = )dv
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where we have introduced a small negative barrier ® to prevent an overescap-

ing problem. Noticing that (m;/m.)(e®/T;) > 1 and ed/T. < 1, we find

*® bi [3 2
Ve—; = Fz/ ¢( v) exp(_m - )d’U,
(&)1/2 v 2T
me (2.3.17)
1 1 T,
~ ST In(=5) - ],
5Til5 n(—=) =]

with v being Euler constant and

25/27!'1/264711'/\,51'

C 22T32ml 1R

r’;

Similarly, we define two related energy loss rates as following

1 dE
Bl

_ /(mj)Se_edsv. (2.3.18)
[ (75 e

With straitforward calculations, we have

VEe-e =

. 87 2

| v ps (- e
VBe—e = v exp(—
g (3T/2m.)(2nT/m.)*/2In R J, L &P 2T
= 0.178T,.
(2.3.19)

We also have

1 dFE

VEe—i = =(——)e—s
E" dit (2.3.20)

~ 0.33T;.

We also symbolicly define the following quantity for the future use in
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Sec. 11.5.2.
_ L
VE2e—e = E2\ 4t e—e
8T /°° 4 mev?

_ D°® exp(— d

(1672 jam?) 2n T m P PR J, ° DL XP(=5p)dv
~ 0.088T,.

(2.3.21)

When the ambipolar potential has an effect on the trapped particles,
the particle loss rate and related energy loss rate are a little harder to
evaluate. The first essential calculation done by Pastukhov is instructive
and useful®®,

Following his approach, the Fokker-Planck operator for electrons can

be rewritten in the dimensionless manner

ot 22 0z 2z

(8&) 1°'8fe 1 & 1 8f.
T = —
¢ 1 z2 Oz z2 0z 2z Oz

(2.3.22)
Z., 0 ( Z)Bfe
z3 Ou # ou’
where . L
Z%mng
Te =
meln.n*In A,,
1 < Z anin* In Aei)
Ze=—1\1
2 N nen*InA,.
with

1
v ' 2T, \ ?
T=—, v, =
ve me

T, F, - ~z?
Je = < > o felz—»o - T 3/23 ¢

Me Ne

Nlw
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€Pm
T

2

)

2
= Ug, Or T >

_ -1 —16Pm
“0_1+Rm +Rm ﬁ

fel;t———po =0, (F‘

Notice that the first term in Eq. (2.3.22) represents the energy drag
term, the second one energy diffusion term and third pinch angle scatter-
ing term. The boundary condition is that the distribution function has
to be vanished at the separatrix as shown as in F]g 2.1.

By introducing a fictitious (but physically reasonable) source of the

particles in the form

Sp=~q6(1 — p*)n(z — a)e™,
where 7 is the step function, one obtains a nearly solvable equation. After
a few approximations, Pastukhov found out that the loss rates of particles

and energy are

(£)5(1 + Z) exp(— 22
In[2R(1 + Z)]

Vpp = (1 + %) Vp (2.3.23)

The results with their related boundary condition will be used to
determine the collision effects of the trapped particle modes.
For future use, we point out the insensitivity of vp and v,p to the

precise form of the source term S, as long as S, is not too peaked near the
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vy
Confinement
region .
N vi=w(R-1)7ir
X =z
K /
~
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region ~ - region
\ : ~
= - Te > Vi

—\/ZEquSm/mj ‘/ \_+\/2er¢,,,/711.,~

Fig. 2.1. Velocity-space loss boundary for particles in an electrostat-

ically plugged magnetic-mirror trap.
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separatrix. Consider a particle ‘injected.” into the machine by the source
term. The particle having energy below the separatrix energy can not
escape by pitch angle scattering, but just by energy diffusion. However,
initially the drag term dominates energy diffusion, and the particle can
go to the separatrix with very low probability. Only after several 90°
scattering times, when the distribution h§s relaxed to near a Maxwellian
and is highly peaked at low energy, there is a significant probability that
the initial particle will obtain enough energy to exceed the separatrix
energy and then escape out of the machine.

The proceding arguments can also be applied to the simple-mirror
scattering if large mirror ratio is assumed, which makes particles go to
separatrix with lo§v probability. A direct calculation in Ref. 49 also shows
that introducing different source term does not substantially change the

loss ratio.
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I1.4 Derivation of the Dispersion For Tandem Mirrors

In this section, we start with Eq. (2.2.20),

ds - ‘
Q=- Z E%’ﬁjd’f (2.4.1)

and bounce-averaged gyro-kinetic equation to construct the quadratic

dispersion relation for tandem mirrors.

The electron bounce-averaged kinetic equation is
—i(w — wg)h — Ci(h) = —ie [(—w——_——‘iﬁq , (2.4.2)

where h(E, u,a) is related to the perturbed electron distribution f. in

the following way

fe = (—e¢/T)F, + hF., (2.4.3)

The other quantities in Eqs. (2.4.2) and (2.4.3) are given

_ 1/
qg=— da,
T
fo ds
e [T A
-89 IUII(ENU',S)l

+ sp = turning points of particle,

. . mev2/2 +ed 3
wr = W, 1+T] T _—2_77 ’
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. TITm Ong
Ve T Qenog—;
(Tano) oT
= Oa o’
* *EQ
W, = w, _“’E+"7“’e'qT
Tm 0 —e®(s,a)
= o a—a[no(a)exp< T(a) )J,
0% mk
wy = m-— + (2E — uB — 2e®) = wp + w,,

p=mev /2B, k=b-Vb-Va/|Val,
Note that w}, is proportional to the gradient of the real particle density,
while w is a parameter that is a constant on a flux surface. |
In the expression for the curvature drift we have neglected geodesic
curvature for convenienée of presentation, and we assumed sufficiently

small B so that V, B/B ~ k.

The linearized electron collision operator C;(h) is defined by Eq. (2.3.5).

We observe from Eq. (2.3.6) that C;(m,v2/2 + e®) = 0.
We now define h¢ (€ = ¢, a,p) where subindex ‘c’, ‘a’ and ‘p’ refer to

particles in the central cell, anchor cells and passing particles respectively.

Then, we define the g, through the relation

M::d“_”T“Mw_fEW+%, (2.4.4)
T w—wg

where the amplitude v is given by

Y =¢/(w—wEg). - (2.4.5)
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It is noticed that the first term in Eq. (2.4.4) is nearly independent of E
and p for the particles trapped in the central cell or the anchor cells if
they sample a nearly constant ¢ and wg. For the passing particles, the
first term on the right-hand side of Eq. (2.4.4) generally depends on E and
p. However, if the length of the central cell is relatively long compared
to the anchor region, the term can nearly be independent of E and -
Now, taking a test function in which 1 is a piecewise constant and an
equilibrium model where wg is also a piecewise constant, we find that ge

is given by

(w - wEC)gc = Zél(gc) + @k <'6;('w;_wT)¢c + gc>,
r)

) i e(w —
(w - wEa.)ga = 'LCl(ga) + Wia <—(T—wT¢c + ga),

T (2.4.6)
(w-ag)gp = iCi(gp) + icl(e(w _(u;Tich(E) E)>
_ (e(w — w )m
+w,g( T(‘f_E,E) +gp),

where the equations C;(const) = 0 and C;(m.v2/2 + e®) = 0 have been
used.

Roughly, we estimate

Wke,a e(w — wr)

(w— WEge,a) T

Gc,a = ’(ﬁc,u =~ éh, (247)

wheree = Wyeo/(w — WEe,o). Thus we treat g., = o(€). We shall take
the ratio of the passing particles to the trapped particles to be o(e).

We substitute the electron contribution into Eq. (2.4.1), using Eqgs.
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(2.4.3) and (2.4.4), to find

Qe(w) = e/°° (—lingl)(w —wg)y

—w B
_ 471'&2/ dsip?( )2 /dE'dp
TTm2 ) " o—ws vy
4me dEdu
+——; dsz/)(w——wE) I—l'—Fh
e V—oo vy
4mre?

/dEder (m - (w - wy)

4re

Tme

dEdutFeg(w — wg ).

€

(2.4.8)

Now, we write ¢ = 9. + 6%, and use Eq. (2.4.6) and the particle
conservation property of the collision operator which implies for arbitrary

g(v) that |
/dEderE(q) = 0. (2.4.9)

Then, using Eqs. (2.4.6) and (2.4.9), we find exactly

4
6Q. = — / dBdurF.g(w — wg)(be + 69)
m? |
_ 4m = (€ (w—wp)y? .
= m? dEdutFew, ( T (@ —w5) (w —wp)+ (2.4.10)
e(i"lf)@> , Amer /dEd,urFe&pa(h).
(w—wg) m?2

In the last term we note that there is no contribution from the particles
trapped in the central cell where 61 = 0. Also, in this term we neglect
the contribution from passing particles as their contribution is smaller

than from the anchor region by the ratio of passing to trapped particle
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density which is of order to be o(¢). Then note that Cj(h,) = Ci(g,) as
Ci(ha — ga) =0as h, — g, = @ + BE, with o and 3 constant.
We now use that the charge density

4mq dEde
p= Z J/ F; =

vyl

to obtain the following identities that follow after appropriate parts inte-

grating:
2 Op/B?
m [ dsyp(w — wE)B
Oa
4 (9F
_Z qj /dEd,u‘r( —wE—wn)v,bz(w—wE)—-——O
_ j
(2.4.11a)
d
m Eszbz(w - wE)gg-
2 (2.4.110)
aq; OF;
= ; m?] /dEdp,'rw,c”z/)z(w — U)E)'-B'EJ = 0,
where
., OF; OF;
wjgi = —(m/qa')a—a]
and
2me(E — uB — ¢;9)
“rll =

Wei T ;
and at low beta x = 70B/0a. These identities follow exactly from charge
neutrality. We add these terms into our quadratic form, and for the

electron contribution we have




Now substituting Eqs. (2.4.10), (2.4.11) and (2.4.8) yields
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4rre?
Qe(w) = ~ 7 /dE'dp,Fe {gb?(w —wg)(w—wh)
evp
——2w - W _ (w—wg)?
(w—wp)yp?

(w — 53)2

Oy (wp —@g) — zTeEI(g)&b -+ 0(62).

+ we(w — wp)P?

(2.4.12)

{
Now substituting 3 = 1. in the central cell, ¥ = 1, in the two

anchor regions, define Ay = 1, — 9. and find

8me?

Q) = -7 f dEduF,

A¢2(wf—ch)(w—wEa)(w—w})[ < W )J
1+o
w — (chTc + wEa.Ta.)/T
ds OP ds OP
_ 2 e 2 2 e 2
2m /CBzrnaa P, —4m / K ()

8reA —
i dEduTCi(ga)Fe + o(€%),

TaTe

X

a

2
me

where Av = b, — ., P, is the electron pressure. The notation fE (€ =

‘¢,a,p) refers to integration over the particles in the center, anchor and

passing particles respectively. In the equation, the integrals is over just

one anchor region, since a factor of 2 has alredy been added to account -

~ for both anchor cells. In obtaining the result the following equation has

been used

47r — *
— dEd,u,Tc’aFewn(wT - ch,a.)

me

= 2/ ds_, OF. [1+ o(e)].

B%‘Ii Oa

c,a

(2.4.14)
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With _C'—(ga) = 0 the dispersion is the correct response for the collisionless
theory. For the collisional theory we need to calculate g, and g..

We observe that the boundary condition for g is that it is continuous

on the separatrix between the trapped and passing particles, i.e.,

he = hy, he = hy. (2.4.15)
Thus we have
ha.,c = .éa,c + e¢a76(c;),_ w;)
2.4.16
b € e T $u0ur) (w0 — w7) (24.16)
P=hT T (Qere + Qare) ’
where Q. , = (w — wg.,). We obtain
—e QDT AY(w — w})
90 — 9p = &
T (QCTC + QaTa) (2 4 17)
—e QT AY(w — wi)
Gc — 9p = 75

T (Qete + Qo7l)

As there is only one separatrix contour of passing particles separating
the trapped anchor region and the trapped central region, the E and p
dependence of §), and 2, are at the same energy and magnetic moment.

Then, subtracting the two equations yield the boundary condition

eA
T

Jo — Ge = — (w— wh). (2.4.18)

To solve for g, and g. we have from Eqgs. (2.4.6)

chc = z.El(QC) + 0(6)
' (2.4.19)

Qage = iCi(ga) + o(e).
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If v> Qg.., where v is the electron collision frequency, the solution
is dominated by the collision frequency term, so that g has the form over

most of the phase space

eAYpw] [ (1 mev? 3>J
a = Ata + Aog | = - =11, 2.4.20
g T la T Az 57T 5 ( a)
eAYpw? [ <1 mev? 3>J |
e = = A1e + Al = - =11, 2.4.20b
g T 1c T A2 5T 5 ( )

where Ai4, Aay, Aic and Ay are constant coefficients that need to be de-
termined. In fact, the validity of Eq. (2.4.20) may be larger than our
estimation. For examples, in Ref. 37 the valid range of collisional fre-
quency was found to be v/Q (|e®|/T + B,,../B.)" . Eq. (2.4.20) is not
- necessarily satisfied in a boundary layer near the separatrix. However, we
shall assume that passing particles equilibrate primarily with the central -
cell particles, a condition that implies |

L“<T>2 ; (|e¢|><<.1 (2.4.21)
L. \[ea| exp T . 4.

This condition limits the validity of the calculation if |le®|/T is too large.
However, when Eq. (2.4.21) is satisfied, we can expect (2.4.20b) to be
valid near the separatrix (as the combined passing and central cell traped
distribution are described to lowest order by the same Maxwelliam distri-
bution function), but (2.4.20a) to break down near the separatrix as the
distribution of particles trapped near the separatrix in the anchor has a

distribution that is strongly affected by both the central cell distribution
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and the anchor distribution, which are distributions of different functional
forms, thap in the bulk of the anchor region.

We can eliminate the condition Eq. (2.4.21) by employing a more
complicated boundary condition. The evaluation of the collision term
then becomes more complicated and will be discussed in the next section.

The relationships among the four unknown constants can be obtained
if we use the particle and energy conservation properties of the collision
operator. We take the zeroth moment and an energy moment (2/3)(E-T)
of Eq. (2.4.19) and sum the expression (thereby annihilating the collisional

contribution) and have
QchAlc -+ 2Qa.Na,)‘la = 0, (2.4.22&)

and

NQ(Z“@VH\»WNQ<”E&+A>—O
cobc 3 T 2c adba 3 T 2a -
or with the use of Eq. (2.4.22a),
2 ~ C
chwCQAlc + NeQc Ao + 2N, Q. X5, = 0, (2.4.22b)

where

ds

(&, — &) > 0, mﬁ=/ —ne.

a,c

- e
®=-—-=
T

Further, Eq. (2.4.19) yields

eA

81 _
dEdut,F.C(g,) = 2X1,w.Q N, ——

2
me

T

A
= Alcw:QcN,:%. (2.4.23)
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Substituting Eq. (2.4.19) into Eq. (2.4.9) then yields

—8 alc Qaﬂc —wy
Qe(w) = / dEdpF, Ap?Tele Deflelw — w)
Tm?2 T w—wg .
ds Op ds Op
_ 9 z/ w2 _ 4 2/__e 2 2.4.24
™ . B?r 3a¢ m aBzrn3a¢a ( )
2 1,¢€?
+ ;e NN

By using the results of the previous approaches®?73% we can add the
response of collisionless ions and the contribution from hot electrons to

Eq. (2.4.24), and obtain the complete quadratic form Q(w) as following
—Q(w) = Ry, + Sy2 + WAy, (2.4.25)

where

c d ' .
R = / 22020 1 ) 4 0 f2upe — mtwi (14 m) + e} +57m?

@p

ds LT % * % ‘

5:2/ ——2n {.Qi(l-i—m )+ Q.[2wg, — m wia(1+ni)]+w§a}
L. Ba Qp

+43im® + w00,

/dEd FTa.TcQ Q(w_wT)

w—wE

8
W =
2
7
* 62
— 2)\1aNaﬂawe T* + -DLa.ndau

[-4

with
a, :BrfJ
190 1
* — kz 2 _ 1 (__ _)’
m L7p ’ r Or - r’?

Qc,a = UJ/TI’L — WEc¢,a,

L
o °ds1$3
73:4 Bz (P”+‘P-L)

Z / ds Keff 3 ( L+ Py,

———
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which reflects the contribution from the hot electrons. And the charge

uncovering term is given by

ds
*® ds n;m; apq?/Bnh(s)
@h=/ — =

B o 7s . (2.4.26) :
>, g2 i Tim;
J
and
2LsinsiTsiB?
T 1+ L T., B2
w; _ c_l_[ eNedey 2a. J, (2427)
a, 14 2L,;n,B:
L.n B2

where ‘si’ refers to the sloshing ions. The ion Landau damping terms are

2
Dy anday = ;—’Ni(passing) X

i

3 L?L
{zﬂiﬂf[w —WEge — L:):c(]. — —ni)]——cLsalGl
2 (T;/m;)=

! (2.4.28)
-+ Qa[w — WEgq — (:J:c(l - 577])1(1 -+ iﬂaaz)GZ

1 T;/m;)?
+ tfw —wg. — ! (1-+ —m)]-(—-—/—m)—cmG:S},

2 Ly
where
. mT; 8nc][ (mjv2/2+qj<1>) 3)]
Wl = ci - =
' gjn. Oa ’ T; 2

with n.; being the factor of Maxwellian distribution as we defined in

Eq. (2.2.4). And the coefficients o, a5 and ag are

B,, — B, B,
=0.05In{ ———— 1——)[1-(1-
0 = 005122 0e ) a - Beyn - e

=) (2 - By
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And, the interpolation functions G1, G2 and G3 satisfy the following con-
ditions
Gl=1 if [r.(w—wge) + 270 (w —wg,)| < 1,
G2=1 if |7 (w—wg) + 27, (w —wg,)| >1 and
1270 (w — wpa)| < 1,
G3=1 if |27 (w — wga)| > 1,

otherwise they smoothly go to zero.
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I1.5 Evaluation of the Collisional Term

I1.5.1 Case 1: Short Anchor Cells

We still need to evaluate the coefficient A1q, for which it is necessary
to solve Eq. (2.4.15) with the boundary condition given by Eq. (2.4.14).
The solution for the perturbed distribution of the central cell is taken
as a Maxwgllian up to the separatrix, which is justified if Eq. (2.4.17) is

satisfied. Then we define §, from the relation

el w— wr mev? 3 .
L = 1A — T AC( - ———<I>> *a], 2.5.1
g 7 we | M o Tzl Hm 5 +3 (2.5.1)

where we have used that, m.v2/2 = m,v2/2 — 7T, in which v, and Ve

are the electron speed in the anchor and central cell respectively. The
relation follows from the energy conservation at the separatrix. By using

Egs. (2.4.14) and (2.4.16), we find that on the separatrix
Jo (separatrix) = 0. (2.5.2)

From Eq. (2.4.15), we find that the function Jgo satisfies the following

equation
El(ga) = _Swave, (253)
where »
mev? 3)}
Swave = 'Qa ~a, S S - = )
1 [g + 5 + 2( oT 5
with w
Slelc—/\zc@——‘:-*'l—’f]q)c—T]@,
we
52 = A2.’: =+ 7,
~ ed,.
b, =~

c T M
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Here Syave serves as an effective source of the particles and energy. The

solution can be expressed in terms of the linearized Pastukhov problem.

Now, it is essential to relate Eq. (2.5.3) to the known solution of the

Pastukhov problem . For simplicity, we limit ourself to the assumption

that the electrons are confined in the square-well potential of magnitude
|e®| so that the Pastukhov problem has analytic solutions.

Following the standard definitions, the particle loss rate v, and en-

ergy loss rate v,p are given respectively by

d?vS.,
y = L L 05eal®) (2.5.4)
J dPvF,(v)
and :
fdsvvzseo(v)
= T 2.5.5
PE T T e Fy(v) (2:5.5)
where F,(v) satisties the Fokker-Planck equation
C(Fp) = _Seo(v)a : | (256)

with C(F,) defined by Eq. (2.3.2) and we have the boundary condition
that F,(v) vanishes on the separatrix.

As long as S.,(v) is not too peaked near the separatrix, the values
of v, and v,p are insensitive to the precise form of Seo(v) if |eT<I>|_ > 1
The reason or this assertion was explained in Sec. 11.3.3. We further note

that the distribution F,(v) for the bulk of particles is a Maxwellian with

a density no and temperature T. It only deviates from the Maxwellian
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near the separatrix, which does not change the moments of F, to an

exponential small factor. Thus, we write
F,(v) = Fo(v)G(v), (2.5.7)

where Fy is a standard Maxwellian

F Uun ( mevz)
= —————exp(—
P (@nT/m.)} 2T

related to ny and T and the function G is the unity except near the
separatrix.

Then we have

(2.5.8)

If we substitute Eq. (2.5.7) into Eq. (2.3.2) we find

me v

o(B) = [ @'Y 2L o) py o)
4 (2.5.9)

Ig?-gg 0
‘ T B_VG(V) = —Seo(V),

where we have neglected the term Fy(v')0G(v')/8v' as 8G(v')/8v' van-
ishes except near the separatrix. The contribution near the separatrix
can be neglected since the Maxwellian weighting in the v’ integration
produces an exponential small error. The equation (2.5.9) is also the
form of the collision operator used by Pastukhov and subsequent investi-

gators in solving the scattering coefficients v, and VpE-
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For the actual density and temperature we must solve the nonlinear

algebraic problems posed by Egs. (2.5.8) and (2.3.8) that can be rewritten

/davseo

as

Nng = R E———
,T
vp(no, T) (2.5.10)
me/davvzseo
T
-n = .
277 7 2(|ed]/T + 1)up(no, T)

These two nolinear equations determine ng and 7.

Now we assume that the source S.,(v) has small deviation 65 from
the initial function, and that the separatrix does not change. The density
and temperature will change by én and 67, and Eq. (2.5.10) becomes

/d%seoJr/d%as
v(no,T) + 8T (0vy /Ovy, /OT) + 6n(Bvy /8n)’
me/davvz(seo +65)/2

vpE(no, T) + 6T (0vpr /OT) + §n(Bvpg /On)’
(2.5.11)

n0+5n:

3
E(T’LOT + 6nT + ngéT) =

Noticing the equilibrium relations,- we can linearize all the small

quantities and find

8
2u,bn + noaTa—’;f - /d365, (2.5.12a)

ngdT Me

ov
2u,én + ngéT —2 + v — = —
? “TeT T Pr1+d) 3T(1+ 4

where & = —e® /T has been used. Substituting Eq. (2.5.12a) into Eq. (2.5.12b)

)/d%vzas, (2.5.12b)

yields

upn(,&?“ _ Me /d3vv255—/d3”55- (2.5.12b)
T(1+®) 3T(1+ @)
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Thus, the two quantities én and 6T are determined in terms of the
source variation 65, which can be related to the linearized Pastukhov
problem.
If we linearize the Fokker-Planck operator given in Eq. (2.5.9) about
F, = Fy(v)G(v), we have
F(v) = Fo(v)G(v) + 6F,
8F = Fo(v)h(v).
Then

C(F, + 6F) — C(F,) = Cp(h(v)) = —65,  (2.5.13)
with
Culhlo)) = [ 0030 22

X [Fo(v)G(v)Fo;(v')h;(v') + Foj(v')G;(v') Fo(v)h(v)]

me OV m; OV’

s in= b O n1g” — g8
=/d v Z m_:5; : (Fo(v)Foj(”) g® ) (2.5.14)
hi(v') 8 G (v) Bh;(v")
. (Ta—vGe(v) - m; ov!

p Gl Ohle) helv) B (1)),

M, ov m; Ov'

We note that over most of the phase space the solution for the elecron

distribution
Cip((he(v)) = —6S (2.5.15)
will be the form
one 6T, [ mv> 3)
he = - =, 2.5.16
)=+ 7 ( oT 2 ( )
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where én, = én; = én with én, and 6T, = 6T with 8T are defined in
Eq. (2.5.11). We find that for the ion term we can have h;(v) as any ar-
bitrary function since only the zeroth-order moment of h;(v) couples into
the problem as the electron-ion energy exchange in the collision operator
is negligible. This solution fails near the separatrix where h;(v) vanishes.
Nonetheless, Eq. (2.5.16) is suitable for determining moments, as the devi-
ation of the solution near the separatrix only introduces an exponentially
small error if & >> 1. For similar reasons, we can set 0G(v)/0v' =0 and
G(v) = 1, in the last two terms in the large parenttheses of Eq. (2.5.14).
The function G(v) in the second term in the parenttheses is 1 nearly
everwhere except near the separatrix. As G(v) is equal to zero on the
separatrix this term does not directly produce particle flux. when G(v)
is replaced by unit&, there is direct particle flux from this term, but it
can be easily shown to be small by a factor 1/<i> compared to the direct.
flux of the third term. Hence to the order 1/® we can replace G(v) by

unity in the second term. In the first term, we can replace h(v') by

én 8T (m.v'? 3
h(v') = — —( < _ —). 2.5.17
V)=+7\ %5 32 o )

The first term in the last set of the large parentheses of Eq. (2.5.14) then
becomes (notice that the §T term in the eletron contribution vanishes to
the leading order, as v> ~ ®/m, > v'2 = T/m,, g ~ v),

6n/ 3 b; 0O W Ig?—gg 0G.(v) én
— | d 2 __F Fi . . . = —-——5 ,
ng v ; m; Ov 0(v)Fo; (v') g3 meOv ng (v)
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where we used Eq. (2.5.9) to obtain the right-hand side. We thereby find

én

Cip(h) = Ci(h) = —S.o(v) = =55, (2.5.19)

where C,(h) is given in Eq. (2.3.5) and is the linearized Fokker-planck op-
erator we are interested in for the wave problem. Comparing Eq. (2.5.19)

and Eq. (2.5.3) shows that

5
5.0 ().

g

65 = Swave + (2.5.20)

Observe that the equation and boundary conditions for h are identi-
cal to that for g, if Syave is given by Eq. (2.5.3), and hence h = g,.
Now we find the expression for the source term. Combining Egs. (2.5.20)

and (2.5.12), and, using T(8v,/0T) = ®v,[1 + o(1/®)] and Eq. (2.3.23),

we have
VP(STL—!- /Swave
(2.5.21)
6T 1
—‘l‘/:?‘no = /d3 (m_zi-swave - Swave) + O(T)
T ¢ 3T o
Then, using Egs. (2.5.3) and (2.5.-16) for h(v) we find
up5n+n0-§’—¢up i, (6n + noS1)
6T v, ng [ 6T
?gno = 1{), [ én — ngS; + "5-(? + 52)} (2.5.22)
(3]
X 1+0 - .
¢
Solving for én and §T we have
én —Qa(Q, +3vp) — 1820, 0, + 19S50,
o | ~(Qa +1vp)2 + 192,00, (2.5.23)
6T i, [vp 519 4 i52(Q0 + ivp)]
T = .

(Qa + ivp)% +1020,0,




SR IR e T s

50
The distribution, which we are interested in, g, for the anchor re-

sponse is

L eA [ <mev2 3) én 6T (mevz 3)}
Y= S, +S A DI Ll —2) 1. (2.5.24
Jo =W |24 S\ o —3 )t ot o T2/ )

Combining Egs. (2.5.23) and (2.5.24) we have

wpeAYpw)
9o = T
. ~ MV
Sl(ﬂa + ’I.I/p) + @SQQG + ( 2T
(R +ivp)2 +id20,0,

2

3 - 3
_ 5)[52@@ +0,2% +4v,) + 5,0, 9]

(2.5.25)
Comparing Eq. (2.5.25) with Eq. (2.4.20) determines the two additional
relations

Aig = ip[S1(Qg + 1vp) + 520,8)/U

' : (2.5.26&)
)\ga = iUp[Sg(Qa -+ il/p -+ QE_QZ) -+ Slﬂa<I>]/U,
where
U= (R +ivy)? + ir,0, 8%
Adding Eq. (2.4.22)
QcJVc)‘lc + ZQaNa)‘la =0
(2.5.266)

2 -
chwcq)}‘lc + NCQCAZC + 2Na.Qa)‘2a. =0
to Eq. (2.5.26a), we have a complete set of equations for A coefficients.
We can rewrite Eq. (2.5.26) in the following way
A1eX + Aoy = —(a1@Q + 1b1)

| (2.5.27)
Ach + A2CX - _(a'2Q + T]bg),
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with

X = 2iNoQuvp (R + i) + NeQec[(Qa + iv,) + 18%0,0,],

Y = 202N, 0,9,

Z = 2, N, Q2% + 2N.0.3[(Q, + iv,)? +i®%,0,]/3

Q=w/w.—1+1d,

a; = —=2tN,Q,vp (g + 1vp)

ay = —2iN, 0,02, %

by = 2N, Q128

by = 2iN, Qv (g + 1vp).

Now solving for A,., and using —N.Q.A;. = 2N, 0, A;,, which is the

quantity explicitly needed in the functional disperional relétion; we find
2N Qo A1, = —2iv, N, N.Q,QUV/(X? - Y Z), (2.5.28)

where

V= (w/w] =14 1%.)[2i,NoQy + NQ(Qy + 50,)] + inQer, N &
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II.5.2 Case 2: Anchor Cells with Arbitrary Length

Now, the distribution of the passing particles has to be evaluated
explicitly. In order to do so, it is assumed that the characteristic electron
collision frequency is larger than the typical mode frequency and then the
distribution function for the trapped particles can still be described by
Eq. (2.4.16). By the similar érguments, one can express the distribution

of passing particles as the following

eApw! e 3 elw —w))
hy = ——= A1, + Aop(= — =) + ———=29], 2.5.2
b= SR Dy 4 A - 5) + Sy (2:5.29)

where € = m.v?/2 + e®(s) with &(s) being the equilibrium potential
which the passing particles experience. The last term is introduced for
mathematical convenience. Actually, the final result is independent of
the form of the term.

In order to evaluate the collisional effects in this situation, there are
two more parameters A, and Az, which have to be determined.

As we take the zeroth moment and energy moment, Eq. (2.4.18)
remains correct if the number of the passing particles is assumed to occupy
a small population of the total particles.

For the scattering from the anchor cells to the central cell, the process

is very similar to that in the case 1. At the separatrix, we have
hp = haluyea- (2.5.30)
Exactly following the procedure in the case 1, we find

Ao = ip[S1(Qe +ivp) + 520,8)/U (2.5.31a)
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and
Aaa = 105 [S2(Qa + tvp + N, 8%) + 5:0,8]/U, (2.5.31b)
where
U= (Qq+ i) +i,0,8
S1=Aip— Appd® — — +1—1nd,
we
Sy = Agp + 7.

-i?or the scattering from the central region to the anchor regions, the
situation is different. It is considered that the electrons in the /central
cell are trapped mainly by the magnetic trapping. The scattering coeffi-
cientsvdue to electron-electron and electron-ion collisions were calculated
in Sec. 11.3.3. Now, we try to construct two more equations for the un-
known parameters Ay, and Ag,.

The collisional operator is the same as Eq. (2.5.14). However, the
distributioin of particles shows slightly different features from that in

Pastukhov problem. We assume the total distribution has the following

form
; F(v)=F,+ §F
' (2.5.32)
= F.G(v)+ F.h(v),
where
1 §<6porf>m—-20
G = G(0) = 0 0 2.5.33
(v) (%) {0 otherwise ( )

The last three terms in Eq. (2.5.14) can be similarly evaluated as in

Sec.I.5.1. The first term has to be treated differently. We have perturbed
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distributions for ions and electrons
én N 5T(me'u’2 3)

én

(2.5.34)
Mo )

The heating effects on ions have been neglected. Substituting Eq. (2.5.34)
into Eq. (2.5.14) yields

bn 6T 0D |
C h = - Swave —SED T
i (B(0)) = ~[Sume + = Sual0) + -

D_lse_e('u)]
* (2.5.35)
= =68,
where S¢, has been defined in Eq. (2.5.18) and D is defined in Sec.I.3.

The following calculation has been employed to obtain Eq. (2.5.35)

Ig? —
/d3v' be iF'oe('v)FO,,,('e)')—-g—g—g-iG(v)

Me Ov g3 ov
D, 1 &8 , 08 (2.5.36)
=t — sin §—
v2 sin 6 00 S 69F0(U)G(0)
=85c_e(v).

Plugging Eq. (2.5.35) into Eq. (2.5.12) and using the scattering coeffi-

cients evaluated in Sec.II.3.3, we find

én 1, 5

Ve . 3 3
o = 'Ec'-[/\lp(EVEze—e — VEe—e — ?’ - 7'Qc) - AZP(EVEe—-e - '"Vp)]
6T AP .
? = _RE—_[AZP(VP bt ZQC) - }‘lpVE])
(2.5.37)
where

Vp = Ve—e + Ve

VE = VEe—e + VEe—:

. 1,
R.= —vpvge_e + vpvp + 'Z_VPVE"’e—e —wpfle + 10 VEe_e + 57,0,:1/5

5 . 3 3
— EZQCVEze—e — Qg + '2"VPVE - EVEVEe—e-
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where Ve_e, Ve—i, VEe—e, VEe-; and vg2._, are defined and calculated
through Eq. (2.3.16) to Eq. (2.3.21). As that in case 1, we can express g.

as the following

eAYw? | mv? 3
=1 A - = dels 2.5.38
T Dy + dap (o = 2) 4 3] (25.38)

gec =

where g. = 0 at the separatrix. Noting that §. is identical with h. in

Eq. (2.5.34), we have from comparing with Eq. (2.4.16b)

18, 5 VE .
/\lc — Alp -+ R_C[Alp(EVE7e—e — VEBe—e — —7T — ZQC)

3 3

- A2;:(;2'1/1‘7(3—«: -
Aze = Azp + & Pep(vp = i) = Aypvp]
QN Are + 20, Nhy, = 0 (2.5.39)
2 -
chwcéAlc + Ncnc)‘2c + 2Na.ﬂa)\20, =0
Ao =10, [81(Q + i) + 520,8)/U
Aoq = 1, [S2(Qy + iv, + N, 82) + 5,0,8]/U.

where S; and S5 is defined in Eq. (2.5.31) instead of Eq. (2.5.3) as
in the case 1. However, it is now explicit that in low frequency limit
{lc < R. Eq. (2.5.39) reduces to Eq. (2.5.26).

In our numerical work, we will compare the collisional effects given
by Egs. (2.5.26) and (2.5.39). The results shown in Fig. 3.18. illusirate a

relatively small quantitative difference for the cases I and II.
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II.6 Summary

The quadratic variational form, which is suitable to study the instabil-
ities in tandem mirrors, have been derived. Various physical effects are
included in the relé,tively compact variational form. Particularly, the col-
lision term is evaluated analytically. In the next chapter, we will use it to
achieve a simplified dispersion relation and study two important instabil-
ity modes: flute mode and trapped particle mode. We will find that the

two modes are just two branches of the dispersion relation.




Chapter III. Investigation of Instabilities

III.1. Introduction

In this chapter Wé utilize the dispersion relation obtained in the last
chapter to investigate two major instabilities in the tandem mirrors: flute
modes and trapped particle modes.

It should be noticed that the features of those two modes described
by the dispersion relation are not as distinguishable as their terminology
suggests. Literally, the typical trapped particle modes are supposed to
appear only in the central cell where the maénetic field curvature is not
favorable, while the flute modes to spread along the total machine. But,
when studying the dispersion relation one finds out that though those
two modes belong to different branches of solutions of the dispersion their
features are often mixed together.

To compare our theory with 'several previous theories, we pay extra
attention to examining the limiting situation where the parameters are
taken maximum or minimum values (sometimes artificially). For instance,
when assuming the contribution of the passing particles are high the in-
stability modes obtained by solving the dispersion relation must be flute
modes since the passing particles carry the all perturbation throughout
the magnetic field line. Whereas, when the magnetic and electrostatic
plugs aré too effective the trapped particle modes are obtained. After

studying these situations, we slowly vary all the parameters until they

57
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approach the realistic values. Since the modes are continous in the pa-
rameter space we are able to name those mode branches in terms of the
behaviors at the limiting situations. In this way, we not only explicitly
obtain the solution branches but also gain more insight about the mode

origins.

The parameters used in this dissertation are based on data collected
in the TMX-U experimental machine. We use them to do our numerical
investigations and do not see, in principle, difficulties to apply the method
to the similar machines though some minor modification seems inevitable.
Due to some experimental uncertainties, some parameters are not as well-
defined as others. As a remedy of those kinds of deficiency, we take a
“scan”of the variables in a reasonable range to make sure there are no

major physical effects being omitted.

The flute modes were not the major subject of this research. How-
ever, it turns out that the parallel research of the flute mode is very
important. The flute modes are one very possible candidate to explain
the instabilities which are o‘bserved in TMX-U device. To some extent,
it seemingly gives even better predictions on the mode fre.quency and in-
stability threshold. Furthermore, the trapped particle modes have some
similarities and dissimilarities compared with the flute modes. It is hoped
that by comparing them analytically and numerically one can pinpoint
the instability origin of the observed modes or even achieve some ideas .

to suppress the instabilities. When studying the trapped particle modes,
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we also compare our results with those the previous collisionless theory
and collisional theory. The ion Landau-dampling terms derived by Berk
et al®® is also considered in order to extract more accurate and more
physical conclusions. The derivation was basicly conducted in the short
wavelength limit, but the applicabability to the long-wavelength sitation

is manifested in the discussion.

II1.2. Experimental Devices and Observations

The TMX-U device in Lawrence Livermore National Laboratory has
been built with the basic tandem mirror magnetic structure and can run
with the electrostatic plug on or off. The equilibrium electric and mag-
netic configuration and various heating schemes are shown in Fig. 3.1 (as
a comparison another tandem mirfor structure in TARA is also shown in
Fig. 3.2).

The device parameters in the central cell and anchor cells are listed
in Table I. Note that when the central cell heating (ICH or Neutral Beam
Heating) is on the ion distribution is more nonisotropic and the plasma
length of the central cell will be longer which both have effects on the
other parameters. We will use the data to calculate the parameters in

the dispersion relation.
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Magnetic
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B(KV) |

Fig. 3.1. Magnetic field, density and potential profiles projected to

be achieved in TMX-U.
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Fig. 3.2. Magnetic configuration and heating arrangement in TARA.
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Table I. Typical TMX-U Parameters

" Central — cell

Magnetic field, B.(T) | 0.3

Limiter radius, 7z (m) 0.24
On-axis potential, ¢o(KV) 1.0

Perpendicular ion temperature,’ T,; (KeV) 0.1 to 1.0

Plasma length,! L.(m) 5.0 to 2.5
Pressure Gaussian radius, 7,(m) | 0.128
Central-cell density, n.(m™?) 1018

'End — cellanchor

Magnetic field, B,(T) | - 05
Hot-electron length, Lh(m) - 1.0
Hot-electron Gaussian radius, rp.(m) 0.2
Anchor vacuum curvature,x/r(m™?) 0.5
Hot-electron energy, E(KeV) | 1300
Hot-electron density, ns.(m™3) 1 x 107
Hot-electron diamagnetism, M4 (A-m) . 2 x 103
Sloshing-ion length, L,;(m) 2

Sloshing-ion Gaussian radius, r;(m) 0.12
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Sloshing-ion energy, E,;(KeV) 3.5
Sloshing-ion density, n,;(m™?) 107

Total midplane electron density, ny (m~2)  10'®

"Without central-cell heating, the temperature is lower and the

ions are more isotropic; therefore, the length is longer.
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Several heating schemes can be on or off depending on experimental
contexts. As one purpose, the ion heating in the central cell is to prevent
too many ions to fill the thermal barrier. In the anchor cells, there are
two Electron Cyclotron Heating frequencies, one is w. and another 2w,,.
- The heating serves dual purposes: the diamagnetic current created by hot
electrons may provide essential stabilization and higher electron tempera-
ture can lower the density requirement in the anchor regions. And, there
are “sloshing” ions injected into the anchor cells which are hopefully to
obtain the “thermal barrier operation”‘.

Fig. 3.3a shows an example of the effect of the observed modes on
central-cell density buildup following plugging,‘ when sloshing beams are
turned on. The increase in the line-average density is abruptly terminated
at 27.5ms. Fig. 3.3b shows the density on an expanded time scale with
the on-axis microwave interferometer and 13cm radially offset interferom-
eter. Note the presence of the low-frequency oscillations, especially in the
off-axis interferometer. Also note that when the density buildup is ter-
minated, the two line-integral measurements are nearly equal, indicating
a broad radial profile that suggests large radial transport.

In Fig. 3.4, it is shown that the hot electron ring seemingly tends to
be pushed out of the axis of the machine, which lowers the effecj:iveness
of stabilization.

Fig. 3.5 shows the similar oscillation occurs in the TARA machine.

Note that the mode frequency is close to that in TMX-TU.




65

e B e e e
—~ L (a) ]
@ Line density drop
§ - at27.5ms 1
o - Density .
g | bulldup ICH off
<c® 1 Gas off |
> |
7] NBl 7
o
[«
(o]
'R
£
Q
N
°
<=.
>
@
o
[«1]
o

Time, t (ms)

Fig. 3.3. (a) Microwave-measured, central-cell line-averaged density
as a function of time. (b) Expanded time scale of the central-cel] line-

averaged density for interferometer channels at » = 0 and r = 13cm.
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(a) (b)
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- Fig. 3.4. (a) Measurement of hot-electron scrape-off contours. (b)

Magnetic curvature drift surfaces in the anchor region.
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Fig. 3.5. Density fluctuation in unstable situations of TARA opera-

tion.
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IT1I.3 Preliminaries for Numerical Studies

In this section we evaluate quantities in the dispersion relation Eq. (2.5.21)
based on TMX-U data. However, for simplicity of the analysis, we use

the tandem mirror model configuration shown in Fig. 3.6.

A. Profile of the Equilibrium

A common model that is used to describe the equilibrium of a
system is to employ a Gaussian profile for the density n;(r) and pressure
pj(r). The potential is asssumed to yield a uniform electrostatic field

toward to the wall of the machine. Thus, one has

a
n; = noj(s)exp(— 2)
Bo’f'p

Pi = noj(s)T; exp(— ) (3.3.1)

),

BQT’%
2a

d = dy(1 —
0( B(ﬂ'%

where a is defined as the magnetic flux with a factor 27 and rj, is the lim-
iter radius. The evaluation for the parameter r, according the Gaussian
model can be related to the customary parabolic profile used by TMX-U

experimentalists as follows

/ﬂ:@ﬂ

47"L

[S10)

Tp = —TL
Pg

= 0.53r, = 0.128m. (3.3.2)

Tp = 1
i 3(2m)z

Then, according to the model used here, the density at the edge of

the limiter is
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Fig. 3.6. Axial variation of magnetic field, ambipolar potential, and

electric field rotational frequency about the midplane of a model tandem

mirror configuration.
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) = 0.17n,,

n =ng exp(—

2(0.53)2

which is reasonably consistent with the measurement.

B. E x B Rotation Frequency

An important instability driving force in our study is F x B drift.

According to the model for the radial profile of the potential Eq. (3.3.3),

we have the following drift frequency for the equilibrium
1 0% 2%,

W = — —— = —

Br 6r Br%’

(3.3.3)

where ®, is the ambipolar potential of the axial line in the machine. For

B =0.37,r; = 0.2dm and®y = 1KV as given in Table I, we have

wp = 1.15 x 10°®(KV)s ! = 1.15 x 10°s™! = 27 x 18K H z.

C. End-cell Hot-electron Grad-B Rotation Fréquency

The effective curvature in the end cells has to take into account
. of the contribution from the hot electrons. From Table. I we find that
k/r = 0.5m~?! for the TMX-U anchors. Then the grad-B drift rotation

frequency is

(3.3.4)

Wy = .
27 wCEOT

For 300K eV electrons, typical of TMX-U, v =1+ E/511 = 1.6 so that

we =26 x10°s7! =27 x 42K Hz.
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This frequency is several times higher than the observed instability fre-
quency, which means, in the standard mentioned in the last chapter, the
hot electrons are decoupled from the core plasma and justifies our treat-
ment in which the hot electron ring is seen as a rigid non-interactive

diamagnetic current.

D. Diamagnetic Drift Frequency

The ion diamagnetic drift frequency in Eq. (2.5.23b) can be calcu-
lated in the two different situations shown in Table I. In the first example
when the central cell is isotropic (L. = 5m) and not heated (T., 0.1KeV),

we have

TcJ_ _
7 =
P

3.8x 10% ' =27 x 6K Hz.

w; = 1.85

T
In the second example with central-cell heating (L, = 2.5m and T., =

1KeV), we have

T.
wr = 0.8 =%

; 55 = 16x 10°s7! = 27 x 26K H z.
el '

E. Charge Uncovering Term

The charge uncovering term is approximately given by:

B

- —n, L

oo d ; ; 1_ 27,2 Npiip
Oh = (/ BZ T;Tr; ) On= "7 = n;T;L,; B,
—oo Tp a; nch+2Z]‘#—_J'i

T.B2

where the summation is over the species j in the anchors and a; is the

central-cell ion gyro-radius, a; = 0.014T2m with T, in KeV. Using the
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typical TMX-U values from Table I, we find that when ions in the central

cell are isotropic and L. = 5m,

2

AQ = ———.
Q T. + 0.1

When the central-cell heatng results in a nonisotropic ion distribution

and L, = 2.5m,
4

AQ = ——.
? T.+0.2

F. Eigenvalue m*

The eigenvalue m* has been evaluated by B. et al.5° In Fig. 3.7, we

_show their results. In TMX-U, we have

P2 0.242
_— = p— 3.5
7"12J 0.1282

Then we find that m* = 2,6, and 10 for tha azimuthal modes m = 1,2,

and 3.

G. MHD Drive I .

The MHD drive I‘LIHD is defined

* ds nym;\
1 — A -2 <2
PMHD = </;°° ﬁ BT; > (7(: + ’Ya,)’
which has been calculated with the TEBACO code®! to obtain

0.63 x 10%'a.[,. — 1.26 x 103185 5(1 + Bsijjo/BsiLo)

rio_ = ,
MHD Ne ’
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Fig. 3.7. Theoretical eigenvalue m* as a function of ri/rﬁ. This

ﬁgure is from Ref. 50, but have been renormalized to the units of this

work.
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where a., a measure of the cetral-cell isotropy, is 1.0 for an isotropic
central-cell plasma and 0.2 for a highly nonisotropic central-cell plasma.

Following the calculation in Ref. 31, we find

Mgy

Pl = 10" x [2.8a,T. — 13.2=2(1 + 2.5 x 107%M )],

e

where M 4 is hot electron diamagnetism.

II1.4 Numerical Studies of Instabilities

II1.4.1 Review of Instability Branches

Before we start with the numerical investigation of the two major
instabilities, it is useful to review the dispersion relation and find the so-
lution branches. By identifying their branches and studying their typical
behaviors, we can better understand our numerical results.

The quadratic dispersion relation obtained in the last chapter is
—Q(w) = Ry + Sy + W AY?, (3.4.1)

Where.R,S and W are defined there.
By taking the variations in Eq. (3.4.1) with respect to ¢, and 9., we

obtain two equations
(R+ W)y, — W, =0

and

~Wpe + (S + W)pa = 0.
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These equations lead to the dispertion relation
RS+ W(R+ S)=0. (3.4.2)
The equation (3.4) implies that the eigenfunctions 1, and 1. satisfy

Yo R+W W

= =T (3.4.3)

(1) If [W]| > |R|,|S|, then the dispertion relation Eq. (3.4) reduces

to the following form

R+5=0. (3.4.5)

This mode is to lowest order independent of the collision properties and
gives the usual MHD predictions for the flute interchange modes. The
finite W, which contains the contributions from passing particles, colli-

sional effects and ion Landau-damping, will yield the following correction
- 0 —1
5w::R50V5—(R4-5» : (3.4.6)
w

where the differential is taken at w = wo which is solution of Eq. (3.4.5).

It is clear that when the valus of W is large the ratio

R
—

s|s
3] 13}

holds true, which is typical behavior of the flute mode.
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(2) If |S| > |R|, then the dispersion Eq. (3.4.2) becomes another
form

R+W =0. (3.4.7)

According Eq. (3.4.3), the mode eigenfunction satisfies

which gives a typical trapped particle mode having perturbations basicly
inside the central cell where the curvature is unfavorable.

.The finite § yields a correction which can be analytically expressed

as follows
S ow
bw = —ﬁi—,- ~ —(R—) 1, (3.4.8)
oW Ow
RS
Ow

which can be used to check the numerical results.
In certain situations, when the value of |R| is relatively small, Eq. (3.4.7)

can be further simplified to

W =0

without introducing a large error. Then, the solution can be analytically
obtained in several limits. For instance, when v, > $2(),, we have a

collision term as

- 2NaQa.)‘1a -
2N NN, Q, [(w — w! + 0@ w?)(w — (wg)) + Qenuw’dN,/N]  (3.4.9)
Nj(w — (wg))? + 482N Q. N,Q,/(3N?)w? '
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Combining it with the expressiom of W in Eq. (2.5.22), we have four

roots for the dispersion relation

W = WEga, w = wgc

and

w=(wp) + 5(Wene 7 + 2055 +nPw; )
N N - ,N.—2N

+ [(wio== + 2w},  — + ndw’— )2 3.4.10
[(wenc N + wenc N TI we N ) ( )
8NCN¢1 * I 1

— Ty e ®(wpa — wg)]?

One observes that there is instability if
8N.N, .., N N - ,N.— 2N,

).
(3.4.11)

N2 nweé(wEa - wE'C) > (w:nc# + 2W:nc—_a + n@w:

Thus in the limit of very high electron collisional frequency one can
obtain an instability through the conbination of temperature gradient,
axial variation of the E x B drift and the potential variation along the

field line. Those modes were reported in Ref. 52.
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II1.4.2 Investigation of Flute Modes

As analyzed in the last section, when the absolute value of W is
relatively large, there is a mode whose perturbation spreads along the
whole field line, which is typical behavior of the flute modes. Since the
study of the flute modes in context of this dissertation serves basicly a
comparison with the trapped article modes, we take the rather simple
approach to assume large |W| and R+ S = 0 to study the mode features.

Thus we have dispersion relation as the following
(14+m*)0% + [2wp + w] (AQ —m*)] + T} np + w2 =0, (3.4.12)

where wg is assumed to take the same value in the central cell and anchor
cells and ) = w — mwg. The other parameters were defined in the last

section. Eq. (3.4.12) is an algebraic quadratic equation which has solution

mm*wg mw!(AQ — m*) N m
w = -
1+ m* 2(1+ m*) 1+m*
[m*w% -~ wpw!(AQ —m™) (3.4.13)
(wi)? . . 3
= (8@ = m) 4 (L4 m )T ]
When the value in [ ] is bigger than zero, there is instablity arising. Omne

can observe taht the £ x B drift and the unfavorable curvature in the
central cell are definitely instability driving forces. The charge uncovering
terms, which are proportional to the (AQ — m*), usually provide the

stabilization.
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The instability region can be described by the equation -

(wi)®

(AQ —m*)* + (1 4+ m*)T},yp =0,
(3.4.14)

m*wy —wpw! (AQ — m*) —

which gives a curve in the parameter space.

In Fig. 3.8 and 3.9, corresponding isotrbpic ions and nonisotropic
ions in the central cell respectively, we plot curves to show the stable
region and unstable region in terms éf temperature of the central-cell
lons and the potential along the axis of the machine. In Fig. 3.9, it is
obvious that higher E x B drift (proportional to the axis potential) or
higher ion heating in the central cell will trigger the instability. There
are two curves to correspond m = 1 modes, one is to assume that the
diamagnetic current inside plasma is formed by hot electrons so that the
system becomes more stable and one is to assume that the hot electron
ring is pushed from inside to the scrape off contours showﬁ in Fig. 3.4 so
the stabilizing effect is minimum. The real situation might be somewhere
between those two curves and observations in TMX-U appear to be in
this region (see the shadowed squre in Fig. 3.9).

In Fig. 3.10 and 3.11, we give the pictures to show more effects of hot
electrons. There are two curves to present the change of the threshold
due to the different situatic;ns. All the curves are p.loted intermsofm =1
modes. The curve 1 describe the threshold under assumptions that the
hot electron density is 10'7m =3 which is about 10% of the total electron

population and that the hot electron ring enhances the effective curvature
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of the anchor cell. Without any hot electrons, as the curve 2 shows, the
system will be all unstable when the E x B drift exceeds a certain level
(axis potential &5 > 0.9kV), which will be interesting if experiments
can confirm that. The curve in Fig. 3.11 shows the change of the real
frequency of the modes according to hot-electron population. The figure
is drawn in such a way that if the solution curve split into two branches
the system has two stable modes; if the two branches merge together one
of them is a growing mode (v > 0). It is observed that the hot electrons
stabilize the system and the predicted mode frequency is little above the

observed frequency.

Similar picture in Fig. 3.12 shows the effects of the central cell ion
temperature and value of the ambipolar potential on the modes. The
real mode frequency is seemingly not very sensitive to those parameters,
though the system is much easy to be unstable when the two destabilizing

factors are up.

Since the parameter m* is determined by the machine geometry as
well as the operation condition (profile), we allow them to have a small
variation. The results are shown in Fig. 3.13 and 3.14. The decrease of the
value m*, which means that the plasma has deeper density gradient, will
destabilize the system. In Fig. 3.14, we try to séueeZe more information
in one figure. However, it shows the small m* gives better frequency .

prediction.

SCVCI‘&I conclusions are:
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1) The mode frequency of the flute instability obtained by this ap-
proach is about the upper limit of the observed one.

2) The stabﬂity threshold is predicted higher than that in the TMX-U
experiments if the hot electron enhancement of the anchor-cell curvature
is present. If the pressure gradient of the hot electrons is not signiﬁéant,
which may be possible, the stability condition is close to the observation.

3) Destabilizing effects of the central-cell heating and E x B drift are
confirmed.

4) Higher frequency and higher m-modes detected in the experiments

are also predicted.
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Fig. 3.8. Flute instability threshold as a function of central-cell per-

penticalar ion temperature and potential for azimuthal modes m = 1,2,

and 3, when ions are considered isotropic.
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Fig. 3.9. Flute instability threshold as a function of central-cell per-

penticalar ion temperature and potential for azimuthal modes m = 1.2,

and 3, when ions are considered nonisotropic (e, = 0.2).
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Fig. 3.10. Flute instability threshold as a function of different hot-

electron density (Ny = ny/nc).
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Fig. 3.11. Real frequency as a function of Nj. As two curves merge

together, the system goes to instability.
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Fig. 3.12. Real frequency as a function of T.y.
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II1.4.3 Trapped Particle Instability

We start our numerical analysis on the trapped particle modes at the
collisionless and rotationless limits. To find the mode branches, we first
set |S| — oo and achieve the mode branch whose eigenfunctions have the
typical features of the trapped particle modes |¢,/%.] = 0. Then, the
value of |S| is slowly lowered down to the realistic one. In such a way, we
try not to mix the trapped particle modes with the flute modes.

It turns out there are two branches of the trapped particle modes,

which are shown in Figs. 3.15 and 3.16, where

f nipassingdS/B2
/ ntotald's/-B2

Nipassing = (3415)

In light of their behavior under the collisions, they can be recongnized as
the negative-energy wave and the positive-energy wave as those in Ref. 33.
At the collisionless and rotationless limit, the imaginary parts of the two
modes are symmetric: one grows at the same rate as another damps.
When we put collision effects into account, the two modes respond
differently. In Fig. 3.17, for the positive-energy mode, the growth rate
goes down when the collision coefficient increases. While the growth rate
goes up sharply when the collisional effect is introduced in Fig. 3.18.
However, after the coefficient reaches near its realistic value fhe growth
rate falls down slowly, which means there is too much dissipation for the

mode.
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On the other hand, in Figs. 3.15 and 17, we observe that the two
modes can be stabilized when the population of the passing ions is in-
creasing. The figure particularly shows that when the passing ions are less
than a certain level (5%-6%), the plasma is susceptible to fast-gfowing

trapped particle modes, which was reported in Ref. 32.

As another feature, the perturbation is not limited in the central
cell, because the passing particls carry the perturbed information along
the field line. It turns out that all the trapped particle modes discussed
in this section do not have isolated perturbations as long as the realistic

parameters are employed.

The numerical work also shows that, provided the population of the
passing particles are adequate, the two modes are both stable even when
moderate rotation is introduced (@, is less than 0.8KV), the modes can

still be stable.

Ion Landau-damping term is put into effects in Fig. 3.19. The results
are opposite to those of the collision effects in the nearby region (compare
to Fig. 3.17). It is suggested that if the collision term is reduced by
increasing the electron temperature in the central cell, those two effects
can be approximately canceled each other and the system may stabilized.
Compared Fig. 3.17 and 3.19, we expect that the electron temperature
should be raised by factor 3. In Fig. 3.20, we show that the trapped
particle modes will be unstable, when the E x B drift goes higher (about

half of the observed value).
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Now we investigate the behaviors of the trapped particle modes at
the situation that all the parameters in the dispersion take the values
observed. in the TMX-U experiments or calculated in Sec. II1.3 except
one that varies in a reasonable range. In such a way, we hope that the
results may be assessed more easily in experiments. In Fig. 3.21, with
increasing the E x B drift, which is marked by the potential &, along the
axis, the mode frequency becomes higher, the growth rate goes up and
ratio 1, /%. approaches to unity. The results show that the E x B drift
has rather strong destabilizing effects and that when the mode is strongly
destabilized the mode perturbation spreads into the anchor region as if it

is the flute mode.

In Fig. 3.22, we plot the effects of hot electrons on the mode. As
we did in examining the flute mode in the last section, we assume full
credit for stabilizing effects of hot electrons, suggesting that both curva-
ture enhancement and charge uncovering machenism are éonsidered. The
results show that the system is stabilized to a certain degree, though the
growth rate is still rather large. We have not shown that the system can

be completely stabilized merely by hot electrons according to this study.

In Fig. 3.23, we present the effects of the potential difference ® =
(2. — ®.)/T between the the central cell and anchor cells. When the
potential difference goes up, the growth rate of the mode is higher. In
Fig. 3.24, the central-cell heating increases the growth rate. In Fig. 3.25,

more collisions gives smaller growth rate. In Fig. 3.26, the bigger size of
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the machine gives a little impovement on the stability property.

Several conclusions are

1) Factors such as the better central-cell curvature and the hot elec-
tron ring, which stabilize the flute modes, also stabilize the trapped par-
ticle mode. The situation is similar for the destabilizing factors such as
the B x B drift. However, eflectiveness of the stabilizing factors is not
strong when allowance is made for non-flutelike perturbations.

2) In certain parameter regimes, where the plasma rotation is not
too strong, the effect of the collision term is opposite to that of the ion
Lanidau damping term which helps stabilize the system.

3) The trapped particle mode can be stabilized by reducing E x B
rotation by factor 2. However, the theory of this mode gives a pessimistic

prediction on stability feature of tandem mirrors.
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Fig. 3.15. Trapped-particle mode features as a function of the density
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Fig. 3.16. Trapped-particle mode features as a function of the density

Npassing of passing ions.
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Fig. 3.17. Features of one-dissipative trapped-particle mode (positive-

energy) as a function of the Pastukhov scattering coefficients v,.
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Fig. 3.18. Features of one dissipative trapped-particle mode (negative-Jj
energy) as a function of the Pastukhov scattering coefficients vp. The
curves I and II are the numerical solutions for short anchor cells and

arbitrary anchor cells (see Sec. 2.6.1 and 2.6.2) respectively.
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Fig. 3.19. Features of the trapped-particle mode as a function of the
jon Landau-damping term (The term is gradually introduced; as ¢ = 1.0,

full credit of the Landau damping term is considered).
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Fig. 3.20. Features of the trapped particle modes as a function of
‘the E x B drift. The system goes unstable when the axial potential

approaches 0.5KV (about half of the observed value).
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Fig. 3.21. Feature of the trapped-particle mode as a function of the
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Fig. 3.22. Feature of the trapped-particle mode as a function of
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Fig. 3.23. Feature of the trapped-particle mode as a function of the
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IT1.5 Summary

In this section we have investigated two major instabilities: the
trapped particle modes and the flute modes. they are likely to affect,
the confinement of the tandem mirrors. The results are summarized and
discussed as the follows. |

From the intuijtive points of view, one can expect some similarities
between those two modes. Factors like the unfavorable curvature in the
central cell and the E x B drift destabilize the flute mode as well as the
trapped particle mode, And, the hot electron current, when it acts like a

rigid noninteractive ring, provides stablizing effects on both the modes.

in the anchor regions may be slightly smaller. Those similarities Imay
S€Ive an explanation of the difficulty to distinguish the two modes in the
experiments.

| However, there is still some hope to make the things somewhat

clearer. Theoretically, as our numerical work Suggests, raising the po-
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mode and the experiments in TMX-U shows that the instability tends
to be strong as ambipolar potential goes higher, which seemingly already

confirm the interpretation. Unfortunate]y, the results are not so con-

with each other, so there is 2 possibility that some other factors affect
the stabilities.

The flute mode study in our work gives a more optimistic prediction
on the instability threshold while the trapped particle mode study gives a
pessimistic oﬁe. It appears that the instability persists in the region where
the flute mode is supposed to be suppresed by lowering the Ex B drift and

limiting the central-cell beta. The trapped particle mode theory, though

havingdifficulties 1o obtain exact onset of the instability, may serve a




Chapter IV. Conclusion

In this part of the disertation, we have construct a quadratic disper-
sion relation, in which various MHD and kinetic effects like ion diamag-
netism, electron diamagnetism, electron-electron electron-ion collisions,
ion Landau—damping, E x B drift and energetic particles are included and
treated in a systematic way. The numerical study in which we use the
formalism to investigate the two most likely instabilities in tandem mirror
machines produced many quantitative and qualitative results about the

two modes.

In Chapter II, we discussed the general formalism of the Variational

form and then we derive a concise form which is more suitable to discuss

the instability problem in tandem mirrors.

Particular attention has been paid to how to calculate the collision
term. Since the passing particles equilibriate, by collisions, the distribu-
tion of the trapped particles in both the cells, they are essentially related
to the collision term. After employing the Pastukhov solution, we were
able to evaluate the contribution from the passing particles as well as the
collision term. Other physi;:al effects like those of ambipolar potential
and hot energetic particles were also discussed since they have significant
impact on the stability properties of tandem mirrors. It is shown that
the collisional effect on the instability is not very semsitive to the length
of the anchor cells, althéugh the analysis for the short anchors is easier

acomplished.
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In Chapter III, we investigated two instabilities: flute mode and
trapped particle mode. The numerical work on the flute mode gives.

optimistic prediction on the system’s stabilities, while the work on the

trapped particle mode gives pessimistic one. In summary of those re-

sults, the trapped particle mode may serve explanation for the observed
instabilities. |

The investigation of the observed mode is by no means finished. In
particular, the explanation about why the trapped particle modes can be

stabilized in usual situations may provide the subject for future work.




Part B:
Scale Closure Scheme

In Alfven Wave Turbulence

Chapter V Introduction
It is generall& believed that the renormalized turbulence theories®3~ 58]
present a most promising way to deal with fluid as well as plasma turbu-
lences. The essence of these theories could be schematically expressed in

a simple equation54

EkQSk = (,‘Zk, (5110,)

or equivalently

lex®Ioel® = lex 211 = |4 |2, (5.1.1b)

where k = (k,w) is the wave four component vector, ¢, is the fluctu-
ating quantitiy whose spectrum I, = |éx|? we wish to obtain, € is the
renormalized propagator (response function, dielectric function in appro-
priate cases), and q;k is generally referred to ﬁs the incoherent source term.
Equation (5.1.1) is generally derived by splitting the nonliﬁea.r interaction
into two parts: the coherent part which modefies (renormalizes) the linear
propagatof to yield the nonlinear response function.e;, and the incoher-
ent part ¢, which accounts for the remainer. Equation (5.1.1) can be
viewed as representing a driven system with the incoherent source acting
as an external driver. One must however remember that this analog with

an external souce is essentially formal (barring some special cases where
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the turbulence may be externally driven) because the incoherent source
comes purely from the interaction of those very waves whose spectrum is
the object of concern.

The simplicity of Eq. (5.1.1) is quite superficial: both ex and ¢; are
functionals of the spectrum I; (and, in general, functionals of higher order
correlations). However, Eq. (5.1.1) does serve as a basis for congtruct—
ing an unending chain of equations in which an n-th order correlation
is determined in terms of higher order correlations. This feature is, of
course, common Witi’l the unnormalized theories.’?~° QOne of the pri-
mary tasks of turbulence theory is to propose a suitable closure scheme
to truncate this infinite set of equat'ions. For example, the assumption of -
quasi-normality®? has been often used to affect the closure in unrenormal-
ized fluid theories (These fluid theories suffer from overshoot problems,
and other theoretical difficulties, and were thus abandoned.).

A major advance in fluid turbulence was the Direct Interaction Ap-
proximation ** (DIA) initiated by Kraichman which led to an essentially
renormalized theory that contains the lowest nonlinear correction to the
linear response function. The treatment of the incoherent source (IS)
terms, however, was still a problem. In the DIA application to plasma
theory known as DIAC®? (coherent approximation to DIA), the incoher-
ent term is very conveniently set equal to zero. However, the validity of
such an assumption is questionable.

It seems clear that a proper understanding of turbulence theories will
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only come with a deeper undertanding of the incoherent source. At the
very least, one must make reasonable assumptions (to be verified a pos-
teriori) about the nature of the incoherent source, and develop a closure
scheme bésed on these assumptions. We must mention that the treat-
ment of the IS is a very active field of research, and several authors®! %2

have set up two-pbint correlation theries to handle the problem. This,

however, is a subject of much complexity, and our main interest here is

to propose a physically motivated simple closure schems which treats the

incoherent source adequately.

In the linear theory, the right-hand side of Eq. (5.1.1) goes to zero,

. giving rise to a point spectrum w = w(k) obtained as a solution of
ek?:ar = ef(iw = 0. The dielectric response function ei,w contains the

entire information about the linear modes. For nonlinear situations, the
right-hand side of Eq. (5.1.1), i.e., the incoherent source term, is not zefo
and could acquire an arbitrary magnitude as the mode amplitudes build
up. Setting qzk’w = 0 under such conditions (as is done in DIAC) is at best
a fairly poor approximation. This approximation further leads to the so
called nonlinear dispersion relation €y, = 0 which is then solved to obtain
complex w(k) giving the nonlinear growth or damping rates. There is still
a unique complex w for a given k. This approach is simply an extension
of the linear concepts, and is probably an adequate description only in
the transient state immediately following the linear state. By no means,

we could éafely extend this to describe fully developed turbulence where
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qzk,w is quite arbitrary, and the spectrum Iy, is to be determined for real
w and k; there being no growth or damping of modes in the steady-state
turbulence. For ful]yvdeveloped turbulence the equation €y ,, = 0 becomes
meaningless, because lqzk,w[ # 0 leads to singular amplitudes at the zeros
of ex,.,. The dielectric response function €k,., however, still contains a
wealth of information: linear as well as nonlinear coherent response of
the medium. It is now pertinent to ask what determines the detailed
nature of the wave spectrum Iy ,; is it the coherent nonlinear behavior
of the medium which sustains the waves? or is it the character of the
nonlinear source which is obtained by interminable scattering of waves
by one another? For several problems of physical interest, we are con-
cerned with determining the properties of the medium (plasma) in the
presence of. turbulence, for example, the anomalous electron transport
in a tokamak plasma which is supposed to be driven by low-frequency
microinstabilities. We now argue that if the turbulence were to strongly
affect the medium, i.e., to appreciably change €y, from its linear value,
then the turbulence (i.e., the turbulence spectrum) must also be strongly
affected by €x,,. Thus, in a steady state self-consistent interaction, the
properties of €y, and Iy, are strongly linked to each other. Under these
conditions the nonlinear source, though arbitrary in magnitude, will not
determine the detailed structure of Iy ,.,. We further note that in strong
turbulence the linear modes are broadened, and are constantly interacted

with each other. These constant interactions, when summed up to give
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the incoherent source terms, are expected to be quite flat in w and k.

The preceding considerations suggest that a non-perturbative ap-
proximation scheme based on a scale-separation hypothesis between €k, wl
and Iqi;k,w[ (comparatively structureless in w and k) could make a good
starting point for determining the spectrum of steady-state turbulence
in situations where we expect the medium properties to be strongly af-
fectéd by the turbulence. It is proposed that the fine structure of the
steady-state turbulence spectrum is controlled by the nonlinear response
function lex,w| alone; the incoherent source |q.7>k,w|, slowly varying in w
and k, determines only the magnitude of the turbulence level. Based on
those considerations, the incoherent contribution can be approximated by
a constant source term which characterizes the strength of the turbulence
itself and a numerically solvable closure scheme is developed. Detailed
discussion, in particular the analysis of the incoherent source terms, is

presented in Chapter VI.

To demonstrate the application of the theory to realistic problems,
we study in Chapter VII a simplified model of Alfven wave turbulence as a
test case. After deriving an appropriate .nonlinear wave equation, we em-
ploy .our closure scheme to calculate the Alfven wave spectrum. The nu-
merical results reveal interesting features of the renormalized turbulence
theories in general, and of the Alfven wave turbulenc in particular. The
k-spectrum for the Alfven wave turbulence is observed to obey a power -

law I ~ k™2, which is consistent with the results obtained by a theory
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based on renormalization group techniques'!. We also ﬁnd that the form
of the spectrum power law is almost independent of the strength of the
turbulence, dampling mechanism or system size. These observations are
basicly consistent with the experimental facts. The wave-broadening and
the frequency shift are explicitly evaluated and numerically confirmed.

Finally, we summarize our work in Chapter VIIL.




Chapter VI Scale Separation Closure

VI.1 Background of Renormalized Theory

In the Fourier space, one may describe a nonlinear wave system

(plasma or fluid) by the following equation®®

ehdr = Vi rdror, (6.1.1)

K
where k = (k,w) is four-component wave vector, Vk,k is the nonlinear
coupling coefficient and ei is the linear response function of the system,
@k is the fluctuating quantitiy whose spectrum is the major concern of
the turbulence theories.

The very essential part of the renormalized turbulence theories®—5%
is to separate the nonlinear terms into two parts: the coherent and the
incoherent. By a straightforward substitution Eq. (6.1.1) into itself, one

finds a nonlinear wave equation

(ei + Ci)di = exdi = . (6.1.2a)
where
Vi g Vg
Cr=-2). —f’—ke-um,]z (6.1.3)
o k—k

represents the coherent part of the nonlinear term, and renormalizes the
linear propagator ei to € = eﬁc + Ci. The propagator renormalization

takes care of the divergence problem which arises in the theories using
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the bare propagator efc. The incoherent source terms, symbolicly denoted

as qgk, are obtained from the relation

. 7
o) = Z Vi k' @k @k—k» — Coherent Part
kl

6.1.4)
Vi Vie—kr & (
= Z Vik b iy + 2 ), — L2k g, 12
k! P Sk—k!
Equation (6.1.2a) is now written in terms of the spectrum I
x|’ I = |47, | - (6.1.2b)

where all the terms are defined in Eqs. (6.1.3) and (6.1.4).

This procedure, which seems to be a simple rearrangement of the ini-.
tial nonlinear equation, implies a significant progress. Since the coherent
wave-broadenning factor has been added to the linear response function,
a particular wave in turbulences can no longer be regarded as an isolated
wave whose behavior depends solely on the equilibrium medium as a lin-

ear wave does. All the wave is now related and their dynamics becomes

~ coupled. The coupling gives a larger effective inertia for each wave with

the result that it becomes impossible to excite a particular wave to an ar-
bitrarily high amplitude. This contributes a physical explanation for the
removal of divergence by the wave-broadening factor (renormalization).
From Egs. (6.1.3) and (6.1.4), one sees that the coherent correction
C to the response function depends (to this order) only on the ﬁﬁctuatingv
spectrum |¢/|?, while the incoherent part (;-5,c is considerably more com-
plicated involving lots of unknown correlations between ¢y and ¢z_y.

To proceed further, one needs to understand the nature of ¢y.
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The DIAC theory, obviously motivated by the desire to solve the
problem, puts Iqskl = 0. A possible justification could be that for highly
dispersive media (as the plasmas are), the strong coupling condition in

one dimension (k = (0,0,k) )
w(ki) + w(ks) = w(ky + k2) (6.1.5)

is not likely to be satisfied, and therefore the interaction term ¢g/dp_x/
should be neglegible except for the coherent part. This argument is not
very convincing, and this procedﬁre is likely to lead to conceptual prob-
lems in the description of strong turbulence. The assumption lq;k| = 0 au-
tomatically leads to |ex| = 0, which is very much like the linear eigenvalue
problem. Although the dielectric now has a nonlinear correction, the so-
lution would still be an unique, albeit complex, w for a given k. Thus,
the waves grow or damp in the turbulence background, but the waves
do not interact incoherently with each other. A definite correspondence
between w and k really conflicts with the concept of mode-broadening
which should be one of the main features of a strong turbulence theory.

In fact, one finds that the incoherent wave-wave interaction is more
responsible for transporting energy from one mode to another mode than
the coherent interaction. In three dimensions, the quasilinear three wave

coupling condition

wiky) + w(ks) = w(k; + ko) - (6.1.6)
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can always be satisfied no matter what kind of dispersion relation the
wave might have. We further notice that even in one dimension, the four

wave interaction condition
w(k:) + w(ks) +‘w(k3~) = w(k; + ko + k3) | (6.1.7)

can also be satisfied easily as long as w can be negative as well as positive.
The contribution to IS term from this four-wave coupling process is given
by ¢i'@gr @i k' — gk which is precisely the same order as the coherent part.

It should be stressed that the preceding discussion is valid in the
quasilinear regime. For the fully developed turbulences, the waves are
broadened implying that the dispersion curves are not lines but bands
in the parameter space. This broadenning allows a larger number of
wave-interactions to contribute effectively to the incoherent source. The
measure of these wave-interactions should be much larger than the mea-
sure of wave-interactions contributingl to the C(;herent part. Thus we can
safely conclude that setting IS= 0 can not be justified for a turbulence
system.

We now try to motivate thé scale-separation or the band separation
argumeint to deal with the incoherent source. Based on the previous
arguments, the IS terms can be written as

- Z Vi, k' @k dk—p’ — coherent part

- (6.1.8)
~ Z Vik P bp—irs
k
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because the coherent terms really form a very small subset of all the
nonlinear terms. Since the IS is obtained by summing over the entire
spectrum range, a possible granular structure in the spectrum can not
yield similar structure in IS source. We expect that the structure of
the IS will be smeared out in k& (where k= k,w) particularly when the
spectrum is already broadened by nonlinear effects. The following process
will lead more smearing out. A typical turbulence spectrum is broad with
a width Ak around some k. Since Aw and Ak are generally large (in the
drift-wave turbulence, Aw ~ w®%), these neighboring waves of comparable
amplitude will generate a strong and wide low k& band. This low k band,
beating with any possible peak of the wave spectrum, will produce a
spreaded incoherent source terms.

Thus, we can expect that the spectrum of the incoherent source,
which is not observable though, would be quite flat in the vicinity of the
broadened nonlinear wave spectrum. This picture helps us to develop
an adequate approximation procedure to close the chain of equations

contained in Eq. (6.1.2), and achieve a relatively simpler set.
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V1.2 Closure Scheme

Within the context of the proceding discussion, we make the follow-
ing assumptions

(1) Microstructure of turbulence is mainly determined by the non-
linearly renormalized response function ¢, = ei + C. This assumption
is justified ‘a posterior’ by the results obtained in the approarches which
predict the details of the spectrum by analyzing the renormalized response
function only.

(2) The incoherent source term does not have a fine structure like €.
As a result, this term is approximated, to leading order, by a constant
which reflects the strength of the turbulence.

Making use of these assumptions, we rewrite Eq. (6.1.2) as
ek + Cil?|6k]? = |ex]* Ik = So, (6.2.1)

and the equation for the renormalizing factor as

Vit Vieerr b

Cr=Cr(I,Cr) = —2
k k‘.( k k) zk;fi_kr‘f‘ck—k'

|bx |2, (6.2.2)

which form a closed set.
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To obtain the spectrum of steady-state turbulence (I}), we must find
a way to solve Eq. (6.2.1) and (6.2.2) with the proviso that k£ = (k,w)
must be real. Thus the scale-separation argument has led us to a relatively
simple set of closed equations which describe steady-state turbulence.
Notice thaf efc and, Vi ;s contain all the infofmation about the medium
and the basic wave motion around which the turbulence is built. We
believe that the above formalism should be applicable to a broad range
of plasma and fluid phenomena.

Equations (6.2.1j and (6.2.2), though comparatively simple are still
too difficult to be solved analytically for the spectrum I;. However, a
numerical iteration procedure can be developed, which can be shown as

the following:

v = Chow
(6.2.3a)
£ = dout 0

(Cl((oi can be rather arbitrarily chosen as long as all the symmetries of

the system are satisfied)

So
l¢(1) l l (1) ‘2
Vi Vg
Cl(clu).: - 22 (0) |¢(1) |2
ek’ C
------ . (6.2.3b)
(n) 2 So
I¢k wl n
B 2,|2
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In the next chapter, we shall employ numerical method to solve the
problem of Alfven wave turbulence. Now we t@ke a digression to show
some aspects of the problem of plasma heating by' externally excited waves
which can be anélytically tackled within the framework developed in this

section.

V1.3 Plasma Turbulence Heating

In the initial stage, the wave heating®® (externally driven) of plasma

can be viewed as a linear problem. But as the amplitude of the excited

wave increases, nonlinear effects will become important, and the gen-

eration and interaction of wave modes could easily lead to a turbulent
situation. The situation is, of course, quite similar to the turbulent sys-
tem we have dealt with in this Chapter, but with the difference, that now
the source terms must contain the effects of the external source in addi-
tion to thé incoherent soure. The basic equation describing the spectrum

I = |¢x|? in this case is
lex? T = |65 + 6/, C(6.3.1)

where qg‘}:"t represents the incoherent effects of the external driving source.
The problem will reduce to the linear driven case if qi~>k =0, and ¢ = efc.
Clearly for large amplitude waves (high power heating), the character-
istics of the waves in the plasma are bound to be quite different from

its linear characteristics. Therefore to understand the mechanism as well

as efficiency of high power heating, we need to study the fully nonlinear
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system schematically represented by Eq. (6.3.1). As outlined earlier, our
attempt here is again to determine the struture of I, the range or band
in which it is significantly different from zero.

A very intergral part of our approximation is the scale separation
between the renormalized nonlinear response function €; and the inco-
herent source. We have given arguments to show that the source terms
are expected to satisfy several conditions. We believe that similar argu-
ments are valid even for qu"t, because the coherent aspects of the source
(which may have strong peaks in the linear limit) will become a part of
€r, and qu"'t due to multiple incoherent interactions will be quite broad
in k(k,w).

With this argument, we can achieve interesting and useful conse-
quences of our theory. For simplicity, we deal with an one-dimensional
problem, ie., k = (k,w) = [(0,0,k),w]. Schematically, the essence of

Eq. (6.2.1) is
So
kw =

= lﬁk’wlz 9y

(6.3.2)

where S5 is independent of k and w, and is nonzero. We could now proceed
formally and deduce that for a given k, the spectrum It ., will peak at
that value of w = wy for which €k, |? is minimum, i.e., the solution of

[%Iek,wlz} =0, (6.3.3)

w=wgq
for fixed k, determines the maximum value of the fluctuation spectrum.

It must, of course, be borne in mind that the analysis is meaningful only
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for real k and w, and we must admit only the real roots of Eq. (6.3.3).
Notice that |ex .| = 0 leading to complex w or k is not admissible, be-
cause it yields 1) Ix,, — oo since Sy # 0, and 2) the turbulence will be

nonstationary if w is complex. Using Eq. (6.3.3), we can write Eq. (6.3.2)

as )
So
I o= ATT (w wo)z’ (6.3.4)

where

1 d? -t

A% = [——Iﬁk IZJ €k wo |
2 I 1Wo

2 dw w—wg

and

. 1 d2 -

So =S - [’z‘c—l‘w—zlﬁk,wlz}w_w

0

Thus, to leading order, we obtain a lorentzian spectrum peaked at

w = wg, and with a width A. As expected, the general shape of the
épectrum is independent of Sg, although the peak value is I} ~ So/A.
We must, however, point out that Eq. (6.3.4) is purely formal, because

both wy and A are functions of €k,w, Which is itself a function of I ,,, the

principal object of interests.




Chapter VII Alfven Turbulence and Numerical Methods

VII.1 Basic Equation |

In this section, we demonstrate that the theoretical methods devel-
oped in the last Chapter can be applied to realistic tu_rBulence problem.
We choose a simplified model of Alfven wavés turbulence as a test case.
We deal with a cylindrical plasma of radius » and axial length 27 R (to
simulate a torus of radius R) within the framework of ideal magneto-
hydrodynamics (MHD). The basic renormalized equations are derived in

Appendix A, and are (k and w dependence is explicitly displayed in this

section)
and
— ') (k2 — k2 — kokl) |Ur w|?
O =y, el B kb)) Dew 7y,
k—k’#0,w—w’#0 k':.k'ﬂ-"“w' + k—k'jw—w' A
or
ww' (= k2 — k2 + 3kokb) |Ukeicr w2
Cow= Y ko he 3 3hoky) Wewwoul (71 )

4
k/#£0,w/#0 Fklaw, + Ck,1w, VA_

where Eq. (7.1.2b) is obtained from Eq. (7.1.2a) by simply letting k' —
k — k' and w' - w —~ w'. In BEgs. (7.1.1) and (7.1.2), Uy is the azimuthal

component of the velocity field, and the linear response function Fi ,, is

(7.1.3)
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with

k,=n/R, kg=m/r

where m and n are respectively the azimuthal and axial wave numbers;
V4 = Bo/(4mpo)*/? is the Alfven speed, po is the plasma density and
By is the equilibrium axial magnetic field, Cx ., is the coherent wave-
broadenning factor, and l}k,w is the incoherent nonlinear source term.
Notice that Egs. (7.1.1) and (7.1.2) are exactly the same form as
Egs. (6.1.1) and (6.1.2) implying that the closure can be achieved by

putting the incoherent term
’(jk,wlz = SO) (7.1-4)

where S is independent of k and w. The set of Egs. (7.1.1) to (7.1.4)
is numerically solved in Sec. VIL3. In the next section, we show how we
can extract some useful information out of these equations for a special

heating problem by using the method developed in the last Chapter.
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VII.2 Frequency Shift in Alfven Wave Heating

In wave heating of plasmas, electromagnetic waves of a given descrip-
’
tion are generated in an antenna located near the edge of the plasma.

These modes are converted to the appropriate natural oscillation modes

of the plasma, and then can impart energy to the plasma (by resistivity

or by Landau damping, etc.). Since the dominant modes in the plasma

must, in general, correspond to the modes driven by the antenna, one has
a prior knowledge of the wave numbers from a knowledge of the antenna
stru‘cture. Now for a given set of wave numbers, the heating efficiency
depends upon the frequency of the wave. In Alfven wave heating, for ex-
ample, Fy,, = w?/VZ —k? = 0 (the linear dispersion relation of the wave)
is the condition for maximum efficiency in the linear regime. For higher
power or heating in the nonlinear regime, the optimum heating frequency
must depend upon the wave energy I; of the excited wave. This was
essentially the content of Chapter VI, where Wé derived a formula for

the frequency wy at which I, peaks.

Let us consider an idealized Alfven wave experiment where the an-
tenna generates waves of m = +1 and n = +1 only. The best driving
frequency for this case in the linear regime is obviously w; = +V,/R.
However, we are interested in finding the optimum frequency wg in the
nonlinear regime. Let us assume that the steady state nonlinear stage
is already set up, then wy will obviously be the solution of Eq. (633)

Because of the peculiar choice of the antenna, we could assume that the
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principal part of the excited spectrum is at w = F+wy. Thus the excited

spectrum is

UZ, ifm=21, n=21, w= *twp;
0, otherwise.

'Uk,wlz = |Um,n,w12 = { (721)

Of cource, the excited spectrum will have a width, which can be calculated
from Eq. (6.3.4). However, as long as the width is small compared to |wyg]|,
the spectrum given in Eq. (7.1.1) will give approximately correct results.
Making use of Eqgs. (7.1.2) and (7.2.1), it is clear that (we propose to

calculate wp form = 1, n = 1)

c <U0>2 1 [ w(w — wo) N w(w + wop) ]
1,l,w — P ’
Va/ m2VilFs20-w, + Copw—wo F22mtwo + C2,2,0tw,
(7.2.2)
because only n' = n+ 1, m' = m+ 1, w' = w + wy can contribute to the

sum in Eq. (7.2.2). Notice that we are using the notation Crw=Cnpnw-
Equation (7.2.2) indicates that in order to calculate C1,1,0 we need to
calculate C5 5 ,14,, and of course to calculate C5 5 1., Wwe would need
higher.Cm,n,w’s. But to make analytical progress, we must make further
approximations. In most cases of interest Uy/V, = § is a small quan-
tity. We exploit this property § <« 1 to propose the ordering Crnyw ~
Amné/rR, where Ap, is a number we cannot determine by analytical
theory. Notice that this ordering solves Eq. (7.2.2) provided the denomi-

nator F5 3 utw, +C2,2,0tw, ~ 6/rR. This will indeed turn out to be true.
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Within the context of the preceding discussion, we have

Cw? 1 N 62 w(w — wp) :
€l lw =5 — —+ —
1,1, VZ R 72| (w—wy)?— 4(VZ/R?) + X;:6V2/rR (7.2.3)
. w(w + wo) } o
(w+wo) — 4(V2/R2) + A6VZ/rR]
where Ay = Ay, and 61,.11(# = Fi1b + C11,,. Since €1,1,0 15 real for

this simple case, Eq. (6.3.3) is equivalent to dey 1, /dw. Further we have
stipulated that the peaks are at w = Fwq. |

Either of the equations (dﬁl,l,w/dw)w=:tw0 = 0 can be used to obtain
optimﬁm frequency wy. Differentiating Eq. '(7.2.3) and equating its value

to zero at wy, we obtain

2&)0 i 52[ Wy ) n 3(4)0
Vj r2 VA2 AzéVj D
Rt TR
512 (7.2.4)
2w2[2wo + —4 22
T'R 60)0 0
— e =0,
Whére
V2 V2
D = 4(w§ — —;‘) + A, —2. (7.2.5)
r TR

Since the assumed ordering requires D ~ §, the dominant balance in

Eq. (7.2.4) comes from

2wy 62 4w
— — ——— =20 7.2.6
V2 r2 D2 ’ ( )

where both terms are of order unity. Eq. (7.2.5) can be rewritten in the

form

D = 2254, -2 (7.2.7)
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which can be approximately solved to obtain

vz  §v?2 Ao
2 _ Y4 A 1/2 A2
wo = =5 + ey {2 = J (7.2.8)

showing that the correction to the linear dispersion relation wi = V2/R?
(m=1,n=1)is of order

§~Uy/Va (7.2.9)

rather than 62, which would be the quasilinear or the weak turbulence
result. We must state that it is not possible to determine the value of
A2 by this simple analytic method. However, we have already obtained
a very interesting strong turbulence result that the frequency shift scales
linearly with the strength of the turbulence.

The spectrum width A can be readily obtained using Eq. (6.3.4) to

be
6V,
A = )\23/2T ,

where A is a number of order unity. We notice that both the frequency

shift and spectrum width are of order 6.

(7.2.10) -




131
VII.3 Numerical Solution

In this section we numerically investigate the Alfven wave turbulence
with our closure scheme and Egs. (7.1.1) and (7.1.2).

Reality of the wave field or the fluid velocity imposes the universal
sysmmetry

Ck’w - C:k (7.3-1)

y—w?

where the notation * stands for the complex conjugation. Additional sym-
metries will, of course, depend upon the special properties of the system
undér consideration. For our problem, we could deduce further symme-
tries from Eqs. (7.1.1)-(7.1.3). Before doing this we must mention that the
linear response function Fy , in Eq. (7.1.3), in general, has an imaginary
part (due to resistivity or Landau damping , for instance) proportional
to w.% This imaginary part is quite important to insure convergence of
the numerical iteration and is retained in our work, although we do not
display is explicitly in Eq. (7.1.3). The existence of this imaginary part
proportional to w implies Fy , = Fy _ ., which coupled with Eq. (7.3.1)
leads to

Ckuw = C;,_w. (7.3.2)
Eqgs. (7.3.1) and (7.3.2) trivially yield
Crw = C_yn. (7.3.3)

With help from Eq. (7.3.2) and (7.3.3), we can systematically solve

Eq. (7.1.1) and (7.1.2). The iteration procedure has been shown in
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Sec. VI.2. However, we must point out that the calculation of Cl(:u)) us-
ing the method is taptamount to doing a complicated multiple integral,
and one can indeed run into convergence problem. We have been able
to avoid convergence problems by 1) introducing a small imaginary part
into the nonlinear response function which effectively damps very high
k. modes, and 2) making the iteration procedure relatively slow, that is,
the quantities Cy , are varied slowly from one iteration cycle to another
[c™ = (jen-2) 4 C™=1)/(5 +1)], and 3) adding an extra positive
number to the denominator and dismissing it cycle by cycle till it is zero.

These computihg techniques seem a bit artificial, but they very ef-
fectively take care of oscillation problems which may be encountered in

the usual procedure.

In our numerical calculations, we have further simplified the problem
by concentrating on waves with m = =41, thus effectively reducing the

problem to a two-dimensional problem in k,(n/R) and w.

In Fig. 6.1, we display the spectrum Ij , as a function of k and w on
a two-dimensional plot. The spectrum is broad in both k and w clearly
indicating the fundamental difference between a turbulent and a linear
spectrum.

After integrating the spectrum I, over all w, we obtain the spec-
trum Iy, which is displayed in Fig. 6.2 as a function of k. To make the
k-dependence more perspicuous, we have plotted in Fig. 6.3 a graph of

In I} versus In k for the intermediate range (inertial range) of k. We no-
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tice that the curve is essentially a staight line implying that the Alfven

wave spectrum obeys a power law
Ik .8 k™e . (734)

with the exponent @ = 2. This is similar to the Kolmogorov spectrum in
hydrodynamical turbulence but with a diflerent exponent; the exponent
in hydrodynamical turbulence equals 1.67.

To reveal more turbulence features, we vary several conditions to
see their effects on the spectrum curves. In Fig. 6.4, we change the sys-
tem scale length by putting more restrictions on the low-k modes, which
reduce amplitude of these modes. Curves representing two different sit-
uations vary ;Iightly; and the behavior of the inertial range is unchanged
(the two curves are separated purposely). In Fig. 6.5, the high-k damp-
ing terms are varied. In Fig. 6.6, different strengthes of SQ are employed.
These pictures show that the turbulence spectrum in the inertial regime
is clearly unaffected by these variations. This fact is consistent with the
experimental observations on most turbulence systems. In Fig. 6.7, we
plot the k-spectrum for a given w. The curves in the figure represent
three situations with different strength levels of turbulence. In Fig. 6.8,
. we plot these three curves on the same amplitude scale. One sees that
curve 3, which corresponds to the strongest turbulence, gives the widest
wave-broadening and the biggest frequency shift. Similar effects can be

seen in Figs. 6.9 and 6.10 where w is smaller than that in Fig. 6.9.
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Finally we plot the curve for the total incoherent part in Fig. 6.11

based on calculation of the following expression

(6112 ~ | D Vi drrdr_i |, (7.3.5)
kl

which, though not really accurate, serves as a good estimate. Clearly,

|x|? is relatively flat in the k-spectrum.
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Fig. 6.1. Alfven wave turbulence spectrum I, . as a function of k,

and w on a two dimensional plot with w being normalized by Alfven speed

Va = Bo/(4mp)*/2.
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Fig. 6.2. A plot of frequency-integrated spectrum

versus k.
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Ink,

Fig. 6.3. A plot of In Iy, versusln k, in the intermediate range (initial

range) of k,; the straightline has a slope approximately equal to two.
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Fig. 6.4. InI;, versus Ink, with different space restriction (long-
wave-length modes suppressed). Note that only amplitudes of low-k,

modes changed (curves I and II are artificially separated).
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Fig. 6.5. A plot of InI;_ versus In k, with different high-k damping

conditions (curves I and Il are artificially separated).
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Fig. 6.6. A plot of InI,_ versus Ink, with different-strength sources

(So = 3,12,48).
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Fig. 6.7. A plot of k-spectrum w is fixed (w=10.0x 14). The three

curves correspond different sources (§; = 3, 12,48).
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Fig. 6.8. Putting the three curves of Fig. 6.7. in the same scale of

amplitude.
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Fig. 6.9. A plot of k-spectrum as w is fixed (w = 5.0 x V).
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Fig. 6.10. Putting the three curves of Fig. 6.9. in the same scale of

amplitude.
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Fig. 6.11. A plot of k-spectrum for the incoherent source term (as

an estimate).




Chapter VIII. Summary and Conclusion

We have proposed a physically motivated, non-perturbative closure
scheme to deal with some problems in plasma or fluid turbulence. The
scheme is based on a scale separation assumption; the structure (in k,w)
of the turbulent spectrum is essentially determined by the structure of
the nonlinear coherent response function €y ., and not by the structure
of the incoherent source which is assumed to vary on a much larger scale
in k and w. This allows us to obtain a comparatively simple closed set of
equations which can, in principle, be always solved.

After discussing a few simple analytically ;cractable applications, we
have applied our formalism to a model problem: the shear-Alfven turbu-
lence. The problem is readily solved numerically to obtain the turbulent
spectrum with the following features

(1) The calculated spectrum has expiicit frequency shift from the
linear theory as well as explicit band-broadening in k,w space.

(2) The frequency integrated spectrum obeys a power law in the
intermediate k range, i.e., Iy ~ k™%, where o approaches the value 2 in
the case we studied.

(3) The form of the power law is hardly influenced by changing low-k,
high-k damping effects, or by changing the strength of the tufbulence.

It is very encouraging that this closure scheme is capable of producing
essential features associated with a turbulence spectrum. We hope to be

able to compare our results with experimental studies of shear-Alfven
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turbulence, when the experimental results become available. We believe

that our methods should prove quite useful in studying a broad class of

turbulent phenomena.




Appendix A

Our starting point, the ideal cold magnetohydrodynamic (MHD)

equations are

op

el (pU) =

5 = ¥ (PU)

| 0 1

p[—-i—U-VJU:—(VxB)xB (A1)
ot 47

8B—V>< U x B)

8t - ( X ]

where p is the plasma density, U is the velocity and B is the magnetic
field. We now separate the average (equilibrium) and the fluctuating
quantities, i.e.,, p = pg + p, B = (47r)1/2(B0é2 +b), U = U, where
(47)*/2 By is the strong ambient axial magnetic field, po is the average
density, and p, (47r)1/zb and U are respectively the fluctuating density,

magnetic field, and velocity. Evolution of p, b and U is determined by

%ﬂLpov-U:—(U-V)P—PV'U’ . (A2a)
ouU 8b 18]
w5 vh) =5
‘ (A2b)
Vb2
—p(U-V)U+ (b-V)b - 5
and
6b 18]
~ — 4+ By| —-6,V-U)=—(b-V)b
ot 0(32 LY > (b-V) (A2¢)

+b(V-U)+ (U - V)b,
where we have put the nonlinear terms on the right-hand side of Eq. (A2).

We now consider a cylindrical plasma of axial length 27w R (to possibly
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simulate a torus). Azimuthal and axial symmetry allow us to expand the

fluctuating quantities as

f(r,8,z2,1) Z fmnw(r) exp(iwt + ikerf + ik, 2), (A3)
where
n m
kz = 5 k@ =
R r

are the axial and azimuthal components of the wave-vector, and n and
m are respectively the wave numbers. Making use of Eq. (A3), Eq. (A2)

can be cast in the form

) W 0
Fk [murk -+ ZET’{LG}: = ——B—SE(TNWC)
. . (A4)
k, a(]\l )_'_sz +zkzmM
BQ 87‘ T ok Bg rk BO rky

where

is the linear dispersion function, and Ny (N,;), and Mg, (M) are
respectively the Fourier transforms of the nonlinear terms of 6(r)- com-
ponents of Egs. (A2b) and (A2c). Although Eq. (A4) can be subjected to
the usual renormalization treatment, (and will be done at a large stage)
we make a set of simplifying assumptions so that we can deal with a
more perspicuous system and hence show the working of our proposed

closure scheme. Some of these assumptions are a bit artificial, but we




150

make them for simplicity and clarity. Since we are dealing with shear
Alfven turbulence, we ignore the effects of compressibility. We also as-
sume that |Ug| > |U,|, so that the principal nonlinearity comes from Ngj.
We neglect all other nonlinear terms. For this model problem, Eq. (A4)

reduces to

W '
FrUg, = gzPo Z koUp(k— k1 Us(— k) (A5)
0 k!

can be renormalized in a straightforward fashion to yield
exUsk = (Fx + Cx)Usk = Usy (A6)

and

ww— w (k2 — k2 — kok!
Ck — Z ( )( ] % 0 o)erk’|2,

o V/‘?(Fk-—k’“}‘ Ck_kr)

where Uy, is nonlinear incoherent source, C}, is the coherent renormalizing

modification of the linear response function Fy, and |Ugx|?> = Igy is the

spectrum of turbulence.
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