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A new type of self-similar solution of ideal magnetohydrodynamics in the
nonlinear stage of undular mode (k | B) of magnetic buoyancy instability
(Parker instability or ballooning instability) is found through MHD simula-
tion and theory. The solution has the characteristics of nonlinear instability
n Lagraﬁgién coordinates; the fluid velocity and the AAlfven speed on each

magnetic loop increases exponentially with time, because the loop is evacu-

ated by the field aligned motion of matter due to gravitational acceleration.

PACS numbers: 52.35.Py, 52.65.4+2z, 96.60.Hv




A plasma thal is supported by a magnetic field under the :éfé§§},atit)n is
known to be subject to the Kruska]—Séhwartzschild (or magriétic vRayle‘igh-
Taylor) instability.! Similar instability results in a gravitationaily stratified
plasma with non-uniform magnetic field, called magnetic buoyancy instability.?
The nﬁagnetic curvature can play a role similar to gravity. The undular
mode (k || B) of the magnetic buoyancy instability, where k and B are the
wavenumber and magnetic field vectors, is believed to be important in various
physical phenomena ranging from astrophysical plasmas® to fusion plasmas,?
because this mode can be unstable even when the plasma layer is stable
against the interchange mode (k L B). For example, for an isothermal case
the former is unstable when dB/dz < 0, while the latter is unstable only when
d/ dé(B /p) < 0, where p is the density‘ and the gravifatibn is in the negative
z direction. Parker® applied the undular instability to the disk of Galaxy.
Hence, this instability is called the Parker instability in some astrophysical
literatures. The ballooning instability® in fusion plasmas has essentially the
same physical characteristics as _that of the Parker inétability with general
orientation of k with respect to \B. In spite of many linear theory investiga-
tions, however, the physics of nonlinear stages of this instability' is much less
known. In this letter, we report the discoverv of a self-similar solution in the
nonlinear stage of the undular instability,. which has a characteristics of the
nonlinear instability (exponential growth in time) in a Lagrangian frame.

A self-similar solution has been found by using nonlinear simulations,?




which are carried out with assumptions that (1) two-dimension (QD) v, =
By = 8/0y = 0 in Cartesian coordinale (z,y,2)], (2) ideal mégnetdhydro-
dynamics, (3) a constant gravitational acceleration (g) in the negative z-
direction. A full set of compressible idea]l MHD equations with the adibatic
ind;x v (=1.05) are solved by using modified Lax-Wendrofl scheme with ar-
tificial viscosity. The initial gas layer is in magneto-static equilibrium and
consists of a cold isothermal plasma layer, which is partly permeated by hor-
1zontal isolated magnetic flux sheet in z2p<z< ,;z;o—I— D, and a hot isothermal,
non-magnétized plasma layer above the cold layer. Hereafier, the units of
length, velocity, and time are H, C,, and H/C’,, where H = C?/(vg) is the
scale height and C, is the sound speed in thé cold layer. We have taken
B =1, where {3 is the rato of magnetic to gas pressure in the magnetic sheet.
We assume periodic boundary for z = 0 and X,,.., conducting wall bound-
ary for z = 0, and free boundary for z = Z,,,.. With k, = 0, the plasma
layer is unstable for the long W?xvelength [A(= 27/k:) > A perturBa.tion,
and the critical wavelength [A. >~ 4wH/(1+ 2/8)/2if D = co and v = 1]
and the most unstable wavelength are ~ 14H and ~ 20H, respectively,
for § ~ 1 in our magnetic flux sheet with D = 4.° The linear theoretical
growth rate for A = 20H is 0.121 C,/H. [The growth rate for D,= oo and
‘v =1 is about 0.3(1 + 2/5)“’1/,4/]:{ = 0.3(2/8)"/?(1 + 2/ﬂ)'10,/H when
0.5 < f < 00.]* We initially give the system small-amplitude perturbations

(Vima= = 0.01C,) having the same spatial distributions .as those of linear
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eigenfunctions in the unstable mode with A = 20H‘in‘the ﬁlilbj;v.(ve‘ilyio'riz(.mta.]
- domain (Xmee/2 — A/2 < 2 < Xppao/2 + A/2).

Fig. 1 shows the time evolution of magnetic lines of force, the velocity
field, and the density distribution. As the magnetic Joop rises, the g;—Ls slides
down along the loop. Spikes of dense regions are created on the valleys of the
undulating field lines, whereas the rarefied regions a,rebp‘roduced arour_ld the
top of magnetic loops. The most significant character in the nonlinear stage
(t > 40) is the approximate self-similar pattern of magnetic loop expansion; -
the rise velocity of the magﬂetic loop and the velocity of downflow along the
loop increase with height as the loop expands and ascends. Fig. 2 shows
some physical quantities at 2 = X,,.,/2 (midpoint of the magnetic loops),
indicating approximate self-similar behavior as a function of height. We also
find

V.=a1z; Vi=ayz, ' - (1)
where a;, ~ 0.06 (fof t < 60), ax >~ 0.3, and z is the height measured from
zo(= 4). On the other hand, we find the density and magnetic field strength

have the power-law distfibution;

~4

pxz"% Byozl. (2)

We shall now look for a self-similar solution of the problem by analytical
method. We have the following relation from Eq. (1); 8V, /87 = oV, /0t +

V.0V, [0z = a,V,, where T is the time in Lagrangian coordinates, while ¢ and



_ z are the Eulerian coordinates. This leads 1o
V(€ 7) = a;€exp(a;7), | (3)

where £ = zexp(—a;7) is the Lagrangian coordinate.
We assume the quasi one-dimension (1D) for the problem, i.e. we consider
only vertical (z) variation of the physical quantities at the midpoint of the

loop. The basic equations of our quasi-1D problem are

Bp/6t.= ~0(pV.)/0z — B(pVs)/Ba, (4)
p(OV. /Bt + V.8V, /0z) = —(8(B2/8r) /82 + B2/4nR), (5)
8B, /6t = ~8(B,V.)/6z, , (6)

where R is the radius of curvature of field lines at the midpoint of the mag-
netic loop. The last term on the right hand side of Eq. (5) is in a simplified
phenomenologica]. forrﬁ in order to keep the variation in one (z) direction.
Here we neglect the gas pressure and the gravitational forces in Eq. (5), and
the reason will become clear after the self-similar solutions are found. The
neglect of B.-related term in Eq. (6) may be justified because B, < B, near
the midpoint of the magnetic lobp. A centra] Anzatz of the present quasi-1D

model is

8(pVe)/0z = (N — 1)0(pV.)/0z, (7)

‘where N is assumed to be constant. The left hand term in Eq. (7) corre-

sponds to fluid leaking along the field line away from the midsection of the
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loop because the bent 'loop allows the fluid to escape under the-ttv;r;vitati'ona]
influence. Here, we measure the amount of matter leakage in the horizontal
direction in terms of the vertical flow mofion. If N =1, no leakage arises,
which corresponds to a pure 1D motion. In order to have matter leakage,
N <'1. N —1is a parameter that measures severity of matter leakage in
the z-direction. We further assumé R = cz and ¢ = constant, which is a
manifestation of thé self-similar evolution of the spatial pattern of the loop,
as observed in Fig. 1(c). |
Under these assumptions, a particular self-similar solution, that satisfies
our empirical velocity functions (1) and (3) and quasi-1D MHD equations -
(4)—(6), is found;

p =€ "2 exp(—4a;T) = r127" "M exp(2qast), (8)
B, = .blé_]_q exp(—a;7) = b;z7" "9 exp(qayt), ' (9) A

where ¢ = 3N/[2(1 - N)), i =r(£ = 1), b, = a)[4nr /(g + 1 — 1/c)]'/2. The
simulation results (2) [see Figs. 2 (c) and (d)] indicate the analytical solution
with N = g = 0, which leads to a steady solution in Eu]erian coordinates in
Egs. (8) - (9). Our self-similar solution leads to pg/[8/8z(B?/87)] x 2z~ and
Op/0z/(8/02(B2/8m)] ~ (C,/V4)? x z~2. Hence, és the magnetic loop rises,
both forces decrease more rapidly than the magnetic force; as long as above
force ratios are less than unity at ¢t = 0, the neglect of the gravitational and

the gas pressure forces in the nonlinear evolution is valid, while the nonlinear



growth rate a, is found to be related g (see below).

.Fig. 3 shows the time evolution of the Lagrangian displacement of a test
particle at the midpoint of the loop in the simulation results. In the initial
stage, the growth rate of the perturbation amplitude agrees well with linear
theoretical values (w = 0.121). The amplitude increases exponentially with
time even in the nonlinear stage (1 > 40), and the growth rate also agrees
with theoretical values; z « exp(w,t) and w, ~ a; ~ 0.06 ~ w;/2.

More general analysis® shows that Egs. (4) - (7) have several self-similar
solutions with power-law time dependence under the boundary condition
V.(z = 0) = 0, which are summarized in Table 1. One solution (for N =
2/(3a) <« 1) has the characteristics that V, o< z/t,p o z7%, B, « z~?, and
explains the behavior of simulafion results after t > 60 in Fig. 2 (a); after
the magnetic loop enters the hot layer.

It is known that the rise velocity V; of the bubble observed in the laboratory?
and in the ionosphere® tend to be steady in the Lagrahg’ia.n frame and is
in proportion to the radius R, of the bubble; V, = a3zR,, Where‘a.g ~
(1/3—-11 /2)x(g] Ry)/? is of the order of the linear growth rate of the Rayleigh-
Taylor instability. This is simiiar to our results that V, = a;2 =~ a; R, where
R is the curvature radius of the magnetic loop, a; ~ w;/ 2 and wy 1s the linear
growth rate. However, the rise velocity of our magneti‘.c loop is not steady in
the Lagrangian frame, but increases exponentially with time. This nonlin-

ear instability in the Lagrangian frame is also observed in the exact solution



~ found by Ott® for the Ray]eigh;Ta}flor instabilily of a thin, cold éds ].é.yef,
which is supported against gré.vity by a hot gas, with a second hot gas above
the thin layer. In this case, the growth rate in the nonlinear stage is exactly
the same as that in the linear stage. Physicai]y, this is because cold gas in the
thin layer freely falls along the curved interface between two hot gases, and
mathematically, because the nonlinear basic equations become linear ones in |
the Lagrangian frame.'® Although the nonlinear grthh rate 1s not exactly
equal to the linear growth rate in our case, the involved physics is common
between ours and Ott’s problem; the exponential growth in the nonlinear
stage is due to the gra,vitafional free fall along fhe magnetic loop. That is,
the equation of motion along magnetic loop in our problem is written as
d?*6/dt*> = (g/R)f, where § = z/R and z is the horizontal distance from the
midpoint of the loop.® This equation has the exponential solution with the
‘growth rate of (g/R)"/2. In addition to this charactel" of nonlinear instabilily,
ouf solution has the self-similar property, which is not in Ott’s solution.
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Figure Captions

Fig. 1 Simulations results; (a) the magnetic field lines B = (B, B.), (b) +

~ the velocity vector V = (V,,,V,), (c) density contours (log p).

Fig. 2 The distributions in z of () the vertical velocity V,, (b) the local
Alfven speed V4, (c) the horizontal m#gnetic field (log B,), (d) the density
(logp) at = X,.,./2 = 40. The numbers attached to the curves correspond
to the following time (in unit of H/C,); (1) t= 42.1, (2) 49.6, (3) 57.6, (4)

64.6.

Fig. 3 The time evolution of Lagrangian displacement (Az, = zn(t) —
zm( 0); solid curve) of a test particle. The dashed line shows the linear growth
with w, = 0.12] Cs /H, and the dash-dotted line shows the nonlinear growth

with w, = 0.06C, /H.
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Table 1 Summary of Self-Similar Solutions

ZZ]Z*#1 | §#1| N#0 | no solution
N=0|B, «7780=8)(=6  z-6. a=1/(1-2%§)
[Z o 7% . ‘
§=1\N#1 | B, x 77( 1" c ghap=1-h-
" where h = (3N —2/a)/[2(1 — N)]
N=1|B,xcr5(3% x ™%zt a0 =2/3
ZZ]7% =1 8 #1 | any N | no solution
|Z x exp(a;7)] | §=1| N#1 | B, x ("' exp(—a;7) x 271~ qexp (ga;t)
‘ where g = 3N/[2(1 — N)]
N =1 | no solution

Note: { = z/Z(t) is Lagrangian coordinate, z is Eulerian coordinate

(height measured from the base of the initial magnetic flux tube), and § is

the exponent of velocity function (V] o 2°).
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