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Abstract The sawtooth mapping is a family of uniformly hyperbotic,
piecewise linear, area-preserving maps on the cylinder. We construct the
resonances, cantori, and turnstiles of this family and derive exact
formulas for the resonance areas and the escaping fluxes. These are of
prime interest for an understanding of the deterministic transport which
occurs the stochastic regime. The resonances are shown to fill the full
measure of phase space.



Developing techniques to describe transport in Hamiltonian systems
remains a challenging problem. Although significant progress has been
made during the last few years!, a complete understanding is still
lacking. The study is plagued by the divided phase space structure of
typical Hamiltonian systems: the coexistence of both regular and
irregular motions. Instead of looking at mixed systems, in this study we
.address the problem for a family of uniformly hyperbolic systems: the
sawtooth map. We outline here the preliminary theoretical results. We
hope to present a detailed study later.

The sawtooth map is derived by linearizing the standard map about
the latter’s fixed points. It is piecewise linear; the nonlinearity arises
from the discontinuity on the dominant symmetry line. In the parameter
range we will consider, the map is everywhere hyperbolic and possesses
the nice property that the Lyapunov exponent is constant over the whole
phase space. The sawtooth map has already been studied extensively by
various authors?. We first discuss its Poincare-Birkhoff orbits. Although
most of the results have been obtained before, we have no knowledge of
any prior discussion of the minimax periodic orbits which are necessary
to construct the turnstiles of the map. Next we construct the turnstiles
and resonances and derive exact formulas for the fluxes and resonance
areas. These two quantities are of prime interest according to the theory
of transport!. Some of the results have been independently obtained by I.
Dana, N. Murray and 1.C. PercivalS.

The sawtooth map on the cylinder [0,1)xR is defined by

Pt,1 = Pt + k(Xt-l/Z)

Xt.1 = Xt + Pt,1 mod(1) - (1a)
or equivalenmy
Xt 1 - 2Xt + Xt_1 = k(X - 1/2) mod(1) (1b)

where k is the parameter of nonlinearity. In our coordinate system, the
map is discontinuous on the line x=0. This is also the dominant symmetry
line4, as will be shown later. We will only consider positive values of



the parameter k.

The sawtooth map can be lifted to the plane ®2; we denote the angle
coordinate lifted to the real line by u. Then an orbit is equivalent to the
stationary state of the following action -

Wiiugh = ¥ { (g, 1-u)2/2 « k72lsaw(us-1/2)12} (2)
t

where the sawtooth function is

saw(u) = u -1/2 <u<1/2
SaW(U+1) = SaW(U) (3)

The Poincare-Birkhoff orbits of an area preserving map are those
periodic configurations which minimize or minimaximize the action (2).
These will be referred to as the minimizing and minimax orbits,
respectively. A fundamental theorem by Aubry and Le DaeronS states that
for a minimizing orbit with rotation frequency v, there exists a phase
constant o« such that the configuration points u; belong to the interval

[Mi, Mi+11, where M, = int(vt+o), or more precisely

Ut = X¢ + My , (4)
This implies we can rewrite eq (1b) to obtain

Xt 1 - 2Xt + Xt_1 - k(x¢ - 1/2) = - by (S)

where { by } is called the symbol sequence of the minimizing orbit by
Percival and Vivaldi?; it is determined by the frequency through

bt = My, 1 - 2M¢ «+ Mt_1 (8)

A periodic orbit of type (m,n) satisfies uy = ut + m. Note that the
symbol sequence of a periodic orbit is also periodic. Solving eq(5) for an



(m.n) periodic configuration, we find2

n_1 (X-S - )\-n+5)
Xt = Z bs.t + 1/, . (7)
s=0 ( 1 - A-D )

where
XzT14(k++/D)2, D=k2. 4k (8)

In fact, this configuration is minimizing. It is easy to see that any
minimax periodic orbit must have one and only one point at the maximum
of the potential x=0, because if this is not true then the second variation
of the action is

n-1 n-1

§2W({uth) = ‘/z'z Z Hs t8usbuy (9)
s=0 t:=0 :

Hs't = - 85,t-1 - 85,t+1 + (2+k)83,t (]O)

Where the indices s,t are assumed to be cyclic modulo n, the period of
the orbit. Thus §2W > 0, for k > 0, i.e. this configuration is always a
tocal minimum of the action. However, according to Aubry and Le
Daeron®, an (m,n) minimax configuration exists, each point of which lies
between corresponding (m,n) minimizing configuration. The equation of
motion for minimax configurations is still given by (1) except at x=0,
where we take the force term to be zero, since minimax configurations
must be symmetric for the sawtooth map.

In the following discussion, it is convenient to let xg be the

leftmost point of the orbit in the unit interval [0,1). Then we claim that
the minimax orbit { x't } of rotation number m/n has the same symbol

sequence as the minimizing (m,n) orbit { x; } and is given by

X'O:(X0+X,g-1)/2:0



x't=(xt+xt+e)/2 t 2 0modn (11)

where Xt,p is the left neighboring point of xt, and 2 is the unique integer
determined by

me = -1 mod(n), 2 <n
or

me -nj=z-1,2<n | - (2)
The geometrical meaning of (11) is that the points on the minimax
periodic orbit are exactly halfway between the neighboring points of the

corresponding minimizing periodic orbit.

Now we show that the orbit given by eq(10) indeed has the same
symbol sequence as the minimizing orbit. Let My be

Mi = Int{1/2n + (m/n)t} (13)

it follows from eqs (12) and (13)

Mt+_g:Mt+j t20modn
M,g:MO#-j—]:j-]

or equivalently

by l<t<n-1

bt.p
b1+-9=b] -1

bn-1+€ = bn-1 -1
bp =bg + 2

This implies that eq(5) is satisfied for 1 <t < n-1



X'te1 - 2X't + X't_1 - k(X' - 1/72) = - (bt + by ,4)/2 = -bt

We need also verify eq(5) fort = 1 and t = n-1. It suffices to consider
the case t = 1

X'2 - 2X"| + X'O— k(X'] - 1/2) - (b] + b‘|+,g + 1)/2 = -b1
The equation for the minimax orbit at t = 0 is automatically satisfied

X'_1+X7=1=-bg

The gap function at time t for the minimizing periodic configuration .
{ x¢ } is defined to be

&t = Xt - Xt,p + 80,t (14)
The equation satisfied by &4 is

Eto1 - 284 + &t 1- K&t

= (-bt + Dt,p + 80,t,1 + 80,t-1 - 280 t) - K8 ¢
= - ksO,t (15)

hence for a period n orbit

£y = k-t o A-P+t)/(/D(T - A=) (16)

where we use the superscript n to emphasize that the gap function
depends only on the period of the orbit, and not its frequency. Formula
(18) was first obtained by Percival and Vivaldi by a continuity
argumentZ2.

An immediate consequence of eq(16) is that the leftmost point of
the minimizing orbit is given by



x(Ng = £Mg/2 - k(1 + A-M/(2/D (1-2-N)) (17)

By taking n to infinity, we obtain the gap function for both cantori and
homoclinic orbits

g()y - k-l tly/p (18)

Formula (18) has interesting implications, e.g. the fractal dimension
of any cantorus is zero. This fact was first discovered for the golden
mean cantorus in the standard map, and later was proved for any
hyperbolic cantorus®.

The flux across the (m,n) minimizing orbits is obtained by
constructing the turnstile of the orbit!. We connect the neighboring
points of the (m,n) minimizing orbit by straight line segments, then
iterate these line segments one step backwards. Note that these line
segments pass through the (m,n) minimax orbit(fig. 1). Due to the
discontinuity of the sawtooth map on its dominant symmetry line, one
line segment is broken to two pieces(fig. 1). The region bounded by the
dominant symmetry line, the broken pieces and the original line segments
is defined as the flux region, or turnstile. It is shown as the two shaded
triangles in fig. 1. Hence the area of either one of the two triangles
gives us the flux AW across the (m,n) minimizing orbit in one iteration
of the map

AW(m,n) = 1/4 Apxg

where Ap is the discontinuity in p at x = 0. By eq(1b)
Ap' = Ap - K

Since the discontinuity maps to a continuous segment after one iteration,
Ap' =0, so

Ap =k

thus using eq(17) we obtain



AW(M,N) = k2 (1 + A-M/( 8/D (1-A-N)) (19)

The flux across a cantorus or a homoclinic orbit is given by letting n
tend to infinity

AW, = k2/ 8,/D (20)

One can also find the flux by taking the action difference of the
corresponding minimax and minimizing orbits

AW(m,n) = W({x'+h) - W({x¢})

n-1

=1/8 { 2kq - Z [ (£t+1 - Et)2+k5-t2] }
t=0

which, by eq(16), yields eq(19) again.

An (m.n) resonance is, roughly speaking, the region bounded by the
stable and unstable manifolds of the minimizing (m.n) periodic orbit.
For the sawtooth map, the stable and the unstable manifolds of any
periodic orbit are straight line segments: the slope does not depend on
the period of the orbit. Thus the resonances of the sawtooth map are
constructed simply by drawing the unstable(stable) manifolds of the

'points on the periodic orbit till they intersect the stable(unstable)
manifolds of the neighboring points; these defines the upper and lower
partial separatrices of the resonances. Some of the resonances of the
sawtooth map are shown in fig. 2. Note they are all parallelgrams.

It is straight forward to calculate the area of an (m,n) resonance,
This is illustrated in fig. 3 for the (1,2) resonance. For an (m.n)
minimizing orbit, the leftmost point is given by eq(17), that of the
homoclinic orbit is obtained by taking n to infinity: hy = k/4/D, ho =

x(”)o - X (°°)0 = k/(y/D (AN - 1)). Simple geometry gives



h = h2(tano( + tan,B)

where tanot and -tanf are the slopes of the unstable and the stable
manifolds

tano = k/(A - 1) tanB = k/(1 - A-1)
h(m.n) = ho(tanet + tanB) = k/(AN - 1) (21)

A(m,n) = nh(hq+ ho) = nk2//D(AN + A-N _ 2) (22)

One can verify that formulas (21), (22) also apply to (0,1) and (1,1)
resonances if we take them as the same resonance.

Now we can define area as a monotone function of frequencg1 8. It
is continuous at each irrational and is given by the area under KAM curve
or cantorus; it is discontinuous at each rational and is given by the areas
under the upper and lower partial separatrices of the resonance. Fig. 4
shows an area devil's staircase function in the sawtooth map. If the sum
of all the jumps of the function is the total variation, it is called a
complete devil's staircase. In fact there are two complete staircases in
the sawtooth map, one is given by the height function (21), the other by
the area function (22). Since these two quantities depend only on n, we
may denote them as h(n) and A(n). It is not difficult to prove these two
devil's staircases are complete. For height function, we sum over all the
steps

Z (P(n) h(n) =1

N=z1

Where 9(n) is the Euler ¢-function’, i.e. the number of positive integers
not greater than and prime ton

o0

K> o)/ (AP - 1) =k/(h « A-1 2 2) = 1 (23)
Nn=1
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Introducing a new variable 8: X = e®, we can rewrite eq(23) as

00

> 9(n)/ (eN® - 1) = 1/[4sh2(8/2)]
n=1

taking the derivative with respect to 8, we get

00

S 9(n)n/sh2(ne/2) = ch(e/2)/sh3(s/2)
n=1

which is exactly the completeness condition for the area staircase

o0

> 9MA) = 1 (24)
Nn=1

The completeness of the area devil's staircase can be proved in a
more general way®. For area-preserving maps in Frenkel-Kontorova class,
Aubry showed that {f the lower bound of the Lyapunov exponents of all
the minimizing configurations is positive, the staircase is complete. He
also showed that if the potential function is at least C4(differentiable
four times), the staircase is incomplete for sufficiently small parameter
value. S. Bullet gives an example of complete area staircase for which
the potential function is C1, however the boundaries of the resonances

are KAM curves with rational frequencies?.

The complement set of the resonances is a cantor set. From eq(22),
we see that this set again has zero fractal dimension. We expect this to
hold generically for supercritical area-preserving maps.

We conclude with a discussion of the application to transport.
According to the transport theory!, the escape rate out of an (m,n)
resonance is given by
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I'(m.n) = 2AW./A(m,n) (25)

This expression appears to capture the major dependence of the escape
rate on parameter. However, numerical determination of the escape rate
from a single resonance shows abnormal behavior even for primary
resonances. The deviations from I'(m,n) become more prominant when the
parameter values k are small3.

The authors acknowledge helpful conversations with Dr. I. Dana, Dr.
N. Murray and Professor I.C. Percival. This research was supported by the
U.S. Department of Energy Grant #DE-FGO5-80ET-53088.
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Figure captions

figure 1: Flux across the (3,8) periodic orbit at k = 0.1, The crosses are
the points on the minimizing orbit. The dots are on the minimax orbit,
The shaded region is the turnstile.

figure 2: Some resonances of the sawtooth map at k = 0.3.

figure 3: Illustation of the calculation of resonance area for the (1,2)
resonance.

figure 4: The area devil's staircase function in the sawtooth map at k -
0.3. Only half the staircase is plotted. Another half can be obtained by
the reflection symmetry: A(1-v) = 1 - A(¥).



