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Abstract

The internal kink stability of a tokamak in the presence of energetic particles is
studied. 'It is found that (1) there exists a stable window when a finite population
of energetic particles are present, and (2) the relation between the predictions of the
fishbone theory of Chen-White-Rosenbluth and the fishbone theory of Coppi-Porcelli
is explained. The theory indicates why some experiments, like PDX and TFTR, are
likely to see fishbone oscillations in conjunction with sawtooth modes, while other

experiments can observe sawtooth suppression in presence of hot particles.




The magnetohydrodynamic (MHD) properties of a tokamak’s discharges can be altered
due to the kinetic response of the energetic trapped particle component. The effect can be
a stabilizing! or destabilizing influence especially on the internal kink. Experimentally, the
destabilizing influence has been observed in fishbone oscillations of neutral beam injected
plasmas,*~® while the stabilizing behavior has been observed in JET"® in ICRF heated
plasmas with an energetic minority ion component.

The theories have been developed by several authors®®°~1! for the internal kink with

finite w} (the background ion diamagnetic frequency) under the influence of energetic ions

" in an effort to explain both the fishbone and the stabilization of the MHD behavior. We

describe an analysis of Coppi-Porcelli dispersion relation.® It is obtained by treating the kink
layer in the ideal MHD limit with the correction due to finite w} (henceforth, it is referred
to be “zero” FLR theory). Modifications in the results are expected from large ion Larmor
radius and finite conductivity effects within the layer.'?1® These effects will be reported in
subsequent work. In this letter we only present the results from the “zer0” FLR theory, and
3

stress the relationship between the earlier contending theories of fishbone oscillations.”

The dispersion relation of the “zero” FLR theory is®

wabW —iyJw (w —w}) =0, (1)

where wy is the Alfvén frequency, §W = 6W, + 5Wh. §W, is the normalized MHD energy of

background plasma. We shall use the specific §W., obtained by Bussac*
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with
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where B, is the poloidal field at the ¢ = 1 surface, p is the background plasma pressure, r, is

the position of the ¢ = 1 surface, « and R the minor and the major radius, respectively, ¢(0)
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the safety factor at z =r/a = 0. §W,, is the hot particle energy with the same normalization

as the above to 6W,, with

e;f’r)/dr Wk OF, | (4)
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where e is the hot particle charge (always positive in this letter), wgy and &g are the
hot particle drift frequency and its line average, respectively, dI' is the velocity-space volume
element, F}, is the equilibrium distribution of the hot particles, and ¢, is the radial component

of the plasma displacement. For simplicity, we choose a slowing down energy distribution

with a §-function in the pitch angle to obtain

§Wy = foln (1-%), (5)
with |
B = = ()1 (xt) a2 0ls, NG

where R/a is the aspect ratio, (8), is the poloidally averaged B, the hot particle S-value,

I(k3) = 2E (x3) /K (k3) —1. ~ 1 — &} for deeply trapped particles comes from the line

average of cos § (characteristic of the normal curvature), £ and K are the complete elliptic

integrals, k3 = x? (ao) with £*(a) = (R/2r)(1/a—1+r/R) and & = w/®qg is thé normalized

frequency with @49 = (¢/eBr,R) I (k2) Emax, denoting the line average drift frequency of the
2

trapped hot particles, Fmay is the maximum energy, evaluated at x% = &2, r = r,.

We now analyze the dispersion relation, Eq. (1), with w} = 0.
- A
—A-I—,B/zwln(l—a)—zw:o, (7)

where A = —6W, &4 and Bh = ,[;hd)A, Wy = wa/@g. We solve Eq. (7), both analytically
and numerically. The numerical results will be presented first. In Fig. 1, we plot the loci of
the Rew versus Im@ curves as ﬂAh varies. Bach curve is for a fixed value of A, and we have

chosen to display curves with A = 0.0, 0.05, 0.08, 0.09. The Bh values are indicated by the
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darkened points on the plot. Notice that the nature of the curve changes fundamentally as A

crosses the critical value of A, = 0.0866. FQr A < A, there are two unstable branches, a low-

| frequency branch (the MHD mode) and a high-frequency branch (the precessional mode). As

Bh increases, the MHD mode is first destabilized, but then its growth rate decreases reaching
marginal stability at ,@h = 1/7. However, the Bh = 1/ value is precisely the onset of the
precessional mode growth, which eventually becomes larger than the real frequency.

For A > A, = 0.0866, however, large ,@h can no longer completely stabilize the MHD
mode (cufve d in Fig. 1). Instead, the nature of the unstable mode gradually changes from
the MHD mode to the precessional mode, without marginal stability ever arising.

These numerical results can be understood analytically as follows. From Eq. (7) we
observe that without hot particles, we have a purely growing MHD mode, @ = ¢A. For very
small values of ﬁh, the mode frequency can be perturbatively calculated. For ,f;’h > 0 the
growth rate shows a small increase and the mode also acquires a small real frequency

& ~ ik [1 + Bptan™ (%)] + -;-man <1 + %) +0(B). (8)

This character of @& is observed in the Re® ~ 0 part of Fig. 1, where we also see that negative

" By is always stabilizing. For B, > 0 Fig. 1 indicates that the growth rate peaks and then

decreases. But stability of the MHD mode only arises if A < A.. To calculate A, we set
to zero the real and imaginary part of Eq. (7), assuming 0 < & < 1. As marginal stability

(Im@ = 0), we obtain Br=1/x, and

W, 11 ,..
A:—W—ln‘l—a—r = F (), 9)

which must have a solution for marginal stability to be accessible. The function f(®) has
a maximum at &y = 0.2178..., where f (&) = 0.08863... = A.. Thus, when Bh =1/x
and A < A., Eq. (9) has real solutions; there are two marginal stable roots, a low-frequency
root for which & < & (the MHD mode) and a high-frequency root, for which w > wp

(the precessional mode, its destabilization is precisely the fishbone mode referred by Chen,
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White, and Rosenbluth?). Straightforward analysis indicates that the precessional wave is
destabilized for ,@h > 1/m, as observed in Fig. 1. Thus,lfor any value of Bh there is an
unstable mode. We note that this dramatic property depends on the approximations used
in the calculations of 5Wh, in particular on the specific distribution that has been chosen in
which the pole contributions to éW}, [Eq. (4)] is only linearly dependent on w. If A > A,
there is no solution to Eq. (9), and hence no stabilization; the MHD mode blends into the
precessional mode as Bh increases.

We now investigate the effects of finite w} on the results presented in Fig. 1. An exact
analytic solution can be obtained for the marginal stability of the precessional mode if A = 0.
The vanishing of the real part of the dispersion relation demands @ = 0.5. Substituting this

@ into the imaginary part of the dispersion relation yields

vi— 2o (10)

v

b = BV =
For finite but small A (A / B,(IO) < 1) the dispersion relation yields

(1= 4/8°)
2

and the conditions for marginal stability becomes

\/1—2 /1—A/ﬂ(°))

(11)

We now turn our attention to the discussion of the MHD mode with corrections due to wy.
In the absence of hot particles, the MHD modes are determined by solving A+iy/w (w — w}) =

0, giving two marginal stable modes® for & > 2A with frequencies

r o1
L S/ — 402,

&

W=

ol

The high—fréquency mode will be referred to as the wf mode and its destabilization is precisely
the fishbone mode referred by Coppi and Porelli.® The other mode will be referred to as the

low-frequency mode. Assuming the real frequency of the w} mode to be less than @g (&F < 1),
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one observes that the dissipation, introduced by a small Bh term, destabilizes one of the real
frequency modes; if ,éh > 0, the w! mode is destabilized, while if ﬂAh < 0, the low-frequency
mode is destabilized. To obtain marginal stability with w} and B, we analyze the real and
imaginary parts of Eq. (7). From the imaginary part we find & = &F/ (1 — 71’2,3;3). If we
assume Wﬁh < 1, the marginal stability condition for the w} mode becomes

. A
ﬂh“w;ln(l/a;—l)‘

Note that in achieving the stability condition the real part of w has changed from w < w} (for

(12)

low Bh) to w > w}. Equation (12) also indicates that the threshold depends primarily on the
density of the hot species; the temperature dependence arising only from the légaritllm term.
However, an important hot particle temperature threshold arises from the condition that the
argument of the logarithm is bigger than unity leading to @ S 1/2. As &f ~ 1/Egyax, we
see that there is a threshold for hot particle energy to achieve stabilization.

To understand the interaction between the precessional mode and the w} mode, we must
again resort to numerical work. In Fig. 2a and 2b, we display the numerical solution of the '
dispersion relation plotting Re® and Im&® as function of Bh- These figures illustrates the
effect of finite w} on the various modes present. For A = 0.05, we present two sets of curves
for @f = 0 and &} = 0.2, respectively. The behavior of the & = 0 curves has already been
discussed (this example corresponds to A < A.). We had lfound earlier that ©F (&F < 0.5)
tends to destabilize the precessional mode [c.f. Egs. (10), (11)]. We also know that the low-
frequency mode (without the hot particles) are marginally stable for @} > 2A. Our choice
of wf = 0.2, A =0.05 does satisfy this inequality. As a result of these opposing effects of
wj, it turns out in the presence of hot particles the dispersion relation allows a stability
window, i.e., there exists a range of ,@h, in which neither of the branches is unstable. This
behavior is illustrated by the dashed lines of Fig. 2b, and is to be contrasted with @} =0

case (represented by solid and solid-dot lines), where for all values of By, there exists an

unstable mode.




Since the existence of a stability window is crucial to the understanding of the system, we
draw the marginal stability contours in the ,@h — f plane (Fig. 3a). These two parameters
along with A are the determining parameters of the system'beha,vior. We have chosen
to display curves with A = 0.0, 0.01, 0.03, 0.05. As A increase, the stable regions are
getting smaller, and vanish when A = Ac ~ 0.09. Making use of Bussac formula for §W,,
Eq. (2), we estimate the maximum B, [defined by A = A, and Egs. (2)-(3)] can be three
times of the critical §,(~ 0.3) for currently operating .tokama,ks. The upper edges of the
stability boundaries correspond to the precessional mode, and the lower edges to the w} mode.
However, when w} is raised, these two modes are converted to each other, which can be clearly
seen in Fig. 3b for the real frequencies at the marginal stdbility.

We now assess the stability of the low-frequency mode when .ﬂﬂh is negative within the
g=1 surface.‘ The negative By, implies a stable precessional mode. For A > 0 and w} >
2A the low-frequency mode with the mode frequency &y ~ A%/&} is destabilized by this
negative B;. We note that electron dissipation has not been included in this analyses and
is expected to help stabilize this mode. One further problem is the low-frequency nature of
this mode force a break-up of a basic assumption in the derivation of the dispersion relation,
viz. the mode frequency larger than the grad-B frequency of the background plasma. Thus
a more complicated theory including ion drift effects and electron dissipation is needed to
describe stability, a problem that is beyond the scope of this letter.

Finally, to elucidate the experimental significance of the present theory, two tables are
given below, showing the relationship between experiments and theory. Since big uncertain-
ties exist for estimate of W, and B, we simply claim §W, ~ —1x1073 and Bh ~ 0.15£0.15.
However, we still may conclude that the fishbone oscillations in PDX and TFTR are likely
caused by too high &f value, while the operation in JET and Doublet-III may or may not be
stable, depending on the Bh and W, values. We must point out that the serious comparison

between the theory and experiments should be given on the basis of a more sophisticated




theory, which includes the effects due to arbitrary Larmor radius and finite .conductivity
within the layer. However, we expect that even when these effects are included, there will
not be any stable window for &} R 0.5, as shown by our current work.'2 Therefore, it appears
that the fishbone oscillations observed in PDX and TFTR arises in a parameter regime where
the precessional mode (Chen—White—Rosenbluth fishbone?) and the w} mode (Coppi-Porcelli
fishbone®) merge. In other machines such as JET and Doublet-III the w} value are such to
exhibit a separation of the w} and precessional modes, as well as provide a stable window of

operation.
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Table I. The estimate of parameters in the theory for tokamaks.®

PDX  Doublet-IIl  TFTR JET
Gy 0.4 0.1 0.8 4x107?
N 3.8 3.9 35 - 4.0

W, 38x107% 39x10"% 35x10%2 4x103

“We use ad hoc estimates for §W, ~ —1 x 1073, and for the
shear § = ry(dg/dr) ~ 0.5. Other parameters for estimate of O}
and &4 are given in Table II.
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Table II. The typical parameters for tokamaks.®

PDX Doublet-III TFTR  JET

Biry 1.1

n[10%¥cm™3] 6.6

T;[kev] 2.0
Rim] 1.4
rs[m] 0.2
Ep[kev] 50
Lp [m] 0.2

1.3

5.3

1.3

14

0.2

75

0.6

3.0 2.1
3.5 3.0
13.4 5.0
2.5 3.0
0.35 0.4
95  ~ 500
0.8 1.2

5The parameters given here in PDX, TFTR, and
Doublet-IIT are those in fishbone regime. The pa-
rameters in JET are those in sawtooth stabilization

regime.
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Figure Captions

1. The locus of solution of the ideal MHD mode under the influence of energetic trapped

particles with w} = 0 in the complex plane as a function of Bh = Bhd)A. Curves a,
b, ¢, d stand for EWioa = 0.0, —0.05, —0.08, —0.09, respectively. The dashed curve
stands for 5WCL?)A = —0.0866.

. The real frequencies (Fig. 2a) and growth rate (Fig. 2b) versus By = Batoa of ideal

modes for illustration of mode conversion between the precessional mode and the MHD
mode. The solid lines and dot-dash lines represent ©f = 0, §Woy = —0.1, —0.05,

respectively. The dashed lines represent @} = 0.2, §Waoa = —0.05.

. (a) The stability boundaries of Eq. (1) on By, — & plane (/f% = ,@hch) with W, =

0.0, —0.01, —0.03, —0.05, respectively. The stable region is the area enclosed by the
corresponding curve.

(b) The real frequencies at the marginal stability versus © with the same §Wyos in
curves a, b, ¢, d as in Fig. 3a. The corresponding ﬁh can be found from Fig. 3a by

using the same w}-value.
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Figure 1
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