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Abstract

A new kind of a particle simulation algorithm suitable for following long time scale
evolution of electromagnetic beams in plasma is presented. The algorithm is based on
particle and field equations averaged over the rapid laser oscillations and the model
constitutes the electromagnetic counterpart for the Zakharov’s model for electrostatics.
Computational remarks upon implementation of the algorithm are given. Test results
of the code applied to the Rayleigh spread and self-focusing of an intense laser beam:
in a plasma are discussed.




I. Introduction

The simulation of the physical behavior of high frequency electromagnetic beams propagating
in a plasma involves several aspects. First, in terms of frequency scales, the electromagnetic
radiation has typically very high frequency (unless if; is in resonance or propagates in an
overdense plasma), wg ~ cko, where kg is the wavenumber of the wave and ¢ is the speed of
light. Secondly, plasma oscillations involve the electron plasma frequency w, = i*%ez which
is typically much smaller than the photon frequency wp in an underdense plasma. In what
follows we concern ourselves primarily with underdense plasmas. Thirdly, there are time
scales associated with ions (such as the ion plasma frequency w,;, and ion acoustic frequency
kocs with ¢, being the sound speed) and those associated with the transport of the optical
beam (inclu'ding diffusion, diffraction, scattering and dissipation (depletion)). Some of these
processes may involve plasma instabilities such as parametric instabilities.

Similar hierarchy of spatial scales can be discerned as well. They are the electromagnetic
wavelength, plasma wavelength and the Debye length, the dimensions of the optical beam
(the width and the length), and the transport length such as the depletion length.

The interrelation between the high frequency electromagnetic waves and the plasma
oscillations has been an active area of research and the computational efforts have been
fairly well documented.!=® However, the investigation of the beam dynamics over longer
time scales and larger spatial extent is less developed. Some attempts have been made?* but
these tend to be not fully self-consistent. It is of vital importance, therefore, to develop a
numerical model that encompasses over time scales much longer than the radiation time scale
and that can follow the overall dynamics (i.e. transport) of the optical beam. Only with
such a model one can fully study, for example, the long time scale evolution and transport

of the beam in applications to the beat wave accelerator® and the plasma fiber accelerator.’
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In these applications it is important to make the length of the optical beam sufficiently
short so that it does not induce instabilities related to ionic responses. This simplifies the
experimental situations along with the computational considerations. In what follows we
confine ourselves to these circumstancés only.

The present effort of model development may be regarded as an electromagnetic coun-
terpart to the Zakharov model® of electrostatic pulses and to the subsequent numerical
calculations.”® In Sec. IT we present our model of time-averaged (or phase-averaged) equa-
tions: the equations governing the evolution of the electromagnetic fields and the particle
dynamics are averaged over the rapid laser oscillations. This way only the secular changes
in field quantities will be followed. Also, since typically the amplitude of the modulation
is much smaller than the amplitude of the wave, this scheme has the additional advan-
tage of making the signal cleaner by averaging out the masking dominant oscillations. In
Sec. III computational algorithmic considerations are discussed. Test results of the code (for
Rayleigh spread in vacuum and self-focusing of an intense optical beam in a plasma) are

discussed in Sec. IV, followed by the conclusions in final Sec. V.

II. Mathematical Formulation

The basic idea in developing the mathematical model for computation is to average the
equations evolving the electromagnetic field aﬁd electrons (the ions are assumed to be sta-
tionary in this first version) over the short laser oscillation period. That way we eliminate
the fast time scale of the uninteresting rapid oscillations and follow only the slower time
scales associated with the net changes in qua;ntities of interest. The averaging in space and
time can be carried out simultaneously provided the ansatz is chosen appropriately.
Consider the wave equation for the vector potential instead of the set of Maxwell’s equa-
tions for the electric and magnetic fields. This is done because averaging Maxwell’s equations

over the laser oscillation period would lead to a set of trivial identities. Further, if we had
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chosen to study the wave equation in terms of either electric or magnetic field, the plasma
contribution would appear as the time derivative of the plasma current, whereas when using
the vector potential the plasma current as such appears in the wave equation. Writing the
electric and magnetic fields in terms of their potentials,

()on

5 , B=VXxA, (1)
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the wave equation, derived from Maxwell’s equations, becomes
2 1

(35w 2= () >
The Coulomb’s gauge, V - A = 0, is chosen for the potentials. This allows a clear
separation of slowly and rapidly varying quantities. For instance, in the case of the electric
field, the rapidly varying electromagnetic part is entirely given by the vector potential. The
scalar potential like the particle density, on the other hand, is slowly varying (the variations
in particle density are slow compared to the laser oscillations because they are produced by

the slow time scale ponderomotive force):
V - E =dre(n; —n.) = V?® = dre(n; — ne) . (3)

For simplicity, the electromagnetic fields are assumed to have circular polarization and

the vector potential is written in the form
A(x,1) = a(x,t) exp {tkoz — iwgt — (%, 1)} (Z +47) , (4)

where amplitude ‘a’ and phase shift ‘¢’ are slowly varying (compared to the laser oscillations),

real quantities:
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The averaging over laser oscillations now becomes straightforward for most terms in the wave

equation:
Tio/ APt = %A-A* = ax, )2

(6)
%/[Aﬁczz - %A CA* = a(x,1)? .

Using the expression (4) for the vector potential and multiplying the wave equation by
the complex conjugate of A, the real part of the wave equation yields an averaged partial
differential equation for the amplitude, a(x,t), and the imaginary part an averaged equation

for the phase shift, ¥(x,1):

A AN op ., O], (4x |

Wa-—cv a+ta (W — V|| 4+ 2a woﬁ+ck0$ +(7)Re(J-A )
and
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E(a E)-cv-(a Vi) —2a wo-a—t--l-cko-a—; —(—c—>Im(J-A ). (8)

In deriving an expression for the plasma ‘current we assume that the ions, being much
heavier than the electrons, can be regarded stationary over the period of interest. This is
motivated by our desire to operate in a regime void of parametric instabilities (see Barnes

et al.®). Thus the current can be written in the form:
TR qanaVe & —en.v, . (9)
23 .

The electron contribution to the plasma current is obtained by using the relativistic equation

of motion:

ne(—%p-l-nev-Vp:—eneE— <6ne>va—VP ,
c

. pZ
p=myv , y=4l+—5, (10)

where P is the pressure of the electron fluid. (The subscript ‘e’ has now been dropped from

the electron velocity). We will expand the electron velocity (as well as momentum) in terms
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of the normalized quivering velocity p = £% < 1. In order to include the ponderomotive
effects it is necessary to keep terms up to the second order in u. To incorporate the effects
due to the electron density depression we need to keep terms up to the third order in u.

Keeping terms up to the third order only, we can drop the pressure term, because it is of

the fourth order in u:

. .
VP ~T,Vén, ~v3Vén, ~ (vth> u*Vén, , (11)

’UOSC

and, as recalled from the previous chapter, én. is of the order of 12, and so

VP ~ (”“1)2 O(ut) .

UOSC

The equation of motion for electrons, therefore, can be written as

0
—(P1+pP2+ps)+Vvi-V(pP1+Pp2) +V2-Vpy

ot
e\ 0A e
=evet (2) G+ (5) v x (v xA), (12)
and the plasma current as
J = —eno(V1 + vy -+ V3) — 65?’LeV1 . (13)

It is important to notice that even though the thermal velocity of the electrons does not
contribute to the plasma current explicitly, it still affects the current through the relativistic

mass increase of the electrons:

\2

m2c2 ’
where pg denotes the momentum corresponding to the thermal velocity. In case of a cool

plasma the effect of pg is, of course, negligible.




The electron momenta in different orders, as obtained from the relativistic equation of

motion, are given by:

€
b1 = (")Aa
C
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0 e

P = Vl'VP2+V2‘VP1—(E)V?,X(VXA). (15)

In order to express the momenta in terms of the field quantities only, we need to define

the different order velocities v;, 7 = 1,2,3. This may be done by expanding the relativistic

gamma in powers of p:

1 1 1 1 L,
TE R {1— .2 [po‘P1+*P1+P0'P2
v P Yo m2c?yg 2
1+ -5
m2¢
TPo ' Ps+ P1 'P2]} , (16)
where 70 = 1/1 + Z2». Using this expression for the electron velocities in different orders

they become:

v = (_p_1_>
Yo
(=)
Vg = _—
m70
1 1/ 1)\,
vz = (m—%) {PS“Q‘(%) P1P1} ) (17)

where we noted that the terms with odd powers of the thermal velocity vanish. Using

these expressions for the electron velocity, we can now write all the different order electron

momenta in terms of the field quantities:

e
p1 = <—>A7
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9y = Vo () va2 and (18)
G T ¢ 2myoc? "
Opo = — (=) 1AV +(VA) b
It Ps = — P2 P2] -

The expression for the second order momenta consists of only slowly varying terms (®
and @) and it will be kept in the differential form: In the code we will store p; as a grid
quantity and advance it explicitly. The third order momenta, however, consists of both
slowly and rapidly varying terms, and we find an expression for ps by approximating the

behavior of rapidly varying terms by exp(—iwot):

pam =i ()[4 Vi (V4) i (19)

The different order electron velocities are now given by

Vi = ( ¢ >A.
mayoc

w = (=) - @)

mYo

v = (i) {5 () 2+ () - Spa (V) pal}

Having everything in the plasma current expressed in terms of the field potentials, we

can carry out the averaging over the rapid laser oscillations. As in the case of the left hand
side of the wave equation, this is done by multiplying the plasma current by the complex
conjugate of the vector potential and averaging over the laser oscillation period. The first

order current is
Ji = —engvy and so

1 % 7 ezno 9
1 A*dE— — , 2
(To> [ ara=—2 (m%c> a (21)

The second order current is slowly varying and therefore it vanishes upon averaging. The

third order current calls for special care. It contains terms that are not proportional to
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the vector potential. Therefore, if we multiply it by the complex conjugate of the vector
potential, unphysical terms will arise due to phase mixing. To avoid this, the term not
proportional to A must be averaged using real representation. The third order current is
given by

en 1
J3 = —e(ngvs + fnevy) = = (m—%) [p3 ~3 (mc'yg)zpfpl} —ebnevy . (22)

The two latter terms, being proportional to A can be averaged using complex notation:

<_}_) /5nevl CA*dt 2 (eéne) a’,
To mcYo (23)

3
<——1—> /5nev1 CA*dt x 2 (E> at.
To C

Averaging the first term in the expression for J3 we return to real notation:

o= =i ()[4 Voa + (VA) -pal (24

Carrying out the averaging term by term, we find

1 : 1 1
<To> [ATA- ool = <To> [ 45 A0ipsyit ~ Oipn, (ﬁ) [ asdar

1
= 0Oipy; <—a26i’j> for i,] =2,y

2
1
= §CLZVT ‘P2, (25)
where Vg = % + @‘%, and
1
(Tg)/A-[(VA)-pg]dt ( >/A [( >Va+ngo]A Dydt

1 , 171 .
P~ [( ) 6 a -+ Zajgo:l Pa; <?o) /AiAjdt = 5 [5 (p2 . VTaQ) + Za2p2 . VT‘P:| , (26)

where @ = koz — wot — 9. Thus the averaged value of the first term is

1 e . 1
(Tg> /Ps A¥dE = — <7nc'yowo) {G2P2 -V +1 [G2VT ‘P2t 5 P2 VTG2J} ,  (27)
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where we have used the fact that Vo = — Vb, The averaged third order current can now

1 / % e?ng . | [ ea ? 6ne
(-) Ty A¥dt n a —9
1o myoC mYyoc ng

) [a2 Dy Vgth+i <a2VT Do+ %m . VTa2>} } , (28)

be written as

<m’)’owo

and the total current is given by

() 5w () (< ) -]

) [azpz -V +1 <a2VT P2 + %Pz ‘ VT02>] } ) (29)

+
M Yowo

where N, = 1 + %—f. Using this expression we can now write the amplitude and phase

equations from (7) & (8): ,
2
(Q’(ﬁ> - CZ!V¢|2:| + 2a (wo % + cko 8_¢)

2
—?——azczvza—l—a

ot? ot ot Oz

1 (w? ea \’ 1 '

+ 3 (:;’-’-) a (m’)’ 02) — 2N, + (m—w') p2- Vi (30)
: 0 0 oWo
and
0 [ 00\ o, 2 da . Oa
E(a E)_CV.(CLVW_Z_G woa-l-d»o%
1 (wo\ [ w ‘ 1
B P
P 0

The electrons are needed for calculating the electron density, N., appearing in the am-
plitude equation. When the equation of motion for electrons is averaged over the laser
oscillation period, only two forces from the Lorentz force survive, the electrostatic force and

the ponderomotive force, which are both second order in the quivering velocity:

d
ZP= —eE, —mc®V4/1 + 42 . (32)
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Equations (30), (31) and (32) constitute the basic set of equations for our system in the slow
time scale. As we remarked in the Introduction, they form the electromagnetic counterpart
of the Zakharov equations in electrostatics. In the following we shall try to solve these basic

equations.

III. Numerical Algorithm

From the form of the field equations one notices that the direction of the beam propagation
singles out. Furthermore, the transverse directions appear only in terms involving inner
products. This allows us to represent the transverse dimensions by one scalar variable (in-
stead of a two dimensional vector), which we will call ‘z’. The direction of beam propagation

is labeled by ‘y’. With these conventions the amplitude and phase equations are as follows:

N 2
a—2a = c2V2a+a{(-a—¢> —c2|V¢|2]+2woa {8—¢+c@£]

ot? ot ot Oy
1 (w? ea | 1 oY
+ 5 (;)—/0—) a {(772’)’062) —2N. + (m%wo> P2m6—$] (33)
and
_a__ 2 ?ﬁb_ 2/ 202 2 _ @ a_a
8t<a Bt) = c*(a*V*p + Va* - Vip) — 2woa 8t+cay
1 Wy 2 Wo 2 apZa: 1 6a2
2 <w> (m73> [ Dz T3P 5 (34)

where V = EE% + 3,75%.

The code solves for the four interdependent quantities, a, a:, ©¥,.and ; by the staﬁdarcl
leap-frog integration over the four first order partial differential equations obtained from the
above two equations. In addition the electrons are pushed and the electron density updated

at every time step. The structure of the code is as follows:

11




e initialize fields
e initialize particles
¢ loop over the main program:

— push particle positions

— accumulate charge density and compute electrostatic field

— update the amplitude and the time derivative of phase shift

— calculate total force on particles and advance the grid momentum
— update the phase shift and the time derivative of amplitude

— update grid momentum and particle momentum

The boundary conditions are chosen to be periodic in both longitudinal (y) and transverse
(z) dirvections. The width of the simulation system has to be chosen large enough compared
to the width of the gaussian beam so that the parallel beams do not interact significantly
with each other during the run.

The spatial differentiation may be performed using fast Fourier transforms to retain as
high accuracy as possible. Unfortunately, the theoretical behavior of the phase shift, ¥,
is such that at the edges in the transverse direction there is a discontinuity in the spatial
derivative of 1. This discontinuity is, of course, artificial, but fortunately it takes place in
the region where it should have no significance (the amplitude, having a gaussian profile,
has dropped to practicaliy zero).. However, when using Fourier transform, this effect will
no longer be localized, but the sharp, unphysical structures will be instantaneously reflected
all over the grid. Therefore we ended up adopting finite differencing for the spatial differ-
entiation. This also eliminates the complex dealiasing technique® necessary with Fourier

transforms to handle the equation % = LC—‘Z%Q, which involves operation of the inverse.
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Furthermore, it is important to notice that whenever the amplitude vanishes, the phase
information is lost. This is reflected in the leap-frog equations in that the calculation for
1, involves division by a?. To circumvent this problem that has arisen from our choice
of independent variables (amplitude and phase instead of field components) and equations
(wave equation instead of the set of Maxwell’s equations), we introduce a ghost factor in

evaluating the time derivative of the phase shift:

(a*y) a*(a’ty) (35)

H
a? a4_|_€2 ?

e =

where €2 is a very small number (typically we have used €2 = (0.0001-a2 — (0.001-ap)?). The
ghost factor will have a negligible effect in the computétion when the amplitude is finite,
and it will prevent a divergence without altering the value of phase shift when the amplitude
vanishes. We note that eQuaﬁon (35) is analytically continuously reducible to the original

equation as.e? — 0.

IV. Testing of the Code: The Rayleigh Spread and
Self-Focusing

The testing of the code was carried out by first excluding the plasma from the system by leav-
ing out the plasma current terms in the field equations. This corresponds to electromagnetic

beams propagating in vacuum. A beam with a gaussian intensity profile,
a = aoe_”z/w‘% , ‘ (36)

is considered. The evolution of a gaussian beam is reasonably well understood theoretically.'
Assuming a stationary state, the behavior of the beam radius is given by the Rayleigh

spreading,

o) =g 1+ 2] (37
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where yr = 1kow? is the Rayleigh range. In the code, instead of assuming stationary state
(% = 0), we give initially a beam uniform in y (% = O).'In doing this, the roles of time and
direction of propagation get interchanged and we expect to see Rayleigh spreading in time

rather than in space:

2
wlif = |1+ 73] (38)
. R .
wl

where Ty is the Rayleigh time corresponding to the Rayleigh range, T = fw, 5. Instead

of monitoring the beam radius, w(t), we monitor the amplitude, noting that the total power

is invariant:
Ps = adw? = a(t)?w(t) in 3 dimensions

P, = alwy = a(t)?w(t) in 2 dimensions .

The behavior of the peak amplitude is thus specified by the behavior of the beam radius,
and so we can equally well follow the evolution of the amplitude. In Fig. 1(a) we have plotted
the time behavior of the peak amplitude obtained from the simulation run, together with
the theoretical curve. The two curves are identical until after about three Rayleigh times
they start &iverging. This is due to the significant overlapping at the skirts of the beam we
are monitoring with the identical beams parallel to it (see Fig. 1(b)) that exist outside the
simulation box due to the choice of periodic boundary conditions.

To further test the field solver, we include the plasma effects — not in a particle descrip-
tion but in terms of the field quantities via theoretical formulae. First, consider the case in
which the self-focusing is solely due to the relativistic mass increase of the electrons.!’ The
dispersion relation for electromagnetic waves in vacuum, wg = cko, is then replaced by the
plasma dispersion relation, wp = \/w_;—-—l——cz—kg, for the zeroth order solution in the amplitude
equation, and a term quadratic in amplitude is added into the field equations. According to
Ref. 11 at low intensities the beam should diffract, but above a critical intensity we should

see self-focusing. The value estimated for the critical intensity is (in three dimensions)

Lo~ (ﬁy , (39)

Wo
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where ), is the collisionless skin depth and the intensity is defined as the normalized quivering
velocity of the laser,

e’ B2

I= )

= rEE (40)
We ran the code with parameters A, = 0.9 Z:;? wo = 4.0 i and saw self-focusing take over the
diffraction at intensities higher than I ~ 0.05, whereas the prediction for critical intensity
(for two dimensional case) given by Schmidt and Horton is I; = 0.07 for these parameters.
The agreement seems reasonably good.

Next we included self-focusing terms due to the ponderomotive force. This was done
by assuming that the system had reached a state in which the ponderomotive force acting

on electrons is balanced by the electrostatic force due to the charge separation (induced by

the ponderomotive force).lé In this model the electron density is given by (in two spatial

dimensions)
2 2
n c\ 0 el
w=teo (£) 2 (B i
Ng (wp> Oz \] + Mwec? (41)
The theoretical prediction for the critical intensity in this case is (for two dimensions)
1 A
IomR— —. (42)

V2 wo

For the parameters given above the self-focusing threshold is still given by I = 0.07, whereas
our simulation yielded I, ~ 0.05. It should be noticed that the time scale for self-focusing of
ponderomotive origin is much longer than that for relativistic self-focusing. This is because
in the ponderomotive self-focusing a net flux of electrons has to move appreciable distances,
whereas the relativistic effect is almost instantaneous. This is the reason why the critical
intensity for the onset of the self-focusing was dominated by the relétivistic effects even when
the ponderomotive effects were included.

As the next stage of testing, we included dynamiczil electrons and stationary ions in the
system. The electrons are pushed at every time step using ponderomotive and electrostatic

forces, and from their positions the plasma density and electrostatic forces can be derived.
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One dimensional test has been carried out (the direction of propagation is taken to be
uniform, thus modeling an infinite beam). In Fig. 2(a) few time histories from these runs
are shown. We have used 100 particlés per grid cell. The width of the simulation system
is 25.6 i, the frequency of the laser is Sw, and the radius of the beam is wo = 4.0 f; The
thermal velocity of the electrons is one tenth of the speed of light thus corresponding to a
5 keV plasma. At low intensities the beam diffracts as indicated by the reducing amplitude
for Iy = 0.15 (Fig. 2a) and at higher intensities, like Iy = 0.36, we see an increase in
amplitude implicating self-focusing (Fig. 2b). The critical intensity given by the theoretical
model is I, = 0.18 for these parameters, whereas in the simulations it was observed to be

approximately I ~ 0.20.

V. Conclusions

We have presented a new kind of a particle simulation algorithm intended for studying the
long time scale evolution or transport of an electromagnetic beam in plasma. In particular,
we have used it to study self-focusing of a laser beam in plasma.

The code is based on a set of equations consisting of the wave equation written in terms of
the vector and scalar potentials, and the equation of motion the particles averaged over the
rapid laser oscillations. This way the code does not need to resolve for the rapid oscillations
and the modulation can be seen directly as the primary evolution of the beam.

For the intended application!? the ions were assumed to be stationary and only electrons
were being advanced. Even in this simplified form the test runs of the code gave results that
are in agreement with the theoretical work done in the field of self-focusing in plasma.

When implementing the two dimensional version of the code (by including dynamics in
the direction of propagation) we also move the simulation system into a frame moving at the
group velocity of the laser beam. This way we can follow the beam far in the direction of

propagation without great computational costs (that would be brought about when following
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the beam in laboratory frame by including an extensive grid).
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Figure Captions

Figure 1. Rayleigh spread of a laser beam.

(a) The ratio of the instantaneous amplitude (at the beam axis) to the initial one is plotted
as given by the simulation code. For comparison, also the curve given by the two

dimensional diffraction theory is included.

(b) Radial profile of a gaussian beam at different times as given by the diffraction theory.
After about three Rayeigh spreading times the beam is seen to extend significantly
outside the simulation box and thus it will, due to the periodic conditions, cause

noticeable interference effects.

Figure 2. Evolution of a gaussian beam propagating in plasmas as given by the simulation

code using full electron dynamics.
(a) I < I;: The beam diffracts.

(b) I > Iy: The beam is self-focused followed by diffraction.
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