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For those electrons whose Larmor radius is less then the Debye length, by averaging
over binary collisions with ions and using a guiding-center approximation, a simple
collision operator has been obtained which reproduces accurately the moments obtained
from the existing more complex operators.

It has generally been recognized that the Fokker-Planck equation derived by Landau® and
subsequent workers, based on binary collisions in the absence of a magnetic field, is not cor-
rect for those electrons whose Larmor radius is less than the Debye length. A substantial frac-
tion of the electron velocity distribution will fall in this category when 7 = Q./w,.>1, where
). and wy. are the electron cyclotron and plasma frequencies. (Tokamak plasmas satisfy
this condition, for example.) The approaches to a magnetic Fokker-Planck equation?34%8

have involved averaging the particle response to the Fourier spectrum of the fluctuating

fields associated with the discrete particle nature of the plasma. These equations contain

more physics than the effect of particle collisions. The frictional drag and energy loss due to
radiation by the test particle is included, which is important for super-thermal test particles,
and the formulae can be applied to cases where the amplitude of the fluctuating fields is
higher than thermal if the spectrum is known. However, the Fokker-Planck operators in
these equations are very complex, involving many integrals. They present problems even to
computers’ and make analytic use extremely difficult.

Until recently, the one application of these equations to a stable plasma was to determine
the rate of energy transfer from a Maxwellian electron velocity distribution to a Maxwellian
ion distribution.*5® The result for the case where n > 1 is the standard Spitzer formula,
3neve(me/mi)(T. — T3), but with the Coulomb logarithm (én A) in the electron collision

frequency v, being replaced by ¢n(A/n) + %Znn In(m;/m.). This expression is not accurate
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for n of order unity but the work of Baldwin and Watson® confirms that the correction is small
for such plasmas. More recently, Matsuda has used the Rostoker formula? to compute the
friction and diffusion experienced by a test electron due to interactions with a Maxwellian ion
distribution. Because of computational difficulties artificially small values of the ion-electron
mass ratio were taken (m;/m, = 100t0400). The one component of the various friction and
velocity diffusion components which was markedly different from the zero magnetic field case
was the friction parallel to the magnetic field (B) experienced by an electron with low v but
average v, , where the subscripts refer to components || and L to B. Extrapolating from her
results, Matsuda estimated that for a test electron with v = (T/m;)Y?, vy = (T/m.)'/?,
n = 5 and the normal proton-electron mass ratio, the friction parallel to B is 103 times
larger than predicted by the zero magnetic field collision operator. This result is clearly
of importance to tokamaks and other toroidal plasmas since trapped electrons spend part
of their trajectories with low velocity relative to the ions and since it is the component of
friction parallel to B which drives neoclassical transport.

The more complex Fokker-Planck operators when applied to the case of small magnetic
field and th_érmal particle energies reduce to expressions agreeing with the binary collision
operators. A study was therefore made of binary collisions for the strong magnetic field case.
A simple formula has resulted which reproduces accurately the moment results referred to
above.

For simplicity only collisions between electrons and hydrogen ions are considered. For
values of the impact parameter (p) less than the electron Larmor radius for a given electron
velocity, the magnetic field will have a negligible effect. The collision operator for these
collisions will be the same as for no magnetic field,>1° except that the maximum collision
parameter is the electron Larmor radius (p. = m.v./eB) instead of the Debye length (Ap).

Thus
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where [' = 4re*/m2, H, G are the well-known Rosenbluth potentials
H(v) = / B i Vi — V]
Gv) = [dvifitvi—v]



and v is the particular electron velocity. If quantum mechanical effects are not important,
an average value for p,, (the minimum value of p) is €2/3T, and In(p./pm) = {n(A/n).

To treat the collisions with p > pe, only the electron’s lowest order guiding-center velocity
v|| will be considered which is parallel to the magnetic field B. The cyclotron motion of the
electron is neglected and it is assumed that the electron will suffer significant acceleration
and displacement only in the direction of B, acceleration and movement perpendicular to B
being higher order in p.. For the ions it is assumed that p; > Ap so that an ion’s trajectory
in the absence of collisions can be taken as a straight line. A moving frame of reference is
chosen in which the electron is at the origin with zero guiding center velocity. The z-axis is
chosen parallel to the relative velocity of an approaching ion. In this moving frame the ion
velocity is ui, = (v; —v)) and the ion’s initial position is taken as z = pcosg, y = psing,
z = —oo. The magnetic field is taken in the zz-plane; B = i,Bsinea + i,B cosa with
cos a = uj|/u, where v is the component of ui, parallel to B. Neglecting in lowest order the
recoil and change in velocity of both the electron and ion, the force on the electron parallel
to B when the ion is at position z is
e?p cos psin a + €2z cos a 3)

(22 + p2)3/2

Since dt = dz/u the change in the electron guiding-center velocity due to this single collision
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When averaging Awv) over ¢ for collisions with fixed u and p, the average is zero but not
the average of (Av))?. The number of collisions per unit time with impact parameter p is

2rupdpdn; with dn; = f;d®v;. Hence, integrating p over the range p, to Ap

((Av)?) = Tdnitn (;_D) (% . J) |

since sina =1 — (uﬁ /u?). Finally, integrating over the ion velocity distribution, since
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where G(v)) is identical with the Rosenbluth potential defined in Eq. (2), except that v is
replaced by vy.



Proceeding to higher order in the small parameter e?/mu?p and considering first the
acceleration and displacement of the electron, when the ion is at position z the electron’s
velocity is
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The electron will be displaced from the origin a distance A{) parallel to B given by
Al = /z Avydz/u ,

and since the relative velocity is now (ui, — Avy), the element of time is dz/(u — Av|jcos a)

to first order in Av”.

For the ion the only A term which contributes to first order in m,./m; is the recoil in the

direction of the impact parameter given by

B / / e’pdz
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The more accurate expression for <Av”> is therefore

(Avp) =
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with r; the corrected position of the ion. Linearizing the integrand in Eq. (6) with respect

to the A terms and performing the integrals
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and integrating over the ion velocity distribution

(Avy) = Ttn (p) Ba g’;(:”) + %a.r;_t():”)J . (8)

Following the usual procedure!® to obtain the standard Fokker Planck type operator,
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the only non-zero components of D,p and Fy, are D) and F given by
1
Dy = 5((Aw)?*) ,
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Whence
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and the total collision operator is the sum of Egs. (1) and (9).
For a Maxwellian ion velocity distribution
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where 7i; is the number of ions within the sphere in velocity space with radius |v| and (vf)
is the average of v? for these ions. Using these expressions, the rate of transfer of energy
from Maxwellian ions to Maxwellian electrons for large n is found to be the standard Spitzer
formula with fnA replaced by €n(A/n)+ 2én(mi/m.)énn, agreeing with result from the more
-complex operators.

Combining Egs. (1) and (9) and determining the friction on a test electron one reproduces
Eq. (8) plus a contribution from Eq. (1). For a Maxwellian ion distribution, with v > vz;
but vy arbitrary,
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where the small m./m; term in Eq. (8) has been neglected and the subscript m denotes the

magnetic case. The corresponding expression for zero magnetic field (subscript 0) is

<v||> —I(niy/v° )EnA

and the ratio of these two expressions is
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In Table I the numerical values of this ratio are compared with those of Matsuda’ using
the parameters chosen for illustration in her paper. (Note that in Matsuda’s notation v; =
(T/m;)H%. For vy = (T/me)'/?, Ap/p. is n/+/2 and for v /(T/m;)*/* = 1,3 the quantity
fi (v2) [nvd, = 0.220,1.5, where vZ, = 2T /m,;.) With the exception of the = 1 cases, where
the simple theory presented here does not apply, there is close agreement; the difference
exceeds 15% in only one case. For the correct hydrogen mass with vy, = (T/m.)?, v =
(T/m;)*?, n = 5 the ratio in Eq. (11) is 1059, close to Matsuda’s extrapolated value. The
corresponding ratios for the other components of the friction and for components of diffusion
are found to be close to unity as found by Matsuda.

Thus, by treating the magnetized electrons (p. < Ap) as one-dimensional guiding-center
particles and averaging over binary collisions a simple collision operator has been obtained
[Eq. (1) plus Eq. (9)], which reproduces the moment results for particles with thermal energies

which were obtained from the more complex operators.
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TABLE I

The Ratio (Av,,)m / (Avn>0

for T, =T, = T and vy = (T/m.)"/?

n

Qe
Wpe

<Avu>m /

(Ao,

vy = 3(T/mi)Y/?

V| = (T/m;)*/?

Matsuda | Eq. (11) | Matsuda | Eq. (11)

100 1 - 1.9 1
5 1.81 1.9 9.56 9.62

10 2.24 2.39 14.4 14.4

100 - 35.5 30.1

200 1 - 4.87 1
5 3.56 3.68 26.6 24.5

10 - 39.9 37.0

300 5 5.89 5.98 49.3 46.1
400 1 2.18 1 14.7 1
) 8.81 8.71 76.0 70.4

10 12.5 13.0 113 108

100 21.6 27.0 280 234




