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ABSTRACT

Driftﬁmodes;drixenvbyftrapped7electroné*inﬁtheﬁpresenéew, B
of\temperature gradients are used to conétruct a theory for
-anomalous electron transport in Tokémék plasmas. Several
crucial features of the observed electron transport are

predicted by the theory.




Drift waves in one form or another have been invoked
for a long time as principal candidates for explaining the

anomalous electron transport observed in Tokamaks. The

discovery of the linear stabilityl’2 of the so-called

\

"universal mode in slab geometry raised questions about the

relevance of this mode for anomalous transport. Since the
stability of the mode was due to correct'handling of

the electron response in the vicinity of the mode rational

- surface, it was surmised that a change ithhe electron

response in this critical region could alter the stability

préperties of the universal mode. Hirshman and Molvig3

(HM) showed that turbulent diffusion of electrons across the

rational surface caused by a combination of shear and

random E x B fluctuations could result in a nohlinéar
destabilization of the mode. They also showed that larger
values of diffusion which would result because of the induced
instability (which in turn was induced by lower levels of
diffusion) would evéntually result in a nonlinearly saturated
state.

The HM paper, important as it is, néeds critical
examination. The eVenﬁual stabilization of the mode by
radial diffusion is hardly questionable. The destabilization
by small amounts of radial diffusion‘is, however, rather
surprising. A careful analysis of the eigenmode equation

based on the electron'response given by Egs. (2) and (6) of




[rather than the approximated version Eq. (7)] shows that
fo: low levels of turbulence, the universal mode is in fact
fﬁfthef stébiliééa;4 - 7 7 7 7

Another puzzling feature of the HM paper is the claim

that the radial diffusion
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required for the onset of the instability is somewhat Iarger

. C 2 _ .
than the classical value D = 0o Vg where Pe = ve/Q,e is

the electron gyroradius, Ve is the thermal speed, Qe is

_the gryrofrequency, w_ is the decorrelation frequency,

Wes VW is the electron diamagnetic drift frequency and

kd = (ke/Ls) is a measure of the shear. Comparison of D

with Dé gives
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which for collisionless plasmas Wg % nvo10 Vair and typical.

ratio LS/Ln v 15 is approximately 104, which iS»indeed.
a large diffusion coefficient{ Thus it is highly improbable
that the stable universal mode (which is further stabilized

for low D) could cause such a large turbulent diffusion to

destabilize itself.
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~In this letter, we propose that the drift modes driven
5,6

unstable by the collisional detrapping and/or magnetic drifts
ofrthe trappéd electréné in theﬂprese;ce of normalrféﬁpéfature 7
gradients Ng = dlhTe/dzn n, > 0 should be conéidered as
a basis for a fheory of anomalous transport. We show later
that the radial diffusion of passing particles resulting
from this instability can quench the instability giving rise
to a'saturation diffusion coefficient which is-found to be
in the experimentally observed range. |

Before pioceeding with the calculation, we enumerate some
of the crucial properties of the linear mode. The presence

of temperature gradients (neml) tends to localize the mode

by providing a potential well near the mode rational

surface. This localization is‘very important because the
complicating effects of linear-(ion acoustic term for instance)
as well as nonlinear ion dynamics7 can be neglected. It

needs to be emphésized‘that the localization, in facf, the
eigenmode structufe is determined by the temperature gradients
alone, while the trapped electroné simply prdvide the growth.
When the trapped particles are absent, the mode is damped

but still localized. In Ref. 5, extensive numerical as

well as variational studies are presented, and these are in
excellent agreement with each other regarding both the eigén—

value as well_as the eigenfunction. A particularly interest—
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ing feature is thgt the eigenfunction is quite well approxi-
~-ax"/2

mated by ¢ = e where o = a. + i O with a,. ¥ ar.
‘Further details can be obtained from Ref. 5. -

Followihg HM, we derive the response of the passiﬁg
electrons in the presence of temperature gradients and thé
instability induced radial diffusion Drr = D. Note that
the trapped electrons,.in this simple model, are just a source
oflinstability. The response is given by

fep = ¢fM + 1(w—we*) fM Ro (3)

where ¢ 1s the electrostatic potential normalized to (Te/e),
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£y is the Maxwellian, w_, = w_,[1+"-3/2)n 1, u = v/v_, and
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where x is the radial coordinate. The perturbed density due

to passing particles is given by

~ _ 3 ~
nep = fd u fep (5)

The trapped electron density perturbation is essentially a

dissipation term
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where € = f/R is the inverse aspect ratio,_vpff= (vei/e) is

the effective collision frequency, w n € Wy is the bounce

De
averaged toroidal drift frequency. The magnitude of i6
depends sensitively upon thebplasma parameters. For the
two limiting céses: (1) high density system.wheré veﬁf?@mwe*
and (2) collisionless case where .u)>gaff{simple analytical

expressions for i§ -can be easily obtained. It is typically

a small fraction of unity.

mﬁ??wAsfstated;earlier,mtheTlocalizatiqnfofmiheﬂmodewmakesﬁﬁ,‘ﬂ'uﬁ_'_ —
the ion dynamics rather simple. The appropriate fluid ion .

response is

ny/n =0 - K29+ (w/0)9 | (7)

where prime denotes differentiation with'respect to x, and

k = kyps is the normalizedApoloidal wave number} and Py is

the ion qyréradius with electron temperature. Eguations (3)-
(7) are combined via gquasineutrality Ei=gé to obtain the

integro~differential mode equation
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where g = we*/w - l—k2 + 16, and K(x,x') is the symmetric
kernel shown in Eq. (M). The symmetry K(x,x') is very
important, because it allows us to construct a variational
principle to solve the eigenmode Eg. (8). Following |

standard procedure and assuming a trial function

2 .
= e /2 Rew > 0 | (9)

we can derive an expression for the variational functional
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with b = (4/3 aD/w) representing the effects of turbulent

diffusion. Notice that the limit b=0 reproduces the usual

limit of I, i.e., [Landau prescription Imz > 0]

ot

T = T(b=0) = K,(a) + L% 5 (ia?)
=V = Ry 7 Ypltad

0 H,(ia?) (12)
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where KO and JO are Bessel functions and HO is a Struve function.

A simultaneous solution of the coupled equations S = 0,

735/8& = 0 for a and w will yield the eigenvalue as the
variational eigenfunction. 'For the present paper, however,

we can obtain considerable simplification by noting that the

- modes under investigation, though localized, are much wider

. _
than x , i.e., a = 2aéxe < 1. Further for b=0, the integral

is.exactl§ known (IO), and the principal contfibution to the
inﬁegfal comes from z~:-a%i Thus if lb;a < 1, the effect -
.of,D on the mode could be perturbatively determined. We

must, of courée,‘verify the assumption a posteriori. Assuming

5 .
Iba% < 1, we can approximate
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We also expand IO for small a = 2a2xe, and obtain
s =8+ st - (14)

where '
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is the zeroth order variational functional, and
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is the effect of turbulence. The basic linear mode
under discussion is the solution of BSo/Bu =0, SO=O.

In Ref. 5, Eq. (8) (with b=0) was numerically integrated,
and it was shown that the numerical and ‘variational solutions
_for the eigenvalue as well as the eigenfunction were in

very close agreement. A combination of S, = 0 and 3S,/3c
0 0 0

et e
gives an analytic expression for 0?2 which can be substituted

into SO=O to obtain w. The most importaht features of this

mode which are relevant to the present study are that

o 2. ) :
S = we*/wo -~ 1-k"+is = 0, | . , (17)
we* . idw * (18)
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is a good approximation to the dispersion relation, and
that a = o  + iuI has comparable real and imaginary parts

with value o -1, uI_l v (5-10) DS2 for a considerable range

of (LS/Ln) and k.

We now calculate the change in eigenfrequency due to

turbulence. Remembering that zeroth order system is SO=O,




BSO/BaO = 0, first order system gives us

Am = —Sl(db,wo)/éso}éwo . A | (19)

Sirce BSO/BwO 2.-we*/w02, and b = 4/3(aD/w), we obtain

2 .
u .
_ % B 3/2
Aw = B;: 7/8 —aa a X Mg | (20)

where we have assumed ne > k2 which is required for proper
localization, and is easily satisfied for normal Tokamak

_ . K o _ L
discharges. Since Wy Vv W_yx, We notice that IAw/we*I'blbazl

'9ff*’”“T"““ance*the"basiC@mbdé*has,ar"m'ai;"fbr Simplicity we assume =~

3 . . - 3/2 _ .oN3/2 _ 3R ..3/2
a. = ag implying «o = (ar + 1@1) = a. f&+1)

- ocr3/fb.38 +0.92i), which leads to

~Wa Y
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Wk

Aw = - (.38 + .92i) n. . (21)
Therefore, the turbulent diffusion tends to stabilize the

mode. Marginal stability or the saturated sﬁate results

when (Aw)I » the turbulence induced damping equals the linear
growth rate.awé*/(l+k2)2 implying a saturation diffusion

coefficient

Pex. 1 -1
= . (22)

D=z
e




term) is also stabilized by diffusion as long as | bo

10

Before we discuss the implications of the above result, we

notice that D in Eg. (22) was obtained by eguating Aw/we*

L
2

with 6/(1+k2)2. Since IAw/we*l *~ | ba® , and the growth
rate 6/(l+k2)2 << 1, we conclude that saturation is

% .
reached when [ ba™| << 1, and hence our perturbation treatment

of the turbulent diffusion term is justified. We have also

calculated IAa/aol, and it turns out to be order ¢ <<1

implying that the effect of turbulence on the linear mode

structure is also small.

We can parallel the preceding analysis to show that the

universal mode (ne = 0,86 = 0, but with the ion acoustic

1
7

| <1 |

is satisfied.

As noted earlier, an analytic expression for § can
be easily obtained in either of the limits w = veff' For

‘ L Co ..
example § = 4(e/m)” (w 4/Vopg) Inthe v, < Ve limit.

For the current discussion, we schematically write

: L W_
8 = 4(2) " = (23)

Ay sty Ve re

where‘dl and d2 are numbers of order unity. Substituting

Eq. (23) into Eg.(22), and noting that the growth rate is

maximum for k = k, p, < 1, we find the saturation diffusion

. . _ ‘ -1 : 2
coefficient [we* =k CS/Ln » @, ~ normalized to ps'] to be

111
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where'wb is the bounce frequency, pbi is the ion poloidal gyro-

radius, L_ n gR and T =T,. We have written Fq. (24b) to facili-

tate comparison with ion neoclass$ical thermal conductivity .

D n =3/2 2, e 3/2 5, 2 ‘ et 4
N.C. € ppi i,eff € (mi/me) Dpi Vogg+ The ratio is
_ 2
w
D = _16 2 b 1 (25)
1 ' N
L g 3/2
DN.Ci 7m ’ VEff (dZvEff-*-dle/Ln) _ OLr

which for Wy N veff& (dzveff+dlCS/Ln) is approximately

ar_3/2. Since ur—l varies between 5-10, the anomalous

eléctron conductivity caused by the proposed instability is
7-20 times the neoclassical-ion cénductivity or 300-10"
times the neoclassical electron conductivity. This indeed
ié within the range of experimentally.obserQed electron

thermal conductivity.




- anomalous diffusion scales as (%ff)

12

We notice from'Eq. (24a) tha# fo; Vers (Cs/Ln), the
-1 or (ne)ml which is con-
sistent WithrAlcafdfﬂscaiihq;7 The density dependence of D is

weakened a bit lf.veff and Cs/Ln [we*lforklps v 1] are

comparable.

Thus we havé»shown that anomalous transport caused by
the localized trapped electron insfability is capable of
reproducing the qualitativé (Alcatdr scaling, for example)
as well as the quantitative (magnitude) features of the
observed anomalous electron transport. lThis is by no means,
a definitive or complete study.of fhe.effects of the trapped

electron instability, but is intended to make a case for its

fﬁtﬁreriﬁ?eétigéfibﬁ:rnThéréréfe"ﬁaﬂ§m£ea;;né to puféﬁgwfﬁis
case: [l1] Realistic tokamaks plasmas have temperature.
gradients which are, in general, sharper than the density
gradients: ‘their inclusion is essential in an attempt to
describe the anomalous' plasma behavior, [2] Starting with
a naturallylgrowing mode is certainly more satisfying.

The liﬁearly stable universal mode is further stabilized

by small amounts of radial diffusion. Ifs growth to high
levelé is rather difficult to imagine. The point is that
this questionable proCedure is guite unnecessary. We also
note that the trapped electron inétability is unstable even
for k < 1 Which could explain the observed low frequency

part of the fluctuation spectrum.9 [3] The inclusion of
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temperature gradieﬁts allows us to neglect the complicating
effects of ion aynamics, i.e., the ion acoustic‘and the ion
Compton séattering effects. This makes the'analysis dﬁiﬁe
tractable.

We have shown by a simple model calculation that the
drift modeé driﬁen unstable by electron temperature gradients
and trapped electrons can serve as a basis for a theory to
explain the observed anomalous electron transporf ianokamak
plasmas.. In. order.to.have a detailed.comparison with the
obserVations, the bounce averaged trapped electron response

needs to be calculated more accurately. Further stabilization

might come from a renormalization of the trapped electron

response. Thus, a thorough and comprehensive study of the
instability, analytical as well as numerical, is strongly

indicated.
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