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Abstract

“"Dynamical egquations for the electrostatic potential

and pressure fluctuations in the ballooning drift modes

are shown to lead to a turbulent state described by the

mixing length theory for saturation. The nonlinear states

are compared with previously given formulae for the root-—
mean-square amplitudes of‘the fluctuations and the k,w
structure of the“fluctuétions;  The parametric dependence

of the root-mean-square fluctudation level, the'raté of

decay of the.two—time correlation functions, and the

anomalous thermal flux are reported.
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I. Introduction

The ion pressure gradients required to stimulate
unstable toroidal drift modes are now belng produced by
rzhlgh power neutral beam heating 1n tokamaks. In view of
these experiments it ‘is interesting to 1nvestigate'the'
ion pressure gradient driven drift—wave instability and
the‘associatedeanomalous_transport.by numerical simulations
based on reduced hydrodynamic'equations'describing the
nonlinear driftfwave fluctuations.

In-previous drift-wave simulations by Horton et al.

a three—dimensional sheared slab geometry is used Eo'study

drift waves described by two-component hydrodynamlc

equatlons contalnlng several nonllnear processes. A

pr1n01pal conclus1on of that work is that the nonlinear
convection of the ion pressure by EXE motion of the
.plasma-is the most imposmtant nonlinear saturation -
mechanism for this drift-wave ihstability. Within the
framework of this conclusion recent theo:etical.work by
Horton et al.z shows that on the Outside of the.torus,
the dimensionality of the problem can be reduced to the
1two dimensions locally perpendicﬁlar to the magnetic
field. The two-dimensional approximation is valid when
the growth rate of the mode exceeds the thermal ion
tran51t frequency This reductlon allows the use of more
.grld p01nts for 1mproved resolutlon of the nonllnear fields

fln the plane perpendicular to the magnetlc field.
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From the two—dimenSiQnal simulations we attempt to
determine the nature of the saturation mechanism and the
parametric dependence of the anemalous thermal transport
p?oducédrbirthe toroidal drift.ﬁodes. We analyze the
two-time correlation functions of the fluctuations and
the equal-time % spectra of'fhe drift~wave fluctuations,

- As in'the previous three;dimensional simulation,
the problem is formulated in terms of scaled hydrodynamic
fields and'simplified transport equations. The scaling
of the field variables is motivated by.the dominance of
the EXB convective nonlinearity in the transport
equations. The amplitude of the écaled field variables is

chosen to reduce the ExB convective nonlinearities to

unity for éystems with widely different numbers of
thermal gyroradii Py within the characteristic density
gradient scale length ‘rn. Reference 1 considers the
parametfic dependence of the fluctuations on the gyroradius
parameter o = pi/rn. In fhis work we consider the limit
where the_gyrorédius parameter o =_pi/rn is sufficiently
small that the scaled fluctuaﬁions-are independent of the
value of a. |

A comparison of the three—dimensional linear
eigenfunctions2 with the two—dimensioﬁalvsimulation
solutions given here suggests that thé twofdimensional
fluid description adequately.describes several important

features of the toroidal ion pressure gradient driven
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drift modes. For example, in the tordidal‘regime defined
by Fig. 1 of Ref. 2, the growth rate and wave frequency
from ballooning mode‘theory agree with the formulae used
here in Section IIA. In the two-dimensional limit, the
problem is a function of uw>pammwtgrs (toroidicity and
pressure gradient), whereas the three—diménsional problem
dgpends on four parameters (toroidicity, pressure gradient,

rotational transform, and.shear).

In Section II we giveTthexréducé&‘tw0§dimensional
hydrodynamic equatibns used in the presenf.Simulations;
In Section III we discuss some of the  special techniques

used in the fluid .simulations. - In Section IV we discuss

the-results -of-the-numerical -simulations for-two-different v

regimes of the radial wavenumber kX. In Section V we

present a summary of the results along with our conclusions.




IT. Dynamical Equations for the Fluctuations

In previous studie82*4 of the ion pressure gradient
driven toroidal drift mode a simple nonlinear model

describing the turbulent mixing of the plasma is introduced.

‘The model describes the EXxB convective mixing of the ion

thermal energy denéity and the local charge separation due
to the toroidél.drifts on the cross-field flutes of the
drift«wavef Briéfly, we recall that the tofoidal'charge
separation is given by .

V, +8j = cB x Vép + V(1/B?) = ~2ick 6p cos 0/BR
where R 1is the major radius of the torus, 6 is the
poloidal angle, and dp is the pressure fluctuation.

In the linear quasineutral approximation, the electrons

are adiabatic

_Sne = Gni = ne(eQ/Te)
and

p = n,T (ed/T_ + Gpi/nei'e) = n T (1 - wys/we
where Wey = (cke/eBni)(dpi/dr).' We use the dimensionless

variables introduced in earlier studiesl’2 and note that

in these variables the dimensionléss quantity

Ve dj/(~iweny) = (ak/w)(p + 6p)
where o = Zen cos Q. Here, k = kep; w = wrn/cs, and
€, = rn/R. As shown in Horton et al.2, the frequencies

and wavenumbers of the instability are such that the
coupling to the ion-acoustic wave and the shear induced

wave propagation is weak provided
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o k[2em(1‘+»n)]1/2 > e_/q.

Yk n

In this regime the nonlinear equations déScribing the
instability reduce to thelcoupied equations (17) and
(18) éferréon é£ al.z’r

The reduced dfnamicél equations for the dimensionless

potential and pressure fluctuations are

a—‘p = '—A gﬂ.-l— _a_ ’

Y . -u 3y O3y Sp | | (1)

9 = 9% _ 2

ot 0P = Bye = Lp,opl + yoViop @
where '

G = 1-gvf R

réﬁd whéférfhe convective derivative of the pressure
fluctuation is given by the Poisson bracket [¢,6p], since
Vi ..vap = - Q%-g%'SP +'g§ §§'5p = ly,8pl.
) (3)
The parameter B defines the frozen background pressure
‘gfadient (felative‘to,thé'densityvéradient).

dpo

% - B = -1 +n) (4)

where 1 = sznT/angne, and d is the strength of the

toroidal charge separation

o = Zen cos @ (5)
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where the poloidal angle 6 is taken as 7 = 0 in the
unfavorable,curvature?dn;the'outsidé'of the‘torus and .
® = 7 in .the stable curvature’reqion.on the‘ins;d?fgfr
the torus. At 6 = 7/2 the potential fluctuatibn
découples from'the'presSUre‘fluctuatioh’and oscillates
at the drift-wave frequency wy =,kyu(ki) with‘

u(kl) = 1 -'kf(l +_n) giving';’simple'description of
fhe phase velocity dispersion of the drift wave. The
small thermal condﬁctivity X0 vis.added to the thermal
balance equation for conﬁenience; The'macfosgopiC‘effect
of the instability is to produce an anomalous thermal

conductivity Xa* Theoretically, it is useful to consider

that x_  is the renormalization of the bare conductivity

Xb as discussed in the Appendix. From this point of_view
Xo repiesents the effects of the loss of energy into
sub-grid size fluctuations. |
The reduced model:equations-déscribe“the fluid-like

toroidal drift'instability driven by the frozen mean
pressure gradient. .The system is péribdic in vy. The
boundary conditions in x may be taken to represént either
.(l) a closed ! system with v, =0 at x; and x,; or

(2) an open system with an imposed net heat current ¢
passing th;ough the system. 'Here we report on the evolution
of the c¢losed system-with‘ dp =0 and ¢ =0 at =x =.Xl

and X2'

T
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A. Properties of the Fluctuating Equations

At small amplitudes the system describes the coupled

oscillations of the drift wave mgw i‘ky[l -ka(ljf n) 1]
and the damped pressure fluCtuatioﬁ w§9-=.%ikfxo. For

~

o # 0 the modes are coﬁpled and.given by
22 2 L 12 _
W w[kyu(kl) ik %! kyaﬁ lkyu(kl)kixo 0
' (6)
which, in the Xo =0 limit, is'unstable.for "aB < O

with
L

1, .. - 2 _ 12
W ~ ikyu(kl) and v, = ky(yo v (kl>)

k
(7)

for ]kf/kg’—ul[ < 2v/-a0B where'-kO =
L
2

Yo = (=aB)” = (2€n)%(l + n)*. Many other effects may be

—
(L + 1)~ % and

included in the equations, . but théy are not essential for

the present purpose. A typical map of Y(kX,ky) is
shown in Fig. 1.
We define the space average of f(x,t) over the

system by (£ and obtain from Egs. (1) and (2) that
4 (g = (sp) = 0. (8)
ac ' ¢ at 0.

We define the time average of f(x,t) over the history

of the system by ¥f. Equation (8) states that the system

describes the fluctuations and not the quasilinear éhange
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in the background. The,backgfoundvgradients.are frozen

in 'this model.

In the non-dissipative limit, the system possesses an -

energy integral

1

2
> ).

Wo= Lo (epd -+ % B (yp (9)

In the case of finite dissipation through a constant
thermal cOnductivity.”xO{ -the~inté§ral W is
monotonic&lly'dedreasing in time

aw

. N
FE = "oxg ey . (10).

ig éhé’iiﬁéariywsféble system, of >-O, the monotonic
decrease’’ of the‘definite~qﬁadratic forﬁ‘ W(t) allows
the asympotic stability.of‘the:nonlinear'system to be
‘established by the Luaypunov sﬁability theorem. For the
linearly unstable system, aé <0, however, no information
. is gained from the fact that dw/dt < 0 due to the

indefinite form (9) of W(f).

B. The Conductive Thermal Flux and the Transfer
of Fluctuating Energy.

The y-averaged rate of radial flow of thermal flux
is

axt) = (vgeh, = -<3epy, b
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10
which determines the change in the average pressure through

In the dissipatibnless‘steady state we must have

g = constant. The gquantity q(x,f) also determines  the

rate of flow'enérgy between- (¢2)_ and QGpZY . We
find from Egs. (1), (2)., and (1ll) that
w3, = o GRY = talxn) (13)
5 1 N L 2
35 7 (P2, = -salxt) + xg <6pvl6p>y , (14)

éﬂé&iﬁg £hé franSfer rate locally in x 1is proportional
to g(x,t). Likewise, g(t) = <q(x,t)¥x determines the
net transfer of power between <g¢2?_ and <6p2>,

The conservatibn'of' W on time scales shorter,than
that for thermal diffusion, Ty &'l/kfxo, implies'the
ratio of the aﬁplitude of the potential and thermal
fluctuations

. 1 1
8py (t) = "~<6p2>6 v |87

B8
ol o (t) (15)

where Spo(t). and ¢o(t) are the root-mean-square

amplitudes. For oBf > 0, the oscillations of.’Gp and
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¢ must be out of phase to coﬁserve W.  For aff <0
both the amplitudes of the potential and pressure
rﬁlqgﬁqgtigng grow exponentially'at tﬁe'rate' Yi until
the nonlinear regime is reached..

Consider momentarily that the system is in a very
high amplitude state, kXSp0 >> B. In this state the
pressure fluctuation is purely convedtéd by the flows

with 3.8p = -[¢,8p]. Consequently, '46p2> is

t
conserved for time intervals short compared with the

slow thermal’diffusion'time T. . The conservation of

k
{ .0.22\ 2o mm e A v ~ orreal e
\6p77 is expressed by the evoluation of -%pk’\t\, -Eharogh

a unitary matrix  Up given in the‘Appendik.

As shown in Ref. 3, the electrostatic potential' Q(x}y,E) o

playé the role of. a 1%‘ dimensional Hamiltonian in the
canonically conjugate Variablés .(p,q) = (x,y) . Once
¢(x,y,t) contains two or more finitebamplitude waves

the universal inétability'of nonlinear Oséillators5
produCes a stochastic component to the motioh dfvthe fluid.
The threshold‘fo: stOchastiéity, in terms of a generalized
Chirikov overlap criterion, is analyzed in Ref. 3 for

the two. drift-wave problem. For the present problem the

exponential growth of the amplitudes ensures that the

overlap citerion is satisfied.
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TIT. Numerical Methods for Fluid Simulations

In carrying out the fluid éimulatidns we are'réquiréd
to use some special numerical tedhniques to preVent the
uﬁstabierbuilduﬁ of nuﬁeficél er£0rs. Thefbésiérfiuid.
equations (1) and (2)'are‘solvéd Ey writing them in finite
difference form on a square_grid,With’vAx = Ay. We write
the.two—dimensional Laplacian operators on the right-=hand
sides as fully implicit. We'use'prédictor;corrector
techniques when advancing the fields in time to prevent
+the introduction of extraneous'growth; rSince-thé spectral -
information is required for thevtheOretical intetpretation
of the fluctuations, we invert the Laplacian operators for

the new time level by Fourier transforming the equation in

y and applying.the Gauss elimination in x. This method
has worked in earlier simulationsl’6 where the resulting

- drift-wave propagation was checked with linear theory.

A. The Method of Arakawa.

The'conveCtiﬁé derivative Vg Vép = [¢,8p] has
special:prbperties which néed'tovbe'preserved by'the
‘numerical algorithm. Without Arakawa's-method7; we bbSérvéd4
the uncontrdlled'growth of localized filaments in Sp‘ on
the scale of the space_grid. The growth of these small
fluctuations ‘is known in the hydrodynamic literature as
"stretching" or "noodling." We use the space”&iffefencing

method of Arakawa7 to writefthe Poisson bracket of ¢ ‘and

11T
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6p in a form which guarantees the conservation of .
properties J[¢[¢,8pldx = féply,dpldx = 0. For
B = Xg = 0, the second conStraint}ginSLthé:qonservgtion

of the square of the pressure fluctuation, St(ﬁpz) = 0.

B. Flux Corrected Transport

Although the space differencing method of Arakawa
eliminates the noddling numerical instability,_it does
not control a second numerical instability which develops
in the pressure'grid when ¢ attains a high amplitude.
This is the "rippling" inStability8 which results from the
use of second or higheriorder'integration séhemes for

integrating Egs. (1) and (2).

The rippling instability can be eiiminated Without
seiious diffusion by using the method of flux corredted
tranSéorts'g. In this method, we find new values of the
pressure'by computing the flux'of'plasma between grid

poilints twice: (i) a low order calcuiation_witﬁ the
diffusion term on the right~hand side df Eqg. . (2) Iahd
(ii) a hiéh order calculation without (XO = 0) the
diffusion term. A weighted aVeragé for the flux is
computed’frdm the two results in a manner which insures
that the high~order flux is used toithe greatest extent

possible without introducing ripples (undershoots and

overshoots) in the transported field.

T TIT
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C. Remarks on the Algorithms

The simulations preSentéd here were repeated with‘
different combinations of the élgoritth'in Sgdtiqngwwﬂ
A and B and with different grid and Eime*step-paraméters
until resulﬁs_indepeﬁdent'of thé'chdice'in the'parémeter
range Were'féﬁﬁd.u The only possible exception seems to
be tha£ the funs_with"the-classical Céﬁductivity near or
ét zero continue to show the buildup of a substantial
energy on the'gfid scale which eventuélly leads to
uﬁphysical-resﬁlts. The plasmas ofvintereSt,‘hOWever,
have a. finite thermal conductivity which is commonly

estimated by the neoclassical plateau value which is

Xg = &p9g in units of (p/r ) (cT/eB). Here g, is

£ﬁe toroidal safety factor and e, = rﬁ/R is the inverse
‘aspect ratio.

Another point of view for juétifying the introduction
of a finite thermal conductiviﬁy  XO in the nearly-
éollisionless plasma is that the-turbulence'in the physical:
'system on scales smaller than the grid appears aslan’
absbrption process to the larger scale turbulence. The
results given are representative of the simulations with

small but finite values of Xg -
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IV. Results of Simulations

In this section we discuss the results of the two

simulations in Table I which are representative"of the

eight experiments shown in Table II. 1In both simulations

the pressure gradient and toroidicity paramters are

pressure gradient and'toroidicity parameteré are

8=-2 and o ;'2€n 0.2. The backgrbﬁnd thermal
conductivity is Xo = 0.1 whiéh is smail compared to
the anomalous conductivity generated by the turbulence;
The linear growth rate for these parameters is a maximum
at k= 0.85 where v¥ = 0.39 ana weakly

decreases 'with increasing k.. The growth rate

, ,Y%,,(lgx,,,,ky), _is shown.in Fig. 1. 'In the low kX case the

frequency is e -0.11, while in the high 'kx case

Yk
w, = -0.12. In both cases we have |y, /uw | 2 3 which
is a regime of strong turbulence. The parameters foxr
the two reference simulation :cases are given in Table I.
Other simulations with Yk/wk << 1 have also been
performed but afe not reported on:here.

The simulations are shown on a 64%x64 grid with
Lx = Ly = 80p. PFor initial data we .assume that the

fastest growing linear eigenmode has‘ngWﬁ up from the

thermal noise and has reached a small but finite amplitude

at t = 0. In particular, we use for initial data in the

simulations diécussed here wk(x,y) ‘and Spk(x,y)
calculated with an amplitude of lO_2 for ¢k(x,y) and

the linear phase and amplitude relationship between Y

T
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and . épk. Other initial data such as a Gaussiqn localizedt
bump in ¢ (x,y) or '6p(x;y) have also been studied.

"The Gaussian bump data appears‘conéisteﬁtﬁiinrﬁhg'final 
state, with the data shown here} but they are'léSs

convenient for theoretical interpretation.

A, Characteristics of the EluctuationS’

In Fig. 2a we show on a logarithmic scale the growth
' 29 e 2

. e , : s 2y ®

and saturation of the root-mean-square fluctuations L™

| R o | o
and” { 8p”) i~ Figure 2b shows the Sme VOLETLCUN Wikl - -

the root-mean-square of the fluctuations given on a linear

scale. We may describe the evolution as consisting of

~three-stages:— (L) -the-exponential-g rowth; --(2) -saturation -

at the critical amplitudes; and (3) the quasi-steady
turbulent regime. The evolution shown here contains
approximately yzt = 30 e-foldings of the instability

and requires 30 minutes of CPU time on the Magnetic Fusion
Energy CRAY computer. The present'inveStigation is
principally concerned with the character of thé ion
préssure fluctuations.- Tbé'%h@w»Lin&ax.inﬁax&uy; 'QU = anzt,
of the vrms' potential fluctuation in the final stage is
studied by Stey and Horton4 and is given in Table II.

The asymptotic growth of the potential fluctuation and

the saturation of the pressure flﬁctuation are partially
explained by the simple average-mode model of the problem

given by Stey and'Horton4.

[
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The time evolution of the fluctuafions for the low.
kx simulation is qualitatively similar. We observe '
that in the quasi-steady state the rms pressure
fluctuation.at.small kx is Spo = 46, and fbr the large '
kx simulation it is 6p0 2 15 compared with the
theoreticél formula lBl/kX = 51 and IB[/kX 5'13,
respectively. Thié saturation level. is derived by Hortqn,
Choi and Tang2 from turbulence theory and is.consistent
with the phenomenélogicalﬂmixing*length estimate.

In the three characteristic stages of’evoiutioﬁ
defined in the preceeding, we show samples of the x,y
space variations of the fluctuations in Figs. 3 and 4.

Choosing three representative times we show in Figs. 3a

and 3b the electric potential and pressure fluctuations
for the high k; mode as a fuﬁdtion of y near the
mid—point of the box x = 3Lx/8. In Figs. 3a and 3b, we
see the sinusoidal oscillations of the linear eigenmode,
then the emergence of harmonic modulations during the
saturation phase, and finally an irregular pressure
fluctuation with several harmonic componenﬁs. In‘the
small kX case, not shown here,.the harmonic production
is weaker than in the high kX case, but generally there

is a spectrum of ky modes preSeﬁt in the nonlinear stage .-

[
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The spectral disfribution of ky in the
fluctuations is shown’'in Figs. 3c and 3&; We see that
during the saturation there is a goppling oﬁjénergy to
harmonic components of k§ to.-ky =0 in*thefpréSSure‘
fluctuation only, and to side bands of the ihitial k;
mode. in the steady state, particularly in the high kX
simulation, there is é spectrum of modes in which the
initial k¢ mode remains dbminant with low ampiitude'
harmoﬁics in the potential fluctuation aﬁd with high
- amplitude harmonics 'in ‘the pressure fluctuation.

In Figs. 4a and 4b we show the radial dependence

of the electric potential and the pressure fluctuations

for the high kx mode as a function of x;“acrosgwthe

middle of the box.at y'=vLy/2."TheSé figures show a
sinusoidal;oscillation for the potential with the
beginnihg of a harmonic modulation-fof the fluctuation
during the lineaf,phése, high ampliﬁude harmonic
modulations during the satUrétion phase,-and finally the
devélopﬁenf of an irregular sawtooth-1like waveform during
the quaéi—steady'tuxbulent phase.

The radial spectral distribution of the electric
potential and pressure fluctuations is shown in Figs. 4c
and 4d. During the saturatioﬁ there is a coupling of the '
kg components that is stronger than the coupling for the
"k components. A broad spectrum of modes, with the longer

wavelengths containipg more of the energy, develops rapidly.
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The time series for the eleotric'potential and
pressure fluctuations are shown in Figs. 5a and 5b
from srgnals near the‘center of the box ati xc'ér3L /8
v, =L /2. In the time history we see the"exponential
growth the saturatlon of the growth with the onset of
os01llatlons, and in the final nonllnear stage, the
stochastic component of the signal with some characteristic
periods. It is evident from the.time signals in the
nonlinear stage that the correlation period is short
compared to the linear wave period;_'Theﬂcorrelation time

T, appears appreciably shorter in the higherﬂ-k

C X

simulations. ‘In‘Figs. 5¢ and Sd the frequency spectra of

the corresponding time series are shown.t We'obserVegthatwww

the spectrum extends to frequencies'that'are considerably
higher than the maximum linear frequency or growth rate.
Now we consider the rate of decay of correlations in

the time signals by evaluating tHe space-average

(w(t.)w(t_)) and time average"w(tl)w(tz)' two-time
correlation functions. - The correlation functiOn is
normallzed by - leldlng by (w(t )w(t ))2(¢(t )w(t )>2 'to"
remove the long time varlatlon discussed in the Appendix.
FlgureﬂG shows the space—average two-time correlation
functions for potential and the pressure fluctuations as -

a function of t; with ¢, = 48. In Fig. 6 we see a

1
sinusoidal wave for (wltl)w(48)) ‘at approximately the

expected eigenmode frequency W~ mk.=,-o.122.. This shows
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-thatbthe potential remains very well corrélated;from
t=0 to t=60. The correlation function of the
pressure fludtuations‘shown in Fig. 6 is an apprqximately
triéngular—shapedbfuncfion ééaked a£ ‘tlﬁ_tz.é_48.‘ Tﬁe :
triangular shape reflecté the‘rapid énd symmetrical loss
of correlation in both»direction5~away.fxpm' tl = t,.

Now we consider the timeQavéfage'cofrelatiOn functions
for the signals observed at a given space point.

The time historieanf the eléctric.potential and
pressure fluctuations as x¢V=‘3LX/8,m yé';.Ly/Z are
shown starting at t = 15 in Fig. 7a. The autocorrelations
of the electric potential and pressure fluctuations in

Fig. 7a are'Showh.in:Fig.’7b‘with the logarithms of the

absolute values of the'autocorrelation functions shown
in Fig. 7c. The autocorrlation. curves uhde:go damped
oscillations refledting the d:ift'waves in the'system.’
The decay of the éutocorrelatibn function is given
approximately by exp K-VT) over long periods of time
for both the potential and pressure‘aé shown in Fig. 7c.
The rates of loss of correlation obtained from the |
'expOhential'fit to the autocorrelation functibns are
‘given by v, and Vgp in Table II. The autocorrelation
curves of Fig. 7 taken near the center of‘the_simulation
box show a faster ;oss of correlations for the potential
and a comparable loss for the preSsuré'than the 5pé¢e4

averaged correlations of Fig. 6.
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The Fourier transforms of the electric potential and
pressure fluctuations of Fig. 7a were also analyzed. The
spectra are broad, as in Fig. 5, refledtipg phe high7
frequency fluctuations. In some ex@eriments the linear

frequency w is identifiable in the potential spectra

k

while the pressure fluctuation spectra are always peakéd

at w =2.0.0 .~

The observations presented here in Figs. 1 through

7 are representative of the eight computer experiments

summarized in Table:II.. Four experimentslare,at‘high kX
and four at low kX. The toroidal parameter and the

pressure gradient parameter are varied by a factor of

UG Tin Teach cage.  The more  important measured quantities oo

are tabulated in Table II for each experiment.

B. Anomalous Thermal Conducﬁion

Now we consider the average thermal flux due to the
turbulent convection q(x,t) = Cvxﬁp)y, where the average
is over y. In the linear regime the flux shows clearly
the maximum 2ones of convection in the cells of the linear
eigenmodes. For the high k, simulation there are four
convective cells producing the local maxima between the
cell boundaries shown in Fig. é. For the low kX
simulation there is one large cell covering the entire
simulation box, producing the flux shown in thebtop of
Fig. 8. 1In the lineér stage'thére is a negligible thermal

flux crossing from one cell to the next cell. During the
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saturation process, the convection mixes the flow across
the cell boundaries3. In the turbulent steady state
the flux is relatively uniform across the central region
of thé plasma slab, as shown in the late-time parts of
Figs. 8a and 8b. |

The conductive flux is essentially positive definite,
and in the turbulent'Steady state,giveS‘a thermal current
down the temperaturevgradient that is of order q % 20
in the higher kX simulation and of order q.=;200 in

- the smaller *kX- simulation. These convective heat |

currents gééééi&weécééa fﬁé"conduction current

|Blxg = 0.2. The local fluctuating conduction current

is also quite small, since g = Xgk 8p v xoB. The
theoretical formula2 for the anomalous thermal flux gives

g varying inversély with the square of kx. Here, the
Observed ratio is most consistent with a variation inversely

proportional - to ki/z

, since the ratio of k, for the

two different‘simulations is 4 while the flux ratio is 10.
Let us recall here the relationships between the

dimensional thermal Cbnductivity Xcgs and heat flux

dogs (in  cgs 'units) and the dimensionless quantities

X and g ‘used in the simulations. By introducing the

space-time and amplitude scalings, we have

_ 2 _ N
Xcgs = cs/rn(p X) = p/rn(cT/eB)x - and

I
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(1) during the linear growth; (2) during the saturation;
and (3) in the quasi-steady state. The space and time
pqyrg;aﬁiogrstudiggVshqW that the'electric potential
remains correlated over long times with distorted
sinusoidal oscillations while the pressure fluctuations
become uncorrelated. . Samples of the potentiai and
pressure fluctuation time series takén-at the center of
the box show high frequency fluctuatiéns (mrﬁ/cS n 1-5)
supérimposed on thé low' frequency (mrﬁ/cs < 1)

sinuscidal-like oscillations réflecting“fhé underlying

drift waves in the system.

Y

_mode, chosen at the maximum linear growth rate, remains

The wavenumber sSpectra show that the initial k

dominant thréughbut the simulation. Thé.harmonic
component of the pressure fluctuation is stronger than
the harmonié cqmponent of the potential fiuctuation.

In both the potential and pressure fluctuations, the
initial- kX- mode develops-into a.spectrum of higher
harmqnics.' The distribution and amplitude of the
harmonics is approximately consistent with the formulation
of sawtooth-like wave—foims in the x direction. The

" wavenumber sbectral production in the present two-
dimensional simulation is not as rich as that shown in
"Fig. 2 .of Ref. 1 for the three—dimensional drift-wave
simulation. Evidently( the additional degree of freedom
and the associated dynamics enhance the spatial chaos in

the nonlinear states.
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From the simulation eXperiments,we'aré also able to

Observe the nature of the radial conductive heat flux as

it develops from isolated convective zones with well-

defined boundaries v (x,y) =‘0  in the linear regime;

In the présent model,. which.neglects the nonadiabatic
electron response, there is no net convective particle
transport, and thus no convective component to the thermal
flux. During the nonlinear saturation the convective zone
boundaries become highly irregular -- allbWing transport

across the“boundaries of the.eigeﬁfunétiOns.” In the

1 T

saturated state the surface integrated heat flux g(x,t)
becomes a nearly continuous . thermal current down the

radial gradient. We observe that the surface integrated

thermal flux is approximately'positive definite in' X
and t. |

For the range of simulation parameters d;B' reported
here, the obéenvéd thermal flux appears consistent With

Q = —nxi(dTi/dr) with 'Xi’% cl(cT/eB)(p/rh)/EE/ki where

c, =~ 0.5 to L.0- and.fl.S <p<2. }In”the.tWO'reference

1
experiments shown in Table I the anomalous conductivity
is 10 and 100 times greater than the classical thermal
conductivity Xo whose small value was chosen primarily

from numerical considerations.
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Appendix

In this'appendix we give some of the thedretical
formulaé used in the interpretation:of'the'simulations.
In the nondissipative limit Xo =0, the pressure
pi(x,y,t) evolves accordinéﬂto,the Btpﬁ+‘[¢,p]“;_0;

- where . ¢fx,y,t). plays the role of the Hamiltonian.
In the truncated k space the evolution of tﬁe pressure

fluctuation 'ka(t) is_given by the unitary matrix

V [ ' r

——— e

i - =2

1

U . (Brtg) = exp [Exil z jt by, (£ a8 (A-1)
~ ~ 0‘~ ~ —-—

where the reality condition ¢_ (t) = e*(t) dimplies that
T it Shdsha i bt Y-t =B oE= Hhat

2:Q

U*T('t,'to) = U(to,t) = U_l(t,to) with T denoting the
traﬁsposition of the matrix. Due to the many interacting-
modes, the system becomes turbulent and the average
response function gk(w) for the pressure fluctuation

becomes irreversible with

96p
k 1

w +.ik2X

__BSOk .= g&(w) = (A-Z)
Iteration of the pressure fluctuation equation (2) and
summation of the secular diagrams_according to renormalized

turbulence ﬁheory yields

A2 2
w - § : : - 2~‘6pk(w) =k B¢kv— ik xo6pk,
ki o= +ik-k)%y/ T yo£. R
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when thé small bare conductivity or claséical thermal
conductivity in Eq. (2) is included. Thus, the total

renormalized thermal conductivity X is given by

. AVD
jz: () ‘Pkl
. - _ , 2. "
Co=i(w - owq) + (k=k.) 7Y
! B €. T}

[oN

W

2
1 |
T

2

The long wavelength, low frequency. part of the

renormalized conductivity reduces to

g dkl(ﬁxﬁl-z)zkil(kl)
VIR e R Ss el (a-4)
0 1 N '|,_‘k..%:
/T T/ 7‘““_~~‘:‘]"A_—‘—‘wl‘k‘ — _‘"_‘l_k/\-#-_‘ e e

At an early stagé of the simulation, the turbulent

_..conductivity _X. greatly exceeds the bare conductivity. .

Xg - The bare conductivity is required to absorb the
~grid-scale size fluctuations.

The_two-time space-averaged correlation functions
9¢(tl)¢(£2)) and <6p(tl)6p(t2ﬁ' are parameterized

2 1

correlation function is taken as

| by T = %(tl + t2) and T =t, - t The form of the.

o(ee(ty)y = 1(MmC(T) | (3-5)
where |
c(t) = eXp(—leTl) COS(@¢T). (A-6)
2 [+ a9 e
I(T) = <¢ (t=Tf>ﬁ'=_;/ﬂ 5% I(Q)e_? T
™ an -iqT
- / =1 L (@7 (3-7)
-0 k ~ .
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o’ w‘pl
We define a nonlinear growth rate Ynz_ in terms

The simulation yields values for v and vép;”w6p’
of the change’ in the root-mean-square fluctuation level.
by dI(T)/dT =A2y”21(m); In the nininear regime we
observe that Yn& << w,v with w,v’ defined from the
correlation functions .C(t). The time variations ' w,¥

are comparable with the linear frequenciés Wy and

‘growth rates yi.

N : . ) \ . e,
The renormalized mode~coupling equations are given

in Section IV of Horton et al.2 and in abbreviated form;

‘are

W o= for oo ka) +idd oW

(a-8)

where (w2 ) f_m dk /k Ak, +2) “ (kg = K)T () /K, -

E
The nonlinear modes are in the region.of marginal
é> S kiyg as studied analytically in

Ref. 2. At a higher turbulence level where Cw§> zlkéYg_

%

stability when = {u

the modes:défined’by €§ (w) = 0 are damped at the rate

'wk - ivk. The reno;malized

spectral balance equation in this state is

given by 'vk where w

et 1 (w) . Z el?) I (k) T(k-k;) - (a-9)
k E[ek } Ry | R .

with 8(2) defined in Eq. (19) of Ref. 2. Using
_kl,k2 . :

Eq. (A-8) in Eq. (A-9), we obtain the correlation function
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,‘ﬁSk] e . '
Ik(w)‘ = = — (A-10)

2 2
- (w - ky uk)
near marginal stability where

. . 20 |
R N e

~

~

w. + ik2X

f-Equation (A-10) predicts the two modes: w‘ﬁ 0. with a shorﬁ
nlifétime determined by v =;k2X and the long-lived

drift-wave fluctuation at w ~ kyuk' "The drift-wave modes

lead to the long-time correlations observed in the

=————ee————eakrostatio-petentisgl-oscitrlationssmm—=r= =
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TABLE I

REFERENCE SIMULATION PARAMETERS

Low—k—
X

o = 2€n, = 0,2 B = ~(1 + ni) = =2.0
64 x 64 grid with Ax = Ay o= 1.279 ‘
i

w

k, = 7/20 = 0.157 ky = 0.851 ; '

Yk T 022w = 0.385 )

Sp(k)/8p(k) = =1.23 - i3.96.

- (ss) _ . _

8pg = [Bl/k, = 13

k, = m/80 = 0.0393 ky = 0.851‘

Wy = =-0.112 Yy f 0.391

Sp(k)/8p(k) = 1.13 + i3.96 |

(ss) _ _ '
Sp, "7 = B/k, = 51
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TABLE II

Simulation Experiments

TTT

Run : N ¥2 _ “YQ‘ 1 6p, ™ v, VIR
: 1 for | for |- 0 for T
# . 3 %0 T 5o |  rms o for |_for
. T B ¢ - T ' ; v v, ;6p16p2
1| 0.1)-1.0 1ow'§% 0.23]0.22| 22 | 0.010 {0.022 |0.067
?‘v - ——,O_i_l.—,— - -:1 b Q .h -i gh% ; Qv, 2 3 N ‘,O—:;.ziz',_ —,_,l‘z;qo:t—,——_l—— "~ _—0'"._0_0” 8_ '“O”.“Q‘ 6"7 O. 0 2 l
' stationary|{ - |
3 |0.2]-1.0] low g¢ | 0.330.32| 22 | 0.016 [0.042 [0.050
4 |0.2|-1.0 highys | 0.33]0.32| 10 not ' | 0.018 |0.056 [0.050
‘ _ ’ . |statiomary| . o
5 | 0.1 -2.0] low g% 0.31]0.31] 45 0.013 {0.036 |0.043
6 | 0.1]|-2.0 highg%f' 0.30] 0.30| 22 not ‘| 0.013 |[0.089:[0.044
' ' |stationary ' :
7 | 0.2]-2.0] low g% 0.45 | 0.45]| 46 0.021 '[0.076 |0.080
g8 | 0.2 -2.0 high%% 0.44| 0.44] 15 not 0.021 |0.050 |0.050
“ stationary '
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FIGURE CAPTIONS

Fig.

Fig.

1

Spectral distribution of the linear growth rate
Y(kx,ky) for the permissible wavenumbers (kx’ky) =
‘(nW/L ,mn/L_ ) where L. =L = 80[p]. The two modes
selected for the initial perturbations in the low kx

and high kX simulations are shown.

Time history of the rms potential and pressure
fluctuations'("tpz)l/2 = wo(t) and (6p2f5= Spo(t)

for the high kx simulation in Table I with a one
percent (1%) perturbation. The time development on

a logarithmic scale (a) and linear scale (b) are shown.

Fig.

Fig.

(a) Electric potential and (b) pressure fluctuation

for the high kX mode shown as a.function»of y.at

three. characteristic times in the evolution. The

azimuthal wavenumber spectrum for the (c¢) potential

and (d) pressure fluctuations.

Radial dependence éf the (a) electric potential and

(b) pressure fluctuations for the high kX simulation

for three stages of the evolution. Radial wavenumber
spectrum for the (c) potential and (d) pressufe fluctua-~

tions shown in parts (a) and (b).




Fig.

Fig.

5

6
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(a) Time history over the entire high ke simulation of
the (a) potential and (b) pressure fluctuation at
X, = 3LX/$, Yo =’Ly/2 with 500 samples at AT = 0.137.

(c) and (d) The frequency spectrum of the time séries

in .(a) and (b).

Space-averaged correlations for the (a) electric potential

and (b) the pressure fluctuations for the high kX

‘simulation in Table I.

Nvfé)wiiﬁé”history starting from t=15 of the electrical

potential-and pressure fluctuations at X, = 3Lé/8,

Y, = Ly/2 for the high k_ simulation. (b) The autocorrela-

Fig.

8

tions of the electric potential and pressure fluctuations.

(c) The logarithms of the autocorrelations shown in (b) .

The thermal flux g(x) given by the cross-correlation

~ function (vXGpVY averaged over vy for the three

stages of evolution in the (a) high k, and (b) low k.

simulations.
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