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Abstract

The stability of a Migma disc is re-examined to determine the threshold to the
interchange instability. It is shown that a previous calculation [H. L. Berk and H. V.

Wong, Z. Naturforsch. 42a, 1208 (1987)] which assumes a rigid mode eigenfunction,

is inaccurate at the predicted particle number for marginal stability. As a result the

integral equation for the system must be solved. A variational method of solution
is developed and is shown to give good agreement with a direct numerical solution.
The threshold for instability is found to be sensitive to the details of the distribution
function. For highly focused systems, where all ions pass close to the axis, the thresh-
old particle number (Vy1) for instability is substantially below that predicted by rigid
mode theory (Nygia) (by a factor ~ 8¢ where ¢ = 7y /rL, 71 the spread in the distance
of closest approach to the axis and 7y, the ion Larmor radius). At a higher density a
second band of stability appears that again destabilizes at yet higher pa,l'ticlg num-
ber (Nuz). If e € 1, Nyo is substantially below the rigid mode prediction, while for

0.2 < € < 0.3, Ny2 is comparable to the rigid mode prediction. At moderate values
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of ¢(¢ ~ 0.3 — 0.4) the second stability band disappears and the instability particle
number threshold varies from about .4¢, when ¢ = 0.4, to .7¢ when ¢ is about unity.
The stability criteria would be consistent with the observed particle storage number

obtained in experimental configurations if the spread in ¢ is sufficiently large.




I. Introduction

The experimental establishment of a stable low-density (W;%z Jwl < 1) Migma equilibrium
conﬁgﬁration has been reported by D. Al Salameh et al.! A Migma equilibrium is a spe-
cial type of axisymmetric mirror configuration in which the plasma is trapped in a disk-like
volume centered at the mid-plane. Ideally, the ions are monoenergetic, their parallel veloc-
ity much less than the perpendicular velocity, and all the orbits pass through the axis of
symmetry as indicated in Fig. 1.

In magnetohydrodynamic (MHD) theory, a symmetric mirror confined configuration is
unstable to a flute interchange mode.? MHD stability critefion is altered by finite Larmor
radius® and low density e‘f]?e‘cts.‘l'5 However, the analyses cited are deficient for a Migma
configuration in that the Larmor radius is taken to be small compared to the plasma radius.
More recently, Berk and Wong® have discussed the stability of Migma plasmas to m = 1
flute interchange instabilities in the limit of arbitrary particle Larmor radii. They concluded
that the plasma response to a rigid mode m = 1 perturbation has a universal character
independent of Larmor radius. As a result, the dispersion relation for flute interchange
modes c;)rresponding to rigid displacements is similar to that obtained by conventional finite
Larmor radius theory. However, for a disk-shaped Migma equilibria (where the axial extent
is much less than the plasma radius) the stability criteria was found to be more optimistic
than previous investigations (5). The predicted particle number threshold Niigia was above
that achieved in the Migma experiment.

However, the Berk, Wong theory is inaccurate at densities near the predicted threshold
for the onset of the m = 1 flute instability because the rigid mode approximation is not
valid. The justification of the rigid mode approximation in their model requires the mode
frequency to exceed the precessional frequency, whereas at marginal stability they found the
real frequency is comparable to the precessional frequency. Thus a more accurate solution

of the eigenmode equation is necessary to determine the instability thresholds.




In this paper, we construct a quadratic variational form from Poisson’s equation for the
perturbed electrostatic potential ¢ which is applicable to a disk-like plasma configuration.
By choosing trial funcfions for ¢ which are localized in the regions of negative gradient in the
plasma density, we obtain analytic instability criﬁeriam for ideal Migma configurations where
the energetic ions all pass close to the axis of symmetry. Detailed numerical calculations
confirm the results of the analytic procedure.

The results can be summarized as follows. Let ry/rz, = € define the radius ry within which
the inner turning points of the ion orbits occur. rz is the ion Larmor radius. For lparticle
distributions with € <1, two unstable particle number thresholds are found. At low particle
number, there is an instability band where the threshold particle number N,; for instability

scales as €2 with stability reappearing at a higher particle number Ny;. For this instability

band, the perturbations ¢ are localized near the inner turning points of the ion orbits. where .

the plasma density gradient is negative. At yet a higher particle number N,;, a second
instability threshold occurs, with the perturbations localized at the plasma edge where the
plasma density gradient is again negative. This unstable mode persists with increase in the
particle number, eventually transforming into the rigid mode instability described in Ref. 6.
For small values of € < 1, Ny is below Nggia.

We have also investigated a configuration where conducting end plates surround the
Migma configuration at distance d less than the particle Larmor radius, rz. Similar stability
criteria are obtained, but with the threshold particle storage number raised by a factor arr/d
where o is roughly 0.5.

The structure of the paper is as follows. In Sec. II we derive the dispersion relation
for the system. In Sec. III the stability threshold is obtained using analytic procedures.
Section IV discusses the stability criteria when conducting end plates are close to the Migma

configuration. Section V compares the analytic method with a numerical solution using

a series of Legendre polynomials. In Sec. VI, we summarize the principal results of our




investigation.

II. Quadratic Variational Form

The magnetic field is taken as a vacuum field which is approximately given by’

Zz ?12 rz
B=2By{]l+ — - —— | —+By—. 1
(*L 2L:~n> Ry @

The field line curvature is
ee L OBl
- |B| or B Lz

and note that & is second order in an expansion of ¢ = r/Ly,.

We note that the particle motion can be obtained from gyro-orbit theory. It can be
described as the gyration of a particle at the local cyclotron frequency about a guiding
center position rg. As the axial extent of the particle’s orbit is less than its radius, the
guiding center radius can be taken as constant in the radial coordinate and the azimuthal

guiding center angle, 0g, rotates at the average rate

. p OBl pB _
Vo= G o = oI S

(2)

Q; the cyclotron frequency ¢;Bo/mjc, m; the particle mass,

2
_ vi
H = 21B (ra)

The guiding center position, which is axially focused by the mirror forces, is described by

= magnetic moment.

the equation

A’z _ 0|B(re)| _ Bz
N P ) (3)
The solution for z is 4
z = 2 cos (w,t + Po) (4)

with w? = 2uBy/L2, 2, = amplitude of the axial oscillation and B, the axial phase. The

axial adiabatic invariant J, = (27)7! § v,dz is found to be

wyz? 1 v2
z o -
J, = 20=—wz<z“+—-—>.




The actual radial position of the particle is shown in Fig. 2, where we have
r=rg-+rp,
which in component form can be expressed as
z = rcosf=rg cos 0g + rr, cos (B + b¢)
y = | rsin @ = rgsinfg + rsin (B, + 0a) , (5)

where 8, = —(;, and rp, = (2uB,)"/*/9;.
The average value of g has already been given, while the fluctuating value of ¢ is small
and can be neglected. Thus, we have g = Ogo + w, 7.

The equilibrium distribution is a function of Py, p, J;, i.e.,
FZF(Poaﬂa']z)a (6)

where Py = rvg + ¢j%/mjc = canonical momentum per unit mass, and 1 is the magnetic

flux function, which is given by

= B;TZ (1+ Z—Z) +0 ().

The phase space volume integral can be transformed to

dJ, djedPy dr dz df|B|w,

vzl [vs]

&Brdiv =

with v, = [Z,uB — (P — (_/jzp/mjc)?/rz]l/2 and v, = w, [—2? + QJZ/wZ]l/z.

The perturbed distribution, f; = f, exp [—iwt + il0], satisfies the equation

Dfi _ gy OF
Dt mjv v
_ 4[4 0F v -V4OF v, 040F
B mjll 0P0+ |B| 0;t+w23z8Jz ’ (8)



where D/Dt denotes the convective derivative over unperturbed orbits and ¢(r,t) =
$(r, z)exp [—iwt +4l0]. Now vy - V¢ = D¢/Dt + iw¢g — v,0¢/0z. Then integrating in
time yields

2 G $OF ¢ [0 : :
o L0994 e —0
T T + " /_COCTe\]p[ wwT + 4l (0(7) — 6)]

4 OF o¢ 1 OF (. o\ é0F
< 16,0 55 + g + (-vg) s, ©

where 6(7) is the azimuthal angle over the unperturbed orbit with §(7) =0 at 7 = 0.

We now expand the periodic orbit ¢(r,z)/r in a double Fourier time series

A

M = Sexp [z'm (W, + Bao) + i1 (—QT -+ )67'0)] (’?) (10)

7’(FF) m,n

with

$ _ow e b(r(),2() T (6 : |
(; . g/o | le— exp [fm (Qt —_ ;3,,0) —m (w,t + ﬂzo)] , (11)
where Q is the mean cyclotron frequency averaged over an axial bounce (as the mean cy-
clotron frequency is nearly the same as the local cyclotron frequency we will equate the two

frequencies; we have also ignored small orbital sideband terms that arise due to the difference

between the mean and local cyclotron frequencies and used that w, < £2). Note that it is

(¢
) r m,n_ r m,—-n-

We now limit our study to the ! = 1 mode and use from Eq. (5)

readily shown that

(M exp i (0r) —0)] = (o+ig)e™
= [fG + 7 cos (=0 + o) + trp sin (—Q7 + Bro)]
- exp [tw,T + 10,0 — 0] . (12)

We now delete the caret on ¢ and f;. For simplicity we will not exhibit the ion behavior

to the v,04/0z term since it is complicated and ultimately unimportant in our application.
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The electron contribution from the v,0¢/0z term is more important than the ion term. We
shall observe that the electron response to the v,0¢/0z term allows for a flute perturbation
in which 0¢/0z is negligible in the region where ions and electrons are contained. Thus the
complicated 0¢/0z ion term will not appear in the final result.

We now perform the 7 integration and we obtain for ions (j = %) to lowest order in w/{;

and w/w,,
fo= L90F
" m;Bou
Gep[-i(0—0,0)] (OF  wOF\| (¢ i[9 ¢
m; W — wy BP(;—I-B(?;L e\ 0,0+ 2 r 0,1+ "/ o1

+ 0 (%) +0 (%) + (g—f— terms) . , (13)

For electrons we neglect FLR terms so that ¢nm = ¢mbno, We assume w >> wy. and we

find

_ 9e a];le e . a_F
fe = wm, 0P 0 myw, (4(r,2) = do) aJ,’ (14)
where
zr dz |
¢0 = 1 -—-—(p(’l’,z)
Wy J—zp Uy

with v, (r, £27) = 0.

We can now substitute f; given by Eqs. (13) and (14) into Poisson’s Equation
v? (céeio) = —47TZ ewqj/d“”v fi- (15)
7

We then form a quadratic form by multiplying by ¢* = (r, z) exp (—:0), and integrating

over all space. Assuming ¢ decays at infinity, and neglecting boundary effects, we obtain

Upd) = [EIvgt v (s) = Yo [ dr ooy,

J



_ /ﬂ _%2_}_”_%2_}_&2 (jl af'¢ 12(45)(%;— %%3-)
N dr |\ Or 0z 72 m; \ Bou W — Wi

@ /ia o 10F 05,
M <(¢ ¢0) w, ("-)J w an 0’ (16)

where ( ) denotes a six-dimensional phase space integration and

zr dz Tmax - 1
h(g) =2 [ 0 oy cos0r) e

772 —zZT lvzl Train r (%%
where rmin and rmax are the limits of the radial variation of ». We also note that for ions in

Migma,
| WII O
oul 0Py ~ Q;’

and hence we can neglect all 0F;/0u terms.

Due to the small axial length of the plasma disk compared to the plasma radius, Z¢ < ro,
the dominant terms in the quadratic form if ¢(2) can vary cover the scale length Zr, is
 [Zr dz (04 qg 1 OF,

/—ZTE (&) Me << —QSO) wdan>

The |V J_¢|2 terms, with |V ¢| ~ ¢/rg, are clearly much less that (3¢/8z)2, and we ulti-

mately seek solutions where the remaining terms are comparable to |V, ¢|* terms. Thus, to
annihilate the lowest order quadratic term, we need to consider flute modes Whel‘e ¢ = do.
The remaining terms of the quadratic form require that then ¢ inside the plasma disk be
constrained to a flute structure.

The ratio of the second term to the first term is Z2/)%, where the electron Debye length

1‘: 1/2
Ape = <4-71'.Ne e? >

(N, is the equilibrium electron density and T, the electron temperature). If ZZ/2%, > 1,

is

the justification for flute modes is even stronger, with validity of the flute mode assumption

requiring




We assume that there are no equilibrium electric fields so the ¢.N. =

use
(ams) = Lo/ e
— _lif/ds?,%_i\/:i 2
_ _%/ 8 qs?%/d%ﬂ
Now as

' I qith vJ_ 'u +z
-F'Z(P(;)/‘L)JZ) - E<7v0+7'nc OB’ sz )

we find that
ad)/dvl" = /cl 7139 [1-{-9]-{—0(&7*)

One can ascertain that
0 72 —rprg cos fBr
Q,‘ 7‘2

and r? = r% + r% + 2rrrg cos B,. Consequently we find

qe J0F, ¢2 _ / 2y 9N dj\ (_]1 OF; I
Me BPg w m; 0Py w

where

Qi PP(r() £
I, = ﬁ%d/—ﬁw{vg—l-vgr;,cosﬂﬁ}.

. We then

(18)

(19)

Equation (18) allows the remaining electron term in the quadratic form (Eq. (16)) to be

expressed in terms of the ion distribution function.

There remains to be evaluated the contribution of the electric field energy integrated over

all space. We use the identity
[ &gVt =dn [ drog,
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where 47p = —V?%¢ and we have assumed ¢ — 0 at external boundaries. As we have a
thin disc, the predominant contribution of the left-hand integral comes from the vacuum
region with an error O (z7/ry). To this approximation the electric field in the vacuum can
be viewed as due to a surface charge p(r, z) = o(r)6(2). Then to determine ¢ in the vacuum

outside the plasma, we note that

4r2)= [ Pria(r)5()e? = .
e [(z—2)2+r2+ 12— 2rr' cos(0 — 0)]1/2'

Since ¢(r,z) = ¢(r) at z =10

(20)

70 m o(r') cos(
r) = r'dr! d .
#(r) /o /0 C[r? + 72 — 2rr/ cos C]1/2

If we convert the integration in ¢ to a contour integration in R = rr'e* around a circle of

radius rr’ encircling the branch points at R = 0 and R = min (r'2,7?), and we deform this

contour along the real axis, we obtain (with s? = Re R)

4 rro min(r,r’) g2
Y — = dr'o(r! / ]
o(r) " /o ' o(r') A cs[(r2 mpCIYATIEN T

4 pr §2 "y 0_(7,/)
- F/o ds (r2 — )72 /é, (2 — s2)i% (21)

Let

By Abel inversion

Loy, 1 ds'g(s")
W(s) = o [ ds R
2.0 [ sW(s)
O'(T) - —;_(97'1 (8(32 _72)1/2
o >"T >0

Thus



I a [ro dssW(s)
= —1-/0 clv7¢(r)5;/r ()

,
= 87r/ " dr {rW(r))>. (22)
0
The quadratic variational form may now be written as follows:
1 ) 2
= —-/ {/ ClSTWTaESQS(S)}

q; OFy; I @ OFy I} B
<mi 0Py Lu> + <m,~ 0P (w—wy)/ 0. (23)

If we model the ion distribution function by an ideal Migma configuration

QN76 (nBo — poBo) fo (Pg) f1 (J2)

Fi (Po,p, J2) = 24
Forto B = FaF, (7)1 oo () 2y
the quadratic form simplifies to
vy )\
%L(sﬁ,@ = Li(¢,¢) - —Lz(d) ¢) + =—Ls(¢,4) = 0, (25)
where
L = [alf % (26
1(9,4) = /O dé /0 Wag,fﬂf) (26)
L) = - &R L, (27)
0
Ly(4,¢) = - [ 2 f“”fi, @)
where f; (J,) is sharply peaked about J, = 0, Ny is the total number of ions, and
\ 7q: Ny
2mQird jwyl
= _fo
P = \Q,’I%

[ insoo) =
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0L,
. w
O = —
M K
r
¢ = =
7o
71}23 — 240 Bo
0
2P,
i
o = [TG (P = pmax) + 7°L]

= 7L [(1 + 2pmm-)1/ ’4 1] = plasma radius.

The requirement that the first variation of the quadratic form with respect to.¢ be
stationary yields the eigenvalue equation which must be solved to determine .

In the limit of large A > 1, the quadratic form to lowest order is

L~ —%/ clpaa‘—']f)0 (Ig - Ilz) L0 (29)

P

Ow

o

By the Schwartz inequality,
| 1 1 g 1 )\?
L - =% (/ cZu) (/ clu—,,—) — (/ cl.u—-) >0,
0 o 72 o T

(rg+rycosT) i

where

du =
27re

Thus L is stationary to lowest order when I, — I is minimized to zero. This occurs for the

trial function

which corresponds to the “rigid” mode approximation discussed in Ref. 6. In this case,

the perturbed electric field amplitude is independent of radius r, and the electron and ion

13



drifts due to the perturbed electric field are the same, independent of the Larmor radius.

Substituting for ¢ in Eqs. (26)-(28) yields

4
Ly = =
' 3
I = 7~G=T—L(l—|—2p)1/2
To 0
2
_ Ta
L= 3
Lz = 2
Ly = 2.

The dispersion relation obtained from Eq. (25) is then

2 4 ‘
-1 T3 - ©0)
The frequency @ is
= 141 - 60" m i (§A>1/2
T2 AN ’

where A > 1 is required for validity. Thus, the equilibrium is unstable to rigid mode
perturbation at large values of A 3> Ayga = 1/6, that is,

Ne > Naaq = mirg Qi |wel ~ ST Q; Jws|
e 3mwq? 3mq?
i ‘3

(31)

However, at the threshold for the onset of the instability, the rigid mode approximation
is no longer valid. A more accurate solution of the eigenmode equations is necessary to
determine the instability thresholds.

If we formally solve Eq. (25) for &, we obtain
A 1 (1/2
& = E{/\(LZ—Lg)JrLl:EG }s (32)

where

14



G = (A(Ly—Lg) + L1)* —4AL1 L,
= (A(La—=1Ls) = ILy)* —4\L1 Ls.
Since L; is positive definite, necessary conditions for instability are Ly > 0, Lz > 0. Ly is

positive if ¢ is nonzero only in the range of r where

@Q‘<o
o '

If we restrict the class of trial functions to that for which Ly > 0, Ls > 0
G= [/\ (23 + 1y '“’)2 - Ll] [A (L5 - L§/2)2 - Ll] (33)

and hence G < 0 and the equilibrium is unstable if the value of A is in the range

As > A > Ay,
where
_ It
T : 3 34
T ) 34
A = Z - (35)

1/2 1/2\2’
(L3 - 13")
In order to explore these thresholds, we investigate two simple representative examples
of the distribution function fo(p), and we obtain approximate dispersion relations by substi-

tution of simple trial functions in the quadratic form.

ITII. Instability Threshold

A. Simple trial functions

Let us consider a rectangular distribution function

1 o
fo (p) = (p_*_T)_), p+ > Y > P

folp) = 0, otherwise. (36)

15



To further simplify the analysis, let

- ’ ¢
= —(1-3)

pt = 6<1+;)6->.

Thus
M — J_ _|_ e
Tr,
o) _
L '

The inner turning point of all the energetic ions (encircling and noncircling) are within a
radius less than ry = rg(p*) —rp = rp —rg(p~) = ery. The outermost turning points for
ions which do and do not encircle the axis of symmetry occur at ro =rg (p~)+r = (2—¢€)rL
and ro = rg (pt) + 7 = (2 + €)ry, respectively.

The equilibrium density integrated over z is

2By (27 dJ, du dPyF; (Py, pty J
/

v |

)
r

Ny /,,+ dpd [7,2 — (prg, — ,.2/27,L)2]
P [rz _ (]77"L _ Tg/er)z] 1/2

with (z) a step function. Performing the integration, we obtain

(pt —p~) 27y,

( 10, ™ >T
Nog | . gy To (T1 r .1 T2 [T r .
ng = < —[31111.———<—————>—|—51111———<—+— , Ta>Tr > (37)
T 2rp, \r o 2rp \r 1o
nogl[. _y g /T T T
-—[sml————<——~—-——>—|-——], ro>T >
T 2rp \r 70 2

with no = Np/derim. At r = ry, 1o, In;/Or — —o0, while at r = ry, In;/Or — oco. For

e <1, n; (r=ry) [ng = (2¢)% 7. In Fig. 3, we plot ny(r)/ng as a function of r.

A. Let us first consider a trial function which is localized at the inner radius r = rq

rfrg  ry>7T

#(r) = { (38)

5
rifror T > 1.

16



The maximum of ¢(r) is placed at r = 7y in order to weight preferentially the region
of negative On;/0v, thereby maximizing L,. We confirm later that this trial function

is close to an eigenfunction of the eigenmode equation.

Substituting for ¢ in Eqs. (26), (27), and (28), we obtain

8 2 2 3/2
L o= B+els-d-20-8)" (39)
_ nn__¢€
a = ro  2+4¢
2 2(1 4 €)% 1
I )+ — ™ . — € ( _% 40
2(1 ) 12 (1% —12)? b=t (2+€)7 13 (40)
rdp2, (1 —¢€)?ri
L) = —— 6 | __cl=eri 4
2(] ) r2 (12 —12)? lp=p 2=6? 2 (41)
r? e ry
L(pt) = —= = — 42
! (p ) rgro lp=p+ (L4+€) 7o (42)
L(p™) =0 v (43)
L [r2 77" €(4 — 36+ ¢)
L= L[] - + ()
2 [T} 7] ,- (4 — €)
1 2 17" 3
Ly = — |2 = —1—. 45
3 2¢ |} 1_7)_ 2(1 4+ ¢€)? ( )

The frequency of the modes approximated by this trial function is dete_rmined by
Eq. (32). When A — 0, there are two modes with & real; one mode & = 1 at the

precessional frequency of the ions, and the other & &~ ALy/ Ly proportional to A involy-

ing the electrons. As ) increases, the modes approach each other in frequency, and

eventually they couple resonantly, resulting in an instability.

@ has complex solutions and the equilibrium is unstable if A lies in the range

Ast > A > A,

17



where Ay; and Ay are determined by Eqs. (34) and (35), respectively

1 3 ha - 8 {16+24e+ 6+ —16(1+€)%2}
’ “wo )‘rigid B (2 + 6)3 [6(4- — 3¢2 + 64)}1/9 N [ 3 }1/2 2
| G— &) e
|
~ 8¢ e L 1.

This trial function approximates an eigenfunction at the instability threshold A,y but
not at the stability threshold A;;. However, the existence of the stability threshold A
has been confirmed by using a more complex trial function for ¢ and by representing

$ as a sum over a set of Legendre polynomials.

In Table I, we tabulate the values of A, from the above formula for a range of € varying

from .01 to 1.0.

B. Let us next consider a trial function which is a maximum at the plasma edge r = ro:
é(r) = I <1 - 7—1> ) ro > 7 > 7y . (46)
Substituting for ¢ in Eqs. (26), (27), and (28)
o[t 4 .1 & ?
le = 51/5 dﬁ{g—sm T
2 0 /2 o
= e|(Z_y Intan 2 _
= ¢ [(2 01> + 7€y Intan 5 +2§1/81 dasin&}’ (47)

where sin 6 = £;.

4 2 2
T T r
L(p*) = {—1 —C o+
ro(r& —ri)” 70

S [((m—m)E(mQ)) LK (,ﬁz)” (48)

71'7*8 (71G‘|‘71L) "1G+7"L) (1 — K2 o+
714 7.2
I ( —) - {_ n_ e
Y 8 -2y

18



e [(TG_M)E@?) ik (&2)]} (49)

g (reg +rr) | (re + 1) (1 — &?) p

L) = (- fe o () s 0ot B ()]}
I (p_) = — {7”:)17"6' [(rc, —rp) K (/c2> +(rg+rp)E (&2)] }p_ (51)

-~
i
[=2]

Ly, = L(p*) - L(p7)} (52)

Ly = 5= {0 (") -2 ()}, (53)
where K (k?) and E (k?) are the complete elliptic integrals of the first and second kind:

o7 [2 1
K (¥) = /0 do [1—kzsin?9]m

E(¥) = /'“/zcm [1-k2sm?0]”2

0

[\Dl

o =
=3

bucl

[ =
I;m

o

(@]

-~
N

and
9 ‘J.-?"C,'TL
B (ra+ 7"L)2.

n
v

.

The dispersion relation is similar to that described in the previous section, and it
again predicts a range of A within which the equilibria is unstable. However, this trial
function approximates an eigenfunction only at the instability threshold A = A, where
Auz is determined by Eq. (34), and no evidence of a second stability threshold A = A,
was found using a more complex trial function for ¢ or by representing ¢ as a sum over

a set of Legendre polynomials.

Forek 1,

L, = H——g LGN -L( )}~ Iir-(:sw —8) (55)

I (p"') ~I? (p‘) S i—ej (ln§ -1- g) (56)



and the instability threshold A, is

Y )‘ u2
/\u2 \ =6 /\u2
rigid

3.
37°e | (57)

1/2) 2’
2(37r—~8){1+z1 L(ﬂS/;;iS—W/O)} }

In Table II, we tabulate the values of A, for a range of ¢ varying from 0.0001 to 0.3.

. Let us now consider a more complex trial function which can represent modes peaked

at either ry or at rg
ay =, ry>T
$(r) = 2 {(ay + ) 2 — an, ry > 1>y (58)
o {(al + ag) B~ (Lg} -+ CLgiT:Oi), ro > T > 7.
a1, Gy, and ag are variational parameters. This trial function is essentially a 2-parameter

trial function since the third is a normalization constant.

Substituting for ¢ in Eqgs. (26), (27), and (28)

. _ ,

L, = /051 d§4a%€2 -+ /:ﬂ dé {2(41 <§ - (52 _ 53) 1/2> s <_72: o %)}
+ Al d€{2a1 (e-(E-&)") -at (% S 65_1 ) | ;

+ as (2 (52 62)1/2 ¢, (727 sip~! i >> } | )

\Qz " o
Ig(p+) = 5 %Z(7C+TG?LCOS '){(al-l-cw)—z—azf

s T2 ( ! 2
+ &/ dr ( G+7C?LCOS‘QL ){2“3 <1___?r_2_) <(a1+aq)r_;_a2r_l>
7 JO T T

70 T

ol Ta\2 '
+a <l _—> } + (60)
P
_ ri + rar cosﬂzl r2 )2
Il (p ) = 27r % dr ( G L ) {(al -+ CLQ) '7—1%' - CLZ"];}
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H,_J
(V]
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I1(P+) = 2ﬂ_j¢4d (ro +

0 2
71, COS T){(al—i-az)?——;-—-agﬂ}
”

+ _/ 7c-|-7LcosQT)a3<l_f_g_)

Q {7 ! ” Q; 2 8
I (p‘) dr (rg + rr, cos §4;7) {(al—l-ao);—l-——az%

T J on
L, = 21“70 {Io (p )
Ly = %:—% {If (P+)

where

and 7 is determined by

[SeTe]

P

t I

-
N

1/,
:7(716'""
"L

70

-5.())
)

o To

re = ré + 7*% + 2rgry cos ;T

9
71, + 2rgry cos QﬁQ) L;+ .

Equation (25) can therefore be written as the following matrix equation

3

Z (87 {Bn',n"'ACn’,n}an = 0,

nyn/=1

where By, and Cp ,, are defined by
3

Z 0—’71’017.’,na’n = Iy
n,n/=1
3
> awBunan = ~0Ls+ (@ —1)Ly
nn'=1"
and
oo —1)
A =
A
Qp = a1+ as
Qg = Uy
Qg = dgz.

21
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This quadratic form is stationary with respect to variation of «, if

3
Z {Bn’,n = Ac’n’,n} =0

n'/=1

n=1,23 (69)

and nontrivial solutions of this system of homogeneous equations exist if the determinant of

the coefficients o, is zero
- D(®,A) = |Bpiy — ACy 4| = 0. (70)
The three eigenvalues AY) of this equation for & real have been determined numerically.

In Fig. 4, we plot the solutions for

\o) - e —1)
AD (D

~

~—
>

A

of real & for € = 0.2. One of the eigenvalues A (&) is zero at & = 1, and hence A is finite
at @ = 1.

Let Ay; be the value of A at which

A\
2o =0 :
and let Ay, Asx (Auz > Agr) be the values of A at which
oA
o =0

At low values of A < Ayq, all the roots of & are real and the plasma equilibrium is stable.
At higher values A;3 > A > Ay1, two roots of @ are complex and an unstable mode exists.
When e < 1, this mode is peaked at the inner radius 7; and has a radial profile similar to
the trial function discussed in (a). It becomes stable if A > M.

At large values of A > A2, a second mode becomes unstable. When ¢ < 1, this mode
. is peaked at the plasma edge and has a radial profile similar to the trial function discussed

in (b). At even larger values of A, this mode transforms into the rigid mode perturbation.

[\)
[SW]



In Fig. 5, we plot the trial functions (1), () ©? corresponding to the eigenvalues
AW = X1, A = Ay, A®) = )y, respectively.

In Table III, we tabulate the values of Ay = A/ Avigid, A1 = Ag1/ Arigia, and Auz =
Auz/Aiigia for a range of e varying from 0.01 to 1.0. For ¢ <« 1, the thresholds j\ul, Aus
predicted using the simpler trial functions discussed in (a) and (b) (see Table I and Table II)
are close to those listed in Table III. When ¢ > 0.4, the stable band disappears.

In Fig. 6, we delineate the regions of stability and instability by plotting Au1, As1, and

Au2 as a function of e.

IV. End Plates

The presence of conducting end plates located at z = =d on either side of the disk-
shaped plasma can readily be included in the theory when d < 7. In this limit; the
perturbed Laplace equation for the perturbed potential ¢ between the plates is approxi-
mately 9%¢/8z% =0, so that the solution for ¢ is
. { $(r) el g > 2> 0
¢(1*)£Z—Z—dle"0, 0>z>—d

Therefore the contribution to the quadratic variational form of the perturbed fields in the

vacuum is
1/ﬂ%vw-v¢~1/mmmﬂﬂ
4 T dJo '
In the rigid mode approximation where ¢(r) = r/rg, we obtain for the quadratic term

L1(¢7 ¢)
o
)

and the rigid mode dispersion relation determined by Eq. (25) is

2 .
-3 =84



where A = 2d\/ro. The mode is unstable if 323 > 1, corresponding to a particle number

threshold (MNigid) g plate for onset of the instability

N 3 "L
( 1'igid)end plate — 16d rigid+

Thus a close end plate offers the possibility of storing more particles than the isolated system

treated previously.

To consider stability to nonrigid perturbations we substitute the trial function defined

by Eq. (58) for ¢(r), we obtain for the quadratic term Ly(¢, ¢)

T 1
L, = 2; [(al + az) £} <: — log £1> (ay + az) agéd (2 351) + a2 <_ _ %1)
1 5 2 5
+ a2 (Z - 63 S ) + as (ag 4 a3) €2 (1 — &) — agaséy (—- — &+ %) J
We may now repeat the calculation described in Sec. ITIC to determine the eigenvalues
Soan _ 2d

and thereby obtain the thresholds for stability and instability. The structure of the stability

boundaries are unchanged, and in Table IV, we tabulate the values of

;\ . /\ul j\ . /\sl 5\ )\32
wl — 7 3 sl — 7 ’ u2 — 7
Arigid Arigid Arigid
(=) o g

for a range of values of e.
Note that the use of end plates introduces significant enhancements of the particle number
thresholds only when the end plate separation is small enough to satisfy the inequality

d/rg < 3m/16.

V. Instability Threshold (Legendre Polynomial
Representation)

In order to obtain more accurate results and to extend the investigation to other distribution

functions, we have represented ¢ as a sum over a set of Legendre polynomials in ¢ = r/ro,
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derived the equivalent matrix quadratic form, and solved the resulting matrix eigenvalue

equation numerically. Let

[ 41 S o+ 9t

1>¢

v

0, : (71)

where Pany1(€) are Legendre polynomials of order 2n + 1.

By Abel inversion, we obtain for ¢(¢)

(dn +3)Y2 & | 2Py,
¢(&) = 7;% wé ‘/0 dé (€2 _5124;/2

= Z an Y, b(n,m)E>Hi=2m, (72)
n=0 m=0
where
(—1)™(4n + 3)1/2 (2n+1 “4n +2 —2m n—m+1/2
b(n,m) = P
2+ m 2n+1 —1/2
2n + 1 _ I'(2n + 2)
m T DPm+1I(2n+2—m)

and I'(m + 1) is the Gamma-function.

Substituting Eq. (72), for ¢ in Eqs. (26)—(28)

)
Ll = Z an(sn,mam ) (73)
n,m=0
T'C'TL m I
I, = Z (U Gy Z > b(n, ") b(m, M) Qn—nigm—m (74)
70 n,m=0 n/=0 m'=0 '

L = = Z Qo Z b(nyn)Qpens (75)

0o n=0 =0

Ly = —/d af070 (76)

Ly = —-/clpafO?DIl, (77)



where

_ !
Q = ( + cos Q,wr) {;}5 (7é + 7*,% + 2rgry cos (T ) }
0

- L g 3 9.1

- ( ) {< ) (z’”‘lal”“)—F(-i,—m,k)}

_ (ra+Ty L(i+1/2) . _4 (m ) 4(1 11 1)

- ( ) I‘(1/2)1‘l+1)] [ Tl F(555-ml-5
-2

311 . 1
F<22 n,l—.—/cg>}, (78)

[\D

k-
(n+1)

where
4-?"6"1" L
(rg + L)

and F(1/2,—1,1; k%) is the hypergeometric function.

k=

’

Equation (23) can be written as the following equivalent matrix equation

> { Mg, — Abpyn } am = 0, (79)

where
Myt = (&0 —1)Ly —@Ls (80)
p o= Al | (81)

This quadratic form is stationary with respect to variations of a, if

E (-A{[n,m - A5n,m) =0

m=0

n=0,1,... ' (82)

and nontrivial solutions of this system of homogeneous equations exist if the determinant of

the coefficients is zero

The matrix elements M, ,, were evaluated numerically using:
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1. a rectangular distribution function f(p) (Eq. (36));
2. a parabolic distribution function f(p):

o =\2
f(p) = Zz% [1 - @—%)—} ,  |p— 5] < po. (84)

P determines the position of the maximum and py the width of the distribution function.
For purposes of comparison with the square distribution function, it should be noted that
the inner turning points for ions which do (do not) encircle the axis of symmetry are within

a radius less than ry (1i" ), where

ri = rp—ra(p=—p)=€TL

ri = ra(p=m)—rr=¢rg
and

e = 1—(1—2pp)?

et = (142p) = 1.

For a given order matrix M, (), with & real, the eigenvalues AW are determined
numerically. The order of the matrix is increased until the roots of interest, namely the
lowest roots algebraically, have converged. By plotting

A0 = @@ —1)
A()
as a function of &, we can determine the values of A at which A\4)/9% = 0, and thereby obtain
the stability thresholds Auz, A1, and Ay identified in Sec. III using simple trial functions.
In Table V, we tabulate the values of Ayq, Ag1, and Ayo obtained for a rectangular distri-

bution function fo(p) (see Eq. (36)) identical to that considered in the previous section. The

magnitude of € ranges from e = 0.2 to 1.0.



When € < 0.2, the roots did not converge for a finite number of Legendre polynomials
n < 14. Numerical inaccuracies begin to appear when n > 14, and no acceptable solutions
could be determined for small values of ¢ < 0.2.

Over the range of € where convergence could be ascertained, the results for /_\ul, 5\51, and
Xyz are similar to those listed in Table III. They confirm the adequacy of the simple trial
function used in Section III.

In order to explore the sensitivity of the results to the particle distribution function,
we repeated the above calculation for a parabolic distribution function f(p). The struc-
ture of the boundary curves separating the stable and unstable regions remained the same.

The corresponding results for the stability thresholds for differing values of pg are listed in

Table VI.

VI. Discussion

The assumption of a rigid mode approximation simplifies considerably the analysis of the
flute instability in Migma equilibrium configuration. The particle number threshold Nyga

for onset of the flute instability was determined to be

N 8mr2Q; lwi| _ 4mriQ?
rigid = =
# 3} 3rL2.q}’

where rq & 2ry,.

However, the rigid mode approximation can be justified only when the mode frequency
is larger than the ion precessional frequency. At marginal stability, the real frequency is
comparable to the precessional frequency, and thus a more accurate solution of the eigenmode
equation is necessary to determine the instability thresholds. This was accomplished by
substitution of a two-parameter trial function for the perturbed potential ¢(r) in a quadratic
variational form constructed from Poisson’s equation. The accuracy of these results was
confirmed by solving the eigenmode equation with ¢(r) represented as a sum over a set of

Legendre polynomials.
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For a nearly ideal Migma equilibria, where ¢ = r/ry, < 1 (71 is the inner turning point
of the ion orbit), two unstable particle number thresholds were found.

The first instability threshold for the particle number N, scales as

N,
]\—T;;—:—c{ = 8¢?
if € « 1, with stability appearing at a higher pari;icle number Ng;. In this instability band,
Ns; > Npr > Ny, the unstable perturbations are localized ﬁear the inner negative density
gradient.

At yet a higher particle number Ny

Nug 3'7(‘36

]Vriid: 1 — /92 2
) 2(37r—8){1+4{5(1ns/c ! T/“)] }

T 37 —8

a second instability threshold occurs, with the unstable perturbations localized at the edge.
With further increases in the particle number this unstable mode eventually transforms into
the rigid mode instability.

Figure 6 displays the boundaries between the stable and unstable regions in the parameter
space of Np/Nyga versus e. When e > .4, the stable band disappears.

When conducting end plates are present at a distance d on either side of the disk-shaped
plasma, the enhancement of the particle number thresholds become significant only when
d/ry, < 3w /16, where 2d is the plate separation distance and ry the disk-plasma radius.

We note that our stability condition may give a plausible explanation of stab.ility regimes
achieved in the Migma experiment. In the experiment reported in Ref. 1 a 600 KeV deuterium
plasma was prepared in a 3 Tesla magnetic field where wy/we = 0.039 and that a particle
storage number of 3 x 10'* was achieved. The calculated value of Nygaq is 1.1 x 102 particles.
In Ref. 1 the radial spread of orbits is reported as 0.4 cm and we note that the gyroradius is
~ 5cm so that € & 0.1. Thus, Np/Miga ~ .3 was stable. In Fig. 6 we see that ‘NT [ Nyigia == .3

and € = 0.1 is in the second stability region. It was further reported that the particle
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storage number was achieved after passing through noisy regimes at lower pa,rficle storage
number. These noisy regimes occur both as particle storage number increases and decreases
at particle storage values that are roughly independent of the increasing or decreasing phase.
In Ref. 1 the band of noisy behavior occurs between 0.3 and 0.5 of the maximum achieved
particle storage number. This behavior suggests that in the experiment the plasma may be
passing through the unstable band predicted in our theory both in its increasing particle
storage phase and decreasing storage phase. Note that at ¢ = 0.1 our theory predicts an
instability band for particle storage numbers between 0.16 and 0.5 of the observed maximum
achieved particle storage numbers. This correlates qualitatively with experiment. Our theory
has neglected the effects of equilibrium electric fields that may exist, as well as an off-
set in the Py distribution (Ref. 1 indicates that the mean Fj in the e?{periment is shifted
from zero). Further, the plasma should respond to the noisy regime by spreading radially.
These uncertainties make more quantitative comparisons of experiment and theory difficult.
Nonetheless, some evidence of the instability band is indicated in the experimental results.

Other explanations of the noisy phase of the observed experimental results also need to
be considered. It has been suggested by Maglich” that the noisy phase of Migma operation is
due to the loss of axial focusing of a non-neutral pésitively charged plasma that arises as the
ion storage builds up. This effect may be relevant during the phase where particle storage
increases. During the decreasing particle storage phase, it is more diﬂicult to understand
why an already charge neutral system should have trouble with axial focusing.

Yet other possible explanations for the noisy intervals may be relevant. Maglich? has

pointed out the importance of coupling of axial electron motion to the ion cyclotron fre-

quency. He notes that higher particle storage is obtained only when the axial electron -

bounce frequency exceeds the ion cyclotron frequency. Our theory does not describe this ef-
fect. We however note that such an effect may be an indication of a loss cone type mode®—1°

where ion cyclotron effects interact with axial electron dynamics. One should also note that
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nonlinear effects can complicate mode identification. For example, it is possible that charge
imbalance caused by an unstable flute mode could induce electron bounce-mode excitations.

Finally we note that our theory indicates that the experiment has achieved a particle
storage level that is still below the critical level for the second instability band.

If we assume € = 0.1, we expect another unstable regime to arise when N exceeds 7 x 10!
particles for an experiment with otherwise the same parameters as reported in Ref. 1. This
second instability threshold is of more global nature than the first instability regime (in the
latter case the perturbation is localized near the origin), and may give rise to a significant
limitation on the particle number that can be stored. Further experiments are needed to

test the validity of our theoretical predictions.
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¢ 5‘11,1
.01].00077
.05 | .0161
11 .0534
2 | .93
3 | .260
4 | .362
5 |.455
6 | .539
7] .613
8 | .677
9 | .727
1.0 |.760

Table I. Tabulation of ),—rectangular distribution function fo(p) and trial function

Eq. (38).
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€ :\u?,
.0001 | .0029
.001 02435
.01 163
.05 485
1 705
2 938
3 1.04

Table II. Tabulation Ay,—rectangular distribution function fo(p) and trial function Eq. (46).
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€ ’\'u,l )‘sl )‘152

.01 | .00076 | .0023 | .147
.05 | .016 .049 A2
A .0583 A7 62

2 .15 .53 88
3| .26 92 1.08
4 .36 1.24 1.25
Do | 45
’ 6 | .53
8 | .66
1.0 .73

Table III. Tabulation of A1, 5\31, /_\u,g——recta.ngular distribution function fo(p) and trial
function Eq. (58).
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¢ f\ul 5‘sJ. iuZ

A 0.011 | 032 | .204
2 1.050 | .163 | .436
Sl | 369 | 644

4| 185 .602 | .818

b5y .265 | .826 | .959
.61 .349 | 1.018 | 1.070
| 435 1,162 | 1.163
8 1.523
9 ].612
1.0 |.674

Table IV. Tabulation of A1, Ae, Aus—rectangular distribution function fo(p) and trial
function Eq. (58) with conducting end plates.

36



€ /\‘u.l )\31 /\u2

A7 | .50 | .76
27 | .87 ] .98
38
5
525
566
659
699
712

ool to

>~

of o] o] —a| |

1.

Table V. Tabulation of Ay, Ay, Ayg—rvectangular distribution function fo(p) and trial
function represented by a sum of Legendre polynomials.



2]) 0 €+ € /\ul )\ sl '\11.2

J191.09 1.1 |.086 | .21 |.534
86 117 .2 | 111 | .32 | .599
b1 .23 ] .3 | .150 | .43 | .618
.64 .28 | .4 ].193 | .51 | .559
J5 .32 .5 | .236 | .61 | .633

84 1.36 | .6 ].272 | .72 |.73

Table VI. Tabulation of Ay, As1, Aus—parabolic distribution function fo(p) and trial func-
tion represented by a sum of Legendre polynomials.
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Figure Captions

N

(a) End view—ion orbits pass through axis of symmetry.

(b) Side view—disk-shaped plasma.

Coordinates of ion perpendicular trajectory.

Radial profile of ion density integrated over z(e = .2).
Variation of A9(&) as a function of & for § =1,2,3 (e =.2).
Trial functions 1), v, o (e = .2).

Stability boundaries in parameter space (A = Np/ Niigia versus €)—rectangular distri-

bution function fo(p).
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