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Abstract

The nonlinear evolution of a force-free magnetic field driven by slow shear flow on
a boundary is investigated analytically and numerically. The Woltjer-Taylor theory is
generalized to obtain the time-dependent magnetohydrodynamic (MHD) solution for
the nonlinear force-free fields driven by shear flow. This solution agrees well with our
resistive MHD simulations, which show that the force-free arcade field in a solar coronal
plasma evolves quasi-statically through a series of force-free states before reconnection

occurs.
PACS numbers: 52.35.Nx, 52.65.4+z, 96.60.pb




Since the Sun‘provides a natural laboratory, the dynamics of solar magnetic fields and
plasmas can play an important role in providing an understanding of thé behavior of basic
plasmas. A crucial difference between a laboratory plasma on Earth and a solar plasma
involves the problem of boundary conditions. i

Taylor! proposed a theory for the relaxation of plasma di.schmges2 bbunded by electrically
conducting walls. In Taylor's theory, a slightly resistive plasma is assumed to relax to an
equilibrium of minimum magnetic energy subject to the invariance of the magnetic helicity.

The state of minimum energy is given by the linear force-free relation®

/

V xB=orB, (1)

where B is the magnetic field and ar is a single constant having the same value on all field
lines (Taylor’s conjecture). However, observations of the force-free arcade fields in the solar
corona indicate that ar varies in space.* Taylor’s conjecture needs to be modified if ar has
spatial and temporal dependence as a result of energy supplied through the boundary. Such
is the ca;éé for coronal plasmas.®~" (A similar situation may Be found in the reversed field
pinch sustained by an external electric field 8-1) Instead of Eq. (1), therefore, we consider

a nonlinear force-free field,*

VxB=ax)B, ‘ | (2)

where a is a scalar funct.ion of position x and time ¢.

A useful method for treating basic plasma problems is to separate rela;cively slow processes
from much faster processes that typ\ically occur on the Alfvén transit time 74. For the coronal
arcade problem, we assume that the fluid shear motion on the boundary is slow, but not as
slow as the resistive time 7g, i.e.,, 74 < 7o L 7R, where 7, = L/v, with L the characteristic
Jength and v the fluid velocity. For coronal conditions,A the plasma thermal energy is small

compared with the magnetic energy, and the magnetic field may be assumed to be in a




force-free state of quasi-static evolution through a series of equilibria. Heyvaerts and Priest’
applied Taylor’s conjecture to the coronal plasma and discussed the coronal heating to be
expected from compléx reconnection processes;. They assumed that « is uniform even before

reconnection takes place. Vekstein? subsequently gave an explicit form of the linear solution

2 can explain neither the solar

of Eq. (1) under the assumption of uniform . These theories”!
observations of nonuniform o nor our resistive magnetohydrodynamic (MHD) simulations.
The aim of the present Letter is to extend the Woltjer-Taylor theory and to obtain the
time—dei)endent MHD solution of Eq. (2). In particular, our interest concerns on the effects

~of slow shear motion on the force-free state specified by a(x, ).

From Faraday’s and Ohm’s laws, we have

B=Vx((vxB-nJ), » - (3)

where J = V x B is the current density and 7 is the resistivity. Integration of Eq. (3) yields
0;A = vxB—-nJ+ VG, where A is the vector potential for the magnetic field (B = V x A),
and G(x,t) is an arbitrary gauge function. The velocity v is specified at the boundary.

The magnetic helicity is defined by K = [ A - Bd®x and its time evolution is given by
K = fGB-dsW((A-v)B -ds—j{(A-'B)v-ds
—j{anA-ds—z/nB-Jda‘x, | (4)

where § dS is the surface integral at any surfaces on which the fields become discontinuous.
The first term on the right-hand side of Eq. (4) does not vanish because the coronal fields are
not bounded by magnetic surfaces; the second terrn‘represents the helicity increment injected
" into the corona by footpoint métion; the third term vanishes because v-dS = 0 on the surface;
and the fourth and fifth terms correspond to helicity dampiﬁg due to the resistivity, which
is usua.llyb very small but nonzero. Equation (4) contains Woltjer’s theorem,® ;K = 0, in

the case of a bounded ideal MHD plasma without shear flow.
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We adopt Cartesian coordinates (z,y, z), where z(> 0) corresponds to the vertical height
from the photospheric surface. The system is taken to be periodic in the y- and z-directions,
with the periodic lengths being L, and L,. Hereafter all quantities are normalized in terms
of the characteristic length L, the Alfvén time 74, and the magnitude of the initial magnetic
field »BO.

The possible application to the practical boundary-value problem will be confined to the
two-dimensional case in which all physical quantities\ are independent of the z-coordinate.

The quasi-state force-free field is given by
B=Vyx2+B,z2, (5)

where ¥(z,y,t) = A, is the flux function, which satisfies B - V¢ = 0 and the boundary
condition lim,_e0 2 = 0. Note that o depends on position only through %; the functional
form of o = a(y) remains to be specified.

Let us consider a topology-preserving linear transformation (or M&bius transformation):

2 by . .
= , 6

() = Pt ©)

where 3, a, and o' are adiabatic constants. When a = o' = 0, Eq. (6) reduces to the

constant-a theory, for which = f. Since B, = [ dpa, we obtain

B, = {\/(W FLB+ )+ 5t j‘;z - 1 ;jgz i

where € = af#%/a’. Noting that the magnetic energy W = 1 [(B2+ [V¢|*)d®z must be finite,

b, 0

which is ensured by having B, — 0 with ¢ at infinity, we conclude that @ = 0 for this
semi-infinite problem. Then, taking a’ = 1/8, we obtain a single-parameter functional form

a(¥,t) = B [0/ (|]+ ,3‘1)]1/2. From the force-free relationship, we have a nonlinear

Grad-Shafranov type of equation,

1/2
By ) In

Ty \/ﬂ¢+1+\/ﬂ¢|=0, < (8)

v2¢+ﬂ2¢—ﬂ(
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where V? = 02 + 02. The geometrical parameter 5(t) represents the quasi-static stretch of
the magnetic field line in the vertical direction due to the shear flow and may therefore be
assumed to be a monotonically increasing function of time, before sudden relaxation. For
the linear stage (] ¥8 |< 1), Eq. (8) becomes approximately V2 =~ 0, whose solution for

any arcade confiéuration is given by
% = cos(ky) exp(—ka) , (9)

where k = 2r (with L, = 1). Likewise, for the nonlinear stage (| ¥8(t) |> 1), we have
V) + B2 ~ 0, and

¥ = cos(ky) exp [—x\/zz_——ﬂ;] , - (10)

where the time dependence of 1 is contained in S(t), with 0 < B(¢t) < k. Since Eq. (10)

coincides with Eq. (9) when | 8 |« k, it may be employed as an approximate flux function

to represent the general force-free arcade field solution of Eq. (8); deviations of order O(f)

and O(B~1) for small and large 5, resp‘ectively, have been estimated by perturbation theory.

Using Eq. (10), we then evaluate the relevant terms in the evolution equation, Eq. (4),

to determine the time dependence of §(¢). The expression for the magnetic helicity can be

reduced to a single integral over the y-coordinate, numerical analysis of which shows that

K(B) can be well approximated by

K(B) ~ __ﬂj:i (11)

over the range 1 < 8 < 2x. Also, for 8 < 1, the expression K (f) = 0.048%? can be derived

exactly. If we take the shear flow on the boundary (z = 0) to have a velocity given by
v(0,y,1) = v(t)sin(2ky)Z , ' (12)
then the helicity evolution equation becomes
0K (B) = 5 v(t) + Omo) (13)
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where 7o is the resistivity at z = 0. The first term on the right-hand side of Eq. (13)
represents the driving source due to the shéar flow, whereas the second represents the small
‘damping term due to the finite resistivity on the photosphere, 7o = S71, usually negligibly
small, where S(= Tr/74) is the Lundquist number. If we approximate 5'?° & k%24 in the
expression of Eq. (11) for K(f), since 8 =~ k in the nonlinear stage, and take v(t) = Vyt™, a
tractable MHD solution of Eq. (13) can be derived: | |

(1) = izl ) (14

V1 (Ba(?)

where

&n(t) = Vot™/(n+1) for 70=0

with V = 0.69V,. Equation (14) is a nonlinear solution to the problem of describing the
dynamics of the nonlinear force-free state driven by shear flow, approximately correct in the
limits both of # <« 1 and B > 1. Using this MHD solution, we obtain the evolution of the
magnetic energy :

W(5)/W(0) = 1+ (ka(®))” , (15)
Thus, the incremental magnetic energy is an explicit function of the footpoint displacement
€n ().

In our resistive MHD simulations, we numerically solved Eq. (3) and the equation of
motion with constant density, where the convective and viscosity terms were neglected as
being small. This set of coupled MHD equations was integrated in a cubic box of size
L, x L, x L, with 64 x 64 x 4 grid points (the number of grias in the z-direction being
immaterial) by use of a semi-implicit code.! The‘upper boundary at z = L, is an artificial
numerical boundary, placed sufficiently far away, typically at L,/L, = 10, with L, =1 = L.,
so as not to affect the evolution of the configuration. The grid in the z-direction is chosen

to be exponential. The initial field, which can be obtained from Eq. (9), is referred to as an




arcade. In our simulation runs we use the shear velocity profile given in Eq. (12), with
' vot/Tramp » for 0 <t < Tramp »
v(t) = (16)
o , for t > Trmp 9

where Tramp 1s the interval driving which the driving velocity is ramped up linearly in time to
a specified value of vy = VyTramp. The resistivity and the initia] force-free state were chosen
to be uniform in space, with a(z,y,t = 0) = 1072

We can now directly compare the simulation results-with the ideal MHD solution derived
earlier. In the simulation, it is convenient to use an average global quantity & in place of

o(z,y,t); we will take the B?-weighted spatial average,

(1) = /Ooo dz /01 &ya(m,y,t)Bé
- /Ow dz /01 dyB? ’

which tends to filter away the regions where « is small. Substituting Egs. (6) and (10)

(17)

into Eq. (17), and using our numerical fits valid for # > 1, in the nonlinear stage we have

&(t) ~ (19.86) [5 (k* — 162) +0.086%7]

Figure 1 compares the numerical and various analytical results. Curve C in Fig. 1 shows

-1

. the ideal MHD (7o = 0) exact nonlinear analytic solution of Eq. (13), with K (B) represented
by its B < 1 and B > 1 forms, given earlier. This solution tends to agree with the result of
the resistive MHD simulations (curve B). The linear solution'? (curve A) is clearly valid only
at small . The overall functional dependence of theory is in good agreement with simulation.
The main :quant'ita,tive deviation of our theory, viz., the slightly smaller .asymptotic value of
& at large times, arises from the fact that Eq. (6) does not include the overshoot feature
that can Be seen near ¥ ~ 0.3 in Fig. 2(c). The four values for & indicated by triangles are
computed from a “hybrid” B2-weighted average that uses the simulation results for a(%)
at four discrete times, but with B?* obtained from the theoretical flux function, givén in

Eq. (10); these four points show good agreement with the simulation results of curve B.




Figure 2(a) shows the simulation result for the spatial dependence of a(z,y,t) = J-B/B?
at the last of these four times, namely, t = 760(74). Note that Fig. 2 éuggests that Eq. (6)
. is approximately valid (apart from the overshoot feature). As can be seen in Fig. 2(b), the
behavior of the magnetic flux ¥(z, y,t) is quasi-static before the force-free state bfeaks down
at time t*. The present theory does not attempt to explain any catastrophic phenomenon
after reconnection, corresponding to raiaid energy release (on the 74 time scale). Another

nonlinear theory would need to be constructed to explain such phenomena.

One of the authors (NB) thanks Dr. R.S. Steinolfson and another (JVD) thanks J.E.
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Figure Captions

1. Time-evolution of the nonlinear force-free state specified by a.” Curves A, B, and C
correspond to the linear theory,!? the simulation result for &, and the ideal MHD
solution of Eq. (183), respectively. The triangles iﬁdicate the hybrid average values
discussed in the text. These simulation results were for S = 2 x 10%, v = 0.01, and

Tramp = 2 X 103,

2. (a) Spatial dependence of | a(z,y,t) |. (b) Contour profile of the quasi-static flux
function | ¥(z,y,t) |. (c) |a(v)] as a function of flux 1. All shown at ¢ = 760 for the

parameters indicated in Fig. 1.
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