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Abstract

N~

The evolution of nonlinear magnetic islands is computed in the kinetic collisionality
regime called the semicollisional regirﬁe, which is appropriate to present fusion confine-
ment devices. Realistic effects are included, such as the presence of small external field
errors, radial electric fields, and wg. When present simul_taneously,these effects can
greatly change the stability of small amplitude nonlinear islands. Islands with A’ > 0
can sometimes be prevented from gréwing to macroscopic size; it is also possible to
produce moderate mode-number nonlinear instabilities in the plasma edge. Further-
more, island growth can be prevented by application of external fields with suitably

chosen amplitude and frequency.



I. Introduction

The dynamics of magnetic islands in the nonlinear stage were first calculated in the classic
paper by Rutherf'ord.1 Resonant magnetic perturbations become strongly nonlinear when
their associated island width significantly exceeds the very thin linear tearing layer width.!
Other investigators showed that kinetic effects? and diamagnetic drifts®*5 do not modify
the dynamics in the strongly nonlinear phase (even though they greatly change the linear
phase).®” Typical resonant magnetic perturbations from external sources (e.g., field errors)
are large enough to produce nonlinear islands. Here, we examine islands with realistic
levels of external perturbations in a realistic kinetic pollisionality regime, the semicollisional
regime,® and find that an external resonant perturbatio.ﬁ in a kinetic regime can radically
change nonlinear stability.

New driving mechanisms arise which can dominate the previously known nonlinear island

driving forces from A’, MHD curvature® and bootstrap currents®'® for small islands. The

new effects can lead to either growth or damping depending on collisionality regime, the .

radial electric field, diamagnetic velocity, size of external resonant perturbation, magnitude
of particle diffusion coefficient and initial conditions for the magnetic island. The nonlinear
analytic calculation here is valid for island widths up to a poloidal gyroradius (depending
on collisioné,lity regime). The effects ﬁncovered'ca,n determine whether islands grow from
small amplitude to macroscopic size when A’ > 0 and in the presence of realistic field
errors. It may be possible to prevent large island growth by using external coils to modify

the external resonant fields. Also, enhanced transport near the plasma edge may arise

from moderate poloidal mode-number (m) islands driven unstable by pressure and electric -

potential gradients together with moderate m field errors.

It is appropriate to use periodic slab geometry to describe the narrow island region around



the rational surface at minor radius rs, with z and y playing the role of minor radius and
poloidal angle. The magnetic field is B = Bg2 — 2 x VA,, with A, the vector potential.

We use fluid equations to describe the electréns, specifically the continuity equation,
on /ot + V,-A(VEn) = V) j|/e+ D'Vin, and Ohm’s law nJ = Ej+ V|jp/ne, Whére n,J,p, D'
and e are vg are the electron density, current, pressure, diffusion coefficient and unsigned
charge, Ej and 7 are the parallel electric field and resistivity, and vg is the E x B velocity.
The electron temperature 7, is taken as constant in space for simplicity. As in the work of
Hassam and Scott,® these are simplified and normalized as is approioriate for semicollisional
drift-'tea,ring modes localized near a rational surface with radius rs. Define ng and dng/dz as
the density and gradient of the original equilibrium at the rational surface. Define ¢ as time
normalized to wy' = eBng/cTk,(dno/dr), where k, = m/r,, define z = (r —r,)/Ap, where
Ap = (wxnoe’nL2/k2T,)*/? is the linear semicollisional tearing layer width, ¢ is poloidal
angle times m, N = (n — no)/(Apdno/dz), ¢/[TeAp(dno/dr)/enc), and J = 4xL,/cBB,
where B = (4mnoT./ B2)[L,(dno/dz) /no]?. We now consider the ion response to obtain ¢.

The electrostatic potential can be split as ¢ = ¢. + 8¢, where ¢, is the global equilibrium
poténtial‘ which is present even without the island, and §¢ is the perturbation caused by the
island. Similarly, for'the ion density, n; = nj + 6n;. The ion density response is adiabatic,
én/ni = e6¢/T;, when the radial perturbation scale length of the tearing region is smaller
‘than an ion gyroradius.® When toroidal neoclassical effects are included!®1 for low frequency
perturbations, the ion response is adiabatic for perturbations wider than this; depending
on collisionality and other parameters, it is adiabatic up to a width of numerous gyroradii.
Because of the neoclassical effects, the ion response is linear, and also the equilibrium electric
. field is unaffected, for islands widths up to several gyréradii. We limit our calculation to
islands in this range, and use linéa,r adiabatic ion response.

For the thin region near the rational surface, we may approximate the global equilibrium

quantities by ¢o(z) = ¢o(0) 4+ z(ddo(0)/dr) and ne(z) = no(0) +z(dnoe(0)/dr). Thus we have
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e — s s e — ,_j;,w,

6 = ¢o(0) + Ti6n/N, + a(ddo/dr) = (¢o(0) _ Tino(0)/gi) + Tién/nogi + wd(% —Ti:N'/q;)/dr.

Inserting this into Ohm’s law and the continuity equation, we find

| 0 dp
J = ——a% +(1 —l— k)V\ N — (f + k)d—? (1)
ON . ,dN &N |
ot~V = Dogm (2)
% _ _p, (3)

0z?

where

Vi = [(94/8¢)(0/bz) — (04/0=)(9/3¢)]

DdD'/Q*A%, k - T;/Te and f = eng(dgo/dr)/Te(dno/dr). With no islaﬁd, = —z?/2,
dN/dz = 1, and wx = 1. The E x B nonlinearity in the continuity e<;1ua,tion vanishes for
adiabatic response, leaving only the part from the equilibrium field. The terms proportional
to f tend to induce rotation of ¥ and N in &. | |

| We solve these equations analytically with four approximations: 1) As in Rutherford’s
analysis, we use the constant 3 approximation with a single dominant harmonic; 2) We take
the island width to be much larger than the linear layer width, so it is strongly nonlinear;
3) We take the growth rafe to be much less than wx, (valid for low collisionality regimes);
and 4) In order to analytically solve for the density evolﬁtion equation, we will require that
there is strong density diffusion, D/Az? > (dw/dt)/ws. For island widths within the domain
of this calculation, this is well-satisfied for empirically estimated values of D, and is true in
cases of interest for much smaller neoclassicall values of D.1?

The first a,lz;proximation above implies

2

b= ==+ A(t) coslg +6(8)] . 10

Fourier decomposing Ampere’s law and integrating in space,la,nd defining 1, = § dée®ep, we




have the following

Oy Oy Ayt b |
—a?c:—a?_—~ﬂf_oodx.7£d§e‘5.]. (5)

An expression for di; /dz, — O /0z_ is found by matching to the MHD kink equation??
in the region exterior to the island. The homogeneous boundary condition which is usually
- chosen for the kink‘equation at the plasma edge must be replaced by inhomogeneous ones “
to include the effect of fixed current sources outside the plasma, such as coil errors causing

resonant fields. It is easily shown that in the “constant ¢” approximation

Opy ~ Ohy , .
CEN = A'(rs) + ¥(rs) o (6)

Wihere Y, = Ovpe/ Oz, and 1, is the particular solution of the kinic equation with appropriate
inhomogeneous boundary conditions which has 9 = 0 zﬁ: the rational surface. Note that
A'=A'Ap ~1071 - 10‘2, where A’ is the unnormalized slope change with units of inverse
lehgth. It is beyond the scope of this paper to solve the kink equation for ¢.; we merely note
that for weak current gradients, in these normalized units ¥, ~ g0, ¢ = k,Ap, where 1
is the normalized v vacuum field error.

We define ¢! , = gAext cos(¢). Using Eq. (4)-(6),

ext

AA+ gAuscosd = —p / dz f ‘i—g cos(d + g)J (7)

GAoesind = —f / dz }{ %Sm(ﬂg)J. | - (8)

We will obtain J in terms of % and 8¢ /8t (i.e., 0A/Ot and 89/8¢) by solving Eq. (1)-(2),
and insert the results into Eq. (7)-(8) to obtain evolution equations for A and 6.

Following Rutherford,! we change coordinates from z, £ to ¢, €. Then
BNCANEOE '

N
and (0%/0z)e = —z(+,€). Define a flux surface average |

(Q:€)) = § delQ/(00/02))/ § delQ) (/2]
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We now derive some exact consequences of Eq. (1)-(2). Using Eq. (9), and integrating Eq. (2)
in £, | _

J=Jr+Jp+K®) | C(10)
where Jr = [dé(ON/Ot — fON]OE)/ (O ]0z)e, Jp = — [dE D'(d*N/dz?*)/(0v/dz)e, and
K (%) is the constant of integration. Other useful exact results follow from flux surface
averaging Bq. (1)-(2),

. ¢

() = —lowery (11)

(ON/3t) = D(d’N/da’) . | (12)

With negligible diﬂ"usion, and negligible Jr and Ay, Eq. (11) would exactly give Ruther-
ford’s result! for island evolution in the nonlinear regime. This was obtained pré.viously by
]jrake and Lee:? semicollisional.lginetic effects alone (which greatly modify the linear the-
ory) do not modify nonlinear behavior of islands much larger than the linear layer width.
Modified behavior results from Jr and Jp; to obtain these we now compute N.

Eliminating J from Eq. (1)-(2),

8 8 ON ,ON &N
Y —5“?+(1+k)v,,zv—(f+k)a—? =W—f¥—D"@3- (13)

We take time derivatives of order wx and E x B flows of order the diamagnetic velocity (i.e.;
9/0t ~ 1 and f ~ 1). Recall from Eq. (9) that VII ~ . For D < 1, the linear tearing layer
width Azz, ~ 1 in these units. It is simple to show that for D > 1, Az, ~ D4, Coﬁsider
a magnetic island with width Az;. In the island region, V) ~ Az, A ~ Az}, 0 /0t ~ Ac}
and Oy /0¢ ~ Az?.

Now consider the nonlinear limit where Az 3> Azr; the right-hand side of Eq. (13) is

much smaller than the left, so to lowest order in Azjy,
By By | | .
Vy|l—-——= — E)y—+ 1 +kVN| =0. 14
=5 ~ T hge +(1+R)Y) (14)
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Note, however, that V)| vanishes as the island z-point is approached. The left-hand side
of Eq. (13) does not dominate there, and Eq. (14) is not valid in a layer around the separatrix.
For Az > Axy, this layer is thin, and we find it does not effect our results below.

Using Eq. (4), we have 0v /0t = (0A/0t) cos(é + 6) — (00/0t)A siﬁ({f +0). For v < ws,
we may neglect 0A/0t here. Then Eq. (14) implies

(86/0t+ f + k)
T+k

N = z + G(¥) | (15)

for an arbitrary function G(v). Inserting Eq. (15) into Eq. (12), and taking v < wx and

W/ wxk << D/Aax?, we find (d*G(¢)/dz?) = 0. Far from the island the density gradient

dN/dz is unaffected by the island, so it must approach the equilibrium value. Together with

(d*G/dz?) = 0, this implies® that in the region outside the separatrix, 1 < |A],
a6 1-(29/0t) — |
dp — (L+k)fEa($,6)

Because of the topology change inside the separatrix, and the physically necessary require-

(16)

ment that N be non-singular there, (d*G//dz?) = 0 inside the island implies

dd ¢ :

Recall Eq. (14) is not valid in a thin layer around the seioarai_:rix; the discontinuity between
Eq. (16) and Eq. (17) is resolved in this layer. Note that dN/dy is finite there; thus we
find that a thin layer region will only make a small contribution to Eq. (7)-(8), and we may
neglect it for Aw 1 > Az, Also note that Eq. (17) implies that the density is flattened
inside a large stationéry island Wifh f =0, as is physically necessary.

We now consider Eq. (8). It can be shown that Jr and &(¢)) do not contribute to Eq. (8) by
symmetry in . Change coordinates [ dzdé — — [ dipdé/z, use —sin(é —0)/z = (dz/df),/A
integrate.by parts in 1, use 8/0z _ —z(0/0), integrate by parts in ¢, and change variables

from ¢ to w = —/A to obtain

| /dmf‘fr_fsin(ua)b:-(—% (1-%—]@) (18)

T




where Iy ~ .12 is the limit of 24/2 [—2\/7,_u—l— [ dw'’ (27r/ §d§\/m)] as w approaches
infinity. ' | |
We now compute the integral in Eq. (7). The current Jp does not contribute by its
symrﬁetry in £. We proceed to compute Jr. Using N/0t = (ON/0p)(0%/8t) and v < wx,
the equation for Jr becomes z(8Jr/d¢)y = (00/0t + f)(0/0¢):G (). This has the same
mathematical form as the expression for the current due to MHD interchange effects found

in previous calculations,® and in previous investigations of semicollisional islands.® It has

solution Jr = (090t + N[dAG()/d¥](z — (z)), so that

00/0t+) (L — 08/0t = f) 4172
— A - (19)

/-‘d:c?é.d?fcos(f + 9)jT = —Il(
where .

b= 8v3r [ aw (f decosefor—cos) (§ deyfo—eost)” (f derfo—con(d)) =15

To compute the contribution from K(%), we note that (Jp) = (Jr) = 0, so that
Eq. (11) can be used as in Rutherford’s calculation, giving [ dz § déK () cos(é + 8)/m =
_LAY2(8A/8%). |

Combining these results we arrive at the evolution equation. Changing variables to the

island half width Az; = 2v/4, we have

0Az; A" gAz? |1 — f|siné 1= fl|Azrsind
I = = —=
> ot ¢ + Az} cos f + (1+ k)Az, bt Az (20)
00 . 1 —flAzrsind
5 = 1—-f Az, (21)

where Az? = 4A and Az, = SIOBD]l — fI/(1 + k)gAzZ; the quantity Az, is of order
the vacuum island which would be caused by ?.. The terms on the right in Eq. (20) arise
respectively from the homogeneous exterior MHD kink effects; error ﬁelds'; and Jp. As

Az, — 0 (no field érrors), Az; — oo and we recover exactly Rutherford’s result for island
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‘width evolution driven by A'. For Az, — 0, Eq. (21) gives island rotation at the Doppler-

shifted wx frequency.
Now consider the limit where Az, is finite but D — 0 (so Az, — 0) and f — 0.

Then Eq. (21) implies that the island phase 0 rapidly decays to the phase induced by .,

' 6 — 0. The third term in Eq. (20) also approaches zero. Then for A" < 0, Az evolves to

Amem on a resistive time scale. This is expected for resistive reconnection driven by
Aext; it has also been found previously that the externally driven island width increases as
A" — 0. For A’ > 0, Eq. (20) shows that the island grows as long as it is thin enough to be
described by Rutherford’s analysis; the Aex; term provides an additional growth drive.
‘Novel behavior arises from finite ¢, and finite f and/or D. We. analyze this by taking
Azp/Az; ~ v < wx. First, note that Eq. (21). implies that § increases monotonically with
time for Az; < Az, Thus we can time average Eq. (20) over one periodic cycle in 0,
[dt = §d0/(d0/dt), taking Az; and Azr to be constant over one cycle. For Az; > Aw,, §
decays to a fixed, stable value onA a time scale ~ wx. Thus for Az > Az,, we insert this

value into Eq. (20). We-obtain

A.'E_r A’

where
0 Az < Az,
Gp(Aar) { (AwZ/BAﬁ) J1—Az2/Az2 Az;> Az, (23)

Grlden) = { 2L f(1 — f)Aar/ (,/Amg—Ax%Aws) (1+k) Ac< Az, @
=20, f(1 = )/ Azi(1+ k) Azp > Az,

The Gz and G terms give the average driving effect of the external perturbation and
inertial effects, reépectively. They are continuous at Az; = Az, but their derivatives are

not.



The Gg term is positive for Azy > Az,, and induces growth there. It has the ex-
traordinary property that it vanishes for Az; < Az,. Thus there is no tendency for external
resonant perturbations to produce islands for Az; < Az,; this phenomenon has been termed
“healing” by the present author. If f =0 (so Gy = 0) and A < 0, an island will decay to
very small values (of order the linear layer width where Eq. (14) breaks down), even though
one expects ., to produce a substantial island. This requires finite D. Direct numerical
solution of Eq. (20)-(21) also shows this. The phenor’nehon is not limited to semicollisional
tearing modes with small island widths; it has also been found for large external resonant
perturbations in simulations of neoclassical MHD equations similar to Eq. (1)-(3), which
will be reported elsewhere. Furthermore, note that if —A’ exceeds the maximum value of
Gg(Azy) for Azp > Az, |

| ~A'> 2A22/3/3A2? | (25)

then all solutions dec@y to close to zero. If the reverse inequality holds, a stable steady-state
solution exists with Az; ~ Amem. If Eq. (25) does not hold, islands with initial
widths close to Az I\/W will evolve to this stable root; islands with initial widths < Az,
will decay to nearly zero. |

Islands are healed in this way because a part of the current Jp is causing a magnetié
perturbation to alrﬁoét cancel the one from external sources. The phenomenon is akin to
dielectric shielding. However, nofe that if A’ > 0, the islands do not decay if f = 0. We now
consider the Gy term in Eq. (22). |

The G term momnotonically increases for Az < Az, and monotonically decreases toward
zero for Az; > Az,. Consider Eq. (2) for Az; < Az,. (Even though Gg(Az,) = 0, thé
external resonant fields are still affecting island by the terms with Az, in Eq. (20)-(21),
without these, G7 would vanish.) If 213 |f(1 — f)/A’| < 1, (which is typically true), there is
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a critical island width where the A’ and G terms are of equal magnitude

!
Az /Az, = 214] . (26)

VA2 + 4R F2(1 - f)?

For Az; < Awz,, the A’ term dominates, while for Az, < Az; < Az, the Gg term

dominates. It must be born in mind that Eq. (26) is only meaningful if Az; > Az, th¢
linear layer width.

For Az; > Az, the G term may be of importance. If Az? > Az, > 23[1]”(1 - f), it
dominates, and the behavior is as described in the paragraphs above on healing. For small
semicollisional islands it is more typical for the Gg term to dominate. The A’ term and Gj

term are of the same magnitude when

Azy = 3L f(1 — /A e

'This expression is only valid if Az, is not so large that a semicollisional treatment, is no

longer valid.

Thus, let us examine island dynamics from Eq. (22) in the Ease Gg < Gq. For A’ > 0 and
f(=1) < 0, all driving terms are destabilizing, so the island grows. Conversely for A’ < 0
and f(f —1) > 0 the island always shrinks. |

For A’ > 0 and f(1 — f) > 0, the island with small amplitude Az; < Az,, grdws from
small amplitude to a steady state at Az,. For Az, < Az; < Az,, an island shrinks back to
Azr = Az,. However, for Az; > Az,, an island grows (till its width exceeds the validity of
our calculation). Conversely, if A’ < 0 and f(1 — f) < 0, a nonlinear instability vﬁth finite
thréshold can occur. Anisland with Az; < Az, shrinks, whereas one with Az, < Az < Az,
érovvs fo a steady state at Az; = Az,. A larger island decays back to Az,. Note that if
Gg ~ Gy, additional steady state solutions are possible.

- Now we examine the implications of these results to island formation in confinement

devices. Consider what happens when a tokamak, which is in a macroscopic steady state

11



after the current penetration and equilibration pha;se,‘undergoes further paramefer changes,
(e.g., heating, impurity influx) which change A’ from negative to positive. Qur analysis shows
that this depends on both diffusion and radial electric field, and in addition, on the initial
island width before the parameter change. The initial island width in the steady state can
determine whether one expects to find a very small island as parameters are changed (e.g.,
f(1—=1) > 0, initial Az; = A:v'c) or an evolution to a large macroscopic island (f(1—f) > 0,
' initial Azr = Azy). It is very difficult to assess a priori what the width is .before the
parameter change. Sex}eral steady state island widths are possible, depending on the present
plasma parameers. It is incorrect to assume that the initial island width is even close to
the naively predicted value from the external p‘ertu“rbatiOn alone, Az; = Az./+/—Al. The
island width at any moment depends on the plasma time history starting from the initial
current ramp up.

Because of this, it is quite possible for two 'similar plasma discharges with the same
macroscopic current and pressure profiles to have very different MHD behavior. Sometimes
the island may be “stuck” at very small amplitude, Wheréas for slightly different parameters
it may grow beyond the semicollisional stage into the MHD stage, and evolve to saturation
or disruption in the familiar way.®"*

We also note that it is possible for nonlinear moderate m instabilities to occur from field
coil errors near the plasma edge. Without field coil errors, we note that an instability can
arise from toroidal coupling of islands on different rational surfaces. The instability drive
becvomes stronger as 4 is increased; this might lead to substantial magnetic stochasticity at
the plasma edge. |

Finally, this calculation implies that it may be po’séible to stabilize islands with A’ > 0
~using externally produced resonant magnetic perturbations. If f(1 = f) > 0, an external
perturbation with an appropriate amplitude can create a strong barrier against growth for

islands thin enough to be in the semicollisional regime. If the external perturbation is
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oscillated to a have finite rotation, one can always find a frequency so that in the rest
frame of the magnetic perturbation (which is the relevant frame for this calculation) one has
f(1 = f)>0. A similar stabilizing effect might be produced for moderate m islands arising

in the plasma edge from any instability mechanism.
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