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Abstract

Exact and almost exact solutions to the Vlasov-Maxwell systems describing a va-
riety of plasma configurations with density, temperature and current gradients, are . -

presented. Possible consequences of these solutions are also discussed.




I. Introduction

Exact nonlinear solutions to coupled field theories are genérally rare. For the Vlasov-Maxwell
system (describing a collisionless plasma) the list of reported exact solutions is quite short;
there are the electrostatic solutions of the Bernstein-Green-Kruskal (BGK)* type, and the
magnetic solutions of the kind obtained by 1) Pfirsch,? 2) Laval,® Pellat and Vuillemin,
3) Marx? and 4) Harris’. The magnetic solutions were constructed to model the behavior
. of laboratory plasma containment devices. It was assumed that only the plasma density
was a function of space while plasmia femperature and current were taken to be Spatially
uniform. The process leads to the well-known Bennet pinch’ density profiles in the cylindrical
geometry, and to the strongly localized sech®z/§ (where § is some appropriate length) profiles
in the slab model. ' '

A more realistic description of the current laboratory plasmas, however, would require
the inclusion of the temperature as well as the current gradients (i.e., gradients in current
which are in addition to the automatic gradients due to the density dependence of current.).
This paper is an attempt to incorporate these essential elements in the theory, i.e., we
construct exact and almost exact solutions to the Vlasov-Maxwell system describing plasmas
with gradients. The calculations can be carried out both in the slab and in the cylindrical
geometry; the slab solution can also be made into tifne—dependent travelling pulse solutions.

In Sec. II, we deal with the simplest case of a plasma with only density gradients. A
part of this section is in the nature of a review, and the rest contains new results including
solutions with nonzero electric field.

In Sec. III, we introduce current gradients by imparting spatial dependence to the drift
speed u though the plasma temperature is kept constant. It is found that the maintenance of
an exact equilibrium demands that the temperatures along and perpendicular to the direction
of the current be different. A wide variety of equilibrium profiles (the density n, the current
J, the self-consistent magnetic field b) emerge as the anisotropy parameter AT = Tj — T, is
varied over a range.

The problem of finding an exact solution becomes very difficult when the temperature gra-

dients are also taken into consideration. We were, however, able to construct an exact infinite




series solution to the Vlasov-Maxwell system. This series can be readily truncated for plasma
existing in most of the fusion related machines in which the electron drift speed u, (drifts
which cause the current) is much smaller than the electron thermal speed ve(u./ve < 1).
Deriving equilibrium profiles for a variety of configurations is the subject matter of Sec. IV.
- Depending upon the nature of equilibrium currents, we obtain pinch-like (current only in the
axial direction) or tokamak-like (current in both the axial and azimuthal directions) profiles.
It is interesting to note that for all of these magnetically confined plasmas, there exists a
natural scale length 6 ~ (c/wpe)(ve/ue) which is a scaled version of the collisionless skin
depth (c/wy,), and is the principal control parameter of the equilibrium. For the present day
high temperature laboratory plasmas § 3> ¢/wp. because ve/u, > 1. It would seem obvious
that the profiles of fusion machines should be better understood in terms of this intrinsic
parameter than the mirror radius a of the machine provided § < a (If @ < 8, then the edge
effects will be far too important to be neglected). | |

In Sec. V, we give a brief Summai’y and make some speculations based on our time-

dependent solutions of Sec. IIA.

II. General Formalism

Throughout this paper, we deal with a two-component plasma (electrons and ions) embedded
in an external axial magnetic field Bey, = Boé,. Although Jequili’brium studies in cylindrical
geometry form the bulk of this WC;I‘k, we have also dealt with the time-dependent problem
in Cartesian geometry. We shall later speculate on the meaning of these time-dependent

solutions.

A. Time-Dependent Solutions in Cartesian Coordinates

Assuming that the field quantltles vary only in the z-direction (8/83,/ 0 = 0/0z), the

relevant equations describing the system can be written as
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where Eqs. (1a) and (1b) are the Vlasov equations for the evolution of the electron ( fe)
and ion (f;) distribution function in the presence of the external field By, and the self-
consistently generated fields E and B which obey Maxwell’s equations (2-5). In Egs. (1-5),
—e is the charge of the electron, m and M are respectively the electron and ion masses, and
p and J are the plasma charge and current densities.

‘We begin by proposing travelling (iisplaced Maxwellian distributions for the particles
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where ng is a- measure of the ambient density, ve; = 2T.;/me;, Ue,; are respectively the
thermal speeds and the drift velocities, and T,; are the temperatures. In this simple case,
the entire épace-time dependence is contained in the factor g.; which depends only on the

variables

n=z-Ut. » (7)

Making use of Eq. (6), one obtains expressions for the charge and current densities (explicit
arguments will be dropped),

p = —enolge —gi) | (8)

J = —eno(geue — giui) , / (9)

to be substituted into the right-hand sides of Egs. (2) and (5) which become (8/9t = —Ud/dn
and 0/0z = d/dn)

dE,
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and B, = 0. Equations (11) and (12) immediately yield
U'- -
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where U/c By is the integration constant accounting for the external magnetic field. Equa-
tions (15) and (16) clearly indicate that the electromagnetic fields arrange themselves insuch
a manner that there is no effective electric field in a frame moving with the plasma (In the
main text we deal only with the nonrelativistic approximation; the relativistic generalization
is provided in Appendix B).

With the realization that the drift speed of the particles is givén by

Ups = 8u + 8, w4 8,U, @

substituting Eq. (6) into (1a) and (1b) leads to the differential equations which must be
satisfied by g. and g;, |

1 dg. e

dr = CT[ (B, + Bo)u ]—TEz (18)
1 dg;

'g“j% = CT[ =By + (B: + BoJu }+T3Ex (19)

Equations (18-19) are the manifestation of the constraints imposed by the Vlasov equation
and are to be solved in conjunction with Eqé. (10)-(11) for the electromagnetic fields and
the pdrticle distribution functions.

At this stage, it is important to distinguish between two important limits of the system.

The first limit is when charge neutrality (g = g;) prevails at all times implying E, = 0,
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and the‘problem reduces to an essentially magnetic one with only inductive electric fields
present. The second limit is when the charge separation electric field £, dominates, and the
system is almost equivalent to a Vlasov-Poisson system. We find that in the latter case, i.e.,
the Poisson-like (P) situation, it is not easily possible to construct nonsingular continuous
solutions. As a result, we shall not discuss the P solutions in the main text. However, we
do provide some details about the Vlasov-Poisson system in Appendix A.

Our main concern here is the second type of solution where the magnetic field (or the
forces due to it) dominates the charge separation electric field. This is indeed the most
relevant case for the confined plasmas.

Substituting Eqs. (15) and (16) into (13) and (14), it is clear that for uf /u$ = u}/ug = 4, |
B, = (~u;/u$)By, and only one of the two equations remains independent. With appropriate

redefinitions, the set of Eqs. (10), (14), (18) and (19) becomes

%— = —%(ge—gi) | | (20)
| j—z = f;—g(ge—ﬂgi) , (21)
Elgcfg; — _E4b A - (22)
é‘%’ = (B u) | (23)

where E = eE,[T., b = (ecu?/uT.) By, uz = (u$)? + (ud)?, v = T3/ Te, Ap = (T./4Amnee?)/?
. is the electron Debye length, and 6, = (Te/4wngez)1/2(;/ue)751 [752 =1- U2/c2] can be
viewed as énhanced Debye length or modified collisionless skin depth. However we may
choose to interpret §, it plays the same crucial role in the magnetic problem as Ap plays in
the electrostatic problem. We shall see later that § is the fundamental intrinsic scale length
for magnetically confined plasmas.
To illustrate the full potential of this system, let us consider a partially neutralized plasma
with ,
gi =A049e (24)

where o is independent of . Incorporation of Eq. (24) immediately leads to two algebraic



constraints equations:
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relating FE and b, and -
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which fixes o in terms of the intrinsic plasma parameters. The rest of the system is described

by two differential equations
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provided 1 > kpA} /62 = ru(p2/c?)(1 — U?/c*)™1, a condition which is quite easy to satisfy;
for 7 > —p > 0, it is automatically true. Notice that in the opposite limit, the solution
for g, ~ cosech®y/§ which is alwé,ys singular somewhere or the other. There is a wealth
of information in Eqs. (25)-(30) concerning the interplay of plasma parameters leading to
acceptable physical solutions. We do not pursue this subject in detail here because the main
task of this paper is to elucidate the nature of magnetically confined plasmas. From now
on, therefore, we shall concentrate on the special case where the charge éeparation electric
field E; = 0. Clearly, Em = 0 implies g, - gi = g, and £ = 0(b # 0) which implies
po=ulful = u; /vy = —T, i.e., the ions and the electrons maintaining charge neutrality, flow
in opposite directions (add to each other’s current) with drift speeds proportional to their
temperatures. The entire set of field quantities has the following simple structure,
z—Ut
o

(31)
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b= (ecuz/ugTe)By——mtanh 5 (32)
B, = ~(/u)B,, (33)
B, = —(B.+By), (15)
B, = —%By, (16)

where|§] = v2|8|(1 + 7)Y = (¢/wpe)(ve/ue)(1 + 7)~H245 is the length scale of profiles.
These ra,re travelling pulse-like solutions with a propagation speed U in the z-direction. In
the laboratory frame, one sees the inductive electric fields, which, however, vanish in the
frame moving with the pulse. In fact, the pulse speed U is picked up precisely to insure
that there are no electric fields in the moving frame. For By = 0, the electromagnetic fields
become purely transverse E - B = 0, and become more and more light like as U — ¢. But
to deal with U — ¢ limit prbperly, we must develop a relativistic theory of the plasma and
not depend upon the current nonrelativistic treatment. This is done in Appendix B. Further

discussion of the preceding results is deferred to Sec. V.

B. Equilibrium Solutions in Cylindrical Geometry

In Cartesian geofnetry, it was possible to obtain travelling (time dependent) solutions because
the equations were invariant o the galilean transformation z’ — z —U+t. This property does
not pertain in cylindrical geometry, which is of prima,rjf interest to the plasma confinement
experiments. Thus time dependence will be dropped now (U = 0), and only equilibrium
solutions will be presented. For the time being, we shall also put ug = 0, i.e., there no
currents in the azimuthal direction. Thus, the plasma has density gradients in the radial
(r)-direction and has a current in the axial (z)-direction. (In Sec. IV, we shall reintroduce ug
to simulate the tokamak currents.) The calculation in the cylindrical geometry follows the
same logic as the Cartesian calculation, and we can derive the appropriate coupled nonlinear

equations (g = g; = g) for the density profile g, and the normalized magnetic field b, (all



other self-consistent fields are zero)

1d

Ed—i = b, (34)
1d 2
;E;Tb = —359, . (35)

where the only change is the d/dz — r~'d/dr. All the symbols have exactly the same
meaning, and we have chosen to deal with the case E, = 0 (1 = p), although inclusion of
E; is straightforward. Equations (34) and (35) led to the famous ‘Bennet’ solutions for a

self-confining pinch,

g = —— ~ (362)

(1+ %)
1 r '
b = _Em—;%—) (36b)
characterized by the same fundamental length 6. Notice that the externally applied magnetic
field By does not appear in the pinch equilibrium studies. However, its presence is absolutely
essential for the pinch stability, and hence will be considered to be always there.

It is inf:eresting to compare and contrast the results of the Cartesian (for U = 0) and
the cylindrical calculation. For small values of z, Eqs. (31) and (32) reduce exactly to (36)
and(37) as they should, because for small values of z(r), the cylindrical curvature is not
important, and the problem is locally Cartesian. However, for distancés r > 6, the solutions
can differ considerably; 1) Eq. (36) leads to an algebraic fall to zero while Eq. (31) predicts
a strongér exponential fall for g, and 2) Eq. (37) predicts a slowly falling b while Eq. (32)
predicts the field to become a constant for large z. However, the general structure of the
problem is the same and if the problem at hand does not depend crucially on the details of
the solution, our time-dependent Cartesian solutions could be effectively used in providing
a dynamical (as different from static, or equilibrium) understanding.

In the simple problem considered so far, we had proposed the solutions to'the Vlasov
equation in the form of a displaced Maxwellian. The choice of a near Maxwellian is, of
course, warranted by theoretical as well as experimental considerations. We would continue

to be led by these considerations as we deal with more and more complicated cases. The



alternative route of writing the solution of Vlasov equation in terms of the constants of
| motion, though extremely general, is not the obvious choice here, because we understand (to
some degree) the nature of the solutions we are seeking in real space and velocity variables
and not so much in the space spanned by the invariants. In Appendix C, it is shown that
the simple problems could be treated either way, but for the problems where temperature
and other gradients are present, it becomes very difficult to think of what combination of
the invariants should be taken to model a discharge. The most important object, however,

is to seek and find a solution of the problem by any correct and consistent approach.

III. Plasma with Density and Drift Speed Gradients

In addition to g, we now let the drift speed of the particles become a function of the radius
r, Le., Uq = Ua0Pa(r), Where ¢o(r) is the profile of the o-th specie, and ugo is the drift
speed at the center. We still keep the temperatures T, (equivalently, the thermal speed
v,) independent on r. It is straightforward to see that a displaced Maxwellian of the type
Eq. (6) with ue; dependent on r will not allow a solution in the velocity space because
now the v,0f/dr has additional terms, quadratic in the velocity variables, which cannot be
compensated by the force term. The required compensating force terms, however, are readily
generated by introducing a temperature anisotropy: the particles have different temperatures
in the direction along the current (T},), and perpendicular to the current (T’ # T7) suggesting
the distribution ‘ |

o moglr) exp{_v3+vz_[vz—uaosoa(r)]} o

 w3202u,, v2 v,
which represents a neutral plasma (¢¢ = ¢ = ¢) carrying a current in the z-direction.
Substituting Eq. (37) into the equilibrium Vlasov equation (8/80t = 0), and carrying out
the usual algebra, one obtains the following set of coupled nonlinear ordinary differential

equations (in the variables g, . = ¢; = ¢, and b with ©(0) =1),

ldg w dp
gdr — Adr (38)
de A
i b (39)
1d 2
FET T TR 40
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where A\ = AT, /mqp, with AT, = Ta — Ty, is a measure of the anisotropy. Equa-
tions (38)-(40) are derived along with the constraints 7 = —u;o/ue (to keep E, = 0), and
AT;/T; = (tm;/me)AT,/T,, which relates the electron and the ion anisotropy. Notice that
the ion anisotropy is much strdnger than the electron anisotropy. We shall see later that
the Eqs. (38-40) allow extremely interesting behavior for A =~ 1. In a typlcal hot plasma,
A >~ 1 implies AT, /T, = meul,/mv? ~ m,/m; which will lead to AT; :/T; ~ 7, which is not
unreasonably large. We must stress, however, that the sﬂ;uatlon with gradients in drift speed
and no gradients in the thermal speed is not of much interest to thermonuclear plasmas, its
applications have to be sought elsewhere. ‘
- Equations (38)-(40) can be combined into a single second-order equation

1d d -
rdr ds:—_c‘i_z)\ e V2 (41)

which does not allow close form solutions except in the limits ¢ ~ 1. ‘The equation is,
however, trivially, solved on the computer and yields a rich variety of profiles as A is varied.
In Figs. 1-4, we present respectively the profiles of the density g, the magnetic field B, the
drift speed ¢ and the current g for a variety of positive (T' > T3) values of A\. The same
set of variables is plotted in Figs. 5-8 for negative (T' < T) values of A\. As A takes larger
and larger positive values, one observes more and more departure from the A = 0 [Eqs. (36)
and (37)] profiles: ¢ decreases monotonically with = r/§, and B, starting from zero,
rises to a maximum at z = 2, and then slowly goes to zero. For larger values of A, we
see that B becomes oscillatory (going below zero also) with the Wavelehgth of oscillations
decreasing with A. The other fields also show oscillations. Of particular interest is the fact
that the density g becomes less and less peaked showing loss of confinement. This is a
direct consequence of the fact that the confining magnetic field (now oscillatory) becomes
considerably smaller than its A = 0 value.

For negative values of A, the richness exhibited by the A > 0 case is missing. As A
decreases, the maximum of the confining magnetic field By becomes larger, and comes nearer
and nearer to the center. Consequently, the plasma density g becomes more and more pea,ked. ‘_
Since By has opposite sign to b (to keep the conventional current in the positive z-direction),
negative value of A would imply de /dr >0 for By >0 [see Eq. (39)]. Thus ¢ increases away

from the center as seen in Fig. 7.

11



In this section, we have seen that there seems to be a fundamental connection between
the existence of gradients in drift speeds of the particles (without temperature gradients),
and the existence of temperature anisotropy; the connection is provided by the constraints
imposed by the Vlasov equation. A whole variety of equilibrium profiles result for various
values of the anisotropy parameter. The profile range from highly peaked to the oscillatory

ones.

IV. Plasmas with General Gradients

"~ We now deal with the general problem where the plasma has gradients in all the relevant
macroscopic variables: the density, the current, and the temperature. Without any loss of
generality, we introduce the gradients explicitly in the density n = nog, and the temperature
(through the thermal speed) vy, = (27,/ M) ? = vaothy Where g and ¢ are the profile
factors [at r = 0, g(0) = 1 = v,(0)]; the gradients in the drift speed and the current will
automatically follow. Because of its relevance to the laboratory plasmas, we must. make a
distinction between two of the principal kinds of experiments:y the pinches (z-pinch), and the
tokamak. In this paper, we take the view that the nature of the equilibrium depends upon
the plasma currents (in a nonlinear system, all these things are, of course, self-consistent).
Thus we shall begin by postulating that z-pinches are characterized by a plasi‘na current
oniy in the z-direction (i.e., direction of the strong externally applied magnetic field) while
the tokamaks have currents in the z as well in the #-direction; the details of the current
and other profiles will naturally be determined by a self-consistent solution of the problem:
We must emphasize here that although we are using the words z-pinch and tokamak, our
relatively simple analytical models based on Vlasov-Maxwell equilibria could not possibly
be a complete (or anywhere near complete) description of these complicated systems. The
mandate of this paper is to expose some generic features of these systems when equilibrium
currents are specified. In this entire paper the use of z-pinch and tokamak should be taken

with strong qualifications.
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A. A Simple z-pinch

This is an extension of the problem discussed in the last section. The plasma is embedded
in a strong external field Byé,, and has a current along the z-ciirection'giving rise to the
self-magnetic field B = Byéy. The equilibrium is obtained by solving the Vlasov equation
in conjunction with the z-component of the Ampere’s law. Unlike the simpler systems
. discussed in the earlier sections, a plasma with temperature gradients does not allow a one-
term drifting Maxwellian as a solution. Fortunately, the infinite seﬁes expansion (species
index is suppressed, and g is a constant measure of the drift speed)

_ Mg 2uo Y2 v\ o
f= 7T3/2’I)8'l,b3 Z Z Chm <'U_O> (w) :I exp l_vg¢2jl | (4'2)

Yo n=1m=0
converts the Vlasov equation into ordinary differential equations in ¢ and ¢ in addition
to providing relations which determine all C,,, in terms of the plasma parameters, and
Cio=1,0 = B where § is some constant to be fixed By constraints outside our analysis.
Equation (42) thus represents an exact solution to the Vlasov equation. The details of this
algebraically complicated calculation are given in Appendix D, where explicit forms for some
Crm’s are also presented.

It turns out that all C,, for which m > n + 1 are identically zero, and the remaining
Crm ~ (uo/vo0)"™, where ug/vp is the ratio of the central drift speed to the central thermal
speed. Clearly this series will be totally useless (if not downright meaningless) unless ug/ve <
1. This is indeed the case for high temperature laboratory fusion plasmas. In fact, the
existence of this small parameter [uo/vs ~ (me/m;)}?] was the primary motive for seeking
a series solution in (ug/vo).

After having demonstrated that a genuine exact series solution is possible, we invoke the
smallness of ug/vo, and truncate the series keeping terms only to order g / vo. Thus we have
the simplified distribution function (species index restored, g. = g; = g) |

2 2
fu= i e {1+ 2":"“ [1+ﬂa (=02 Hexp <_v§z %) 02D (43)

[+3

which, when substituted into the equilibrium Vlasov equation yields

ldg 3 dipe  Qalao :
gdr e dr  cTwo Bo )

and
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Equations (44) and (45) lead to the algebraic relations connecting g with %,

BuBy. (45)

g — ¢2+2/ﬁa

in addition to the differential equations [one for the electrons and one for the ions]

1 dg _ Galla0
q clr CTao [1 - (3/2)ﬂa]B¢9 y

requiring uio(1l — 1.56;) = (1 — 1.58)Topeo for consistency. One could, in principle, carry
out the calculation by choosing different constants f, for the electrons and ions. However,
it is expected that the electron and ion temperature profile factors should be quite close to

each other in long-lived equilibria. It is physically reasonable therefore to assume £, = 5; =

—B(B > 0) implying . = ; = ¢ related to g by
g=9"5 (46)

The consistency constraint takes on its usual form w;o/ue0 = —7o Where 7y is the ion-electron
temperature ratio at the center. We have chosen 8, to be negative because the density profiles
are, in general, less steep than the temperature profiles (T ~ %?) for most thermonuclear
plasmas. The choice of 8, simplifies the differential equation relating v with By, |

which along with Eq. (46) represeﬁts the manifestation of the Vlasov equations with the

ansatz Eq. (43). Following the standard procedure, we use Eq. (43) to calculate the total

plasma current

Jo = +enogp® (58/2 — 1) (1 + 7)ueo (48)
which is to be substituted into the z~component of Ampere’s law to yield [after using Eq. (46)]
1 Cl 5—2/ﬁ '

We remark here that ue,o > 0 does not exactly equal the drift speed of the electrons, but is
of that order. In that sense, it is different from ueo used in Sec. ITI. Equations (47) and (49).
can be combined to yield for @ = (5 —2/8)¢n 1,

ld dQ 2 -Q ‘

7 dr dr 6% (50)
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where 6z = 6]54/2 — 1|7, Equation (50) is readily solved to obtain (the profiles of) the

thermal speed,

1 ’1“2 ‘5—2 B
'()be = 'sz = d) = (GQ)W = |1 -+ 2 , (51)
462
the temperature
2 178=278
9 r
rev = ag| T (52)
the density :
R P e 53
g = [ + @- ’ ( )
the current
2 \ [ r2 177 (54)
R TN |
46%
and the self-consistent magnetic field :

5eﬁ' 1+ é%‘

Notice that for a confined pla_,smé,, i.e., where the plasma density and temperature, sep-
arately, decrease away from the center, we must choose § > 2/3. Further ﬁxing‘of B must
come from additional information; boundary conditions or possibly the experiment. Equa-
tions (50)-(51), the main result of this section, represent a class (labelled by ) of exact,
nonlinear, self-consistent solutions for the plasma and field parameters relevant to a z-pinch
in which fhe drift speed wg is much smaller than the thermal speed vy of the particles. As
expected, there is only one length scale §s ~ §. Further discussion of the solutions will be

done at the end of Sec. IVB.

B. A Simple Tokamak

In order to simulate a tokamak-like discharge (which has already been opened up into a
cylinder of length 27 Ry), we must include currents in #-direction as well. In fact, consid-
. erable more freedom ensues because now the strong external magnetic field Byé, can also

start playing some role in the equilibrium force balance. A necessary consequence of this
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addition is that the constraint u})/uZ, = —7 disappears, which is very important, because
the toroidal (z)—vcurrent in the tokamaks is largely due to the electrons. For simplicity, we
shall assume that the electron current is in the z-direction while the ion current is essentially
in the ¢-direction (In Appendix E, we solve the problem with electron éurrent in both 6- and
z-directions, The algebra becomes more complicated, but i)recious little is gained in perspec-
tive). Since we have a strong external magnetic field in the z-direction, we shall neglect the
self-consistent B,, and kgep only'By. Following the methods of Sec. IVA, we can construct
infinite series solution for the distribution functions. Since in all high temperature tokamaks,
the drift speed g is indeed much smaller than the thermal speed vy, we can simply use the
truncated distributions which are correct to order ug/vy. '

In the context of the preceding discussion, we make the following ansatzs for the electron

and the ion distribution functions:

: nog 2Ue Bv? —;ziz- N
o = P {” 2 (1_1285%/)2)}6 b (56)
and ‘
| nog 2V w? \\ -7
o= m{l+_“ (1“v§e¢3>}6 e

where, of course, we have chosen g. = g; = ¢ to ensure that the charge separation electric field

E, = 0. Substituting Egs. (56) and (57) into the Vlasov equations, we obtain [~ 0(uo/vo)],

where the two electron equations (58)-(59) are the same as the corresponding pinch equations

of Sec. IVA, while the ion equations (60) and (61) are very different. The system (58)-(61)

reduces to the following relationships between the gradients

g =P =y (62)
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an expression for the ion poloidal (azimuthal) drift speed

To2ld . clo23-2uldi,
eBoputidr " eBoud —2/Bv. dr

which is nothing but the manifestation of diamagnetic drifts, and the independent Eq. (59).

Since the current in the z-direction is purely from electrons, it is given by Eq. (48) without
~ the factor (147). Thus, mathematically, the tokamak system is reduced to the pinch system
with the exception that the constraint u§;/u§, = — is no longer there (in fact, there is no
uf in the problem), and that the relevant tokamak 6, & = (c/bpe)(veo Jueo)|58/2 — 1|71
If we further believe that the electron and ion temperature gradients are the same, then
e = ¥i(p = ). Thus, the tokamak profiles are precisely those given in the set (51)-(55)
with deg replaced by &;. If 4 # B, then we need additional information to fix px, though the
functional form of 1; is easily determined [Eq. (62)], when 1, is known. Even at the cost of

being repetitive, we spell out the tokamak profiles (8 > 2/3)

2 \ ~2(55=%3
g = (1+@) , (63)
T=qy* = (1+4—5?> , (64)
2\
J, = en0(5/6/2’"1)u60 1+-— ) (65)
167
— -1 :
By = ZelPR-IT v | (66)
eUge 67 - 1+E’g" .
_ rBy r?
and
1dp,
Vi = (cTofeBo)(2/) -2 (69)

where qo = (eBo/cTho)(ueo/ Ro)82 is the safety factor at the plasma center. In Appendix
E, we have solved the slightly more complicated problem with additional electron current
(diamagnetic) in the §-direction. The form of the solution remains unchanged. Hence a

discussion of Eqs. (63)-(68) is adequate to elucidate the nature of the equilibrium,

17



We first notice that the iequilibrium profiles for the z-pinch-like and the tokamak-like
equilibria are exactly alike; these are all some power of a Lorentzian with a scale length ¢
which depends only upon the plasma parameters, and a constant (B) which has to be given
by the boundary conditions or the experiment. The primary difference between the two cases
is that the pinch solution has a stringent condition on the electron and ion currents, i.e., they
must flow in opposite directions with magnitudes proportional to their temperatures while
there is no such constraint on the tokamak-like profiles. Furthermore, in the pinch equilib-
rium, the strong external magnetic field, though essential for stability, plays no significant
role in equilibrium. The stability role for By is unaltered for the. tokamak, but it also does
acquire some (although a minor) role in equilibrium; the ion azimuthal drift U; depends on
By [Eq. (68)]. For most other considerations, the two can be treated alike.

Although we have introduced azimuthal ion (also electron in the Appendix E) current,
we have neglected the self-consistent field B,. This is justified by comparing Eq. (69) with
(59) which gives in the tokamak ordering (|By|/Bo < 1)

Vi| __|Bal |
-’-Lz; —TO~BQ <<1 (69)

Thus i:he self-consistent field B, < By < By, and can be easily neglected. This surely does
not imply that the current, itself, is unimportant. In fact, it is the coupling of this current
with the large B, which constitutes the force term in the ion Vlasov equation.

Let L denote the length scale of macroscopic variation of plasma parameters: density,
temperature, etc. [L ~ 26, from Eqs. (63)-(68)], then it is easy to see from Eq. (59) that

— v 1_pe
" (eBg/mec) L L

Uen
Vo

<1, (70)

i.e., the expansion parameter used in the series solution for the Vlasov equation equals
the ratio of the electron poloidal gyroradius to the size of the system; an extremely small
parameter in the tokamak ordering. ‘

From a knowledge of the central density, temperature, and the drift speed
[ugo = ueo(58/2 — 1)] one can calculate the basic confinement scale length L. = 26; =
2(c/wpe)(ven/udo). This paper is'essentially a theoretical pa,pef, and we do not do any curve-
fitting with particular tokamaks (which, in detail, are much more complicated than the

theoretical tokamak presented in this paper). However, for reference, we calculated L. based
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on standard dataS) for a few typical diséharges: For TEXT L. ~6cm, and for Alcator-C,
L, ~4cm; in either case L, < a, the minor radius of the machine.

Guided by our desire to simulate a totally confined system, we found that g > 2/3
insures that all our profiles for the plasma parameters (g,%), J,) are monotonically decreasing.
However, the self-consistent magnetic field By shows a maximum at r = 2§; (the safety ‘factor
g is monotonically increasing as expected). This might suggest a possible experimental
determination of 26, i.e., measure the radial position where the poloidal field peaks.

All these prbﬁles are derived for a very simplified system. Actual machines not only are
much more complicated, but also have a large number of other features [like gas puffing,
collisions, time dependent phenomenal] not in our theory. It is quite straightforward to show
that in our ordering the collisions are u2/vZ smaller than the terms kept (say, v, 35 ~ ve fL;1),
and should appear in the 2nd order theory (if the basic theory is zero order). But clearly,
at large time scales, all these phenomena (including anomalous collisions) etc. could have
strong effects on the profiles that we have calculated. However, the ZerQ order confinement
profiles must serve as the basic substrata on which other processes (not included here) act,
and if one were to make attempts to theoretically derive the profiles (like attempts to derive
them from transport theories based on anomalous heat conductivity etc.), one should be
" forced to reckon with thel existence of fundamental confinement profiles with a scale length
26, which existed before the instabilities and other such phenomena came into play. It must
be stressed that, in the realistic machines, our solutions will provide a basic framework only
if 26; < a, where q is the mirror radius of the machine. If a < 26;, then the edge effects etc.

could be far too important to allow simple forms Eqs. (63)-(68).

V. Summary and Discussion

Sections IIB and III were essentially a prelude to Sec. IV.. Therefore, the discussion will be
limited to the findings of Secs. ITA (time-dependent solutions), and IV. We have aiready
discussed some of the salient features of the class of general solutions (calculated in Sec. IV)
for a plasma with inhomogeneities [Eqgs. (63)-(68)]. We found that after making reasonable
assumptions like 1, = t; (i.e., the ion and the electron profiles are parallel), the set of

profiles was unknown to a constant 5. Several properties of the system could be discussed
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essentially independent of what £ may be; the shape of By and J, depend on £ only. through
the magnitude of ;. Many other properties, however, are determined crucially by 8. First
and foremost is the fact that we require # > 2/5 for the temperature to fall away from the
center, and then § > 2/3 for the density also to fall away from the center. Thus, 8 > 2/3
insures the confinement of particles as well as heat. Although this is the most interesting
case for laboratory plasmas, other interesting situations can arise either in the laboratory
or in the astrophysical plasmas where one deals with plasmas where one of the parameters
could increase away from the center. An appropriate adjustment of 8 could simulate such
situations indicating the scope of applicability of this theory. As an example 2/3 > 8 > 2/5
gives confined temperature and increasing density.

Although the confinement constraints restricts the value of §, they are not sufficient
to determine it. Some additional information is necessary. One example is the ohmically
heated discharges, where the current goes as T%/% ~ 2 implying ¢ = ¥ and f = 1. The
fixing of B determines the relative sharpness of the density profiles and terﬁperature-.. If the
plasma is heated or created in a different manner, £, and hence the ratio of the profiles
would be different. The most important conclusion of the Sec. IV calculations is to poirt
out that Eqs. (63)-(68) provide a set of fundamental equilibrium profiles characterized by
the scale length 26; = (2c/wp‘e)(vc)e /ug) which must serve as the standard state on which any
perturbations are imposed; §; must figure in calculations which predict experimental profiles.

We now go back to the Cartesian time-dependent solutions of Sec. ITA to make some
speculations about plasma dynamics in a confined system. We begin by noticing that the
entire set of calculations in Sec. IIT and Sec. IV could be made time-dependent if we had

chosen to work in the Cartesian geometry. In fact, the solutions for the tokamak-like case

will be [ueg > 0,6; >0, 8 > 2/3]

g = [sech z J (71)
28
T=v9" = [sechzx —tUt] o (72)
— 1)1 —
B, = LeGA2-D7, n2-U (73)

EUQe . 5t 515
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‘along with the inductive electric fields,

E, = v B, ’ : (74)
Cc
E, = —Z—Z—Bo = const. , : (75)

which are a necessary consequence of the time dependénce. In Egs. (71)-(75) U is the plasma
flow velocity in the z-direction. '

The question arises: can we exploit the above solutions to say anything about the plasma
dynamics in cylindrical systems for which we have 1o time—dependenf solutions? We first
notice thaff both in the Cartesian and the cylindrical geometry, we have two ignorable di-
rections, y and z in the Cartesian system, and € and z in the cylindrical system. Thus
one would expect that the basic nature of the solutions in the two systems should be the
same. Of course, they could vary widely in details. We had already remarked in Sec. IIB
that for small values of the argument, the two solutions are exactly alike, vindicating our
conjecture. Our inability to find a time-dependent solution in cylindrical coordinates is a
mathematical inability, but based on the shared symmetries, physical considerations suggest
- that we use the Cartesian solution to draw some qualitative conclusions about the dynamics

of a cylindrical plasma.

With the preceding preamble, we now analyze Egs. (71)-(75), in particular, Egs. (73)—
(74). Notice that B, is an odd function of n = z — Ut implying that if £, < 0, then U > 0
for n > 0, and U < 0 for n < 0, i.e., the velocity U is dlways pointed away from the center
n = 0 as long as £, < 0. For initial times, n = z is to be identified with cylindrical r
allowing us the simple extrapolation that in an equivalent cylindrical system U is always
radially outwards as long F, < 0 and By > 0 (which is indeed the case). Clearly, if E, > 0,
the plasma moves radially inwards giving rise to pinching. '

We have thus come to an important conclusion that there exist dynamical solutions to

-the Vlasov-Maxwell system which in the laboratory frame move radially outwards (inwards)
[With a speed U determined by Eq. (74)] provided they have an associated E, < 0 (> 0).
There is nothing in our analysis which can fix the speed U. In fact, U must be a function

purely of the mechanism of plasma creation. It is possible that the plasmas born in similar

conditions will choose nearby values for U. Clearly, U = 0, implies that there are no local
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inductive electric fields created during plasma formation.

We now make the bold conjecture that an upper limit on the lifetime of a discharge is
determined at the very moment of its creation. It is simply ¢, = a/U, where a is the minor
radius of t\he machine; just the time taken for the discharge to move out. We cannot predict

(73)-(74) and U. = (a/t.), we note that

E, = v By = —— By ~ ﬁi (noTuo)? | (76)
c th 2 th ’

U (or E,) but we can make estimates of E, for some standard plasma lifetimes. Using

which for typical parameters, ng = 107%, T,o = 1keV, a = 25 cm becomes [E, in Volts/cm]

10-* .
te a

E, ~ (77)

Let us see if the above formula sheds some light on two apparently disjoint phenomena: the
major-disruption and the ‘anomalous transport’.

In a major disruption, the plasma goes to the wall in a very short time ~ 10usecs,
and a very large negative voltage spike is seen. For ¢, = 10usecs, E, = —10, leading to a
voltage spike V = —27 Ry x 10 ~ —6000 volts for Ry = 100 cms. The velocity for this case
U ~25/107% ~ 25 x 10° cm/sec. Neither of these numbers is absurd. | ]

‘Anomalous transport’ on the other hand is a slow process which results in plasma energy
loss in 50-100 msecs. For this case, Eq. (79) yields E, ~ —1073 volts/cm indicating that a
. reasonably small amplitude electric field could indeed self-consistently provide enough U to
result in a plasma loss in 50-100 msec.

Thus it seems possible to view both the disruptive losses and the slower ‘anomalous loss’
as limits of the same process. The plasma likes to be in a configuration with no electric
fields; it moves radially outwards precisely to achieve this end because in the moving frame
the electric fields are transformed away. The characteristic speed U depends upon the
magnitude of the electric fields it is born with; for large enough E,, the discharge diérupté
(goes to the wall in a short time), and for low enough E,, it gently (comparatively) moves
towards the wall giving rise to ‘aﬁomalous transport’. It is conceivable that this simple

scenario may have something to do with reality.

22



Acknowledgments

I have benefited from discussions with Drs. H. Berk, R.D. Hazeltine, and T. Tajima. Special
thanks are due to Dr. J. Sedlak for solving Eq. (41) numerically. The work was supported

by the U.S. Department of Energy contract #DE-FG05-80ET-53088.

23



References
1. 1.B. Bernstein, J.M. Greene, and M.D. Kruskal, Phys. Rev. 108, 546 91957).

2. D. Pfirsch, Z. Naturforschg. 17a, 861 (1962).

3. G. Laval, R. Pellat and M. Vuillemin, in Plasma Physics and Controlled Nuclear Re-
search (International Atomic Energy Agency, Vienna, 1966), Vol. 2, p. 259.

4. K.D. Marx, Phys. Fluids 11, 357 (1968).
5. E.G. Harris, Il Nuovo Cimento, Vol. XXIII, qu, 1167 (1962).

6. D.W. Ross (private communication).

24



Figure Captions

1.

Density (profile factor) g versus z = r/§ for several positive values of the anisotropy
parameter A = AT /mu?, AT = T —T,. Large ) results in a loss of confinement. This

set of parameters will be used in Figs. 1-4.

Drift speed u versus z = r/§. Observe the oscillations as A becomes large; the current

changes its direction.

The self-consistent magnetic field By = B versus ¢ = r/§. The field can reverse for
higher values of J; it also becomes smaller in magnitude resulting in loss of confinement,

c.f., the broader density profiles in Fig. 1 as A increases.
The current profile factor uxg versus z = r/é.

Density profile factor g versus z = r/é for several negative values of the anisotropy
parameter A. As |A| becomes large, the density profile becomes more peaked. Same

set of parameters is used in Figs. 5-8.
Drift speed u versus z = r/6. The drift speed is increasing away from the center.

The magnetic field By = B versus ¢ = r/6. The field becomes more peaked, and the

peak shifts towards the plasma center as |A| increases.

The current profile factor ukg versus z. The drift speed u increases away from the
center while g becomes more and more peaked resulting in a current profile (and hence

the accompanying magnetic field) which is more and more peaked near the center as

. |A] increases.

25



Appendix A

The pure Vlasov-Poisson problem (with no plasma current and fhe self-magnetic field) is

bompletely deﬁned by

dE 1
— = —_—— e — (; A.-l
dn X% (ge — 91) (A1)
1 dg.
— = -k A2
ge dn ( )
-1 dgi E
Al A.
7 dn - (A.3)
which are the [b = 0,u = 0] limit of Eqs. (21)-(23). Equations (A.2) and (A.3) lead to the

constraint

gigt™ = const. = p? (A.4)

which can be used to derive a single equation (9. = ¢,({ =n/p)

d 1dg 2.1/
— 2 (g — ) . A.
g (9 — u2g™") (A.5)
On one integration (A.5) yields
L(1dg\* _[ &
1(5) =l 5o A0
where C is an integration constant. Equation (A6) is readily solved
d
/ g =£2((+() (A7)
glC+g+Lg "

where (o is another constant of integration. For arbitrary 7, ome must do the integral
numerically, but for 7 = 1, nice revealing analytical forms are possible. Puttingr =1, p =1
(u can be easily absorbed in the redefinition of g; thus there is no loss of generality), we

rewrite the system in terms of Q = /fng

1 (dQ)’ Q4.0

5 (d—c> = [?+e2+0], (A.8)
and
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d
./ (e + e“?-I- Ve T £2"%(C + (o) - (A.9)

The constant C' must be determined by the boundary condition on e® = g, or the electric
field E ~ —dQ/d¢. The detailed form of the solution depends on this choice. Following

independent cases exhaust the range of C*

(a) C = —2, which could correspond to the boundary condition that as { — oo, dQ/d¢ = 0,
Q@ — 0(g = 1). The solution is [{ = (¢ + (o)/V/2]

o = e = coth®({ ‘ (A.10)
Cgi=g.' = tanh®( - (A.11)
3 aQ 1 cosech®{
N~ = = = . A.
b dr /2 coth( (A.12)

X

‘Since g and ¢~! occur symmetrically, the roles of g; and g, could be interchanged.. This

feature will hold for all the cases considered.

(b) C = 2, which corresponds to a particular relationship between g and £ at some point,

say the origin. The solution is .

1+sin2¢
Q- _ 1T 7 .
Je 1—sin2( (A-13)
g = gt . (A.14)
E = —2v2 sec2( : (A.15)

(c) —2 < C < 2; after a fair amount of algebra, the solutions come out to be in terms of

Jacobian elliptic functions. There are two cases: For C < 0, we have [C/2 = ]

1 1 —|A|Sn220
g+ _E = 2"“"——“’1 — Sn22C o (AlG)
1— |2 :
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with the argument of elliptic functions & = [(1 + |A])/2]*/2, and for C > 0 [k =

=)/

1 2

1/2 = _
| 1 1-A1"
B = -2 lsnzzf_ 2 ] ‘

Equations (A.15) and (A.18) could be readily solved for g.
(d) C > 2 case gives [K, = (C —2)*/2(C + 2)—1/2]

R 1 O C/2)Y?¢
TIT T Sn(+ O

-from which £ = —d@)/d({ can be computed.
(e) The last case is C < —2 for which the solutions are [/s = 0.5(|C| + 2)“1/2]

1 A =Sn(l+ M)V
g+g B 21—Sn(1+[/\|)1/2§’

A = Snll + M2 A] i

E = =-2 [1—5’n(1+|)\|)1/2§_' -

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

It is to be noted that the solutions for C > 2, and C' < 2 continuously go to each other

through the solution at C' = 2. The most important conclusion is that for all values of

C, one or the other quantity of interest (g, g;, ) becomes singular at some point. It

seems a small amount of self-magnetic field may be needed to remove the singularity.
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Appendix B

If the system is characterized by large drift and flow speeds (which may be the case for many
astrophysical applications), then one must use the relativistically correct Vlasov equation;

the distribution function f = f(x,p,r) (p is the momentum) obeys

of of
N + V'"—+€Z[E+

0o ~(B.I)

vxB| Of
ox c

) % =
where : i

P p
= — = . B.2
v m . mll+ p?miie (B-2)

This formalism will introduce algebraic complications when attempts are made to calculate
plasma current etc. The difficulty can be readily overcome if one assumes that the only
relativistic velocities are the drifts u and the flow U, while the thermal speed v, < c.
Notice that this situation is of no interest to fusion plasmas. With this assumption v can
be replaced by vo = [1 + (m?c?) Y py + pu)?] = [1 — (U + u)?/c?7/2, and can be taken
out of the integration whenever p integrations need to be done. The entire analysis in the
text remains valid; if we use the above value for 4y and replace wy by its relativistic form

we =-(4mnoe?/yom)1/? which will modify 62 to 62, = 75 2(c?/w?)(v?/u2).

29



Appendix C

By discussing two examples, we show that it is possible to express the proposed distribution
functions in terms of the constants of the motion. We deal with the electron [charge (—e)]

distribution with current only in the z-direction. The constants of the motion are the

Hamiltonian

m-m L), (e

and the canonical momentum in the z-direction
P, = mu, — -ZA,,(T) : (C.2)
It is the through p,, that one has to introduce r-dependence. The general solution will be
f=f(H,p:)- | (C.3)

Let us first consider the simple case with only density gradients g = g(r). For this case we

had chosen the function [27¢o = pivfo] given by Eq. (6) (U =0),

_ Mo , _Hq mueovz}
fe= w3203, g(r)exp T + T (C.4)

where the subscript 0 is used to explicitly display that these quantities are constants. From

(22), we recall that (E - 0, Bg=(V xA)g = —0A4,/0r)

ldg  euwn , _ euepdA,
gdr Ty Be = T Or (C.5)
which yields
_ _eueO
g = exp [ o Az]_ , (C.6)

fo= s exp |
e = ———— XD [—
7‘_3/22)20 p TeO T e0

(mos) = 4, = 1u(H,p.) (A7)
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Let us now deal with the more difficult problem when all the gradients are present. The
general problem is cumbersome, so we demonstrate the theorem only to the leading order

approximation. For this we had chosen

2 . 2
fe= 1/}3 [1 + 2u0'0z (1 — B = ¢2)] exp l~#} (C.7)

for which we have from Eqgs. (44) and (45) [h = eueo/cTeo]

% = exp[—hA,] (C.8)
and
¥? = exp[BhA,] . (C.9)
Using (45), we see that
2 2 2 2
exp [ v0e %} = exp [—ZZ exp(Bh, )] = exp l_v_Oe (1 + Bh,—- Qe )1 . (C.10)

Keeping terms only to O(4,), O (ﬂ’-) ete.,

Voe Oe

: 7o) (mo =) 32 e
no{l-l— (1 T mu, zAz T exp 7

_ v? UV v? H
fe- >~ ?’Lo[l — hAz] l:l + ,Bhsz—gejl [1 +2 (1 — ﬂv—2>} cXp [—i};}

R

=] = ey (©a)

showing that f, could be seen as a function of the constants of the motion alone. We have
carried out the éalculafcion up to second order in A,, and ug/vg., and found that the theorem
holds. We have not succeeded in a general proof yet, but we believe that the theorem is true.
Clearly, the form used in the text is much more perspicuous, and is suggested by physical

intuition.
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Appendix D

The plasma has current only in the z-direction, and hence, the self-magnetic field has only

the By component. The equilibrium Vlasov equation is

v,g—f + L < 9%) g—i 0. | (D.1)
For f given in Eq. (42),
g—i = vF +2F | - (D.2)
converting (D.1) to A
9 . 4 pp_g. (D.3)
& " me |

Using Eq. (42), we calculate 0f/0r and F,
of _ d (g g vt 2 dyp 2Uup X X
oo |w(F) Far L S

V0 p=1m=
vnvzm‘2ug°°°° v \" 2m2d9,/)
z 0 2
()] A R (2 ()
(vg> (vod)) } vo 3 X_:IMZ::D Vo vt o dr’ (D-4)
g 2u0 o v\ [ v \*"
nm < - 3 D5
;Z‘ | " <Po> (%#)) (B3
substitute them in (D.3), and obtain after equating equal powers of v, and v,
Q/’3 d 9 2Uo 9
g Cl’f‘ ¢3 +— B€ CIO - O . o (DG)
z@_{_?ﬂ_ge Ci1=0, (D.7)

Ydr vy me
which comes from the terms independent of vz. It is easily seen that Cy,, = 0, m > 2, in

fact, all Cpp = 0m > n + 1. Relationships between some other coefficients are

2 .
Coo = ——2Cy, | (D.8)
Vo
g [C
Cyy = %[%Cm—f-(l——Cn)C’” , (D.9)




o2 |
Cn = 2o | (D.10)

'002

Fach higher coefficient is determined in terms of the lower order coeflicients. All of them

are determined in terms of Cyo = 1 and Cy3 = —fB. Similar procedure applies for current in -

other directions.
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Appendix E

Let the electrons have current in both z- and 6-direction, while the ions carry current only

" in 6. Correct to O(uo/vo), the distribution functions are

nog Qo 2 2V, v?
fe T TP {1+ : ( —F 2152) ———vy (1_W>}
*  exp [~vz/v§ed)2] ' (E.1)

and f; is represented by Eq. (57). Using (E.1) and (57), the plasma currents can be calculated.
We had shown in the text that while the § drifts contribute essentially to the force term in the
Vlasov equation, only the z-current is important for calculating the self-fields. Substituting
(E.1) and (57) into the Vlasov equation, we obtain to leading order [, = t; = ¢, and

eueo/cTewo = h] from the electrons,

ldg 3dyp [ Ve ]
gdr dr h|Bo - Ueo Bo (E2)
2 dy U, : P
E% = h [—ﬂBe + aa Bo] | (E.3)
and from the ions .
ldg 3dyp RV
E(_i—?: — E’d—’r = T Yoo By (E4)
2dyp . hp Vi (T
bdr T Uk © (E-5)
consiétency cons:cra,ints imply
Ve _ 1B-p
7 — (E.6)
Ve+Vi/T = wueo Bs/Bo (E.7)

which determine V, and V; in terms of the field By (which will be eventually solved), and
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The remaining independent equation

2dyp _ p(B—a) p(a —B)
—_—— = = — b E.
Y dr h a—p B a— i@ (E:9)
needs to be solved in conjunction with Ampere’s law.
1d 2 5—2 '

giving the same structure of profiles as Eqs. (63)-(68) with S replaced by u, and 6 =

(e/wpe) (Voe [uce)|(58/2 — 1)(5p/2 — 1)(a — B)/(a — ,u)|_1/2 which for all ¢ reduces to §; if
B = p. Thus a simply fixes the ratio of V. to V.
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