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Abstract

The nonlinear growth of the low-shear quasi-interchange instability is investigated
using a low-beta expansion of the Reduced Magnetohydrodynamic equations. These
equations are shown to be identical to the full Magnetohydrodynamic equations in '
the linear regime except for the neglect of parallel kinetic energy and the effects of
compressibility. The nonlinear forces are found to be stabilizing for the profiles in-
vestigated. These forces lead to the appearance of stable, finite amplitude bifurcated

equilibria above marginal stability.




I. Introduction

Ideal magnetohydrodynamic instabilities are often invoked to eicplain rapid, large-scale
instabilities in magnetic confinement experiments. However, in view of the relatively slow
evolution of the equilibrium, it is not clear how such instabilities can appear suddenly as fast
growing modes. This problem has received renewed attention as a result of the observation
of extremely fast sawtooth crashes with no precursor oscillations.!

In this paper nonlinear effects on the growth of a pressure-driven, interchange-like mode
are investigé,fed. This mode is thought to be responsible for the sawtooth crashes observed
in JET and succes.sfully accounts for most of their features.?=® The analyéis presented here
differs from previous bifurcation calculations”® by the inclusion of toroidal coupling effects.
Toroidal curvature, which is important for pressure-driven modes, destroys the helical sym-
metry which is typical of kink-like instabilities.

The nonlinear corrections are evaluated by expanding the equations of motion for the

unstable mode near marginal stability.” This procedure yields the following equation for the

mode amplitude ¢:
&
dit?

where ~ is the linear growth rate. The coefficient I is the main goal of the analysis. Its sign

=%+ T+ 0(¢°) , (1)

determines the qualitative behavior of the mode as the linear stability threshold is crossed:
(1) For T' < 0, the nonlinear terms are st;,bilizing and lead to the appearaﬁce of secondary,
stable equilibria. In this case the plasma will simply shift adiabatically from the initial
unstable equilibrium branch to the nearby bifurcated equilibrium branch (Fig. 1a).
(2) For T > 0, however, there are no ﬁearby equilibria above marginal stability (Fig. 1b).
A robust, explosive instability can develop even near the stability threshold. In the absence

of higher-order stabilizing terms the mode would grow to infinite amplitude over a finite time.




These two. cases are referred to as supercritical and subcritical bifurcations, respectively.

The analysis is developed from the high-beta reduced magnetohydrodynamic (RMHD)
equations of Strauss.® These equations describe nonlinear plasma dynamics in large aspect
ratio tokamak geometry. They are the result of a systematic ordering of the magnetohydro-
dynamic (MHD) equations, in which only the lowest order terms in the inverse aspect ratio,
€= a /Ro, are retained (here a is the minor radius and Rq the major radius of the torus).
In particular, RMHD takes 3 ~ kj ~ €, where § = P/ B? is the ratio of kinetic pressure to
magnetic pressure and k) = B~!(B - V) is the inverse of the characteristic scale length along
the magnetic field.

In order to describe interchange-like instabilities in relatively low-beta plaémas, we intro-
duce the secondary ordering parameter 6 and assume f§ ~ k| ~ €6, with 6 < 1. Note that
a global instability with k) < € can only occur if the plasma contains a low-shear resonant
region where the safety factor g is close to a rational number: specifically, ¢ — ¢; ~ 6 where
gs = m/n. The quasi-interchénge model of saWtooth ,disruptions assumes that this condition
holds in a central region of the plasma with ¢, = 1.

The basic nonlinear interchange equations are then derived by expanding the RMHD
equations to lowest significant order in §. However, consistency with the reduced MHD
ordering requires € < 9. This condition is generally not satisfied, typical values of the inverse
aspect ratio being € ~ 1/4. Nonetheless, one would expect RMHD to remain qualitatively
valid, particularly for pressure:driven modes, when § < . This hypothesis is supported by
an examination of the linearized MHD equation in the low-shear, low-beta approximation.'®¢

The exact (non-reduced) energy principle for theseAequa,tions contains the following terms:

(i) Cylindrical kink and line-bending terms proportional to (¢ — gs)>.

(ii) Interchange terms proportional to (p’)?, including the sideband energy.

(iii) A term proportional to p'(¢®> —1).

The first two terms are clearly included in the RMHD equations, but the last term will be




missing. For g, = 1, however, this term should be neglected from the MHD equations as
well. This is of course the case relevant to the sawtooth problem, and we thus conclude that

~the RMHD equations ‘will produce the correct potential energy for the quasi-interchange in
this case. ‘

The RMHD kinetic energy, however, neglects the parallel velocity and the effects of
compressibility. Compressibility is unimpdrtant near marginal stability, while the neglect of
parallel velocity will result in growth rates being overestimated by a factor of (1 + 2¢2)*/2.
This clearly does not affect the nature of the bifurcation.

The RMHD equations are described in Sec. II. The interchange ordering, § <« 1, is used
in Sec. III to simplify the system further. The resulting, “interchanée—reduced” equations
involve only the helically resonant components of the fields, but contain numerical constants
related to the behavior of the non-resonant components in the sheared outer riegion of the
plasma. The perturbation expansion in the mode amplitude is described in Sec. IV and
the resulting equations are solved for model profiles in Sec. V. The results are discussed in

Sec. VL.

II. Formulation

The RMHD system is derived in detail in the paper by Strauss® and is presented here
mainly for ease of reference. |

The coordinate system is defined in terms of cylindrical coordinates (R,(,Z) by z =
(R— Ry)/a,y = Z/a and z = —(, where z and y are coordinates in the poloidal plane and

z is the toroidal angle. The magnetic field is given in sufficient accuracy by
B=Z:+4¢e(—2z+2B)—% x Vi), (2)

where 1 is the poloidal flux and B| represents diamagnetic corrections to the vacuum toroidal




Vi=%—+79 5 (3)
are to be carried out using the Euclidean metric. The lowest order force balance equation,
V(B +p/2) =0, @

allows Bj| to be eliminated in favor of the pressure p. An important operator for interchange-

like modes is the parallel gradient operator,
B-V=¢Vy. ()

This operator is conveniently expressed in terms of the conventional bracket,

[fvg] = 2 (VJ.f X VJ.g) ) : (6)
by
0 .
Vi= 5, — 1. (7)
Ampere’s law is written
J=Viy, (8)

where J is the negative of the toroidal current density.

The principal dynamical equation is the shear-Alfvén law, given by

o+l Ul =~V ~[eos] )

where the vorticity U is given in terms of the stream function ¢ by
U=Vip. . (10)

Thé left-hand-side of the shear-Alfvén law contains the convective derivative of the vorticity

~ while the right-hand side consists of the parallel-current driving term and the interchange
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term. The system is completed by the parallel Ohm’s law,

O
'-57'_-+V”(,0=0, (11)

and the pressure evolution equation,

Op

5;+MM=0. | (12)

The analysis of these equations is simplified by making use of such properties of the

bracket as antisymmetry and the Jacobi identity:
fool=~lo,fl, | (13)
[f,1g, B + lg, [2, 1] + [Py [£, 9]} = 0 . (14)
It shoulci also be poted tha,t- the bracket is a derivation: it satisfies
f,ok) =f,0)-h+[fR] g (15)

The integral invariants of RMHD can also be used to reduce the complexity of the prob-

lem. These can be derived from the identities!!

[ 119, 1av = [ glb, flav = [ wlf,glav (16)
which can be seen to hold by writing the bracket as a divergence,

[fag] =V, (gé X VJ.f) ’ ' (17)

and integrating by parts, assuming the vanishing of surface terms. The following integral

invariants are particularly useful:
¢ = [Fp)av, (18)
D = / G(Vyp)dV (19)
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where F' and G are arbitrary functions.

In the following analysis we will consider only conditions such that the pressure is initially

a flux function: Vjp =0 at 7 = 0. Equation (19) then implies

Vip=0 | (20)

at all possible times (7 > 0).
To summarize, the RMHD system consists of Egs. (9), (11), and (12), with the defining
relations (8) and (10). Equation (12) will be replaced by Eq. (20) under the assumption

stated above.

III. Interchange-Reduced Equations
~A. Simplification of the equations

The quasi-interchange ordering allows considerable simplification of the equations of mo-
tion. The simplification is largely a consequence of the partial linearization reéulting from
the small-§ expansion. It is important to note, however, that no assumptions regarding the
size of the perturbation from equilibrium are made. In this sense, the interchange-reduced
equations remain fully nonlinear.

The analysis in this subsection follows a similar derivation by Kotschenreuther et al.l?

In terms of the normalized variables used in RMHD the quasi-interchange ordering be-
comes simply p ~ V|| ~ § < 1, the € terms being absorbed in the normalization. The
equations of motion then imply 53; ~ 8. To zeroth order the plasma is thus in a force-free,
closed-line, cylindrically symmetric‘equilibrium. Clearly this state is marginally stable to the

exchange of flux tubes. Introducing polar coordinates in the poloidal plane by z = rcosf




and y = rsin 0, we obtain the resonance condition on interchange perturbations ¢ as

05. o¢

-5—5+?9-<-—-O. (21)

Vi€ =

It is satisfied by ¢ = f(r,0 — (), for arbitrary f. Thus, the quasi-interchange ordering
describes the evolution of the plasma between states which are, to lowest order, helically
symmetric. This observation motivates the change of coordinates (r,8,{) — (r, &, 7), where
a=0—-Candn=( «a is a field-line label for the zeroth-order magnetic field. The bracket

in these new coordinates is simply

_1(8f 8y 8f 8y
[f@]—;{ga—a—gg}@ | (22)

The parallel gradient is then most simply expressed in terms of the helical flux defined by

X = ¢+r2/2. (23)
We then have
, _ 3
Vi = gy X% (24)

Note that X ~ 6.

The dynamics of interchange perturbations are of. course determined by higher-order
terms. For finite §, the helical symmetry is broken by the toroidal curvature. Nonetheless,
the field quantities remain approximately helically symmetric. It is useful to separate them

into their n-averaged part,
F = . f dn f(r,e,n) | (25)
9 ' y Ly 3

and an n-fluctuating remainder,

e
—~
[\
>
g

Fof-




F clearly satisfies the resonance condition, Eq. (21). Note that the bracket behaves as a

(27)

typical quadratic form under helical averaging:
[fo9] = F.5)+1f.3] -

The shear-Alfvén law, Eq. (9) and the pressure equation (20) are now separated into

resonant and non-resonant parts. The helical average of these equations is

AR AR ) R R e (28)
X,5] + %51 = 0. | (29)

The relative magnitude of the resonant terms is as follows:

()p~X s T=2+0().
(ii) From the n-averaged Ohm’s law, Eq. (11), one finds % ~ 2 ~ 6.
The non-resonant quantities are determined by the nfﬂuctua.ting part of the equations

For the pressure law, subtracting Eq. (29) from Eq. (20) yields
aﬁ ~ _ - ~ ——
6_7'] = [X,p]+[X,13]+[X,ﬁJ _[X,ﬂ . (30)

It follows that p ~ 6%. p is thus determined to leading order by
(31)

0F <
— =X, 7| .
| 3 [X, ]
Thus the non-resonant pressure results from advection of the resonant pressure by the non-
helical component of the magnetic field.

From the non-resonant part of Ohm’s law, one finds ¢ ~ %% ~ 2. This implies that

the kinetic terms can be neglected entirely from the non-resonant shear-Alfvén law. The

remaining terms are
aJ S~
= [X"]]+[X> ]+[X7 ]—[X,J]

- [-’L‘,]-?] - [xaﬁ] + [113,13] .
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The leading order term on the right-hand side is [z,5] ~ 6, so that J ~ X ~ &. The other

terms are then of higher order and Eq. (32) becomes

8J

'5'7; = —[2},]3] . (33)

The current J may be interpreted as a Pfirsch-Schliiter current.'?

The non-resonant equations can be intégrated:
[ %] | (342)
[/ dn w,ﬁ} . (34b)

Substituting the result into Eq. (29) and neglecting the higher order term [, 1,0] ], one finds

R (N7 A |

Integrating the last term by parts and using Jacobi’s identity yields the n-averaged shear-

AHvén law
o0

o + [@,U]—P_(,j]—-[ﬁ,h]=0, (36)

where
h o= [z, / dn %) (37)

This term may be interpreted as follows:

The curvature in RMHD is given by & = —Vz. The function z plays a role analogous to
gravitational potential in a gravity-driven interchange. It can be shown that, to required

order, h is the average of z along a magnetic field line,

h=¢ —-z. (38)




Note that only the non-resonant part of the flux contributes at this order, and that the field
lines generated by X alone close after one period. Vi therefore plays the role of an average

curvature in Eq. (36).

B. Calculation of the average curvature

The average curvature is calculated by integrating Ampere’s law for the non-resonant
current given in Eq. (34b) and substituting the result in Eq. (37). The solution depends
of course on the choice of boundary conditions. We are primarily interested in equilibria
consisting of two regions (Fig. 2):

(1) A central, low-shear region where the quasi-interchange ordering is satisfied with
gs = 1.

(i1) A sheared outer region where Vjj ~ 1, p ~ 6. The appropriate boundary conditions
are then obtained by requiring the solutions in the low-shear region to asymptotically match
those in the outer, sheared region.

The integrations are most easily accomplished after Fourier decomposition of the fields:

400 .
p(r,a) = Z Pn(r)em™, (39)
1 : o o
- = i(a+n) —i(a+n)
z = 27‘{6 " te ’7}. (40)

The reality condition can be written
B =Pon - (41)
Substituting these expressions into Eq. (35b) one finds

52(7', a,n) = E -’io >~<n,:|:(7') exp {z(n +Daxin}, (42)

+ n=-co

where the X, +(r) are determined by

(L2 2) -2 0| Rust) =2 {r £ #o}p). R




S
The general solution regular on axis is

v 1 _ n T n = 1 Oﬂy n
Yuia(r) = 5 70 [Cr2p (r)dr 4 5 2B (44)

where the last term is _the solution to the homogeneous equation. This term represents
the deformation of the field lines caused by non-resonant currents outside of the low-shear
interchange region. These currents are themselves induced by the perturbations inside this
region. The constants C, + are determined by asymptotically matching the inside solution,
Eq. (44), to the solution in the outer region.

We now consider the equations in the outer region. The shear-Alfvén law is given to
required order by

g_" = %7+ %, J +[2.5] - (43)
U]

Of course the n-averaged components of the fields are no longer resonant. The line-bending
forces and circular confinement vessel then combine to constrain the fields so that all the
n-averaged components except n =0 vanish as the éhear becomes large. Thus, for n # 0 the
shear- Alfvén law becomes _

oJ

% = [Xoaj] + [52, JO] y - (46)

where Xy and Jy are the n = 0 components of X and J, respectively. As the low-shear region

is approached, Xo — o(6) and the solutions to this equation take the asymptotic form

Xpa ~ Apar~0E) 4 B, p(dl) (47)

Note that Eq. (46) is linear in X, so that only the ratio on+ = Anz/Bns is relevant. The |

constants o, 1 are determined by integrating Eq. (46) inwards starting from the vessel wall
or from the appropriate mode-rational surface.
Returning to the low-shear solution, one finds that the integrand in Eq. (44) will vanish

as the shear increases in the matching region. It follows that the asymptotic form of the

12




inner solution in the outer region is

1 1 C,
X, 4~ (= lins ) —agn) (1 Gz |\ na
* <2 Jy rermaryar) o6 4 (5 CEVA (48)

where the upper limit of integration has been taken to be the confinement vessel wall. The

matching of the solutions is thus achieved when

' 1
Opt = nC’ni,:: /; riEn 5 (r)dr , n#0. (49)

The effect of the currents induced in the outer region is thus entirely contained in the
constants . Note that effects related to the motion of the matching region are of higher

order in §.

The potential function h is now found by substituting Eq. (44) into Eq. (37). We find

ho= sBHA, (50)
where
+o0 .
A= z A€, . (51)
1
)‘n = Ecn’.*_?“n, : (52)

The terms containing C,, —, corresponding to perturbations with pitch d6/d¢ less than one,
do not contribute.. This is not a local effect: it is a consequence of requiring the perturbation
to be regular at the origin.

The result of the curvature calculation may now be substituted in the n-averaged shear-

Alfvén law. The resulting, interchange-reduced shear-Alfvén law takes the form

g—é‘l‘[@)ﬁ]_[)_()j]_[ﬁa)‘]:o | (53&)

This equé,tion is completed by
[X’,p] =0, ‘ (53b)




and the matching condition
. :
Cron=(n+ 1)/ r™1 5, (r)dr , : (53c)
0

where 0, = 0, 4. Equation (53b) is obtained from Eq. (29) by neglecting the higher-order
term m _

The dimensionality of the préblem has thus been reduced to two. It should be emphasized,
however, that the plasma does not have helical symmetry. Significantly, the interchange is
found to be driven only by the part of the curvature which is caused by the currents induced
in the sheared outer region.

We conclude this section by considering the n-averaged Ohm’s law:

5. TEX+[3x]=0. ' (54)

The last term may be neglected. It follows that, to the order of the calculation, X is an

advected quantity and the quantity
T =/ S(X)rdrda | : (55)

is conserved by the interchange-reduced system for any choice of the function S.

IV. Equilibrium Bifurcation

The equations derived in the preceding section are now applied to the nonlinear evolution
of the quasi-interchange ﬁlode. This is accomplished through a perturbation expansion in
the mode amplitude ¢, where ¢ is the displacement of the flux surfaces from their equilib-
rium position. From Eq. (1), the nonlinear regime near marginal stability is found to be
characterized by v ~ d—‘i— ~ ¢l

The following two basic assumptions are made:

(1) The perturbed initial state is taken to be accessible from the equilibrium within the

confines of perfect conductivity theory.® That is, the integral invariants givén by Egs. (18)

14




and (55) take the same value for the perturbed initial state as for the equilibrium state.
A similar restriction on the initial conditions has already been used to replace Eq. (12) by
Eq. (20). |

(ii) The mode is assumed to grow coherently. More specifically, the near-marginal eigen-
value is assumed to be simple, with ¥ < w where w is the eigenfrequency of the nearest
nonlinearly driven mode. |
In the following the equilibrium quantities vﬁll be denoted by the subscript e.

The accessibility constraint requires
C= [ FlpJav = [ F@p)av, (56)

for any choice of F. To order ¢2, this condition is equivalent to

B =p)+ 5 (). (57

where p, = éd%. Henéefort_h, the overbars will be omitted. The flux conservation constraint,

Eq. (55), requires similarly

xo(r) = X.(r) +% 4 (—r— Xf) : (58)

Note that

(1—%70) - | (59)

where ¢(r) is the rotational transform, correct to first order, of the flux surface which reduces

X(r)

to a circle of radius r to lowest order in 6.

We now consider the interchange-reduced shear-Alfvén and pressure laws, Eq. (53). To

first order in € they can be written
XeJi =J X1 = —phs, (60a)
Xepr —pX1 = 0. (60b)
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The quantities ¢ and U can be shown from Ohm’s law to be of order £?, so that the term
-88% appears only in the third-order equations, while [p, U] is of even higher order and is
neglected in the following treatment.

In terms of the convenient abbreviation

F' dF,
YT (61)
Eq. (60) becomes
J1 — jexl = —pe)‘l ’ (62&)
P = PpeXi . (6213)

The left-hand side of Eq. (62a) contains a second-order differential operator applied to

X;. This operator can be inverted for an arbitrary source function f(r). Let

Xa(r) = Xea(r) . | (63)

£1(r) is the n = 1 component of the displacement of the flux surface. Substituting Eq. (63)
into the left-hand side of Eq. (62a), and replacing the right-hand side by the arbitrary source
f(r), one finds ‘

5= d = o (00 B2 = 1) e
Integrating twice yields '
A |
&)=~ [ smcm f, SOXeohnde (65)

The solution to Eq. (62a) is now found by replacing f by —p.A1, in Eq. (65). pi, given by
Eq. (62b) can then be substituted into the matching condition. After integration by parts,
this becomes

el “6”
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where Bp is the RMHD normalized poloidal beta,
3 1 I |
§-Bp=— /0 p°pe(p)dp - (66b)

Equation (66) is of course the linear marginal stability condition for the n = 1 mode. Note
that this equation is in complete agreement with the full MHD result of Refs. 5 and 6.

Td next order in ¢, the n = 1 mode couples into n = 0 and n = 2. The n = 0 components
have already been calculéted from the conservation laws: they are given by Egs. (57) and

(58). The n = 2 components are determined by Eq. (53):

. ) 1. -
Jo—J Xy = —Pe)\2_+ 3 JX3 = peXas (67a)
) 1. ..
P = PXot 5 PeXi (67b)

Equation (67a) is a second-order inhomogeneous differential equation for X;. Unlike Eq. (62a)
for Xy, however, it cannot be integrated by simple quadratures. Assuming nonetheless that

a solution has been found, the constant C, is then determined by the matching condition:

1 os
Cyop = 3/0 repa(r)dr . (68)

The third-order corrections to the n = 1 equations can now be calculated. The corrected

source term f becomes
f o= =PeAr — Pe (Xz 4+ Xo — Xe) A1 + X1 Ag) + JeXaXy

— JeX1Xo + X1Jo — 3 Je X3 —2J.X3X

+ "?: b, )\1X§ + 2peX1X1)\1 + 2pe)\1>\§ - m d—T' (7'3 5 (87'2 )) . (69)

The corrected pressure fluctuation is

D1 = PeX1 + Pe(XaXa + X1Xo) + 3 Pe X3 .
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Replacing these quantities in the matching coﬁdition yields the bifurcation equation, Eq. (1).

It is clear from this analysis that the practical calculation of the nonlinear corrections can
only be accomplished for special equilibria such that Eq. (67a) can be inverted analytically.
The scﬂution of the bifurcation equations for model profiles is the subject of the following

section.

V. Solution for Model Profiles

A. Constant current case

It is assumed throughout this section that the pressure profile is parabolic in the low-shear
region: p. = —2por. |

We consider first a safety-factor profile with constant ¢(r) = go for r < r; and with ¢ rising
abruptly beyond r,. This reqﬁires a thin current-sheet at r = r; and a constant current profile
within 7 < r,. Such configurations have the property that the equilibrium fields are linearly
related in the constaﬁt-current, parabolic pressure region: that is, p. = cst. and J.=0. The
only remaining nonlinear coupling arises from the flux and pressure-conservation constraints,
which imply coupling to the n = 0 component only. This case is thus of a quasilinear nature.

The bifurcation equation is obtained by following the procedure described in the preceding

section. The linear eigenmode is given by

Xi(r) = _f_f_)ggl_ P+ Ar , r<(r—uw), (70)
where

K - ?
G-

and w is the half-width of the current sheet. For w <« 1, the integration constant A is




determined by the condition Xy(r;) = 0. The third-order accurate flux perturbation is then

-2
R o (LS R
Xy = g " (r r)<01 (QO 1) dt2)

3 -2
(S0 (L 1) v ) ()

4 qo0

The matching condition j/'ields the bifurcation equation:

&€ S, (1 2\ - 1 2 .
375—(“2401130—(?0—1) {—12 %"1 £, - (13)

where E = £1(0)/rs. This is thus a supercritical bifurcation. Note that this result is indepen-
dent of the precise form of the current profile in the outer region, since oy does not appear
in I'.

B. Gaussian rotational transform

Before drawing conclusions, it is desirable to solve the bifurcation equations for a fully

nonlinear case. The following g-profiles satisfy this requirement while remaining analytically

(1) (2).

with $* = 2(r)? [n[2- (1 - 1/g)]|”" < 1, where r; is the radius of the ¢ = 2 surface. In

tractable. Let

terms of the radial variable z defined by z = r?/s?, the equilibrium quantities are given by
Pe = 29 e %, (75a)

Jo o= 4+, | (75b)

The solution of the linear equations is

X, = Ky 2% 7% . (76)
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where K; = koC;s%/8. The marginal stability condition is
kg, = 401/* +O(€%) . (77

The equation for the n = 2 flux-perturbation X; is

gI{f Z 6—32/2

T = (e = sty P m iy g (7%)
g0
where
~ ) d2X2 dX2 1

An integral representation of the solution to this equation can be found by the method of

kernels.t®

K,00284 9\/2- 1{12 /1 -2y 3 - -

Xy = v,,3/2 1/2 z[2 .

2 _ { 10 + 852 (%_1) 0 e~y (1 +y) dy ¢ ze (80)
‘ . o

The constant C, is determined by the matching conditions. One finds
_ 21 kos’K7 1
0 () i)

go

Ca (81)

Note that C; — oo for oy = %ssmg. This is of course the linear marginal stability condition

for the n = 2 mode. Comparing this to the marginal stability condition for the n =1

6 .
mode, 01 = & k%, one concludes that degeneracy occurs when o3/0y = 2.4s%. Numerical
X ,

and analytical estimates indicate that typically oa/01 R 4s? so that the non-degeneracy u

assumption is well satisfied.

Placing these results in the n = 1 matching condition yields the bifurcation equation:
d2 6 1 A, |
s s(s—p§+(q——1>)£+l‘§3, (82)
0

E’E 40’1

where

. _ 2 2
r o 539 (az 2.9501s ) (i—1> _ (83)

st \ 0y —2.40;,8° do
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Thus T' < 0 for 05/0; > 2.95s%. It is noteworthy that |I'| decreases as the marginal stability

threshold of the n = 2 mode approaches that of the n = 1 mode. This is also the case
for the free-boundary kink bifurcation (Fig. 3).” However, exterior current profiles with
oo/01 < 2.95s% were not found in this investigation. We must therefore conclude that the

fully nonlinear gaussian-profile case is also supercritical.

VI. Discussion

The saturation of the growth of the n = 1 quasi-interchange is related to the existence of
nearby bifurcated equilibria. The eigenmode expansion approach used in this investigation
guarantees the stability of these secondary equilibria to low mode-number interchange-like

perturbations. However, these equilibria may be unstable to large mode-number ballooning

_ instabilities. Such a two-instability mechanism has been suggested by Bussac et al. for

rotational transform profiles with an off-axis minimum.!* Note that the lack of symmetry
of the bifurcated equilibria implies the existence of small regions of magnetic stochasticity.
It is unlikely, however, that this effect can account for the sudden onset of growth during
sawtooth disruptions.

Anothér possibility is that the quasi-interchange is stabilized by kinetic effects until
sufficient free energy has been accumulated to account for the large growth-rates observed.

Kinetic effects on linear stability have been considered by Hastie and Hender.®
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Figure Captions

1. Bifurcations of equilibrium. Solid lines indicate stable equilibria, dashed lines unstable

equilibria. (a) Supercritical bifurcation. (b) Subcritical bifurcation.
2. Equilibrium g¢-profile.

3. Effect of near-degenerescence on bifurcated equilibria.
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