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Abstract

The drift wave, a general category of plasma behavior arising from
a plasma inhomogeneity, is studied using the particle simulation method. In
siab geometry, the drift wave (or universal mode) is stabilized by any finite
amount of magnetic shear. In toroidal geometry, however, the coupling of
the poloidal harmonicé gives Tise to a néW branch of drift wave eigenmodés
called the toroidicity-induced mode, which is predicted to be unstable in some
regimes. The drift wave in a toroidal system is intrinsically three-dimensional,
and is sensitive to the hdndling of the parallel electron dynamics, the (nearly)
perpendicular wave dynamics, and the radial variation of magnetic field vector
(shear). A simulation study must therefore be kinetic in nature, motivating the
extension of particle simulation techniques to complex geometries. From this
effort a three dimensional particle code in a toroidal coordinate system has been
developed and applied to the toroidal drift wave problem. The code uses an.
(7,6, ¢)-type coordinate system, and a nonuniform radial grid that increases
resolution near the mode-rational surfaces. Full ion dynamics and electron
guiding center dynamics are employed. Further, the algorithm incorporates
a straightforward limiting process to cylindrical geometry aﬁd slab. geometry,

enabling comparison to the theoretical results in these regimes.

Simulations of the density-driven modes in toroidal geometry retain
a single toroidal mode number (n = 9). In this regime, the poloidal harmonics
are expected to be strongly coupled, giving rise to the marginally unstable

toroidicity-induced drift mode. Analysis of the simulation data reveals a strong,
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low-frequency response that peaks near each mode rational surface. Further,

the characteristic oscillation frequencies persist from one mode rational surface ‘

to the next, which identifies them as multiple harmonics of the toroidicity-
induced mode. The lowest harmonic occurs at a frequency of w/w* ~ 0.26,
which is reasonably close to the prediction of ]inéar theory. Interferogram
analysis of these modes indicates a “ballooning” structure toward the outside
of the torus. The amplitude of the potential is oBserved tb grow exponentially

for the m = 8 through m = 10 poloidal mode numbers, with a growth rate

of approximately y/w* ~ 0.075. Saturation occurs at time ¢ ~ 1000 Q;?, and

may be caused by quasilinear flattening of the density profile.
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| Chapter 1

Introduction

An important challenge facing plasma physicists at present is the un-
derstanding of anomalous transport in toroidal confinement devices such é,s
tokamaks. This transpért is “anomalous” in the sense that it is much greater
than classical collisional rates of diffusion; the understanding and possible con-
trol of this tfansport would have a profound impact on the feasibility of a
fusion reactor. At present, however, the cause of anomalous transpori remains
unknown, though it ié generally attributed to low-frequency microscopic turbu—i
lence. Although no direct evidence exists f;)r this associétion, light scattering
diagnostics in tokamaks uﬁifornﬂy reveal a fine-scale level of turbulence [1]. A
good overview of research in this area is given in the review paper by Liewer
[1] concentrating on research from 1977 until 1985; earlier work can be found

in reviews by Tang [2] and by Kadomtsev. and Pogutse [3]..

Much progress in identifying large-scale features of tokamak plasmas
has been made of late, often accomplished through a cooperation of theory
and magnetohydrodynamic (MHD) plasma simulation. One recent example
of this cooperation is the use of MHD simulation to model sawtooth oscilla-
tions [4,5]. A similar ~effor’c, incorporating both theory and particle simulation
(which retains the necessary kinetic effécts), may ullimately resolve the problem
of anomalous transpoft. At present, likely candidates for driving the micro-

turbulence in tokamaks are drift or trapped particle modes. Existing theories

1




of drift-wave turbulence have produced scaling laws consistent with the exper-
imentally observed transport in some regimes [1], but much better predictive

ability is needed.

This research focuses on the extension of particle simulation tech-
niques to complex geometries, with application to the study of drift waves in
‘toroidal geometry. The motivation is to obtain an independent result, free of
many of the assumptions of the existing theories. Furthermore, particle sim-
ulation allows us to examine the plasma’s temporal behavior and nonlinear
dynamics, as well as the nonlinear saturation of a possible ihsta,bility. This ex-
amination is done at the most fundamental lgvel—a fully self-consistent kinetic
description. The drift modes studied in this research are very low frequency,
with kinetic effects essential, so detailed particle simulations are warranted. To
put the current problem into proper perspective, we must first consider some

of the recent history of drift wave theory.

A nonuniform plasma in a shéar—free magnetic field éonﬁguration is
unstable to fluctuations near the diamagnetic frequehcy, known as the drift
or universal instability. The analysis for this CE;LSC typiéally employs the local
approximation, where it is assumed that the equilibrium and magnetic field
quantities vary slowly compared with the wavelength of the mode. The re-
sulting instability is “universal” in the sense that it requires only a density

. gradient—a necessary component of any confined plasma.

' 'In a sheared magnetic field, however, the local treatment is no longer
valid, as pointed out in 1969 by Pearlstein and Berk [6]. This treatment differed
from the earlier local theories by considering a non-local eigenmode equation,
with the solutions subject to outgoirig wave boundary conditions. The eigen-

mode equation thus derived gave rise to a family of normal-mode solutions re-




lated to the Hermite polynomials (known presently as Pearlstein-Berk modes).
In addition, the shear stabilization condition from these results predicted that

short wavelength modes were unstable, even for strong values of the shear.

This situation changed dramatically in the late 1970’s, when several
concurrent research 4eﬁ‘orts showed the drift wave in a sheared slab to be ab-
solutely stable for any finite amount of shear [7,8]. These papers showed that
for the correct, stable result to be obtained, the nonresonant electron response
must be included in the integration of the eigenmode equation near the mode
rational surface. This result was very important, for the universal mode was

generally thought to be involved in the electrostatic fluctuations observed in

many tokamak plasmas [2]. Therefore, subsequent theoretical investigations - -

have focused on additional effects which may destabilize the drift wave. These

effects fall into two main categories.

One destabilizing mechanism, first proposed by Hirshman and Molvig
[9], examines the effect of a gi\.ren level of microturbulence on the stability of the
drift mode. Specifically, the turbulent diffusion of electrons across the mode
rational surfaces in the sheared slab may modify the nonresonant electron re-
sponse sufficiently to drive an instability. In three dimensions, the drift-wave

resonance regions of adjacent mode rational surfaces may overlap, giving rise

to this stochastic electron behavior [10]. Recent self-consistent particle simu-

lations by Sydora et al. [11] have confirmed the existence of a growing mode
in this configuration. A theoretical treatment by Zhaﬁg, Marchand, and Lee
[12] also showed the existence of a growing mode in the presence of a stochastic
magnetic field, a result qualitatively similar to that of Hirshman and Molvig.
This “stochasticity-induced” mode is found to occur for k p; 2 1, (where p;

is the rms ion Larmor radius and k; is the perpendicular wavenumber), and




values of the shear near tokamak levels (L,/L, 2 10, L, and L,, the shear and

density scale lengths, respectively).

The other destabilizing mechanism that has been studied is the inclu-
sion of toroidal geometry effects, such as poloidal mode coupling and i:rapped
particles. In a toroidal system, the variation of magnetic field quantities in
the poloidal direction (6), as well as the magnetic drifts of the particles, will
strongly couple the poloidal harménics. Thus, drift waves at differenf mode
rational surfaces (i.e. separated radially) will also be coupled. Using a simpli-
fied model, Taylor [13] examined this case and found that the toroidal effects
could eliminate the shear damping of the drift wave. An improved analysis
of this problem by various researchers [78,79,14] conﬁrrﬁed the existence of a
marginally stable mode in the toroidal system. This new drift-wave branch is
known as the “toroidicity-induced” mode, and inclusion of additional destabi-
lizing effects have shown it to be absolutely unstable for éma.l] values of & p;
(~ 0.3) and values of shear releva,nt.to tokamaks [81,15,16,17]. The math-
ematics in these analyses is difficult, and simplifying assumptions are often
necessary. Furthermore, since the majority of fusion devices are toroidal in
nature, the modification to existing theory due to toroidal effects needs addi-
tional study. It is for these reasons that this research focuses on the extension

of particlé simulation techniques to toroidal geometry and the simulation of

~the drift wave in this system.

Particle simulation hés been used tolstudy plasma behavior for nearly
a quarter of a century, typically in rather idealized geometrical configurations,
and limited spatial dimensionality (one or two). Although much progress has
. been made with sorphistircated time-advancement schemes such as the implicit

[18] or magnetoinductive [19] algorithms, simulations are usually limited to




5

a cartesian (slab) coordinate system. The first well-known research involv-
ing more realistic geometries was the effort by Cheng and Okuda [20], which
presented new methods for simulation in three dimensions, using a cartesian
or cylindrical coordinate system. This system allowed the study of a toroidal
plasma, using the “square-torus” configuration (see section 2.1), in which the
outer boundary of the simulation region is rectangular in cross-section, but
toroidal in shape. The research of Cheng and Okuda demonstrated the fea-
sibility of particle simulation in three-dimensional curvilinear coordinates—a.
result especially remarkable given the linﬁted computing resources available at
that time. The coordinate system employed in their work, however, is not well '
suited fo study of the radially localized modes that are encountered in typical

tokamak plasmas. For this, we turn to a natural or flux coordinate system.

The study of plasmas in natural coordinate sysiems has been common
in MHD simulations for a number of years (“natural” coordinates are those
in which the magnetic field lines appear as straight lines). There are many
reasons why this is important—simpler representation of fields, less numerical
diffusion, and grid stretching for‘ improved cross-field resoluiion, among others.
Initially, however, our 'goé] will be restricted to the use of concentric circular
flux surfaces and electrostatic fields. One of the first questions to be answered
in any algorithm involving complex geometry concerns the efficient solution
and time advancement of the fields. In thé tofoidal system employed in this
research, the Poisson equation cannot be directly inverted; therefore an iterative
method based on the toroidicity as a smallness parameter has been adqpted.
For a toroidal aspect ratio of about 2..5, this method converges in less than

ten iterations. In addition, this approach should generalize to non-circular flux

surfaces reasonably well.




The use of particles creates some problems that are absent in the MHD
formulation—the integration of the particle orbit equations, charge assignment,
and charge (force) shaping. Of these, the treatment of the electron dynamics
is the most straightforward to generalize from the usual slab guiding center
approach; the main differences here are the incorporation of the magnetic drift
.terms and metric effects, including some special handling at » = 0. Because
the toroidal system employed here is strongly nonuniform, with r = 0 usually
included, the generalization of the usual slab methods must be undertaken with
care. Two properties normally present in particle-in-cell codes are momentum
conservation (i.e. particles have no self-forces) and conservation of charge in
the charge accumulation and filtering process; these properties are reexamined
in the present context. The methods employed in this research Have been
developed with an emphasis on generality,.vv’ith the ultimate aim of performing
particle simulation in general coordinate systems, perhaps with the aid of a
generated mesh. In addition, the vanishing metric at » = 0 does not preclude
the use of a purely diflerential approach—a more natural fdrmulation than the
Gauss’s law approach seen in some cylindrical coordinate modéls [21]. The full
development of the toroidal coordinate model is given in Chapter 2, including
discussion of the toroidal metric and representation of the ﬁéld quantities, the
radial nonuniform grid, the solution of the field equations, spatial filtering of

the field quantities, and time advancement of the particle quantities.

From a practical viewpoint, one pofential problem with any new,
complex code is verifying that it gives the proper behavior. To this end, we
require that the code properly behave in limiting input conditions, that is, in
the cylindrical and slab limits, to give one access to the large body of “standard”
simulation and theoretical results in slab geometry. This feature has enabled

detailed and rigorous testing of the macroscopic behavior of the simulation




plasma in the slab limit; the results of these tests are presented in Chapter 3.
Also presented are tests of the microsbopic simulation behavior, important for

verifying the correctness of the metric-dependent parts of the algorithm.

The successful use of particle simulation for stability problems de-
pends on the existence and proper loading of an equilibrium configuration for
the electron and ion distributions. Particle simulations are by nature suscep-
tible to charge separation effects, as was demonstrated by Naitou et al. [22] in
an investigation of the loading of slab geometry plasma profiles. In slab geom-
etry, the development of a suitable initial load for the particle distributions is
aided considerably by the symmetry—only a single strongly nonuniform vari- |
able must usually be considered (z). The brokeﬁ symmetry of the poloidal
variable in the toroidal system causes the typical slab loading procedure to
be unsatisfactory. The resulting chafge separation effects, upon starting the
simulation, can easily obscure the subtle behavior that er are attempting to
observe. A solution to this problem has been devised, and is discussed in the
beginning of Chapter 4.

The remainder of Chapter 4 is devoted to a stﬁdy ofz drift waves with
the simulation code. The slab geometry drift wave is a useful starting point in
our investigation; therefore the theory is briefly considered, and a simulation of
this mode is performed in the tlwo-dimensional, slab limit of the toroidal par-
ticle code. Following this we review the theory of the toroidicity-induced drift
mode, and present simulation results from t};e toroidal configuration employing
a single high-n mode (n = 9) with multiple mode rational surfaces due to the

varying poloidal mode number.




Chapter 2

Theory of the toroidal particle simulation model

2.1 The coordinate system

The geometry considered in this research is illustrated in Figure 2.1.
The (r,x,() coordinate system we use is orthogonal and right-handed, with
the surfaces of constant r being nested, concentric circles of revolution (tori).
Since we are using the electrostatic approximation, the magnetic fields can be
specified in any manner 4desired, allowing a great deal of flexibility (discussed
more fully in the next section). However, the typical configuration will be one
in which the magnetic axis lies at 7 = 0, and flux surfa.cés lie on surfaces of

constant r. The term toroidal in this work will apply to this system only.

As mentioned in the i_ntroducfion, we require a simple transition to
the limiting cases of cylindrical or slab (cartesian) geometry.. Therefore the
distancelike coordinates (x, () are chosen instead of the more usual (4, ¢) rep-
resentation; these lead to straightforward limiting behavior. (Note : we shall
often use § and ¢ interchangably with x and ¢ in this work—the distinction

is important mainly when taking limits.) Specifically, the coordinates y and (

are given by

X = 7'09
= —Rog

where Hy is the major radius and 7o = .5 % (rin + Tmex ). This model allows the

point at the magnetic axis to be included, although a small amount of special

8




Figure 2.1: Toroidal coordinate system.




10

handling is required (details given in later sections). The metric components

for this system are

h, =1
h, = 7/ro (2.1)
he = R/Ro

where R = Ry + rcos 8. Thus the infinitesimal volume element is given by

Jdav

hrhyhe dr dx d¢

r R
= ——drdyd
ROTXC

To
= rRdrdfd¢

as expected. For the (x,() coordinates, the limit to cylindrical or cartesian

coordinates is now well-defined :

( — z for Ry — o0, and

X — ¥ for vy — o0

The next step in obtaining proper limiting behavior is to choose a local variable
u = 7 — 7o to represeni radial displacement. If the ry — oo limit is taken,

keeping the radial length L, = 7ax —Pmin constant, the local variable u remains

finite. Now we introduce the auxiliary parameters

e = ro/Ro
& = (L./2)/ro
which measure the strengths of the cylindrical and toroidal effects, respectively

€c 1s half the typical inverse aspect ratio). The relationship between the angu-
¢ sp b g

lar coordinates (6, @) and the present coordinates is expressed in terms of the
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curvatures

ke =1/Ry = K€

ry=1/ro = &/(L./2)

where £ is the curvature along ¢ at the magnetic axis, and K, is the curvature

along x at 7 = ro. The metric components become

h, = 1
by, = 14+ &1 | (2.2)

he = 1+ (1 + myu) cos(kx)

The geometry is then completely specified by the quantities (L, e, €;)
in the toroidal system—to ta,ké the cylindfical limit one sets ¢, = 0 and specifies
L., and to take the slab limit one sets e, = 0 and specifies L,. The config-
uration in these limits is illustrated in Figures 2.2-2.4 (the main distinction
between the two cylindrical configurations involve the field representations and
magnetic fleld specification; this is discussed f_ufther in section 2.2). It should
be emphasized that by choosing a.bpropriate metric components in Egs. (2.2),
we can realize nearly any well-behaved geometry using the methods given in

this dissertation.

The adoption of this type of scheme has clear benefits regarding code
verification and debugging, as discussed previously. There are at least two
additional benefits as well. First, the non-cartesian eflects in the metric are
easily seen. This is helpful in developing good methods for the solution of
the fields and the particle advancemeﬁt. Second, it is more flexible than a
straight{orward (r, 9,¢) method, allowing us to isolate the effect of the metric

from many of the more routine aspects of the code.
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Figure 2.2: Cylindrical coordinate system, type I (Long dimension along (
coordinate).

+ 2

Mesh

>

1\(

TI=L
8 N

Figure 2.3: Cylindrical coordinate system, type II (Long dimension along x
coordinate). ' :
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#
T
M

. Figure 2.4: Slab coordinate system.

One last point should be made concerning this system’s Fourier rep-
resentation. Since x and ( are both periodic variables, we may transform an

arbitrary field component (the electric potential, for example) to get
(ryky, k) = Z ®(r,x, () exp (thyx + tke()

where the wavevector components are given by

2rm
kX = Lx 5 LX = 27’1’7”0
2mn
k( = o, L¢ = 27’['R0
L

If the slab limit is taken, this becomes the familar (z,k,, k,) Fourier represeﬁ-

tation. Yet, in the toroidal system, we may cancel factors of 2w, ry and Ry in

the exponential to obtain

®(r,m,n) = Z &(r, 0, @) exp (1mf — ing)

m,n
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which is a representation seen quite often in the theoretical literature. Thus
we have limited compatibility with the “standard” simulation codes in the slab

limit, while retaining the usual toroidal mode representation.

2.2 Répresentation of the field quantities

The central idea in i)article simulation is to study the bel_lavior of a
many-body system at a very low level—that of the individual particle. The_
first application of this idea to plasma simulation was by Dawson in the early -
1960’s [23]. Dawson’s model incorporéted particles as oné—dimensioﬁal “sheets”
of charge, with the the force on each particle determined by a direct sum
of the interparticle forces. However, due to the large number of simulation
particles involved, a direct extension of this method to two dimensions involves
considerable computational expense. The extension to two dimensions was
accomplished by researchers at Stanford [24,25], v?ho introduced a grid for
the storage and calculation of field quantities. The use of a grid decreases
computational effort dramatically for two reasons—the number of grid points
may be much less than the number of particles, and efficient numerical methods
exist for solving the field équations on a regular mesh (known as rapid elliptic
solvers [26]).  The most common rapid elliptic solver to be used in particle
simulation is the Fast Fourier Transform (FFT), where one can efficiently obtain

the field arrays in a k-space representation, then directly invert the resulting

(algebraic) field equations.

The grid formulation in particle simulation has proven valuable in
several ways. In addition to the reduction of computational expense, a grid
-also reduces the collisionality, which is unphysically large when a direct force

calculation is used. A reduction in collisionality occurs because the grid method
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modifies the interparticle force law, such that the force between two particles
vanishes as their separation distance goes to zero [27]. Further, the modifica-
‘tion of the short-wavelength behavior allows the simulation of realistic plasma
behavior with far less particles per Debye sphere than found in typical plasmas.
Finally, a grid formulation allows other subtle Ihodiﬁcations to the‘dynamics,
such as in the magnetoinductive or implicit schemes, where the exact interpar-

ticle force law may no longer be known.

While grid methods have been applied with much success to the two-
dimensional simulation of plasmas, limitations in computer memory have pre-
vented a wide-scale extension to three dimensions. In the mid 1970’s, Cheng
and Okuda [20] proposed a three-dimensional simulation ﬁethod that avoided
the large memory requirement of a‘ full 3-d grid. This method employs a mode
ezpansion in the third (long) dimension, instead of a grid. The field quanti-
ties are Fourier-decomposed. in the dominantldirection of the magnetic field;
this is usually taken as the (z) coordinate. The cross-field components z,y are

discretized via a grid, and the representation of the fields becomes

p(m,y’ Z) = an(m,y)eik;z
q)(m’y, z) — Z q)n(m’ y)eikzz
E(z,y,2z) = ZEn(m>y)eikzz ' - (2.3)

where k, = 2mn/L, and the sum goes from n = —N to n = N, N being
the number of modes in the z-direction (N < 5). If we assume symmetry
in the third dimension, the field comi)onents for each mode can be calculated
independently, and later summeci in the intérpolation phase. Since the toroidal
system has azimuthal symmetry, the above equations are applicable to the

toroidal algorithm simply by associating (z, v, z) with (r,x, {).
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At this point one might ask, “Is this réally three-dimensional?” Ad-
mittedly, the number of modes retained in the third dimension seems somewhat
small. However, in a strongly magnetized plasma, most of the important behav-
ior is characterized by wavevectors nearly perpendicuiar to the magnetic field.
The electrons can freely stream along the magnetic field to neutralize charge.
Accurate modeling of small parallel-wavelength behavior er‘ ballooning will
require higher mode numbers, but only a few long-wavelength modes may be
necessary for other phenomena. (It was this configuration that was used by
Sydora et al. [11] in the simulation of the 3-d slab “stochasticity—induced_” drift
mode.) Another argument for the small number of modes is that the mode
expansion method is very accurate compéred to interpolation on a grid. In the
direction of the mode expansion, the charge density accumulation and inter-
polation of the fields iare done at the particle’s exact position, while the grid

method interpolates from the values at nearby gridpoints.

1

The main drawback to the mode-expansion method is that the mode-
particle loop for accumulation and interpolation is extremely time-consuming,
easily dominating the rest of the code. In the accurnilation /interpolation
phase, the mode expansion requires roughly n, trigonometric evaluations per
particle, where n, is the number of modes in the calculation. On the other
hand, a grid method requires only a small number of relatively inexpensive
algebraic evaluations for each paréicle. (The grid method may require trigono-
metric evaluations at the gridpoints if a transform method is employed, but

these are efficiently handled by the FFT).

In recent years, a full three-dimensional grid representation has be-

- come feasible due to the appearance of very large memory machines such as

the Cray-2 supercomputer. A 3-d grid has the advantage of speed and ease
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of implementation, and if sufficient computer memory exists, is preferred over
a combination 2-d grid/mode-expansion due to the large disparity in speed.
Aside from limitations in computer memory, the most important exception to
this choice is when operating with reduced degrees of freedom. This includes a
small total number of toroidal modes, a small number of high-n modes, or two-
dimensional simulation, where the mode—expansién method “collapses” to 2-d
more easily than the grid method. The decision of which method to implement
is therefore difficult, depending both on .computer architecture and the prob-
lem at hand. In this research both the grid and the mode-expansion method
in the third dimension are employed. Not only does this dual approach offer
increased flexibility, but a more elégant and flexible code architecture results

as well.

One last comparisop between the mode expansion and the grid method
involves systems that are 4\)7er long in the direction of the magnetic field.
Langdon [28] has numerically solved the dispersion equation for the simula-
_tion plasma, finding a critical value for the ratio of the Debye length to the
grid spacing, Ap/A. Below this value, numerical instaBility will result. This is
known variously as the “aliésing-instability”, “thermal-instability”, or “cold-
];;lasma instability”, and is caused by a sampling effect known as aliasing. The
threshold value for Ap/A is about 0.3 for a simulation ‘with n‘e‘a,rest-grid-point
(NGP) weighting. This threshold can be reduced significantly by the use of
a higher—order spline interpolation scheme. For example, the second-order
quadratic spline method reduces the maximum Ap/A to about 0.1 [29], and
recent work by Abe et al. [30] showed that values of Ap/A ~ .01-.001 are pos-
sible with fifth-order spline interpolation. The numerical insfabih'ty associated
with small values of the Debye length is absent in the mode-expansion method,

“a consequence of its greater accuracy. In this research, numerical heating is




18

only a concern in the full 3-d grid representation; a combination of quadratic
weighting in the third dimension and a gaussian shape factor reduce unphysical

heating to unobservable levels in most parametef regimes studied.

The application of the methods discussed above to the toroidal system
is reasonably straightforward. The grid is mapped onto the system in such a
way that the simulation boundaries are located between gfid points. This is
the simplest representation for periodic coordinates, and when used radially,
helps to avoid the singularities in the Laplacian at » = 0. In this case, there is

* no grid point at r = 0, the inner “boundary” of the coordinate system.
i

One complication arises in the cylindrical limit of the code, using the
2-d grid/mode-expansion conﬁguratipn. For a cylindrical system, there are two
combinations of a grid and mode-expansion that might be used, according to
the direction of the dominant external magnetic field. One configuration would
be a grid in (r,x) and mode expansion in z (type-I cylindrical, Figure 2.2),
which is the natural way to take the cylindrical limit from the toroidal system.

. The toroidal system employs this type of configuration because of the strong

toroidal magnetic feld; in addition the grid in x () is a necessary computa-. .

tional device for the toroidal field solver. The alternative is to use a dominant
magnetic field in the x direction, turning the system into a “square torus"".
The grid is then in (r, z), with the mode expansion in x (type-II cylindrical,
Figure 2.3). This is the appfoach originally used by Cheng and Okuda [20]
to study global modes in a toroidal-type system. It was also the first system
modeled in the course of this research, and was very helpful for testing and
debugging the full toroidal system. Though it is still possible to run the code

in the type-II cylindrical configuration, this option is infrequently used.
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2.3 The nonuniform radial grid

2.3.1 Motivation

In any numerical calculation, the motivation for using a nonuniform
mesh is to more closely match the sampling method (i.e. grid) with the be-
havior of the solution. This idea was perhaps first used in fluid simulations.
For example, in laminar flow around solid bodies, the character of the flow in
- the boundary layer varies much more rapidly than in the interior of the ﬂov&
region. Thus, there is the desire to increase resolution in the boundary layer by
concentrating grid points there, and spread out grid points elsewhere, to min-
imize computational expense. The term boundary-fitted coordinates is used in
fluid dynamics to describe the generated-grid system for studying flow around
a solid 6bj¢ct [371].“In plasma simulation, this boundary is manifested by the
magnetic field. Generated.grids which conform to the shape of the magnetic
field are commonly seen in modern MHD simulations. These most often employ

orthogonal or non-orthogonal (e.g. Hamada) flux coordinates; occasionally an
adaptive system is used [32].

The use of nonuniform or generated grids in particle simulation has
been rare, however. This may be due to the fundamental differencgs between
particle and fluid simulation. First, particle fsimulations have been primarily
aimed at local phenomena, and therefore the exact specification of the mag-
netic fields is less impoz;tant‘than in the global, fluid simulations. It is this
local emphasis that permits the adoption of slab georhetry for many partigle
simulations. Second, existing particle simulations often reiy on k-space rep-
resentations for the solution of the fields, making it difficult to incorporate
even a single, stretched variable. And third, the resolution in a particle sim-

ulation is not determined by the grid alone. In a particle simulation we must
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keep the number of particles per cell appreciable in order to accurately model

plasma behavior there, which limits the amount of grid stretching that may be
employed.

This is not to say that nonuniform grids are ill-suited to pafticle simu-
lations. Even local problems often show multipleAscales of length, and a nonﬁni-
form grid could help considerably. For example, this research will consider the
problem of drift wave eigenmodes; the nonuniform grid in 7 gives good resolu-
tion near the mode rational surfaces, while allowing the ion resonance surfaces
to remain within the simulation region. Another example application is in the
study of tearing modes—the resolution immediately surrounding the tearing

layer could be much improved by using a nonuniform mesh.

The implementation of a nonuniform grid in one variable (also known
as grid-stretching), will usualiy require the adoption of a finite-difference for-
mulation. (The use of nonunform grids in a purely k-space representa.fion 1s
considered by Cain et al. [33].) In our case, radial finite-diflerencing is necessary
for solution of the toroidal field equations, and the addition of the nonuniform
radial grid.is straightforward. Further, the finite-difference approach seerﬁs
more logical for & simulation highly nonuniform in z (or ). Birdsall and Lang-
don [21, Appendix E] discuss this point in examining properties of local versus

non-local differencing operators.

Finally, the need to maintain acceptable numbers of particles per cell”
represents a definite limitation. However, the effect of this restriction is fninimal
when the region of the greatest number of particles coincides with the region of
mazimum resolution. For a simulation in slab geometry that inéludes a density
profile, this location will be at the inward boundary. See Figure 2.5 for a typical

- grid and profile choice, with number of particles/cell plotted also. Often we




21

want the region of interest to lie in the center of our simulation “window” to
minimize boundary effects. This situation is shown in Figure 2.6, for the same
density profile. As can be seen, the proportion of particles in the central cells

is extremely small in this case.

The situation improves markedly when one moves to cylindrical ge-
* ometry (therefore toroidal geometry as well), as a result of the uniform-grid
cell area being proportional to r. In cylindridal geometry, the density profile
should be flat at » = 0. If we also assume that the density vanishes faster than
1/r for large r, and a uniform grid, then the number of particles per cell will be
nearly zero at the origip, rise to a peak, and then decay. Careful choice of the
-nonuniforrn grid will allow roughly.equal numbers of particles per cell, which is
the ideal situation. In this case, ..the maximum resolution will be governed by
the sharpness of the plasma profile. A exa,mple_-density profile (gaussian), grid
spacing, and number of particles per cell in a cylindrical coordinate system is
given in Figure 2.7. A typical (r,6) grid configuration is shown in Figure 2.8,
employing 64 radial gridpoints (nonuniformly distributed), and 32 theta grid-

points.

2.3.2 Local theory

In order to rigorously justify the use of a nonuniform grid, we con-
sider the local properties of such a system. To start, we examine a uniform
grid system of grid spacing A. The centered, second order finite-difference

representation of the first and second derivatives on a uniform grid are given

by

i fia o, A2
_fﬂ_mu S (24)
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Figure 2.5: Nonuniform grid, plasma probﬁle, and number of particles per cell
for slab geometry. Region of interest is near the left boundary.
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fiv1i = 2fi + fia _ f{'-l—Aszv‘l‘--- ' (2.5)

A2 127%

where f is some arbitrary function. The justification for using these approx-
imations is often based on their second-order behavior, but this is only an
asymplotic relation between local error and grid spacing, and leaves out the
eflects of the higher-order derivatives of f. It is useful to assume a particﬁlar
form for f and re-examine the accuracy of these equations. For fhe phenorﬁena
of interest here, solutions have an oscillatory ché,racter, so it is reasonable to

express f in terms of its Fourier harmonics. Then f and f’ are of the form
f(:c) — kaeika:
f'(:z:) — Z fk ik e‘ik:c
and finite difference approximation to f’is given by
flz) = (fisnn — fima) 24
— kaeik:c (eikA _ e—ikA) /20
= > fre*i(sinkA) /A

which equals the exact result in the limit of small kA. The result for the second

derivative is similarly given by

{

F'(@) ~ (for = 2+ fiur) [ A

= = fue®® (sin[kA/2])? /(A /2)?

The accuracy of the finite difference approximation to the first derivative is

shown by plotting the ratio

(sin[kA/2))° /(A /2)?
k

as a function of kA in Figure 2.9.
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kA

Figure 2.9: Ratio of the first derivative finite difference approximation to the
exact result, as a function of kA. :

Clearly, the finite-difference approximation does well for long wave-
length modes, but becomes very inaccurate for kA X 7/2. For kA = 7/4,
the first derivative approxirﬁation 1s accurate to within about 10 percent; this -
is reduced to about 5 percent for the second derivative approximation. This
is an important observation, because most parficle codes do not resolve mode
numbers much higher than this range (kA ~ m/4-n/2). Particle co.des usually
employ k-space filters to eliminate the high mode numbers (discussed in section
2.5); the weakening effect due to such a filter will often far exceed that of the
finite-difference operator. For example, a gaussian filter, for a particle the size
of the grid spacing, halves the signal strength at kA = 7r/4.v This leads us
to conclude that the second-order finite difference expressions will usually be

sufficiently accurate for use in a particle code.

We proceed now to the consideration of a one-dimensional, nonuni-

form (stretched) grid. The finite-difference approximation to the first derivative
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generalizes easily :
id;f_ ~ fi+1 - fi-—l . (26)

dz Tit1 — &i—1
However, the expressions for the second derivative approximation and the trun-

cation errors are somewhat cumbersome. It is helpful to adopt the notation

A

Hl

(Ai+1/2 + Ai—1/2) /2
6 = (Ai+1/2 - Ai—1/2> _ ' (2.7)
Y = 51/(2[31)

where A; is the mean cell size and §; is the change in grid spacing at the ith.

grld pomt The quantity ~; is a,pproximately 1/2 the rate of change of the
grld spacmg, a useful measure of the nonumforrmty of the grid. With these

definitions, the finite dlfference approximation for the first derivative is

!

2

—=fi"+... (2.8)

f7.+1 le " A
—5r = +71Af +(1+371) -

and for the second derivative is

(1 —7) fiqs =2 + (L + %) fiza -y 2A,;
A} (1—~2) B 773

24 (14 39) A +
12°°
(2.9)
which, aside from notation, match the expression’s given by de Rivas [34]. These
expressions show clearly the eflect of the stretched variable, and are different

from their uniform grid counterparts in an important quahtatxve wa.y——these

approximations are no longer formally second-order a.ccurate in the grid spac-

ing. The reason for this loss of formal accuracy is that for a nonuniform grid,
these approximations to the first and second derivatives are no longer per-

fectly centered, resulting in the first-order A; term in the truncation error. For

extremely rapidly varying grid size, v; can become of order unity, which will
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cause the approximation to be first order accurate only (in this case, the finite-
difference approximations have become essentially one-sided). It is clear that
by changing the grid spacing sufficiently slowly, 7; can be negl_ected and formal
second order accuracy will be retained. This is the ideé behind the condition

given by Blottner and Roache [35], which in this notation takes on the form
7 ~ A (2.10)

recovering the formal second order accuracy. (This condition assumes the above
equations to be in dimensionless form, since the quantity +; is itself dimension-
less.)

While Eqgs. (2.8);(2.9) give us insight into the accuracy of a nonuni-

form grid, they have the disadvantages of complexity and difficult extension to

higher order. It is usually much simpler to express derivatives in terms of a

transformed variable. We define the transformed coordinate
£ =¢(z)

where the {(z) is our stretching-function, and grid-points occur in ¢-space at
intervals of constant A¢ (arbitrarily set to 1). Then expressing the derivatives

of f in terms of £, we have

of _ otof |
% = BalE (2.11)
5 _ (%N o¢of

= (&) @ 212

Since the partial derivatives of £(z) are assumed to.be known, all that remains.

is to replace Of/0¢ and §°f/6¢* by their corresponding uniform grid finite
difference representations. This method is guaranteed to be second order in

A€, which nﬁight seem to be an improvement over Egs. (2.8)—(2.9). This is
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an erroneous conclusion (although seen in some of the literature, e.g. [35]);
-either representatibn can be shown to have ezactly the same truncation error.
- This was probably first indicated in the work by de Rivas [34], where it was
| shown that Egs. (2.8)-(2.9) could be transformed via a stretched coordinate,
yielding second order equations. This was also discussed by Hoffman [36],
who noted that the O(A¢?) dependence of the truncation error implies that'
these equations behave in a second order way if the grid points are chosen
appropriately.

The question as to t‘he formal order of these method;;, while being
a concern, still leaves us without a clear estimate of the total error. To ob-
tain a more meaningful measure of accuracy, we again adopt an oscillatory
form for the arbitrary function f. Upon Fourier-analysis, the finite-difference

approximation to the first derivative becomes

(@) = (fir = fic) [(2D4) .
_ kaeik:c (eikA;_(_lﬂ _ e—ikA,-_l/?) J(24:)
= 3 fue*=ie*/2 (sin kA;) /A,
This is virtually equivzﬂent to the uniform grid result, the main difference being
the presence of a phase factor €%/2, We obtain an accuracy condition on the
nonuniformity of the grid, relevant to particle simulation, by requiring the
argument of this phase factor to be small at the “cut-off” value kA; ~ /2.

Given kb;/2 <« /2, we then have
%<1 (2.13)

for our nonuniform grid condition.

In this research, the transformation function approach is used exclu-

sively. This approach has the advantages of smoothness and simplicity. For the
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nonuniform grids employed, ~; is typically smaller than 0.1 (but is a function
of position), giving an accurate finite-difference representation for most of the
wavenumber spectrum. The error estimation argument followed here is still
largely ad hoc, and may not give the best results for highly nonuniform situa-
‘tions. In such situations, the choice of the optimum grid is mostly an educated
guess and highly problem-dependent; it is probably best to be conservative in

the choice of grid parameters, and keep ~; small.

2.3.3 Construction of stretching function

We now wish to construct a stretching function according to some
prescribed grid spacing. Denoting the grid spacing by A(z), we have the rela-
tion

Az
E(w)

1
Ot/ 0z

A(z)

(2.14)

R

which gives the expression for the stretching function

dz

§(z) = @ (2.15)

This specification of £(z) is taken to be exact; the resulting grid spacing will

not prec.:isely match the function A(z) because of discreteness effects, but will |
usually be close. The first restriction on A(z) is that it yield a £(z) with
-continuous first and second partial derivatives (this will be trué if A(z) and
A'(z) are continuous and nonzero). These derivatives are required to solve the

Poisson equation. In general, this condition is not difficult to satisfy.

The second restriction we will make on the generation of the stretching

function is that £(z) be simple, that is, E (z) should be analytically expressible
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A(z) £(z)

¢; cosh? (¢a%) ¢; + cp tanh (c4E)

o (co + ca®?) [ (co + 22) | ¢f + chT + cytan~? (c,T)

Table 2.1: Examples of stretching functions (z =z — z,)

with a minimum of special function evaluations. This is done to simplify the
transformation of the particle positions z; to the transformed coordinate, which
is necessary in both the charg'e accumulation and the field intevrpolafcion phases.
The result is a reasonably fast, vectorized loop. This simplification is not an ab-
solute requirement. For increased generality, one could solve for £(z) at discrcfe
values only, then interpolate to get £ as a function of the particle.coordinates.
This loop would vectorize on‘computérs that suppbrt gather/scatter-type vec-
torization (Cray-2, Cray X-MP 48), and would probably be faster than the

loop employing the exact stretching function.

For the type of grid we are interested in, A(z) has 2 minimum at
some point ¢ = z,, and incfeases outward from that point (possibly reaching
some limit). ‘We give two such functions in Table 2.1 that satisfy the above
restrictions. Note that each function has only one special function evaluation
in the expression for £(z). It is this evaluation that is the most time-consuming
part of the entire method, and timing tests show an increase in total cpu-time of
only a few percent‘for a typical éonﬁguration. The second function in Table 2.1
is the one employed in this research—it allows choice of a limiting (n’iaximum)
value for the grid spacing, as well as the degree of grid stretching. The main
disadvantage with this stretching function is tha,t~an.exact expression for z(&)
is not known. However, z(£) is only needed at grid points for diagnostics; these

values can be obtained through the use of a simple root-finder routine.




33

2.3.4 General remarks

We do not intend to fully discuss the implementation of a nonuni-
form grid to a particle code here; this is done in the following sections of this
chapter, along with the inclusion of the toroidal metric. Here we focus on two
remaining concerns, of which the first considers the meaning of particle shapes
in a simulation with a nonuniform grid.

The concept of a particle shape in é particle simulation enters pri-
marily through the grid. When one interpolates to the nearest two to three
gridpoints in each direction, the response of the system indicates an effective
particle size on the order of a cell-width. This resi)onse is often modified by a
filter (or finite-size pafﬁicle shape factor). The use of a nonuniform grid does
not alter this appreciably. If we modify our filter so that it ﬁlters only locally, -
then the relationship between the eflective particle sizeé and the cell size is
" maintained. (This is accomplished using a technique known as digital filtering,
discussed in section 2.5.) As the cell-width changes due to the nonuniform grid,
so does the eflective particle width. This is énafural effect, and is an essential

property to have true control over the resolution.

It should be noted that if particles can easily move along a given coor-
dinate, a nonuniform grid in that direction is not appropriate. The nonuniform
grid method must be chosen in accordance with the boundary conditions and
the problem at hand. In the present simulation, the use of a nonuniform grid is
appropriate in the direction of the density gradient, and .perp‘endiculvar to the
dominant magnetic field direction.

Finally, we once again consider the most serious limitation with the

nonuniform grid method in particle simulation—the decrease in number of par-

ticles per cell as the cell size decreases. As shown previously, this problem is
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0

considerably less severe in & cylindrical or toroidal coordinate system due to
the radial dependence of the cell size. Even in these systems, however, the need
to maintain a given density profile limits the maximum resolution attainable
via a nonuniform grid. Here we briefly discuss a technique that addresses this

problem, to be be referred to as nonuniform number (or mass) weighting.

Each “particle” in a particle simulation is often conceptualized as a
large collection of point particles, with spatial extent on the order of a Debye
radius. This is called a macroparticle or superpartiéle, and each is assumed
‘to represent a larger collection of physical particles. The numBer of physical
particles represenfed is normally assumed to be a constant for each of the
simulation particles, but here we allow a varying number of particles to be
represented. The motivation for this kind of assignment is to allow us to adopt
a sﬁall gria spacing in a critical region through the use of the nonuniform
grid, while retaining an acceptable number of particles per cell. The prescribed
density function in this case is maintained by weighting the particles in the |
smaller grid region correspondingly less. Since it is the number of represehted
particles that is being varied, both the chérge and the mass vary by the same
amount, preserving the charge-to-mass ratio for the given species. Then the

charge and mass for a given particle are of the form
‘m; = med; (2.16)

9 = Qod; , (2.17)

Here d; is the number weight of the jth particle. Note that d; is a particle
quantity which is fixed in time—ensuring conservation of both the charge and
mass. The initial value of the number weights are determined via d; = d(z;),
where z; is the initial position of the jth particle and d(z) is the weighting

function that gives the desired density profile and number of particles per cell.
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The use of this weighting technique requires that the ;Lmount of trans-
verse diffusion is small, at least where d' (z) is appreciable. Unrestricted diffu-
sion will tend to interchange the heavier weighted particles for an equivalent
amount of lighter weighted particles, thus redﬁcing the number of particles per
cell in the small grid region. This should not be a problem for problems that
are only marginally unstable or involving a local instability—the weightiﬁg

function can be given such that d'(z) = 0 at the point of maximum instability.

We now considef the noise properties of the nonuniform number weight-
ing scheme for two simplified cases. The first concerns a uniform grid and an
exponential density profile. An appealing weighting scheme in this case would
be to weight the particles so that the density profile is maintained, with an-
equal number of particles per cell. However, this would cause the physics to
" be dominated by discreteness effects caused by the particles with high-weights.
This fact has indeed been observed in short time scale simulations of this sit-

uation.

The second case involves starting with a uniform grid and the particles
loaded to some prescribed density profile. The grid is then stretched to the
desired configuration, keeping the number of particles per cell constant. The
number Wéights of the particles are changed in conjunction with grid -spacing,
,td maintain the necessary dénsity profile. In this case, the charge density

fluctuations can be written in terms of an averaging operator (--+) as

{p(z)) = <q(6)%> | (2.18)

(a(6)) o= (2.19)

I

where g(£) is the particle charge times the number Wéight in the transformed

coordinate system, and O¢/0z is the transformation weight (see section 2.5 for
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discussion of metric effects in the charge accumulation). If we now assume no

transverse diffusion, then we can approximate

3
(a(€)) ~ qo (N(£)) d(z) 5 (2.20)
where g is the average charge and d(z) is initial number weighting function.

Thus, we choose

1

~ AETEs (=~ A(z)/Ao) | (2.21)

d(z)

for the weighting function, where Ay is the average grid spacing. We then have

(p(2)) = —= (N(£)) (2.22)

This shows that as the grid spacing changes, the fluctuation level of the charge
density due to discreteness effects alone remains apprbxima.tely constant, since

the number of particles per cell does not change.

The latter case has been studied in several test simulations. The
ability of a nonuniform mass-weighted plasma to reproduce a uniform rplasma,
response for the ion Bernstein spectrum was studied and found to be reasonable.
In this case, the transverse diffusion over the course of the run was minimai,'
and no numerical difficulties were observed. Although the variation of the
number weighting in accordance with the cell size has shown ﬁo obvious ill
effects, the results at this time aré preliminary due to the limited simulation
results and analysis. Thus the remainder of this research relies on the ordinary
particle weighting scheme, in combination with the nonuniform grid. A more

complete analysis of the nonuniform number weighting method is left for future

research.
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2.4 Solutfon of the electrostatic fields

For the electrostatic model, the only field equation that must be solved

1s the Poisson equation
Vi® = —dmp (2.23)
E = -Vo | (2.24)
" where this ordering is used because of the difﬁc'ulty in solving for the electric
field directly from the charge density (this would require finding an eigenfunc-

tion expansion for the Laplacian, which is not generally possible for an arbitrary
metric). Given the metric coefficients for our system (Egs. (2.1)), the Laplacian
1s given by |

Vi=Vi4cC (2.25)

with V2 and C given by _
' ok 198 re 82 ok

: _ 9 1 o o
. Ve = or? + r Or + 72 Ox? * o¢? (2.26) '
. 2_p2 o2
o _ oS 06 sinfryp 0 R:-R*O (2.27)

Ror R rox R 80
Here V2 is the cylindrical Laplacian, and C represents the toroidal corrections.
The cylindrical Laplacian can be inverted by a standard technique—finite dif-
ferencing in r then applying the recurrence solution for a tridiagonal matrix.
.However, the toroidal Laplacian as a whole is not directly invertible. This leads

us to introduce an approximate method, based on the observation that
V? = V(1 + O(e)) (2.28) -
that is, the correction terms are formally of order €, compared to the cylindrical

Laplacian. Since ¢ tends to be small (< .2), we expand the potential in powers

of e,
&= yn S (2.29)
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and substitute into the Poisson equation, obtaining

Yy = 3 (V) [—dmp — C(egy™)] (2:30)

n n )

Equating terms of the same order in €¢ yields the following chain of equations:

4 = (V27 [~4mp)

¥ =‘—§c[¢]
S Y
A

The sum is truncated upon reaching the desired order in ¢, for convergence.

This method is closely related to the fixed point iteration scheme
&P+ = (1 — @) + o V2) ™ [—4mp — C(DP)] (2.31)

where o is a relaxation parameter, typically on the order of one, and p rep-
resents the iteration count. When no relaxation is used (@ = 1), the two -
methods are identical. In practice, the code uses Eq. {2.31) in the field solver.

The convergence criterion for the potential is

jor — 7| _
I

with € ~ 107%. Since ||®|| is unknown, the larger of ||®7+? H or the norm of a
previous n-mode is used. (The outer loop over toroidal mode number starts
with lowest mode numbers first, which are also the strongest modes due to the
filtering effect at high n.) This prescription avoids excessive computation for

the high mode-number, weak modes.

The inversion of the cylindrical Laplacian is done in (¢, k,, k¢) space,

where ¢ is the transformed coordinate for the nonuniform grid. The finite
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diflerence representations of the radial derivatives at the sth gridpoint become
or ), or ot /,

50252 s

for the first derivative and
[P\ [[8E) pe | 0% 08
Or? ; - or 3{2 Or? (96 ,

oe\? B (B = Bia) o
& (B_ﬁ) (Piy1 —20; + .‘I’i—.l) +- (ér—g) (*-H—z"‘_l) (2.33)

K

for the.second derivative. These employ the usual two and three-point centered
difference formulas on the transformed grid. The cylindrical Poisson equation

at the 7th gridpoint then has the form
a®iy1 + Bi®; + Y¥iPie1 =5 | (2.34) -
with the coefficients given by
[0\ 18%¢ 106
% = [(‘) 252 15

A
g = —[2 (5) +r—‘2’k§+k§J . (2.35)

o [(Eey e e
HE or 20r* ror|

and s; represents the source term. The direct recurrence solution for this type
of equation is well known in finite-difference fluid simulation (the method is
discussed by Potter [37, pages 88-91] and Hockney and Eastwood [38, pages

185-186]). The idea. is to look for a recurrence relation of the the form

b, | =z;P;, + Y; (236)
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where z and y are to be determined (the roles of 7 and 7 — 1 are often reversed,

yielding similar results). Substitution into the field equation (Eq. (2.34)) gives
;@00 + Bi®; + vi@:®s + y:) = s

which can be rearranged to yield
&i Si — Y
B N
B + viz; B + vizi

Since this is of the same form as Eq. (2.36), the coefficient terms are given by

 Tip o (2.37)

r = Bi + iz
which are calculated in a forward scan. The field component (®;) is subse-
quently obtained by a backward scan, given by Eq. (2.36). | The only work
remaining is to determine the starting values for each scan; these are deter-

mined by the boundary conditions on the potential. This is complicated by the

location of the boundaries—the only case usually considered (as in the above

references) is that of Dirichlet boundary conditions with the boundaries on the .

- end grid points. For the current system, with the boundaries between grid

points, we represent the parity at the boundaries by
Pyt = 7w
‘I)g = 7N @1
where the cells in the system number from 1 to N. The wirtual grid-points at
i=0and i = N + 1 only serve to define the parity at the boundary, which is
even parity for 7 = +1 ($’ = 0), and odd parity for = —1 (® = 0). The field
equation at the 2 = 1 grid point is then
s1 = @+ 5% 4+ 7%

= (noy +G1)P1 + 112
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which can be rearranged to the form of the recurrence relation (2.36) :

71 8

)= —— P, ——
! .77a1+)61 ? neq + By

The recurrence relation then requires that

—N
noy + By

S1

oy + B

Ty =

Y2 =
for the starting values of the coefficient arrays in the forward scan. For the
backward scan to solve for the potential, a similar calculation gives

SN — N YN
Bn + 1N + N

Oy =

as the starting value.

The last question with the tridiagonal inversion concerns execution
speed. Since this is a direct solution, it is much faster than general matrix
inversion techniques (tridiagonal inversion is one of the fastest of the rapid
elliptic solvers). .However, this solution is a mérching—process in ¢, inhibiting
straightforward vectorization. We therefore vectorize in the perpendicular di-
rection (i) by looping over the second coordinate in the inner-most loop, which
requires two-dimensional arrays for the coefficients of the recurrence relation

(2.36). The result is a fast and accurate solution; using it as the core part of

an iteration method is reasonable.

Once the cylindrical Laplacian is inverted, the correction term is eval-
uated. This must be performed in (r, §) space, due to'the terms involving cos 6
and sin §, and thus involves two extra one-dimensional Fourier transforms per
iteration. The extra expense introduced in the mode representation could be

avoided by finite-differencing the x (or-4) derivatives in real si)ace instead;
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the resulting equation would then be solved by cyclic reduction [38]. In this
research the mode representation was kept due to its greater utility—the repre-
sentation of the periodic variables in terms of mode number is attractive both
from diagnostic and theoretical points of view. Timing tests show that the the
overzﬂl computational cést of the present implemeéntation is small for less than
about ten iterations. In a typical run for the three-dimensional grid configura-
tion (the worst case, because of the.la,rge number of toroidal modes present),
the Poisson solver accounts for between 15 and 25 percent of the cpu time of

the entire time-step loop.

For ¢¢ < .2 (corresponding to anlaspect ratio of 2.5), the method
usually converges to at least five decimal places accuracy in 4-6 iterations for
a typical plasma profile. The Poisson solver is structured so that each toroidal
m..ode is calculated separately, which is possible due to the azimuthal symme-
tr);. This él]ows numerous temporary arrays to be generated to assist in the
inversion. The independent calculation of each tdroidal mode also forces the
adoption of a “separated” (k,, k¢) mode representr;tion—the Fourier transforms
in x, required for the toroidal corrections, must be independent of the trans-
forms in (. In the usual mode representation (i.e. FFT2 structure), the modes

“cannot be transformed independently.

The last consideration in the Poisson solver is with the radial accuracy.
The finite difference approximations are accurate to second order in A¢, which
is probably satisfactory for most applications, as discussed in section 2.3. One
way to. imprbve the accuracy of this method would be to substitute higher-
order finite-difference approximations for the derivatives and then invert the
- equations using the more general block-tridiagonal inversion method [39]. In .

this case, speed considerations would probably restrict the accuracy of the
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scheme to no more than fourth-order.

The electric field components are calculated from the potential, using

the toroidal metric :

0P
o=
_ T‘oaq)
Bx = Sy
_ R,00
Bo= ~Za (2.39)

For the radial field, we again apply the two-point finite difference approximation

for the derivative to get

(Er); = (g—f)é(gﬁi%@i) ' (2.40)
The x and ( derivatives are simply multiplications in (r, ky, k;) space. The
7o/r multiplication for the E, component is straightfbrward, but the Ry/R
multiplication for the E; component requires transformation to (r;6) space
because of the ¢9 dependence in R (and must be 'transformed back again, for

filtering).

2.5 Charge accumulation and field interpolation

In this section we discuss interpolation methods for an arbitrary co-
ordinate system that are accurate, easily implemented, and independent of the
metric wherever possible. The three stages of the charge accumulation are con-
sidered ﬁrst—-interpolafion of the density to the grid, transformation weighting, I
and filtering. -

The initial interpolafion is done on a computational grid, that is, with
no reference to the actual metric (aside from constant scale factors). The resul-

tant pseudo-charge density (p’) is identical to that which would be the result in




44

a slab coordinate system. This procedure views the coordinate transformation
as a property of the grid, freeing us from the difficulties in considering particle
“shapes” in arbitrary coordinate systems. Additionally, this procedure enables
us to employ the same interpolation routines independent of geometry, which

| simplifies the implementation considerably.

The actual interpolation methods used in this research fall into the
category of Area- Weighting methods, so called because the interpolation weight
from (or to) a particular cell depends on how much of a particle’s area over-
laps that cell. The particle “shape” is rectangular for the two-point method
and triangular for the three-point method. These methods are known as linear
weighting, or Cloud-In-Cell (CIC), and quadratic weighting, or Triangular-
Shaped-Cloud (TSC). Although the association of a given particle area or vol-
ume with an interpolation scheme is important from a conceptual point of view,
in terms of smoothness it is more important that these interpolating functions
are splines. This point is further discussed below.

Letting z; denote the position of the jth particle, mé an arbitrary
grid-point, and § = z; — z,, the particle weight for that grid point will be given

by
-2 <A
w(z) = { A (2.41)

(0 otherwise

for linear weighting, and

2
- (2) w3 |
] |
ww =9 3(E-12) sk (2:42)
0 otherwise

for quadratic weighting (from Hockney and Eastwood (38]). In the toroidal
nonuniform grid system, the radial particle coordinates u; are transformed to

the stretched coordinates £; for the interpolation.
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Linear weighting is second-order accurate in the grid spacing and
the interpoiated function 1s continuous as the particle crosses a cell boundary.
Quadratic weighting is also second-order accurate, but both the interpolated
function and its first derivative are continuous as the particle crosses a cell
boundary. The additional smoothness of quadratic weighting results in less
error due to undersampling—the aliased Wavenur;lber contributions are much
smaller than in linear weighting [21, pages 168-170]. The simulation will thus
be befter able to tolerate small values of Ap/A without numerical heating,
as well as needing less k-space filtering. This is important mainly along the
direction of fhe magnetic field (long dimension). Therefore, we typically use
quadratic weighting in the { coordinate for the usual 3-d grid configuration; -
linear weighting is used in the cross-field variables ¢ and x. Both weighting
methods cause an order (kA)? flattening of the spectrum at low wavenumbers.
This flattening can be corrected to order (kA)* by using a k-space compensating
factor [21, Appendix B] (this type of post-sampling correction is also known
as deconvolution [40]). Finally, note that the flat-metric type of interpolation

allows straightforward substitution of higher-order methods.

The next step in obtaining the charge density for the Poisson solver is
to include the effects due to the metric. The actual charge density is determined

from the differential relation

oA 1,
p= *‘6'17»0' = jﬂ' | (2.43)

/
where J is given by J = h,hyh, and represents the transformation Jacobian for

the toroidal coordinate system (A, includes the effect of the nonunform grid).

This becomes .
o¢/or

= 2.44
hohe P | (2.44)

X
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which must be performed in (r,x) space, due to the f-dependence in h;. The
main problem with this approach is when the Jacobian vanishes at some point
within the simulation region, as it does in the toroidal system at » = 0. This
problem can be avoided by placing the boundaries between gridpoints; there
will be no grid point at » = 0 and thus no singulafity. The given method of
charge accumulation, together with the filter techniques discussed below, allow
the adoption of a wide variety of coordinate metrics, in principle. A similar
approach to handling the metric was used by Brackbill and Ruppel [41] for

two-dimensional particle-in-cell fluid simulations with an adaptive grid.

Finally, the filtering (or finite-size-particle shaping) must be consid-
ered. A commonly-used filter in particle simulations is the convolution of the
~ accumulated charge density with a shape-factor, often a Gaussian, which is

performed in k-space :
p(k) = p(k) exp (~[k - a)’/2)

where k is the wavevector and a is a measure of the particle size. This type of
global filtering operator has the advantages of flexibility and ease of implemen-
tation, and can be used to partially compensate for errors introduced in the
Poisson solver or the sampling method [21, Appendix B] At preseht, a simple

Gaussian shape-factor in the ¥ and ( variables is used. \

The use of a global filtering operator for a highly nonuniform or non-
cartesian coordinate is questionable, however. For the radial variable in a
cylindrical system, a non-standard (Bessel) representation must be used in
order to have a rigorously convergent eigenfuction expansion. This problem |
can be avoided by considering a region. far from the origin, as in the work of

Cheng and Okuda [20]). In the case of a nonuniform grid, the non-locality of
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the above operator is somewhat inappropriate, although a transform in the

stretched variable ¢ is reasonable if a rigorously convergent transform can be
found.

A better alternative exists for such situations, known as digital fil-
tering, and is described by Birdsall and Langdon [21, Appendix C]. (Although
the term dzgztal filtering may refer to any discrete ﬁltermg process, we follow
the convention of Birdsall and Langdon in applying it only to filtering in the
natural coordinate, i.e. without resorting to a transform of some sort.) The
digital filter employed here is written as S’g , denoting the N-fold application

of the simple filter

A i1+ 20 + pi
Sp(pi) = AT - (2.45)

where i stands for the £-coordinate. This is known as a binomial filter, and is
equivalent to a gaussian shape factor in the limit of N — oo.. To see this, we
write this filter in terms of its k-space representation in a uniform grid system

~ [21] and then expand, éssunﬁng small kA :

. EA 2N
S5(k) = (cos ~2—>
[ (ea)]"

When using this filter, ‘the effective particle size will increase as N increases.

. = \/g A  (2.46)

whereupon the N — oo limit of the filter becomes‘

%

Anticipating the result, we let

2_2
- lim $¥(k) = lim {1—]“—;—*/—2}

N—co Nooo

k%ad?
= €Xp ("'— 2 )
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Although this only holds exactly in the large N, small kA limit, it nevertheless

gives some feel for the particle “size” associated with the application of the

filter. The total filtering operator can thus be written as

p(€,kx,ke) = 55 (p) S(k) (2.47)
where S(k) is given by
S(k) = exp [——(k;a; + k?a?)/Z] (2.48)

Next we consider the filtering of the electric fields and their inter-
polation onto the particle positions. This is handled in the same way as the
charge accumulation and filtering, except that no fra,nsf_orma,tion weighting is
requiréd. It is important here to détermine the conditions under which there is
no numerical self-force term. The early research in particle simulation showed
that for this type of code, a self-force was avoided by using the same interpo-
lation scheme in the field interpolation as in the charge accumulation, and by
adopting a filter that was symmetric in its argument [38]. These conditions are
relevant in the toroidal syste‘m'as well. One problem with the early proof is its
assumption of periodicity, which is inapplicable in our radial coordinate. In the-
presence of non-periodic boundaries, there will in general be a self-force—from
an induced image charge. However, this boundary term can be included in the |
theory, and we refer to a numerical self-force more accurately as a failure to

conserve momentum by the algorithm.

To examine the approximations that have been made in our model
and determine whether it is momentum-conserving we must express formally
the interpolation steps that have been given. The interpolation (accumulation)

and filtering are two distinct processes, but we shall initially express these in
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terms of some general operator L. The interpolation and filtering operations

on the charge density can then be written in terms of a continuous variable as
Lop(x) = / p(x) Lix';x) I(x)dx' (2.49)

where p(x’) is th;e charge distribution, L£(x';x) is the interpolation or filter
distribution, and J(x')dx’' = J(x')dz},..., dz!, is the volume element, for
dimensionality n. In this operation we are simply summing the weights given
to the pbint at x from every point in space (x'); this will naturally depend on
the geometry at x'. Therefore we generally will have £(x’; x) # C(x x'), where
the coordinate in the second position denotes the fixed pomt Furthermore, we

require that £ be lmear, so the distribution satisfies
/ L(x';x) J(x')dx = 1 - (2.50)

The interpolation and filter distributions will be simply the transformed flat-

. metric distributions :

(2.51)

L{x";x

where Li(z;~ ;) is the flat-metric distribution of the ith coordinate. Note that

Li(z; — @;) = Li(z; — z}). The interpolation distribution is now written as

W) = 757 L #itel =2 (2.52)
= j—(l—x/jW(x’—-x) (2.53)
and the fltering distribution as
S(x'sx) = (1,)}f[15(' O (2.54)
= 1 —— S(x' ) (2.55)
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Here we. have employed the symbols W(x' — x) and S(x’ — x) to denote the
total flat-metric distribution (i.e. the product of the individual coordinate dis-

tributions). The metric-dependent distributions W and S are analogous to the
general distribution L.
We now take the general charge density distribution p(x’) to be the

charge density due to an individual point source at x; :

pi(X) = g —x;) (250)
= % T zi — ' 2.
= st (2.57)

Using this value in the interpolation equation (2.49), the charge density be-

comes

palx) = G W) = 525 W s = %) (2.58)

Although Eq. (2.58) can be used as a basis for a charge accumulation scheme (as

in Ref. [20]), there are several problems with this approach. First, conservation

of charge requires that

g, = /pj(x) J(xjdx ) v (2.59)
= qj/dx j(z)) W(x; — x) ' (2.60)

which cannot in general be satisfied simultaneously with condition (2.50). Fur-
ther, one must decide how to handle the 1/J(x;) term for particles that pass
too close to a point where the metric vanishes (as for » = 0 in a cylindrical or
toroidal system).

These problems may be avoided, while retaining our differentialap-

proach, by approximating the charge density equation (Eq. (2.58)) by

pilx) & FESW i =)
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9; | '
70 W(x — x;) (2.61)

= g; W(xx;)

This is a reasonable since the interpolation aistributién is strongly peaked about
zero. The conservatién of charge equation (2.60) is now automatically satisfied
when using the transformed slab-like interpolation a,nd‘ﬁltering distributions,
regardless of the metric. Further, since the particle coordinates are virtually
continuous and the grid is discrete, the vanishing of the metric at a point in the
simulation region is no longer a prbblem——wé simply avoid placing a grid-point
at that location. In this case, the first grid-point is a half-cell away from the
7 = 0 point (farther when grid stretching is employed).

Given these preliminaries, the calculation of the self-feld of an indi-

vidual particle is as follows :

1. Interpolation. The charge density for a single particle of charge g; and

position x; is given by

pi(x) = g W(x;x;)

9% -
7 W(x — x;)

in terms of the flat-metric weight function W.

2. Filtering. The charge density is filtered to obtain the source term in the v

field equations,

569 = [T x'
= /pj(x') S(x' - x)dx’

using the filter function in its flat-metric form S.




52
3. Field solution. Here we are solving for E in terms of s, :

'V -E = 4ms;(x)

4. Filtering. The filtered electric ﬁelds are given by
eilx) = [Bi(x)S(x5x)J(x)dx
- / E;(x') S(x' - x) dx’
5. .Interpola,tion to particles. The force on the jth particle (due to its own
field) is
Fixs) = [es(x) qWixix;)I(x) dx
= /ej(x) g; W(x —x;)dx

We may now combine these expressions, to obtain the force on the jth particle

due to its self-field (written as F;;) :

Fj; = [dxg; W(x — ;) ()

F;; = /dx J(x')E; ')/dxpj x) J(x) S(x'; %)
= /dx J(x')E; /dxpj (x) S(x' — x)
= /dx J(x") J(x’)/dxpJ x - x)
VE;(x) 55(x)
where the symmetry of the flat-metric filter

Sx—x) = 85x —x)
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has been used in deriving the result.

The above expression for the self-force can be cast into a more illu-
minating form by substituting for s; from the field equation, and enforcing the

electrostatic condition (V x E = 0), giving
' 1
Fy = 4—W/Ejv . B;dV
- / V.T;dV
where T is the maxwell stess tensor in the electrostatic imit : .

T = ?41—” [EE— %(E -'E)IJ

and I is the identity tensor. This takes on the form of a conservation law :

dP : dP.:
4 _ fs T;-dS=0, ZH=m,

which is in agreement with the more general conservation of momentum relation

as given by Decyk [42]. Thus the given procedure has the desired momentum-
conserving character.

The last concern with the interpolation/filtering in a non-cartesian

- system is whether the filter operation conserves charge; i.e. whether

/(So'p)dvzfpdvzcz

where § is the filter operator and Q is the totai charge. Although it is usually
taken for granted that the ﬁlter operator conserves charge, in a non-cartesian
sysfem this may not be generally true. In a uniform grid slab geometry, any
neutral filter such as a k-space filter will conserve this quantity, because the sum
over gridpoints }:ﬁ"l p; is preserved by the Fourier transform. If the geometrical

weighting factors of an arbitrary metric system are included, however, this filter
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fails to conserve charge. In a cylindricai coordinate system, the charge will be
given by
Nﬂ
/pdV = Z piriAr

which is not preserved by the k-space zﬁlter in general. In many cases the
difference will be small, but when the curvature is large (e.g. where the point
.7 =0 is included) this discrepancy may be important. |

We first examine the effect of a simple digital filter on the total charge
in slab geometry. For simplicity, we choose a single application of the binomial

digital filter for our filter operator, and consider only a single dimension. Then

we have
i1+ 2p; + pi
(SOP).; — P l+:+p+1
. .+£Pi—l_-2pi+,0i+l
- ATy AT

A2 ’
TP? + O(AY)

I we neglect the O(A*) contribution, and approximate this by a continuous

system, the conservation of charge equation in slab geometry becomes

/(Sop)dVA = /pdV—{——A;/p”dV

2

[odz+ 51 (22) - #(0)

for boundaries at z = 0 and # = L,. For periodic or even-parity boundary

conditions on p the extra term on the right hand side vanishes; for odd parity

an unavoidable sheath effect is responsible for the lack of charge conservation

by the filter. |
Turning now to an arbitrary metric, we a.ddpt 1) as our one-dimensional

variable and obtain
A% 1 8%
. P . ;
[Sopav = [pav+= 52V
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- /pdv+-—/dw

/pdV+ A: [

having integrated by parts to obtam the last expression. The boundary term in

8J Op
- Jwi]

~ the above expression is analogous to that for the slab geometry result, and can

be ignored (in addition to vanishing for even or periodic parity, it also vanishes
for continuity boundary conditions, i.e. at an 7 = 0 point). The new effect is
the term depending on the partial derivative of the Jacobian, and only vanishes

in general if J has no dependence on .

At this point we can construct a charge-conserving filter simply by

absorbing the new term into the definition of the filter, which becomes

A?[1 8 Op \
(Sopli=pi+— 7 [J&ﬁ (J6¢>J _ (2.62)

where the derivatives are calculated by finite-difference approximations. A
s.imple and elegant solution to the charge conservation constraint has emerged,
although some new concerns are raised. First, this filter does not correspond to
a metric-independent, “slab-like” filter, as previously assumed. Thus, the use of
such a charge-conserving filter would likely destroy the Inomenfurn—conserving
property. In addition, this filter has éuestionable properties near a point where

the metric vanishes (see Appendix A).

The loss of exact charge conservation by the filter operation is there-
fore unavoidable in our algorithm. This can be shown for an arbitrary filter

distribution S. The total charge after the filter operation is given by

@ = [xI(x) (Sopx)

i
—
Q.
»
=
X
—
IS
x\
=
g8
2
N\
s
N\
ReJ
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= /'dx J(x) /dx’p(x’) S(x' —x)
= /dx’ J(x') p(x") /dx :TI((::/)) S(x' —x)

Since the flat-metric filter distribution satisfies

1=/dx’5’(x’—x)

it is clear that charge will only be conserved in general if J(x) = J(x'), i.e. for
a constant metric.

Given the favorable properties of the present approach, the lack of
charge conservation by the filter is tolerable. The interpolation/filtering algo-
rithm employed here is conceptually simple and straightforward to implement,
even in the vicinity of a point where the Jacobian vanishes. An important
feature of particle simulation in slab geometry is conservation of momentum,
which is retained by the present algorithm. Further, since the charge den-
sity is the important dynamical quantity (not the charge), discrepancies in

the total charge introduced in the filtering process may not have observable

consequences.

2.6 Particle pusher: Ions

The usual scheme for the time advancement of the ions in particle
simulations employs the leap-frog method [37], which considers the particle po-
sitions and field quantities to be known at integer timesteps and the velocities -
at half-integer timesteps. Applied to the system of differential equations em-
ployed in this model, the leap-frog method is non-dissipative and second-order
accurate in the time-step. Although the technique for applying the leépfrog
 method in slab geometry is straightforward, there are serious obstacles to im-

plementation in a general non-cartesian coordinate system. We start with the
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equations of motion for an arbitrary metric :

(.. Bhi . Ok )
Buie + S haos (2 B + 3 higiBje: 2.63
kG EJ: JqJ( qkhja thkagk m{ k Z q Jk} ( )

which can be directly derived from the Lagrange equations, using the trans-
formed Lorentz force law. A simpler representation is obtained in terms of the

angular momenta, giving g, = Iy /h2 for the coordinates, and

b L (1l Ok
hk B ; (h ) (hZ hkaqk TTL Ek +Z BJF—LJk (2.64)
J

for the angtﬂar momenta. If the toroidal metric is used, the orbit equations

become
ik 2 . 12 cos 6 - R
*(1+ Kp)® (1 + €¢(1 + Kyu) cos 6)° v
. 2,
(1 +l>:~:xu) e ‘e 64(111121) cos)? Fx (2.65)
I R

(1 + €(1 4 ryu) cosf) ,
in which the righf-hand-terms are determined from Eq. (2.64). One standard
way of handling the rotation of the velocity vector in slab geometry is to finite
difference the velocities using

vn+1/2 - vn—1/2

g o= = = s (1 (2.66)
n+1/2+ n—1/2 '
vy = 5 % 1 O(st) (2.67).

which give a centered, second-order accurate finite-difference equation. The

compbnents are then collected into a matrix equation
Mv/2 = Nv12 L L g (2.68)
™m

where M, N, and E all depehd on quanties at the nth time level. This equation

- is then inverted to give the velocities at the n + % timestep in terms of those -
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at the n — 1 timestep. Since only three coordinates are involved, the solution

is calculated analytically and implemented in the code to give a direct, fast

mversion.

A straightforward implementation of this method will not work in
a general coordinate system, due to the nonlinear terms in the equations of
motion (2.63)—(2.64). In this case, there is a choice of three quantities that
may be considered given at the half-integer timestep and correspondingly finite-
_differenced. These are the time’deriva,tive of the coordinates g, the velocities
hkq, or the angular momenta hZg,. Regardless of which variable is diﬂ"erenced_,

the nonlinearities remain, causing the standard leap-frog method to fail.

One a.lte_rnative is to adopt a predictor-corrector type approach based
on the smallness of the nonlinear terms in equations (263) or (2.64). The
sfmplest method would be to obtain predicted values by ignoring the nonlinear
terms altogether, then solve for the corrected values. The first full-dynamics
pusher employed in this research took a variant of this approach. The angular
momenta in x and ¢ were used to take advantage of the simpler equations
of motion. The accuracy of the predictor-corrector method was improved by
treating the nonlinear terms. as the product of two terms—a predictive term,
determined by a ha]f-timéstep push, and a linear term, to be inverted in the
usual way. In the cylindrical type;II system with tokamak fields, this method
accurately reproduced the drift orbits and showed little damping. This pusher

was used with good results in simulations of the field-reversed configuration
[43].
In the full toroidal system, however, this type of pusher becomes

. ill-defined near r = 0. Tests show that even when the particle is kept well

away from the origin, significant loss of energy occurs. This is demonstrated
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Figure 2.10: Particle energy vs time, predictor-corrector algorithm

in Figure 2.10, where the particle energy in a test run is plotted as a function
of time (8000 timestei:)s, 6t = 0.29;) for particles in a tokamak-like field
configuration. In this case the ions lose about 10% of their inital energy, which

is unacceptable.

The problem with this method is that the second term in Eq. (2.65) is
not small and is a poor kexpansion parameter in the typical toroidal case. The
resulting de-centeredness causes the rapid cyclotron motion to slowly decay.
Alihough the damping of cyclotron motion is often an intended eflect in an
implicit code [18], it is undesirable for it be an unavoidable by-product of the
metric. Since any predictor-corrector method will be at least partially decen-
tered in time, the integration of the cyclotron orbit Will be subject to damping,

and may cause problems depending on the time scale of the simulation.

The solution to this p'roblem is to push in a coordinate system that is
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better-suited to the physics of the particle motion. The approach chosen in this
research is simple—to push completely in cartesian coordinates. This somewhat
crude, “obvious” method, though involving time-consuming transformations,
has several advantages. First, it is rigorously centered and second-order, with
little or no numerical damping. A test run comparing to the previous method
showed excellent energy conservation over the course of the run. The second ad-
vantage of the transformation approach is that it can be used for any coordinate
system, as long as the transformations can be done accurately. (More precisely,
there must exist a transform function togethef with an exact inverse—since the
velocity components never “leave” cartesian coordinates, the rotation will be
handled correctly, even if the transform itself is not exact [see below].) For the
toroidal system the transformations are straightforward but somewhat expen-
sive; it is likely, however, that the cost of a sophisticated predictor-corrector
routine as previously given is comparable (although no detailed timing COI;fl—

parisons were performed).

In a polar coordinate system, the transformation of the velocity vector”

to cartesian coordinates at the beginning of the particle push is given by

TP = M eos(67717) — vy P sin(97?) (2:69)
v;;_l/z = vf_l/zsin((?”—l/z)+U2_1/2C05(9n—1/2) (2.70)

where 6"*/2 must be computed via

1

971.-—1-/2 - =
2

(67" +67) (2.71)

since all the terms in the transformation must be given at the same time level,
to second order in ét. Due to the size of the particle arrays, storing the 8 values
at more than one time-level is undesirable. Therefore, the velocity components

must be kept in cartesian coordinates thoughout the entire time-step loop.
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During the pushing phase itself, both the old and new coordinates are known
simultaneously. If the pusher loop is structured so thaf one 1s operating only
on relatively small “Blocks” of particles, then one can obtain the velocities in
(€,x,¢) space at minimal computational expense. This will be necessary to
allow accumula.tio.n of the velocities to a grid to satisfy a magnetoinductive or
electromagnetic algorithm. For diagnostics, we may “transform” the velocities
to toroidal coordinates in an uncentered way, as long as we are careful to exactly

invert this “transformation” before pushing.

The only remaining concern is the amount of numerical diffusion as-
Vso‘ciated with this method of pushing. The amount of deviation from the field
line for a single particle in one timestep is proportional to (v) 6t)? since the
pushing method is sécond order accurate. This quantity will be small for the
lon species in most cases. For a Lorentz-force pusher, the need to accurately
reproduce the cyclotrén motion is the dominant constraint; numerical diffu-
sion will not be an issue except .When large anisotropies in the ion temperature

distribution exist (1) > T.). ' ,

A better solution to the pusher problem than the one émployed here
may be to adopt a hybrid method—transforming in the r—6 plane, but predictor-
corrector in (. This type of scheme would probably be somewhat faster than
the full transformation approach, and would suffer from less numerical diffu-
sion. It would also be more sensitive to the details of the metric. Howe#er,
the current method is straightforward to implement, and conserves the particle
invariants remarkably well in tests (given in Chapter 3). Therefore, furthér

research into full dynamics pusher algorithms in a complex metric is left for

future efforts.
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2.7 Particle Pusher: Electrons

In a strongly magnetized plasma, keeping full electron dynamics poses
a severe timestep restriction due to the high electron gyrofrequency. The adop-
tion of a guiding center formulation allows us to circumvent this restriction,
while retaining most of the important physical effects. An algorithm for this
method in particle simulation was first given by Cheng and Okuda [20], and

has been employed in many recent simulations [11,19,44].

In toroidal geometry, the guiding-center drift equations include the
important first order Larmor radius magnetic eflects—mirroring (.banana or-
bits), drifts from the flux surface, and so on. The most important elements
missing in this description are the polarization current and the finite larmor
radius electric eﬁ‘ects;. these are usually small for electrons in a strongly mag-

nelized plasma (p. < ).). For non-relativistic dynamics (E <« B) and low

frequencies the electron drift equations given by Northrup [45] reduce to
: %

b |
Va = Ut g X {(/m)VB +(b-Vb)} (2.72)
d
2= _Zg-£b.vB ' (2.73)
dt m ™m -

where u, = E x b/B, b = B/B, p = imvi/B, Q. = eB/mc, and m is the
electron mass. The particles would normally pushed by time differencing |

dx .
E = Vd+’U“b » (274)

however, it is seen from Eq. (2.72) that the perpendicular drift motion is not
compatible with the leapfrog method since the fields and drift velocity are given
at the same time level. This is the rationale behind the predictor-corrector
method [20] for the perpendicular component, which is third order accurate

in 6t (and is s]jghﬂy dissipative, unlike the leap-frog Iriethod).' The parallel
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velocity component is pushed in the normal way :

n+1/2 _ n-1/2 - : ‘

The prediction step uses the velocities at time step 7 and the positions at time
step n — 1 to estimate the positions at time step n + 1 :

()" =x"1 125 (v:; + -;- [0 772 + o7~ b) - (276)

The predicted positions are used to calculate values for the fields at the next

time-step, giving the drift veloéity for the correction step :

- (VZ_H)* = v:iH-l [txn+1)*]

x"t! = x"4 5i‘<V”n+1/2 + é [VZ + (V3+1) *:D (2'77)

It is important to properly time-center the magnetic field components in this
equation since inhomogeneities may be strong. We currently use only magnetic
‘ﬁelds that can be expréssed analytically, so that the VB and b - Vb terms are
known exactly, avoiding the need for magnetic field interpolation. The b - Vb

term is evaluated using the identity
1
b.Vb = E[VB—bx (V x B)]

Derivation of the necessary drift terms is then straightforward, given expres-

sions for the gradient and curl in an arbitrary coordinate system [46].
The only remaining subtlety is in the advancement the particle coor-
dinates from the velocities. For an arbitrary metric, the velocity for the jth

component is h;g;, so that Eqgs. (2.76)-(2.77) become

(q;t+1> = gt +26t v} B} (predict)

gt = g+ 6t v;?“/z [T (correct)
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where h; is in general a function of all three coordinates, (g1, g2,9s). The predic-
tion step utilizes the metric components A7, obtained from the coordinates at
the nth time level. The correction step, however, requires unknown quantities

h;-‘+1/ 2, One way of addressing this problem is to use the predicted positions in

the calculation of A; :
hr}+1/2 = By (qn+1/2)

< by ([ + (@) /2 278)

A more accurate method also exists when the metric is of the form h, =
constant, hy = ho(q1), ks = ha(q1,92), as in the toroidal syétém. -This allows
the push to be ordéred so that the éoordinates needed for éach metric compo-
nent are known (to second order in 6t). The results of the r-push enable the
calculation of h, for the x-push, which enables the calculation of ¢ for the (-
push. However, the accuracy gained by using this ordering does not Fha.nge the
overall accuracy of the push significantly, as seen in long test runs. Therefore,
we use the predicted coordinates as in Eq. (2.78) for the push, to allow sifnpl,e

application of the pusher algorithm in more general metrics.

A major liability of this predi.ctor-correc‘cor algorithm is the need to
repeat the entire field calculation for the electrons at the predicted positions.
This is common to both the present implementation and the usual slab im-
plementation [20], and is costly both in terms of computation and program-
ming effort. The amount of programming effort can be reduced through the
use of a modular field solver—the field loop can be reduced to a few subrou-
tine calls within the guiding center pusher routine. Another liability is the
increased number of particle quantities necessary. A three-dimensional slab
implementation of the guiding center pusher requires nine particle quantities

in general—the three coordinates and velocities, and a temporary vector that
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holds the coordinates of the previous time-step for the predictive step, as well.
as the predicted positions for the corrective step. The implementation in the
toroidal system adds two additional particle quantities—the magnetic moment
(i), which does not evolve but is different for each electron (determiﬁed by the
initial loading), and the vélocity component parallel to the magnetic field (vy).
The three-component velocity vector holds the projection of the drift velocity

onto the (u,x, () coordinate system.

The guiding center formulation works well when the electrons are
| “tied” to the field lines, as in tokamak-type magnetic fields, with only small
drifts perpendicular to the field lines. In the time scale of interest in the typical
numerical experiment, a typical untrapﬁed eleétron will execute many orbits
about the' torus, remaining' reasonably localized about a given flux surface.
~ In such a system, th¢ numerical diffusion away from the flux surface caused
by the finite time-step 1s certainly a concern, and is one reason for using a
flux coordinate system—the parallel motion causes no numerical diffusion in
a Hamada-type coordinate system. (Orthogonal flux coordinate systems are
also free from numerical diffusion perpendicular to the flux surface, though
numerical diffusion may occur on the flux surface itself.) For example if we
- examine the amount of numerical diffusion in the “square torus” configuration
(type-II cylindrical, tokamak fields) due to the poloidal field, we find that the

deviation per time step from the flux surface will be on the order of
By ?
~ : 2.7
) ('v” ot 5 > (2.79)

Although this is second order in ¢, the producf v) 6t for electrons may be
a.ppréciable for typical simulation parameters, creating a definite concern about

numerical diffusion in this system.



66

2.8 Boundary handling and the point at the origin

In a simulation code, the boundary conditions enter in several places—
the field solver, the ﬁltéring of the field quantities, and the inter-polation be-
tween the particles and the grid. . For the particle/grid interpolations, the
boundary conditions can be handled in a riumber of ways: decision-making
(IF-THEN construcfs), indirect lookup-table methods, or guard cells. The guard
cell method used in this research employs an extra grid-point immediately out-
side the system that is mapped back on to the interior valueg in a manner
consistent with the boundary conditions. This has the advantage of speed—
the interpolation routines do not have to deal explicitly with the boundaries, '
nor are there any indiréct lookup tables that may slow execution or inhibit
vectorization. Another advanté,ge of the guard cell techﬁique 1s that unusual
boundary conditions can be easily ha,ndied, since the boundary treatment (fill-
ing and emptying guar.d cells) is completely isolated from the rest of the cal-
culation. In particular, the transition to the » = 0 boundary conditions at the

inner boundary is eased by a guard cell formulation.

The boundary conditions at » = 0 must ensure continuity there, and
the conditions for single-valuedness and continuity of first derivative are given

by Aydemir and Barnes [47]. For a scalar field f(r,#8, ¢), we require that
of

67’ r=0
frmm)ey = 0 form#0

= 0 form=0"

where m and n are the mode numbers for the transformed function f. A vector

field u(r, 8, ¢) must satisfy the conditions

u(r,m,n)|._o +im ug(r,m,n)|__, = 0 for|m|=1

ur(r,m,n)| _, = 0
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ug(r,m,n)|,._, = 0  for |m] 75 1

for the (r, §) components; the uy component has the same boundary conditions
as a scalar function. The boundary conditions for a scalar field apply to the
charge density, potential, and E, field component; those for a vector field apply

to the E,, E, field components.

The implementation of the continuity boundary conditions is straight-
forward when the k-space (in ) values of the field are readily available, as with
the electric fields. The boundary handling of the charge density entails map-
ping the guard cell particle contributions to the interior of the charge density
array using the continuity boundary conditions. However, since the real-space
multiplication of the transformation weight 1/J immediatedly follows this step,
handling of the continuity bouﬁdary conditions in k-space introduces two addi-
tional transformations of the charge density array. These extraneous transfof—
ﬁmtions can be avoided by redistributing the guard cell values among the first
grid points in real space, so that the scalar field continuity condition is satis-
fied. A particle inside the “central cell” can be linearly interpolated between
fhe first .radia.] grid point and the virtual point at the origin; the contribuiion at
the origin is then uniformly spread out among all the neighboring theta points.
Although the interpolation has already been done, this numerical “trickery” is
possible because all the guard cell values have been kept. Thus a particle ex-
actly at 7 = 0 will assign charge equally to all of the points on the boundary of
the central cell, a result that is not only aesthetically appealing but compétible

with the conﬁnuity boundary condition there.

The last modification necessary in the presence of the 7 = 0 point con-

cerns the particle dynamics. - No modification of the ion push is required, since

the ions are being pushed in a cartesian coordinate system, but the 1/r terms
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in the electron guiding-center pusher require some special handling. Although
the number of electrons near the origin will typically be small, eventually an
~ electron will pass close enough to 7 = 0 té cause very inaccurate integration
of the equations of motion (possibly a floating-point overflow as well). This
problem is resolved by letting electrons undergo a éollision when passing too
close to the origin. We can imagine a small, hard cylinder (or torus) centered
at » = 0; the continuity condition demands that an electron passing within
the critical radius will exit with its 6 coordinate shifted by 180° (i.e. r — —r).
Since the electron orbits in the (r, ) plane are drift-dominated at the origin,
and the dominant magnetic drifts vertical, this treatment is reasonable. The
location of this critical radius can be estimated given the maximum tolerable
theta increment in a given time-step for a thermal particle, and assuming the

drift is dominated by the gradient-B term. The critical radius is then given

approximately by
Pmin  4dec(we/ e V2
A N (A)mex

where A is the é.verage grid spacing, N is the number of radial grid-points, w,

and (), are the electron plasma and cylotron frequencies, and v. is the electron
thermal velocity, normalized to Aw,. The maximum tolerable theta increment
1s of ordex; one, where the distortion of the “true” particle motion due to the
finite integration step rivals. that from a collision with the artificial boundary

near 7 = 0. Using typical simulation parameters, we obtain

Tmia 10-2-107

The smallness of this value indicates that a collision is not likely to influence
the calculated fields significantly. Depending on the plasma profile and other
simulation parameters, actual runs of approxiinately 50, 000 particles suffer at

most only a few collisions per time-step at the origin; often no collisions occur.



Chapter 3

Tests of the simulation code

There are many analogies that can be drawn between plasma sim-
ulation and-experiment. The simulator and .experimentor must both design
experiments that will be of interest to the research community. They must
both decide what quantities are important to measure, becoming well-versed
in the existing diagnostic tools as well as being able to construct new t((aolé, in
response to unique situations. In addition, they must draw conclusions from
the massive amount of data gathered in the typical experiment, using spectral

analysis and other statistical tools.

At the same time, there are certainly large diflerences between simu-
lation and experiment. The simulator has many more diagnpstic options at his
disposal, since they can be applied anywhere in the plasma without disturbing
the system. In a simulation, one can in principle observe the evolution of any
desired quantity. Simulation is also unlike nature in that one is ffee to arbitrar-
ily specify details of the system that are either difficult or impossible to modify
In an experiment. These include the electron /ion mass ratio, temperature"and
density profiles, currents, and even the force law itself.

Unfortunately, simulation is susceptible to problems that are absent

in a real plasma. Algorithms may be inefficiently or inflexibly designed, and

“bugs” may find their way into the program, which are difficult to isolate in

large-scale projects. In addition, limitations in computer accuracy, speed, and

mermory size necessitate the adoption of simplified models which may not give

69
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realistic results. If designed well, the model should approximate plasma behav-
ior in some limit, but we must always be aware of the intrinsic limitations of
both the model and the computing environment. The particle simulation model
is essentially a completely independent system, with its own laws governing the
behavior. These laws involve a discretizatioﬁ of the spatial and temporal coor-

dinates, as well as the use of a relatively small number of “finite-size” particles

to represent the plasma.

Il is therefore of great importance to closely examine the effects of
the numerical constructs on the resulting behavior. The verification of our
numerical model is assisted by our knowledge of actual physical systems. The
“particles” in pdrticle simulation behave similar to real particles, and this mi-
croscopic beilavior is important as a diagnostic tool. Ultimately, the ability to
reproduce macroscopic plasma behavior is one of the major goals of éarticlé

simulation; we therefore shall give detailed comparisons to theory in simple,

well-understood configurations.

3.1 Diagnostic methods and post-processing

Some of the most powerful tools at our disposal fall into the category
of statistical analysis. In the course of a simulation run, the values of field quan-
tities or densities can be stored for later analysis, referred to as post-processing.
The electric potential is a convenient and relevant quantity for analysis in the
electrostatic model, and is almost exclusively used in this research. For thé
toroidal system, the form of the data output (and most of the analysis) closely
matches the description of the physical system—Ilocal in radial coordinate, and
global in the periodic coordinates 6 and ¢. Thus the stored quantity (&) is

dependent on three types of variables—spatial (), wave number (k,, k¢), and
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time. Here we shall briefly consider some of the diagnostic methods used in the
course of this research, centering primarily on spectral analysis techniques. An
in-depth examination of spectral analysis (with an emphasis on autocorrelation
and spectral density estimators) can be found in the text by Priestley [48]; a

shorter and less formal examination by Press et al. [40, Chapter 12] is also

illuminating.

3.1.1 Autocorrelation of the poténtial

The autocorrelation of the potential as a function of time and space
is useful primarily for obtaining the spectral density (discussed below), but can
also be used to measure damping rates. For example, the autocorrelation of
the electric field was employed extensively in simulation studies of Bernstein
modes by Kamimura, Wagner and Dawson [49]. The autocorrelation of the

potential is defined by
Cic(r) = (Bxc(t) BL(t + 7)) (3.1)

where the angle brackets denote an ensemble average. The ergodic hypothesis

of equilibrium statistical mechanics allows this to be written as a time average :
Ci :T_.wi/ dt Bic(t) BL(E + 7) (3.2)

Here we have also assumed that ® is stationary—the amplitude of the poten-
tial must not change significantly in time. In practice, this requires that the
characteristic frequencies of oscillation satisfy |Rew| > |Imw|. Note that for
a perfectly stationary signal (Imw = 0) the autocorrelation given by Eq. (3.2)
is real; thus the degree of nonstationarity can be estimated by comparing the

| Hiagnitudes of Re Cx(7) and Im Ck(7).
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In order to evaluate Eq. (3.2) to get the autocorrelation for a sim-
ulation run, we assume time reversal invariance and adopt a discrete time
coordinate and finite time sample, obtaining [49] :

] N-m

= 5 3 2k [nAf] 3 [(n + m)AL] (3.3)

n=1

Cx(7)

where N is the number of data points, 7 = mAt, and m is the lag factor,
varying from 0 to M. As M approaches the sample length, the number of
terms in the sum gets small for large m, resulting in poor accuracy. Thus
| the maximum lag factor M should be much smaller than the saﬁple length to

maintain accuracy, though this results in a small sample of lags. |

For long time samples, the direct calculation of Eq. (3.3) is computa-
tionally eﬁpensive because of the double sum (the sum is done for each value
of 'r)._ The_calculation of this type of equation was one of the earliest uses of
the FFT (fast fourier transform), and its use in spectral analysis has become
widespread [48].. Specifically, the transform of the time series ®(¢) may be fol-

. ;

lowed by an’inverse transform of the squared fourier amplitudes |®(w)|? to give

the autocorrelation.

While the solution of the autocorrelation via the FFT is fast, it has
some disadvantages. First, the FFT technique is not capable of handling ar-
bitrary sample lengths—uéually the sample length rﬁust equal a power of two
(though FFT algorithms exist that allow powers of other small prime numbers,
such as 3 or 5 [50]). This constraint forces the artificial truncation or extension
of the sample length to fit the transform requirement (setting unknown entries
to zero in the latter case). Second, use of the FFT will ordinarily introduce
unphysical periodicities into the time series. The assumption of periodicity

can be avoided through doubling the time series and initializing the unknown
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values to zero, which results in an “isolated” transform [38]. Whether this is
truly an improvement is unclear, however, since the assumption of zero entries
for the unknown values of the time series cannot be rigorously justiﬁed. Note
also that the sharp cutoff in data at some time ¢t = T may give rise to high

frequency noise due to Gibbs effect [46); this can be minimized by smoothing

near the cutoff.

3.1.2 Spectral density of the potential

The spectral density (or power spectrum) of the potential is a measure
of the fluctuation level as a function of wavevector (or space) and frequency.
The spectral density is perhaps the most important diagnostic at our disposal,
giving the oscillation frequencies for the modes of interest, as well as the radial

extent. The spectral density of some observable O(k, ) is defined by [51]

| 7/2 - e

Se(w) =" Jim % f /_ 1, 8 O(k2) Ok, ) gelt=t)  (3.4)
. +o0 .

- / dr €47 Cie(7) (3.5)

where O is the autocorrelation of the observable (in this case, the potential).
An’alternative representation of the spectral density in terms of the dielectric

response function is given by [51,52]

Sil) = (4P 3 o o) (5.5)
where U is deﬁne& by
Uk, w) = Zn,, /d"w}kavlzm (3.7)

This expression clearly shows that when we approach e(k,w) = 0, the spectral

density becomes very large—giving us a powerful tool for detection of frequency
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spectra, assuming Sy (w) can be measured with sufficient accuracy. (F;:or small
€(k,w) the theory must be modified, and the spectral density remains finite, as
discussed by Oberman and Williams [52]. The expression given in that paper
is for <PP>k,w and is proportional to 1/k; the simple relationship between ®
and p in slab geometry immediately gives the above dependence of 1/k5. The
expession originally given by Rostoker [51] concerned the fluctuations of the

electric field, resulting in a tensor form S,z for the spectral density.)

The standard method of obtaining the spectral densi}ty consists of
solving for the autocorrelation, then employing the discrete coordinate analogue
of Eq. (3.5) :

Se(w)= > Ar)Ck(r) e (3.8)

where the windowing function A(7) has been introduced, and T = mAt as
before. The use of a window function which smoothly goes to zero as ™m — M
improves the spectrum when computed in this manner [48]. Many windowing
- functions are commonly employed in spectral estimation (a consideration of
several of the most popular are gi{ren by Priestley); a windowing function often

used in the analysis of particle simulations has been the Parzen window [49).

An examination of this method shows that a fundamental resolution
versus accuracy dilemma exists. In order to cobtain an accuiate estimate of
the autocorrelation, one must keep the lag time as short as possible. However,
the maximum lag time determines the time sample length for the calculation
of the spectral density, which must be as long as possible to achieve good
frequency resolu(‘;ion. This relationship between accuracy and resolution has
been referred to as the “uncertainty principle of spectral estimation” [48], and
is a characteristic of spectral estimation methods in general. Methods exist for

estimating the optimal maximum lag M for a given process, but these require
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previous knowledge of the statistical properties of the system.

The problems associated with the standard method inspired the de-
velopment of the nonlinear spectral estimation techniques, the most well-known
being the mazimum entropy method (this is a member of the class known as
autoregressive models [40,48]). The maximum entropy method assumes “max-
imum disorder” outside of the given time sample—the addition of information
to the sample is assumed to not increase the information content, or entropy,
of the process. This‘ assumption essentially extends the temporal length of the
known autocorrelation values, resulting in a large gain in resolution in the fre-

quency. The entropy rate of the process 1s related to the spectral density via
the relation ,
1 B _
h= E /~B log S(w) df + constant | (3.9)
where B = 1/2At is the Nyquist frequency and S (w) is the spectral density.
We next express the spectral density in terms of the autocorrelation e(T)
1 (B M |
h= —/ log | 3 c(7)ezp(—iwr)| df + constant (3.10)
4B J-B M ‘
and maximize h subject to the constraint that S(w) is consistent with the
known values of the autocorrelation. This results in a variational problem of

the form

6 B ‘ e
—/ log S(w) = > An[S(w) exp(~iwr) — c(r)] b df =0 (3.11)
65 /-5 e M :
‘The solution to the above problem is too involved to gi\(e here, but the resulting
spectral estimate can be written in the form [53]

Py

= ~ (3.12)
Bl + M, g exp(~iwr)|’

Stnem (W)

with the constant Pps and coefficients g,, to be determined.
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The maximum entropy method has previously shown its superiority
to the standard method in analysis of plasma turbulence [54]; a similar irhprove-
ment has been seen in this research as well. This improvement is essentially due
to a better match between the statistical process being observed and the corre-
sponding spectral analyser. In this case, the presence of poles in the expression
for the spectral density (3.12) enables highly peaked features in the spectrum to
be resolved. On the other hand, a fourier representation has no poles, so sharp |
peaks are only obtained when a large number of terms contribute to the sum.
The main disadvantage of the maximum entropy method is that short sample

lengths may give rise to spurious peaks, especially for continuous spectra.

The upper bound (M) to the sum in Eq. (3.12) is often referred to as
the order of the method, and plays a role similar to the maximum lag factor
used in the standard method. That is, when the order is small, accuracy is
greatest, with resolution fhe poorest. For large order, the reverse occurs. The
optimal value will depend on the type of statistical process being observed. A
small M (M <« N) has been recommended for autoregressive (AR) processes
[48];:for harmonic processes with ndise, however, values in the range N/3—1 <
M < NJ/2 - 1 are more appropriate [53]. For the physical problems studied
here, a value of M ~ N/2 is observed to give spurious peaks and a definite |

degradation of the spectrum; therefore a value near N/4 is typically used.

3.1.3 Other statistical methods

When simulating the evolution of a confined plasma, it is important
to detect the presence of an instability, and obtain estimates of growth rate
and spatial extent. These statistics can be obtained simply by plotting the

quantity ||(e®/kT)| as a function of time on a logarithmic plot and calculating
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the growth rate by hand.

The spatial structure of a given mode can be examined through the
interferogram [55]. This diagnosti.c interferes the potential with a pure signal
of a given frequency, which acts as a mask to eliminate all other frequency

components. Simply put, we obtain a function R(®) such that

tm ax

R(r,m,n) = /

t dt &(r,m,n,t) exp (—iwt + ). (3.13)
The frequency to use in this éalculation is typica,lly‘ given from a previoﬁé
diagnostic, such as a Ilila.ijqu entropy power spectrum. The amplitude of the
interfered function R will show a dramatic increase in the vicinity (in space
and frequency) of a normal mode of the plasma. It is often possible to compare -
this function to the theoretically predicted. eigenfunction shape as well. When
the total averaging time (t.4 — tmin) €xceeds the damping time for the mode,
the calculation of the eigenfunction in this manner becomes inaccurate due
to phase errors v[56}; in this case, the amplitude of the eigenfunction can be
used instead. Note that the squared amplitude of the eigenfunction.e(iuals the
spectral density for the given frequéncy (although the measured frequency will
show some variability over the radial extent, so this association is not exact).

Thus, the measured power as a function of radius is also used in examining

spatial mode structure.

A diagnostic frequently performed on simulation codes is the measure-
ment of the equilibrium fluctuation spectrum [57].. This involves the calculation
of time-averaged field components by wave number (typically the electrip fields)
in an equilibrium configuration. The results are then compared with the result
from the fluctuation-dissipation theorem, or from kinetic considerations [51].

This calculation for the slab limit of the toroidal particle code was performed
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early in the code’s development, giving reasonable results, but was omitted

from this dissertation due to the lack of a more recent result.

3.1.4 Test particle methods

The last diagnostic method to be discussed involves the use of marker
or test particles. The test particle method is straightforward in principle—one
or more additional species of particles is employed, typically far less numerous
than the actual electron and ion species. These test particles,l by virtue of their
limited number, can be followed precisely in time, storing the entire history if
desired. Additional particle quantities can be introduced for little increase in
memory usage. Furthermore, although these particles respond to the ﬁelds just
as the normal species, they contribute no perturbing influence since they are \
typically not included in the charge accumulation. This allows the creation of |
any desired distribution of test particles, which is important in measuremerits of
a diffusion coefficient from test particle motion [55]. The methods implemented
in the present code for storing such data enable on the order of 100 test particles

to be followed in time, giving good statistics for such a measurement.

Although the'tesf particle method can be very useful for giving es-
timates of quantities such as diffusion coefficients, test particles can be more
valuable for simple microsc&pic tests of the simulation code. Researchers in par-
ticle simulation have cautioned that the microscopic particle motions are not
always faithfully reproduced in particle simulation codes, since that is not their
design [21]. However, this does not mean that the microscopic behavior should
be ignored. In a strongly magnetized plasma, the dominant particle motions
are the acceleration parallel to the field lines, E x B drifts, VB and curvature

drifts, and the polarization and nonuniform electric field drifts. Through test
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particles, these can readily be observed in at leaét a qualitative way. This is
very important in the early and intermediate stages of code development,bwhen
algorithmic and programming difficulties are prevalent. Further, including the
test particle distribution in the charge accumulation is straightforward and al-
lows self-consistent motion of the test particles to .be observed. This motion
allows a qualitative but sensitive test of the dyilamics, on a scale far smaller
than the typical plasma simulation (which may involve many tens of thousands

of particles and thousands of timesteps).

3.1.5 Remarks

The diagnostic methods discussed above play a crucial role in this®
research. The accurate measurement of the power spectrum is very important
for understanding the plasma behavior, especially for lQW frequency, marginally
unstable (or stable) phenomena. | The maximum entropy method is usually used
for analysiné the bulk plasma simulation results; due to its superior frequency
resolution. The interferogram diagnostic is used in the study of the drift wave

in the slab limit, where the linear theoretical eigenfunction can be readi]y

calulated.

. Finally, the extension of :particle simulation methods to toroidal ge-
ometry is accompanied by unique problems in program and algorithm verifica-
tion. Simulation in slab geometry is well served by current theoretical plasma
phyéics, but there are few (if any) “sta,ndard.” tests available for the toroidal
system. Thus, there is a strong reliance in this research on bulk plasma tests
in the slab limit, for examining the simulation plasmz;’s_kinetic response. Lhis
is reasonable; the inclusion of toroidal effects involves few major co.nceptual

changes per se. Aside from consistency checks and other debuggiﬁg methods,
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the correctness of the the toroidal field solver and dynamics have been demon-

strated through test particle motion; these results are presented below.

3.2 Test particle results

In actual plasma devices, the magnetic field structure may be very
complicated and is usually highly nonuniform. The resultant magnetic drifts
and trapped particles can have a large effect on the stability of the plasma.
Including these effects in a simulation is therefore very important. In this
research, the only restriction on the form of the prescribed magnetic fields is
that the flux surfaces be nested, concentric tori. This restriction is imposed
so that there exist no zeroth-order (in Larmor radius) parficle fluxes into the
boundaries, as well as minimizing numerical diffusi;)n. More general magnetic
field configurations are possible, while still satisfying this condition, by using a
genefated grid for storage of the cross-field ';rariab]es.

In practice, the magnetic field configuration usually adopted is es-

sentially tokamak fields—a vacuum field for the toroidal component with the

poloidal component specified in terms of the safety factor. These can be written

B, = B,;o% | (3.14)
B, = ——B, 3.15

where the safety factor g(r) is usually an increasing function of r. The parallel

motion of the particles will be predominantly in the toroidal direction, since

r/ qRo is usually much smaller than unity. However, the poloidal component
guarantees that a particle on the outside of the torus will eventually move into
a region of stronger magnetic field, causing low parallel-velocity particles to

reverse directions. Coupled with the dominant inhomogeneous fnagnetic field
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drifts, this gives rise to the famous banana orbit in this system. Test particle
trajectories reproduce this behavior in the toroidal code, both for thé full-
dynamics ions and the guiding center electrons -(see Figures 3.1-3.2). For this -
test, no electric fields are used. Additionally, the electron orbit was obtained
by using identical parameters as the ion orbit, but invérting the magnetic field

and increasing the electron mass to that of the ion.

The conservation of various particle invariants like energy, magnetic
moment (1), and the toroidal canonical momentum often play central roles in
plasma phenomena. We therefore closelsr examine the conservation of these
quantities by our pusher algorithms in the absence' of electric fields. The time
histories of these quantities, for a representative pair of particles, is given in
Figures 3.3-3.6." In the interest of brevity, this pair will be referred to as the
FD (full dynamics) or the GC (guiding center) particle, since these may be
used on an arbitrary species. The particle quantities shown in the plots are the

-parallel velocity (v)), kinetic energy (E}), zero-order magnetic moment (po, FD
particle only), canonical toroidal momentum (p,), toroidal angular momentum
(Lg), magnetic flux (¢), and thé radial position normalized to the minor radius
(r/a, GC particle only). The two trajectory plots at top are r versus (toroidal.

cross section), and R versus ( (view from above).

For .the most part, the orbits as given by the two algorithms are in
excellent agreement, improving for the smaller Larmor radius case. Part of the
~discrepancy involves small errors in initialization, since the initial GC particle
quantities must represent the “averaged” initial FD quantities, which is handléd
only approximately. The magnetic moment of the FD parficie is on the average
well conserved, but oscillates once per csfclotron rotation. Note that only the

lowest order expreésion for the magnetic moment is shown (yo = U_ZL/.2B ); the
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T = 160.00 TST 18 R VS CHI T= 160.00 TST 18 1 RP VS ZETA

Figure 3.1: Trajectory of a mirroring full dynamics particle in a tokamak field.
On the left is the projection onto the (7, §) plane; on the rightis the view from
above.

T = 160.00 TSTEL | R VS CHI T = 160.00 TSTEL { RP ¥S ZETA

RHIN = 0.00 RMAX = 4.00 RHIN = 1.00 RMAX = 9.01

Figure 3.2: As above, but for a guiding center particle.
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Figure 3.3: Time histories of full dynamics particle, large Larmor radius case.
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Figure 3.4: Time histories of guiding center particle, large Larmor radius case
(same parameters as in Figure 3.3).
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Figure 3.5: Time histories of full dynamics particle, small Larmor radius case.



86

(r,"H) trajectory (R, ¢) trajectory

TST EL 3 R VS CHI T = 4000.00 TST EL 3 RP ¥S ZETA T = 4000.00

WM 8,08 RMAK e 84,00 ' BKIB e 96.00  MMAX m 324,00
TST EL 3 VPAR v ‘ TSTEL 3 LTOR I
” YRS ] ¢
RTHS -1 P
-8 .
18 Tl ]
-3 b-3 o = o -3 (-3 -3 L3 -3 © -3 -3 -] -3 -3 -3 -] 2 -3
& 3 3 8 &8 £ &8 35 8 § % 8 2 z2 3 8 8 8
L0» 0.144E480 -+ Wi » 01081400 16 = <0.210E400  HI = -0, 1372400
TST EL 3 EX i TST EL 3 PSI
5.008 E]c -4 ¢
. -89 J
e b
8,008 / e ]
: -8 . ——
Lo = 68006401 W) = 0.501E401 L0« -0.000L482  KI = ~0.47RES02
vl TST EL 3 PTOR p TST EL 3 &M ’r/a,
-40.87 | d’ n . o~
2
4158 _\‘_____ .
-$0.5¢ )
NN R EE
10 » «0.605E102  H) w =0, 886£402 L0« 0.2506480 Ml = 0.208£400 )

Figure 3.6: Time histories of guiding center particle, small Larmor radius case
(same parameters as in Figure 3.5).
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Figure 3.7: Time histories of high velocity, large Larmor radius guiding center
particle. ' i |
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inclusion of higher order terms in this diagnostic would presumably show better

conservation of u. This is supported by the better conservation at smaller

Larmor radius.

The canonical toroidal momentum is conserved very well by both
algorithms, and the energy is extremely well conserved in the FD algorithm.
The energy conservation by the GC algorithm is good, but shows a significant
variation as the particle transits the torus (see Figure 3.4). This variation of
the energy is not numerical dissipation, but seems to be a result of drift into a .
region of higher magnetic field strength. This can happen when a non-vacuum
field component is present, in which case the guiding center drift is no longer

perfectly perpendicular to VB (due to the curvature drift term).

A final set of time histories is shown in Figure 3.7, given a high velocity
GC particle (large effective Larmor radius). A strong variation is seen in both
the energy and the toroidal canonical momentum, which are nevertheless well
conserved when averaging over transits. Though this velocity is compéra,ble to
a simulation electron, the eflective Larmor radius of a simulation electron is

smaller by the square root of the mass ratio, making it much less susceptible

" to these effects.

i

The next test involves the self-consistent fields generated by test par-
ticles. First, it is desired to examine the potential generated by a particle in.
the vicinity of r = 0, for continuity boundary conditions there. The result is
shown in Figure 3.8, and the potential contours clearly reflect the continuity
boundary conditions. The potential contours for an odd parity at the origin

and the same particle position are shown for comparison.

We next address the issue of verifying the correctness of the toroidal

field solver. Aside from calculating the divergence of the electric fields, and see- “
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Figure 3.8: Test particle potential contours for particle near r = 0. Field.
calculation for case on left uses continuity boundary at the origin; on the right,

an odd parity boundary condition is used.

ing how well it approximates the source term 4mp, the field solver can be checked
via test particle motion. In particular, we can compare test particle motion in
the toroidal configuration to that in the cylindrical type-II configuration, both
using tokamak-type fields in the “toroidal” direction. Some creativity must be
applied to g‘et a reasonable comparison, since the toroidal configuration has
better radial resolution (at the expense of resolution in theta), and has circular
boundaries, rather than square. Therefore the test particles are located ﬁu’dwajr
between the boundary and the center to minimize coordinate system effects;
the number of grid points in each coordinate are adjusted to keep the cell size
comparable in the vicinity of the particles. Further, the particle “size” used in
the filter is increased to minimize grid eflects, and the total volume enclosed in

each simulation is scaled to be equal.

For the configuration described above, the fields generated by particles
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at a given location are shown in Figures 3.9-3.10 for fhe lowest toroidal mode
numbers (the mode expansion in the toroidal dimension was employed). The
sign of the imaginary paft is reversed for the two cases because the mode
expansion variable is in the opposite direction. Thevshape of the contours
in each case are very close, the differences appearing most clearly near the

boundaries. The magnitude of the potential at maximum agrees within five

percent.

Next we “turn-on” the self-consistent electric fields, and advance the
test particles in time. Without the shieldihg presence of a plasma, the forces
generated by the test particle fields (and the image fields from the conducting
boundary) are very large. Therefore it is necessary to use a very large magnetic
field strength and small timestep to ensure good behavior. The electron and ion
trajectories in each case is shown in Figures 3.11-3.14. The electron oscillates
about the jon on the field line, with the ion éyclotroﬁ motion subject to strong
time-varying drifts. Despite the somewhat violent nature of the motion, the
two cases give good qualitative agreement. This is an excellent test of the code,
because iri each case very different calculations are being performed to advancé

the system in time, and all the important effects have been included.

3.3 Normal modes in a uniform equilibrium plasma

The starting point for most theoretical treatments of plasma waves is
the Vlasov-Maxwell equations, which assumes that the total distribution func-
tion is well approximated by the one particle distribution function f,(r,v,t).
The evolution equation is then [58,59]

0 0 - 0 '
{52 vt (Bt + 3 x B(r,1)] - 5} folr,v,t) =0  (3.16)
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where E(r,t) and B(r,?) are the electric and magnetic fields, ¢ indicates the
species, and g and m are the charge and mass, respectively. The electric and

magnetic fields are calculated from the Maxwell equations, given the charge

and current densities

pirt) = Yaome [av fulr,v,t) (3.17)
It = Y gm, / dv v f,(r,v,1) (3.18)
which are connected by the continuity equation |
Op ’ .
_F .J=0 3.19
5 +V (3.19)

For an infinitesimal perturbation of the distribution function, the Maxwell

equations and linearized Vlasov equation give a solution of the form
e(k,w) SE =0 (3.20).

where 6E is the amplitude of the perturbed electric field and e(k, w) is known

~ as the dielectric tensor. This equation has nontrivial solutions for
lefie, )] = 0 (3:21)

establishing a relationship between the frequeﬁcy and wavevector of electro-
inagnetic disturbances in the plasma, known as the dispersion relation. For a
plasma in an external magnetic field, the derivation of Eq. (3.20) employs the
ﬁethod of chﬁracteristics; the cyclotron motion of the particles is assumed to
be ﬁnperturbed by the disturbance. The full expression of the dielectric tensor
can be found elsewhere [58,60]. Of interest here is the longitudinal response,

which is relevant to the electrostatic approximation employed. The result for

this 1s

e w0, 0, 8L\ Jb)
E(k,w) =1- 27“-2— Z /dV ( oL Ov, + klla—v”> o+ k”b” — (3.22)

(4 n=-oo
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where w, and {1, are the plasma and cyclotron frequencies relevant to the
given species, and b, = kv, /§),. This is usually called the dielectric response

function, and the dispersion relation (3.21) becomes simply
ek,w)=0 (3.23)

* where e(k,w) is a complex scalar function. We now assume a Maxwellian

velocity distribution

CmN [ R+
Jo(vi,vy) = (57?5’:) exp [‘m] : (3.24)

and keep only the n = 0 electron cyclotron harmonic, since we are considering
electron guiding center dynamics only. The dielectric response function is then
given by

2

ek w) =1+ 2214 0.2(8)] [1 4 Z — nQ ¢.Z Cin)T‘n(bz-)J ' (3.25)

k%"
- where Z is the plasma-dispersion function [61]; its arguments in the above

equation are given by

G = PNCAEARE | (3.26)
= _w-nik (3.27)

G = |k (2T /)22

Here we have made the assignment k, = 1/),, and introduced the function
T, (b) = I,(b) ezp(—b) (3.28)

where I, is the modified Bessel function.

At this point the usual practice is to look for solutions to Eq. (3.23)
in a frequency regime where the arguments to the plasma dispersion function

are either very large or very small, using an asymptotic form of Z to get a
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tractible expression. A normal mode solution is found by assuming a frequency
dependence of the form w = wy + 2y, With || < |we|. For the plasma wave,

the relevant regime is [58]
kv < kjve € w < S (3.29)

giving for the real part of the frequency
' 2.2
k” Vs

RN+ K2

2
Wy

(3.30)

where T'(b) has been expanded as T'(d) ~ 1 — b for small b, and p? = Tp2,
7 = T,/T;. If the ion Larmor radius term is neglected, Eq. (3.30) reduces to
l

wo > We— (3.31).

k

Which is the usua] result.

The above procedure, involving the expansion of both the plasma
dispersion function and the exponentially-scaled modified Bessel function, is a
valuable ana]yficaj tool to gain insight into the behavior of these modes. How-
ever, for comparison to simulation results a more accurate method is desired.
Therefore, the procedure used in this work for comparison to the theoretical
frequency is to solve the dispersion Eq. (3.23) directly from Eq. (3.25), using a
complex root finder (IMSL library routine ZANLYT). The full plasma dispersion
function is calculated using a continued fraction method. Although it is us.ual
to keep only the n = 0 cyclotron harmonic of the ion response term, we find

that it is necessary to keep at least the n = 1 or n = 2 terms for close compkar-

1son with the simulation results. Given an initial guess reasonably close to the -

root, the method converges rapidly.

The tests given here of the simulation plasma in the plasma wave

regime consider only a single harmonic in { (n = 6) but all of thebperpendicular
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dynamics; this configuration is similar to that studied in association with the
toroidal drift mode in Chapter 4. The simulation parameters are given by :
N, = 50625 (number of particles), Ly = L, = 64 A, L, = 3L,, N, = N, = 64
(slab geometry and uniform grid, with a mode representation in z), At =
02w, vy = .51 AwSl, 7= 1, m./m; = 0.01, Q,/w, = 10, and particle “size”
of az = ay, = A, a, = 0 (no additional smoothing was erﬁployed in z due
to the accuracy of the mode expansion; also note that the particle size in z
only approximates one grid spacing, using two passes of the binomial digital
filter). The energy was conserved within 0.03% for 2000 tl;me'steps; The
plasma frequency is obtained by the maximum entropy method. Although the
potential is stored in the form of (r,m,n), for a slab geometry simulation we
can Fourier transform in the post-processor to get the k, dependence. The
ffequency, power, and mode numbers for the strongest siénals are output by
the post-processor. ‘The frequency is then p]otfed versus the perpendicular
wavevector, and compared to the theoretical result in Figure 3.15. In this
figure, the solid line represents the theoretical plasma response with the filtering
effects included (finite size particle effects), and the dashed line representing
the theoretical response alone. The filtering effects are included in the theory
in a very simple way—we repléce w? by w?S? in Eq. (3.22), Where. S(k-a)is
a gaussian shape factor and a is the effective particle size. The agreement is
good, and the remaining systematic error is likely due to grid effects, which
have not been corrected for in the rootfinder (i.e. modification of the spectrum
from the interpolation and Poisson solver). The flattening of the theoretical
solution at higher values of kjp; is caused by connection to the n = 2 ion

Bernstein branch. A sample plot of the spectral density is given in Figure 3.17.

We further check the variation with the perpendicular wavenumber
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Figure 3.15: Frequency versus perpendicular wavenumber, plasma wave regime.
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Figure 3.16: Same as in Figure 3.15, but including only the [ =2 and m =1
wavenumbers,
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Figure 3.17: Sample plot of spectral density for the (6,2,6) mode using the

maximum entropy method.

while holding the x-coordinate mode number ﬁxed (I = 2, doubled because .
of the odd parity)l or the y-coordinate mode number fixed (m = 1, periodic).
This check will illuminate any discrepancies caused by the combination finite-
diflerence/digital-filter method used in = compared to the more usual k-space

treatment in y. As seen from the plot in Figure 3.16, there are no apparent

differences at low mode number, as expected. -

At this point we also wish to test the ability of the code to repro‘duce
the plasma wave spectrum in the presence of a nonuniform grid. This test
ensures that the nonuniform grid has not altered the plasma dynamics in any
unexpected way—the nonuniform grid should reproduce the long wavelength
behavior as well as the uniform grid. As with the case with the uniform grid,

the x-space data is transformed into a k-space representation, although an FFT



102

cannot be used because the data is not uniformly distributed (i.e. must be done
by direct expansion). The simulation parameters are as given above, except for
the addition of the nonuniform grid. A plot versus perpendicular wavenumber
for all modes is given in Figure 3.18, and for the [ = 2 and m = 1 modes in
Figure 3.19. The results in this case are not substantially different from the
uniform grid case, proving the ability of the nonuniform grid to correctly model
the long‘—wavelength modes. A sample sample spectral density plot is given ‘in

Figure 3.20 and the nonuniform grid employed is illustrated in Figure 3.21.

An additional mode often examined in magnetized simuiation plasmas
is the electron or ion Bernstein m’ode’, which is characterized by frequencies near
multiples of the cyclotron frequency for each species. In this algorithm, only
the ion modes are observed, since the electron cyclotron motion has beeh gyro-
avergaged via the guiding center equations. The direct solution of Eq. (3.23)
for the cyclotron harmonics using-the dielectric respbnse function given by
Egq. (3.25) is an ill-conditioned problem, however. In this case, we must re- -
arrange the terms in the response function, based on our knoﬁledge that the

roots are near the cyclotron harmonics. In particular, we assume w ~ nf);,

whereby the ordering of the terms casts the dispersion relation in the form

nﬂi
w — m =0 (332)
where (k,w) will be small, and is given by
Blk) = 226, Z(6)Tolb) 3 (3.39
y W _kz in in )+ n\Ui R(k,w) O |

and

Rk,w)=1+ % [L+¢Z(¢)) + % [1 -2 ;‘_‘%Cﬁz(@-)ﬁ(bz’) . (3.34)
in i |

with (. and (;, as previously defined.
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Figure 3.18: Plasma frequency versus perpendicular wavenumber, nonuniform
grid case. |



104

+ m=1 -

~—
—
—

Figure 3.19: Same as in Figure 3.18, but including only the /| =2 and m =1
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Figure 3.20: Plot of spectral density for the (6,2,6) mode using the maximum
entropy method.
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"Figure 3.21: Grid configuration for plasma wave test.
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The complex rootfinder will converge with the dispersion equation in
the form given by Egs. (3.32)—(3.34), but we can simplify a bit more for the
purely perpendicular-propagating mode. In this case, kj is identically Zero, so
the large argument expansion of the plasma dispersion functioﬁ must be used.

Expressing the frequency as

w=nl; (1 + A, (k,w)) (3.35)
we have
k,w
An(k,w) = % (3.36)
with (3 given by
ki T (bs)

Sty sy re) ML

To obtain an explicit expression for w, we keep only the largest term in the

sum, given by j = 0. If we also assume that  is much less than unity, we

obtain

Q

8 | . (3.38)

KT (5)
B R (1= To(b) (3.89)

An(k)

Note that this differs from the expression for A,(k) given by Ichimaru [58,
Eq. (4.89a)]. For the purely perpendicular mode, there is no contribution from
the electron response, since electrons are tied to the field lines and cannot
interact with the wave. Ouly for a finite angle of propagation will electron
screening and Landau damping effects enter. In this case (finite k), one must
solve using the full dispersion function to get an accurate dispersion relation,
using Egs. (3.32)-(3.34).

For the ion Bernstein mode test, we consider the two-dimensional slab

geometry limit of the code (n =0 only). The simulation parameters are given
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by : N, = 50625 (number of 'particles), L, =L,=64A, N, = N, = 64 (slab
geometry, uniform grid), At = 2.0w;?, v = 1.0AW Y, 7 = 1, m./m; = 0.04,
e /w, = 5, and particle “size” of a, = a, = A (using two passes of the binomial
digital filter in z). The e.nergy was conserved within 0.5% for 2000 time steps.
The frequencies are again obtained by the maximum entropy method. The
frequency is plotted versus perpendicular wavenumber, and compared to the
theoretical result using the rootfinder in Figure 3.22. As previously, the soli&
" line represents the.rtheoretica,l response with the gaussian filter correction, and

the dashed line is the tHeoretical response alone. A sample plot of the spectral "
density is given in Figure 3.23, showing the strong response near harmonics

of the cyclotron frequency. For the parameters chosen in this run, the plasma

response is concentrated in the lowest Bernstein harmonics, as seen in the

spectral density plot.
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Chapter 4

Drift wave theory and simulations

In this chapter we apply the toroidal simulation model to the study of
drift wave instabilities in toroidally confined plasmas. We will first consider the
problem of initialization, that is, the loading of stationary distributions in the
toroidal system. Stability problems require an initial equilibrium configuration;
however, satisfying this constraint proves to be much more difficult than in
slab geometry. In section 4.2 the theory of the drift Wave in the slab limit

is discussed, and a simulation of this mode is performed using the toroidal

particle code in the appropriate limit (two-dimensional, slab). Consideration of

the slab-like drift mode provides a useful starting point towards understanding
of the toroidal mode, and provides an additional demonstration of the validity
of the simulation model. In section 4.3 we discuss the important modifications
to the slab theory that are necessary when considering realistic geometries,

followed by a description of the toroidal simulation and analysis of the results.

4.1 Establishment of the toroidal equilibrium

The study of collective plasma effects via particle simulation must be
preceded by consideration of the equilibrium. Since particle simulation utilizes
multiple charged species, coupled only through the self-consistent electric (or
magnetic) fields, enhanced fluctuation levels by charge separation is a concern.
It is well known [22] that incorrect loading of electron and ion profiles in slab

geometry can cause fluctuation levels well in excess of equi]ibriurh levels. This

110
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energy is concentrated in the k, = 0 mode (for an z variation of the density
profile), and is caused by the large-scale separation of charge perpendicular to
the magnetic field. This type of enhanced fluctuation level can easily obscure
subtle collectiye effects, in an otherwise stable (or marginally unstable) plasma.
Furthermore, charge separation effects can persist for extremely long times for
simullations of the type considered here—the collisionality is low, preventing
rapid collisional relaxation, and the magnetic fields are static, so that field line

tearing cannot occur.

The driving mechanism for charge separation effects in toroidal ge-
ometry is the gradient-B and curvature-B drifts. These drifts are of opposite
sign for ic;ns and electrons, leading to 'the well-known vertical charge separation
in a toroidal device without rotational transform [62]. The inclusion of rota-
tional transform, however, ensures that a particle that drifts away from a flux
surface will eventually return to it, as it moves along the poloidal component
of the magnetic field (see Figure 4.1). This results in confined trajectories for

individual particles, as well as a cancellation of the charge separation effects. -

In a particle simulation of the toroidal system, however, the transit
time for the typical jon is much longer than other characteristic times of the
system (an ion gyration period, for example). The initial particle load, which
uses a straightforward extension of the slab procedure, leaves the particles in
a highly correlated state, and the effects of the rotational transform are not
immediately felt. This leads to large-scalé charge separation (primarily due to

theion drifts) and electric field fluctuations far in excess of equilibrium values.

The charge separation seen in the toroidal particle simulation is a
result of the loading of non-stationary particle distributions. In theory, a sta-

tionary distribution can be obtained by utilizing a function of the constants of
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Figure 4.1: Drift orbit of transiting particle in system with rotational transform.

motion :

f = f(X, 6:/1‘apd)) . . (41)

where x is the coordinate, € is the energy, p 1s the magnetic moment, and
Py = mRvg + gi(r) (4.2)

is the toroidal canonical momentum. The theoretical procedure for writing the

distribution as a function of 7 is to expand f (pg), with the assumption that
mRuv, K ¥(r) (4.3)

The problem with this approach is that relation (4.3) is not valid for typical
simulation parameters. What is required is a distribution that generates some

‘desired density profile, and is stationary to all orders in the ion Larmor radius.
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Such a constraint may be difficult (if not impossible) to satisfy, so we therefore

consider alternate methods for loading the particle distributions.

One alternative is to directly load a distribution in terms of the con-
stants of motion as in (4.1), using' some general function of Ps. This procedure
will not allow the exact generation of a desired density profile, but a reasonably
close match could be obtained through variation of the function f(ps). In ap-
plying this to the phase space of the particles, however, an additional problem

arises. The function we are trying to load takes on the form of
f(x’ p¢) = f(‘l", 07U[|7UJ_) (44)

subject to the constraint that the energy distribution f(€) be specified (usually
a constant temperature Maxwellian, but in general the temperature may be a

function of ). The distribution function must approximately give the desired

density profile, that is,

| nspec(r) ~7; </ av f(x,v >a,¢ (4.5)

In addition, the resulting pitch angle dependence (u/€) and density variation in
' 0 must be reasonable. Note that the @ dependence 1s ignorable; the gyrophase
angle dependence 1s usually small and has been neglected in the dlstrlbutlon

function.

The ’generation of random variables corresponding to the distribution
given by Eq. (4.4) subject to the given constraints is a very complex problem,
and is likely to be computationally very expensive. A straightforward method
would utilize a discretization of the variables (r, 8, v, v1) and would require
enormous amounts of temporary storage for an accurate representation of' the
distribution. A use of the rejection method [40] to generate the random vari-

‘ables would lessen the memory requirements, but either method is expected
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to be very costly in cpu time, for the large number of particles typically em-
ployed. Schemes based on the direct loading of (4.4) are still being sfudied,

but a completely different approach has proven feasable.

The use of a distribution function that is not a function of the con-
stants of the motion is responsible for the failure of the “standard” slab load in
the toroidal system. This distribution is not stationary and will rapidly evolve.
In the absence of electric fields, the mechanism by which it evolves is known as
phase-mixing (since the particles are non-interacting 1;n this case, so there is no
physical dissipation). Eventually, a stationary distribution is reached, which
may be used as a stérting point for our toroidal particle simulati(on. Thus,
the generation of a stationary distribution is accomplished by initializing the
particle positions in the standard way, theﬁ advancing them in time according
to the given magnetic field configuration, without the self-consistent electric
fields. Phase-mixing eventually results in quasi-sté,tionary distributions. ThisA
argument assumes that no zero-order electric potential is necessary for equilib-
rium. .‘

For this “equilibrium via phaée—rrjixing” to succeed computationally,
we require first an efficient method for pushing the pafticles (primarily ions) on
time scales very long compared with the cyclotron gyration. This requirement
is satisfied by utilizing the guiding center equations of motion (ordinarily used
for the electrons). These equations are accurate even for large Larmor radii in
the absence of electric fields, as long as the magnetic field varies slowly on this
scale. The second requirement is to develop a criterion by which we can gauge
the closeness to stationarity and thereby terminate the initialization procedure.
A simple symmetry argument will suffice here. The initial load, as well as the

time-averaged particle o'rbits, are vertically symmetric (i.e. symmetric about
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the 6 = 0 and § = = half-planes). Therefore, since the time-averaged distribu-
tion is vertically symmetric as well, the ensemble-averaged distribution must
also share this symmetry, by the ergodic hypothesis for a system in statisti-
cal equilibrium. This requirement of vertical symmetry proves to be a good

criterion by which to terminate the initialization push.

The initialization pfocedure 1s illustrated by following various mo-
ments of the particle distribution (for the jons) in time, as the particles are
pushed in the absence of electric fields. The case studied uses a fairly large
Larmor radius (p/a = 0.025, where ais the minor radius), x'vhich empha-
sizes the non-equilibrium effects since these eflects scale as some function of
kp and p/r, where & is the inverse density scale length. The parlicle distri-
bution moments shown in Figure 4.2 are the parallel and perpendicular tem-
peratures (T)(r,8) — (Ty), T.(r,8) — (T.)), zero-th order magnetic moment

(#o(r,8) — (uo)), and parallel velocity (v). These are all given at time ¢ = 0

- and show no global vertical asymmetry, aside from velocity space fluctuations.

The initial load was such that the total energy and magnetic moment had no

global theta dependence.

The same moments are plotted in Figure 4.3, at a time ¢t = 5000;".
Here there is a strong vertical asymmet'ry seen in the distributions. The elec-
tric fields that, would result from the charge se};ara,tion are much larger than
the thermal equilibrium field level. This situation will at best cause an artifi-
cial modification of the plasma response, or at worst drive the plasma to the
boundary, as in a system without rotational transform. Note the appearance

at this stage of a large-scale structure in theta of the parallel velocity.

Finally, we plot the distribution moments at the much later time

t = 4000 Q7! in Figure 4:.4. The vertical symmetry at this time has become
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Figure 4.2: Particle distribution moments at time ¢ = 0



Figure 4.3: Particle distribution moments at time ¢ = 500 Q7.

117




118

well established. Any remaining asymmetry results from either velocity space
fluctuations or froﬁ the very slowly-moving particles, which take much longer
to phase-mix than the bulk of the distribution. The parallel velocity, in addition
to having the observed structure in theta, has shifted to a negative net value
on the average. This is shown in a plot of the distribution function at the three
times (Qit' = 0, 500, 4000) in Figure 4.5. Although this shift is somewhat
large, it is probably tolerable. Also, the parallel velocity shift decreases if the
ion Larmor radius is decreased. The theta structure of the parallel velocity
results from the variation of a drifting particle’s distance from the flux surface

(ér), coupled with the plasma inhomogeneity.

The initialization is accomplished by pushing the ion species via the
guiding center pusher until the vertical symmetry criterion is approximately
sa.tisﬁéd. On the order of 2000 time-steps are typically required, for 6t = 2 Q;*
(as in the above case). The computational expense for this calculation is rea-
sonable, since the guiding center pusher is very fast when the electric fields
do not need evaluation. At the conclusion of the initialization run, particle
quartities are output to disk and then re-read for the actual sifnulation run,
making the necessary transformation from guiding-center coordinates to the
full dynamics coordinates. The electron positions (guiding centers) are loaded
on “top” of the ion positions, which is one standard method of ensuring ap-
proximaﬂe quasineutrality at time ¢ = 0 (and is equivalent to the method of
Naitou et al. [22] in the limit of large number of particles). The electron veloc-
ity distribution is loaded in the usual way, which ignores any non-equilibrium

eflects that may be caused by the geometry. Since the electron drifts are much

smaller than the ion drifts, this is usually justifiable.

The final problem to be investigated in this section concerns the effect



Figure 4.4: Particle distribution moments at time t = 4000 ;2.
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of boundaries on the simulation plasma in the toroidal system. As with the
equilibrium, the magnetic drifts play an important role. Specifically, the first-
order (in Larmor radius) drifts into the boundary may have an important effect
on the dynamics. This effect can be examined indirectly by a comparison of the
time advancement of the particle distributions via the guiding center pusher
versus the full dynamics pusher, in the absence of electric fields. The tests
performed in section 3.2 show excelléent consistency between these algorithms
for single particle motion. Therefore, discrepancies observed when advgncing
the entire ensemble must be a result of the different boundary handliﬁg em-
ployed in each method. The guiding center pusher simply reflects the guiding
centér of the particle upon a collision with the boundary; the full dynamics
pﬁshér reflects the particle specularly, causing it to “bounce” along the bound-
ary. (The specular reflection method is not entirely satisfactory-due to the shift
in the particle’s guiding center, but this must be tolerated to avoid undesirable
macroscopic currents [63].) Thus the differences observed when pushing with
these two methods illustrates the modification of the dynamics caused by the

boundaries. (Only an outer radial boundary is employed.)

The particle distribution moments after advancement to time t =
400 Q7" using the full dynamics pusher is shown in Figure 4.6, and for the
guiding center pusher in Figure 4.7. In both cases, the electric fields were
not evaluated, and similar parameters to the equilibrium studies above were
used. (A coarser mesh for display of the variables was used, so the resolution
| is somewhat pborer.) The particle distributions show some clear discrepancies
near the outer boundary, reaching as far as 25% of the way into the simulation
region. Thus, the outer boundary does cause a significant modification to the
dynamics for these parameters. However, since the density tends to be very

small at the outer boundary, the bulk of the simulation plasma is unlikely to
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be affected. The region of interest can be kept reasonably far from the outer
boundary, using the nonuniform radial grid. In addition, reduction of the ion

Larmor radius will reduce this boundary effect, and extend the usable portion
of the simulation region.

Although the usual configuration is expected to be free of undesired
boundary eflects (based on the previous discussion), a larger impact would be
seen in a configuration that employs an inner boundary at some finite value of r
(e.g. see Figure 4.8). The use of such a radial “slice” is advantageous due to the
fine resolution in r that one may obtain. The modification of the dynamics due
to the inner boundary, however, will often be unacceptable since the density
has its largest value there. Further, equilibrium may not even be theoretically
possible in such a case. (In the uéual configuration, the outer boundary can in
theory be neglected because we can make the density arbitrarily small there.)
This model may give acceptable results for a very small Larmor radius, but
this constraint is not satisfactory for the drift-wave phenomena we wish to
investigate. The adoption of a more sophisticated boundary handling technique
may help to avoid deleterious eflects at the inner boundary, but this remains
untested. Therefore, the usual model considered in this work retains the inner

boundary at r = 0, utilizing the nonuniform radial grid to improve resolution.

4.2 Drift waves in the slab approximation

4.2.1 Introduction

A confined plasma is subject to a variety of unstable modes, due to the
free energy associated with the spatial inhomogeneity. These modes often fall
into one of two categories—magnetohydrodynamic, which are primarily large

scale in nature, and microinstabilities, which are primarily microscopic. These
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Figure 4.6: Particle distribution moments at time ¢ = 400 Q;', using the full
dynamics pusher.
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Figure 4.7: Particle distribution moments at time ¢ = 400 ]!, using the guid-
ing center pusher.
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Figure 4.8: Alternate configuration for the toroidal model, employing a radial
“slice” with inner boundary located at r = r . ‘
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descriptions differ fundamentally through their treatment of the electron/ion
motion. The magnetohydrodynamic description uses an averaged velocity field,
so that the electrons and jons move together, which is generally valid on a
macroscopic scale. Microins.tabilities, however, are usually associated with the
| separation of charge; the resulting E x B drifts coupled with the plasma in-
‘homogeneity can result in an instability. Drift modes fall into the latter class,
and are long paral]e.l. wavelength, short perpendicular wavelength modes with
phase velocity near the diamagnetic drift velocity. The diamagnetic drift itself

results from the interplay between the plasma inhomogeneity and the finite

Larmor orbits.

The drift or “universal” mode has been extensively researched, due
to its serious threat to plasma confinement. A local slab model was adopted
by Krall and Rosenbluth [64] for studying the drift wave in a sheared magnetic
field and was the basis of many subsequent investigations. In 1969 Pearlstein
and Berk [6] showed that for outgoing wave boundary conditions, the eigen-
mode equation of Krall and Rosenbluth gives rise to a normal mode solution,
propagating in the radial direction. These “Pc_aar]stein-Berk” modes are char-
acterizéd by Hermite'poiynomials modified by an exponential. In addiﬁon, it

was found that values of shear typical for tokamaks were insufficient to stabilize
the mode. |

'The drift-wave eigenmode equation was analyzed numerically by Gladd
‘and Horton [65] to determine the variation of the critical shear on the parame-
ters, using a shooting method for solution of the eigenmode equation. ‘In 1978,
similar techniques were employed by Ross and Mahajan [7] and by Tsang et
al. [8], who found the drift wave to be a,bsolu.tely stdble, contrary to previous

results. In these efforts, the inclusion of the nonadiabatic electron response was
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responsible for the stabilization of the mode (neglected in earlier studies). The
nonadiabatic electron term is small for most of the radial extent of the eigen-
function, but it cannot be neglected near the mode rational surface. The full
electron response gives the potential an “anti-well” character near the mode
rational surface, which stabilizes the mode. An analytical proof was subse-
quently given by Antonsen [66] showing that no unstable, bound modes exist
in the slab configuration. (The convective mode, hoWever, 1s still subject to

shear stabilization criteria.)

Particle simulations of the drift wave in the slab model began in Ehe
mid-1970’s with the work of Lee and Okuda [67]. The simulations in the shear-
less slab exhibited strong instability, with growth rates close to the theoretical
result. Saturation of the instability was due to quasilinear flattening of the
density profile. However, the addition of shear in this and a later work [68]

did not completely stabilize the mode except for very strong shear—the weak

shear cases showed little difference from the shearless result. As a result of -

the theoretical discoveries of the absolute stability of the drift wave, a series
of runs satisfying the linear theory boundary conditions (discﬁssed below) was
performed by Lee et al. [69]. These runs were dominated by local transients,

and the linear eigenmode was not observed.

The discrepancy from the results of linear theory in the earlier parti-
cle simulations [67,68] may have resulted from improper boundary conditions.

In order to obtain the theoretically predicted eigenmode, the ion resonance

layer must lie sufficiently far inside the simulation region that the outgoing -

wave boundary conditions are satisied. This is a crucial condition, because
the ion resonance layer represents the sink for the outward-convected energy

of the drift wave. By satisfyi‘ng this criterion, it was shown by Sydora et al.
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[70] that particle simulations in a sheared slab reproduce the theoretical eigen-
mode. One configuration employed in Ref. [70] consisted of an exponential
density profile with the mode rational .surfa,ce in the center of the 'simulatiqn
region, and the ion resonance layers included. T'his. placement of the mode
rational surface ensured that boundary eﬁeéts would not alter the result, and
both the even and odd parity eigenmodes were observed. With the mode ra-
tional surface at one boundary, however, only the even parity eigenmodes were
observed, in agreement with the result of Lee et al. [69]. The failure to observe
the odd parity drift wave eigenmode with the mode rational surface lying at

the boundary is evidently the result of unphysical boundary effects. This is

plausible since the dominant E x B drift of the ions is not sampled correctly

when speculzlir reflection is used in the presence of an odd parity boundary, and
may alter th‘e response. (The E,/B drift is of odd parity, but the ions only
sample “half” of this' field. Thus the bulk ioﬁ motion near the boundary will
be modified. However, it is difficult ;Lo predict the effect of this modification on
the responée.) Thus the slab mode simulation that we shall consider employs
the mode rational surface in the center of the simulation region, with the ion
resonance layers occuring within the boundaries (as in Ref. [70]). This mini-

mizes boundary eflects, enabling comparison with theory for either the even or

odd parity modes.

4.2.2 Theory

The model adopted in this section is the slab model of Krall and
Rosenbluth [64], in which the region about a mode-rational surface has been
“unrolled” into a local (z,y, z) coordinate system. This is illustrated in Figure

4.9, for a given flux surface (¢ is the rotational transform). Note that as one
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moves in 7, the pitch of the field line varies due to shear.

A mode rational surface is defined by the vanishing of the wave-vector
in the direction of the magnetic field, that is, k- b = 0. In the toroidal system,

the magnetic field components are given by

R,

where g(r) is the safety factor (inverse rotational transform). The. coordinates
¢ and ¢ give ky = m/r and ky ~ —n/Ry (negative so that the system is

right-handed). Then we have

qzkbzéif%—a" (4.8)

Therefore, the vanishing of the parallel wave-vector is equivalent to the re- -

quirement that the safety factor be rational (i.e. g(rnn) = m/n), or that the

magnetic field line eventually close on itself.

Since we seek a local coordinate system about a particular mode ra- -

tional surface, we expand the parallel wave-vector in a Taylor series around the

mode rational surface, obtaining

: Ok

Bi(r) = Ry(rmn) + (7 = ) 51
m : r 10q »
~ —Tmn (7‘ - Tmn) (qRO EE) . (4'9)

since Kjj(rmn) = 0. Choosing a local radial coordinate = r — r,,,, the local

magnetic field is given by

B:&@-%ﬂ | (4.10)
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and the parallel wave-vector by
By=ko— k- | (4.11)

In order for the wave-vector to vanish at the mode rational surface, we must
have k, = 2nn/L, = 0, or n = 0, so that the problem has become essentially
two-dimensional. The shear length L, is obtained by comﬁarison to Eq. (4.9),

which gives

r 18g\7" |
L=|—-— 4.12
(qRoq5T> (4.12)

for k, = 2rm/L,, L, = 2nr,,,. The shear length is assumed constant in the
local coordinate system (i.e. terms involving radial position are evaluated at
Prmn)- |

The _local expansion outlined above simplifies the problem consider-
ably from a simulation standpoint. The third dimension has been eliminated,
and by restricting the system ]engthll;n y, “high” poloidal mode numbers are
. mapped to low y mode numbers. The typical choice L, ~ L, (as used in the
present test) in the slab model corresponds to rougiﬂy 1/6 of the poloidal extent
in the toroidal system. If poloidal inhomogeﬁeities can be neglected, this repre-
sents a substantial gain in resolution (although the y-modes no longer represent
a complete space). vHoweyer, additional eflects such as multiple mode rational
surfaces require a third dimension, as studied in the slab model by Sydora et al.
[11]. Finally, inclusion of thé inhomogeneities in § that are present in a realistic
system (such as poloidal coupling and magnetic drifts) necessitate simulation

in the full three-dimensional, toroidal system.

The development of an eigenmode equation for the drift wave in the

- sheared slab will now be briefly considered. The distribution function f; for
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each species satisfies the Vlasov equation

0f; , 0%, vxB\ 8f;
FRAAE ~iel Ll B (4.13)

For an electrostatic perturbation, we write the distributions, potential, and

densities as the sum of equilibrium and perturbed quantities

I; = Jo; + f1_7

® = ¢+ @
n; = Noj + Ny

where the equilibrium potential @ is assumed to be zero, and the densities are

calculated from

ni= [ v fi(x,v,1) (4.14)
The linearized Vlasov equation thus gives the zeroth order equation for fo;
Ofo Ofos |
— —2 =90 4.15
Bx + mjc ( B)- ov (4.15)

and the first order equation for f;;

(4.16)

v (9f1J _ iaq)]_ . (9]”03

Of1; Of1; e '
5t x T VB S T e By

If equilibrium quantities are assumed to vary slowly on the scale of an ion

Larmor radius p;, the equilibrium distribution function can written as

. 3/2 2 4 .2
m; Uy I
; = 1 —= —_—— 4.17
sl v) = o <2"Tj) [ +€(m+ Qj)}exp[ 2T;/m; (417)
where, in the absence of temperature gradients,
1 On
€ =
n bz

is the inverse density scale length (ep; < 1). It is necessary that the term

proportional to € be small compared to unity so that the distribution function

foj satisfies the lowest order equation.
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For the slab mode, the inclusion of the full perturbed distribution
functions is reasonably straight{forward, especially when a numerical solution
is being pursued (as for a shooting code method of solution). To simplify the
analytical result, however, various fluid approximations are often used. One is
to assume the electrons follow the perturbation adiabatically, so that they are

described by the Boltzmann distribution. This leads to a perturbed density of

the form

@ N
eT: no (4.18)

although in general, the non-adiabatic response N must be included as well :

Nie =

& .
et W (4.19)

The eflect of the non-adiabatic response on the stability of the mode is crucial,’

as pointed out by Ross and Mahajan [7] and by Tsang et al. [8]. The ions,
on the other hand, may usually be treated as a fluid—the perturbed‘density
is obtained through the continuity equa.ﬁon, with the E x B drift for the fluid
velocity. Since it is straightforward to do so, we use the full kinetic descri.ption
for both electrons and ions, in order to get as accurate a comparison as possible

to the particle simulation.
The formal solution for the perturbed distribution function can now

be written as

_ e [, 6@1(xg,t’) 5foj(xg,v;-,t')
fu(X,V,t) = m; [.w dt Bx! . Byl : (4.20)

where the integration is over the unperturbed particle orbits. These orbits
are particularly simple in the slab model, being just the helical orbit of a
particle along a constant magnetic field. The constants of motion are therefore

'uﬁ' (energy), v} /Bo (magnetic moment), and z + v, /Q; (= p,, the canonical
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momentum corresponding to the y coordinate). To solve this equation, we

adopt a perturbed potential of the form
B, (x,t) = &(z) exp {i (kyy + koz) — iwt} (4.21)

In order to perform the integral in Eq. (4.20) we expand the potential in a

Taylor series about z = 2, keeping only terms to second order :

B(ef) = 8(e) 4 (55— ) S| 4 2o - o

(4.22)

This expans;ion is valid when the wavelength in  is much larger than the ion
Larmor radius. The resulting perturbed distribution function is then integrated

over velocity space to get the perturbed densities. Upon neglect of terms on

the order of w/Q,; and k, pe, we have [71]

h= T2 14626 (1-2)] 8 (4.23)

for the perturbed electron dens.ity, and

A * wi\ dly , 0% ] 2
o= =52 gz (1- ) e - a2t (1- ) e Do
| | (4.24)

for the perturbed jon density, where {; = w/2|kjlv;, v; = (T;/m;) M2, b =
KipZ, pi = v/ p2 = T2, T = Te/‘T}, Lo(b;) = Io(b;)exp(—b;), where Iy is
the modified Bessel function, and Z is the plasma dispersion function. The
diamagnetic frequencies can be written in a convenient dimensionless form as

w* wi
S = 1 = ()l

where & is the inverse density scale length. A detailed derivation of the plasma
response, with a close examination of the approximations involved, is given by

Davidson and Kammash [72].
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If we now assume that the perturbation is quasineutral, that is, f, ~

7;, the eigenmode equation takes on the form

i+ Qe 8=0 (425
where
wi dPo -
Q = [-ez6) (- %) 2

wr wr
{fsco (-2 o420 (- Dran] o
-This equation is solved subject to the appropriate boundary conditions, that
is, outgoing waves at z = F-0o0. This is represented by the WKB condition

&(z) ~ exp {i/z dz’ [Q(w’)]l/z} (4.27)

for large |z|. Since this formulation is symmetrical about the mode ratio-
nal surface (z = 0), the equation is solved in the half-space between z = 0
and z — +o00, requiring the specification of even or odd parity about z = 0

for the additional boundary condition. The technique employed for sojx'ing |
Eq. (4.25) is to “shoot” inward from a large value of |z|, using a variable steﬁ :
two-point ODE solver. The initial guess for w is supplied by the user. A com-
plex rootfinder is employed to match the integrated solution with the boundary
condition at z = 0. If convergent, the rootfinder will produce an eigenvalue
w of the above equation. (For asymrnetric equations, one must shoot from
both positive and negative infinity and attempt to match the two numerical

solutions at the origin.)

4,2.3 Simulation results

For the simulation of the drift wave in the slab model, we adopt the

configuration in which the mode rational surface is placed in the center of the
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simulation region. Although this placement reduces the number of particles in
the region of interest (because of the need to maintain the density profile), pos-
sible boundary eflects are avoided. Some discussion on the choice of parameters
is warranted here, with attention to the validity of the theoretical eigenmode
equation given by Eq. (4.25).

A simulation model in which the particle quantities are advanced

explicitly is subject to the timestep constraint
Winaxbt < 2 (4.28)

where wp,.y is the maximum frequency found in the system. If the timestep ex-
ceeds this criterion, numerical instability may occur [21], although in practice
the timestep must be much smaller for energy conservation to remain accept- |
able (typically we employ wmax6t ~ .2). For the present system, in which the
fast electron gyromotion has been removed, the maximum frequency is approx-

imately given by

k
Wiax = IMAax (—lgwe, Qi> (4.29)

| that is, the larger of the magnetized plasma wave .frequency and the ion cy-
clotron frequency. In a typical simulation we>have ky/k ~ ky/ky ~ 0.1,
and {);/w. ~ 0.1, so that these two frequencies are equally restrictive of the
timestep. An additional restriction is the Cherenkov condition, that is, the par-
ticles cannot move more than one cell length in a timestep. (This is typically
a concern for parallel motion of electrons along the field lines.) Violation of
this condition decreases the accuracy of the shorter wavelength modes, since the
particle may travel a substantial fraction of one wavelength in a given timestep.
This will also have a detrimental effect on energy conservation. Finally, we Te-

quire that the ion resonance layers are contained within the simulation region.
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The constraints in selecting an appropriate parameter regime limit the
size of & timestep substantially, which limits the time scales one can observe.
These constraints give impetus to the development of more sophisticated time
advancement schemes, such as the implicit [18] or gyrokinetic [73] algorithms.
In an explicit model, we adopt small mass ratios (m;/m. = 100 in the present
series of runs), and relatively large Debye lengths (A, ~ p;) in order to observe

the desired time scales. The diamagnetic frequency, which can be written as
w* [ = (Kp,)(kLps) . (4.30)

can be increased by increasing kp,, while still maintaining physically interesting
values of kyp,. The increase in the diamagnetic frequency must be balanced
" by the increase in the ion thermal velocity in order to keep the ion resonance

layers within the system.

Given the parameter choices discussed above, the slab particle simu-
lation model can achieve the necessary time scales for study of the drift wave
problem without fundamentally altering the physics. This was demonstrated
by Sydora et al. in reproducing the linear drift wave eigenmode. Further, the
approximations leading to Eq. (4.25) are not violated, and the actual simula.tipn
parameters are used for solution by the shooting code. One concern may be
the Taylor series expansion of the perturbed potential, Eq. (4.22), especially
for large values of kp;, for which the eigenfunction becomes very localized
in z (and the wavelength may become comparable to the ion Larmor radius,
contrary to assumption). This case has been studied theofetically by a varia-
tional method, in which the perturbed potential is expressed as a sum of basis
functions, and the resulting matrix equation inverted to obtain the eigenvalue

(74,75]. This improved analysis was found to have only a small effect on the fre-

quency, but modified the eigenmode shape substantially in the region |z| < p;
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[75].

The simulation of the slab drift wave was performed using the two-
dimensional, slab limit of the toroidal particle code. A weakly nonuniform
grid in z was employed to improve the resolution about the mode rational
surface, but this was limited by the need to keep the number of particles per
cell reasonable (as discussed in section 2.3). The density profile used in the

simulation run was exponential, given by
n(z) ~ ngexp(—~xz) (4.31)

with k the constant inverse density scale length. The grid schematic, density
versus u, and number of particles per cell versus the cell number is shown in
Figure 4.10. The remaining simulation parameters are given by : N, = 49152
(nﬁmber of particles in each species), L, = L, = 64 A, (A is the average
grid spacing in z), N, = N, = 64, At = 2.0w;?, vy, = 2.5 A, T./T: = 1,
me/m; = 0.01, . /w, = 10, and particle “size” of a grid spacing in both z and
y (using two pasées of the binomial digital filter in z). The shear and density
scale lengths are given by L,/L, = 13.6, kp; = 0.17, with p;/Ao = 2.5. The
mode rational surface is at u = 0, where u = ¢ — L, /2 rangés from —L,/2 to
+L,/2. The condition that the jon resonance layers remain within the system
is given by the condition that |u;| < L, /2, where u; is given by the resonance
‘ condition w = k”(ui)@. Since the drift wave frequency is smaller than the
diamagnetic frequency, this will be satisfied if w* = ky(u;)v;. Thus, we have

w*L,

lus(w)| < [w(w”)] = Fv: (4.32)
= Pif_; (4-33)

 For the current parameters, u;(w*) lies just outside the simulation region. How-

ever, since the ion finite Larmor radius effects reduce the drift wave frequency,
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the actual ion resonance criterion (in terms of w), will usually be satisfied. This
condition will be reexamined in light of the simulation results.

The energy for the run was conserved to within 0.3% for 6000 time

steps. The first five modes (in y) of the potential ®(z,k,) was stored for

analysis. Note that the k, = 0 mode was excluded from the run entirely; -

this mode is often unphysically large due to fluctuation eflects in the profile

loading. Further, the relaxation mechanisms for the reduction of this mode are

limited in the electrostatic model, and the resulting enhanced fluctuation level
may aflect the drift wave at higher mode numbers. For k, = 27m/ L,, with

m=1,...,5, we have
k,p; = 0.24, 0.49, 0.74, 0.98, 1.23

for the five modes examined. The plasma frequency is obtained by the maxi-
mum entropy method (cf. section 3.1.2), and the spectral density at the radial
position of greatest power is shown for each mode in Figurés 4.11-4.12. The
location of the theoretical frequency (obtained via the shooting code solution

of Eq. (4.25) ) is indicated by an arrow.

For each mode, we observe a peak in the power spectrum close to
the theoretically predicted frequency, persisting over 'much of the simulation
region (radially). As the mode number is 'increased, the signal to noise ratio
becomes smaller, which probably results from the smaller frequency (reducing
the number of observed periods). The variation of real frequency with mode

number is plotted in Figure 4.13 with the simulation values shown.

The theoretical and observed frequencies for the m = 3 and m = 5
modes agree within the accuracy of the spectral estimator, and frequencies for

the remainder agree within a factor of two. The discrepancy in the frequency for
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Figure 4.12: Plot of spectral density for the m = 4, 5 modes using the maximum
entropy method. '
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the m = 1 mode may be due to the interference of the simulation boundaries. In
this case, the ratio of the observed mode frequency to the diamagnetic frequency
ié 0.93, which brings the ion resonance layer only marginally within the system.
For the higher m modes, w/w* is greatly reduced, so that the mode is more
localized and boundary eflects eliminated. This localization can be seen from
the spatial structure of the modes (discussed below). In general, differences
in the observed frequency from the theoretical result may be partially due to
the neglect of significant terms in the theory; the relatively small number of

particles in the profile to the outside of the mode rational surface may also play

a role.

We turn now to an examination of the spatial structure of the eigen-
modes. Using the frequency obtained by spectral analysis, the interferogram
method (cf. section 3.1.3) gives estimates for the time-averaged eigenfunctions.
We point out that this diagnostic is limited by the finite sample length (so
that the filtering is imperfect), and temporal effects, such as damping and re-
currence. The latter may cause the signal to become out of phase with the
original mode [56], leading to interference (in the diagnostic) and distortion of
the eigenfunction shape. In addition, the interfered potential is arbitrary by a

phase factor €™, which makes theoretical comparison more difficult.

No parity was forced about the mode rational surface in the simu-
lation, so the eigeﬁfunction is separated into its odd and even components in
the post-processor to give simpler comparison to the theoretical eigenfunctions.
Although the even parity mode and the odd parity mode are technically not de-
generate, the frequencies are so close that spectral analysis can resolve only one
signal. The frequency obtained will be sufficient for input to the interferogram

for either mode.
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The interfered potential for each mode displays a marked increase vin
amplitude near the mode rational surface, which is typical of the drift wave
eigenmode. For larger values of m the signal/noise ratio is again observed to
decrease. In general, both the even and odd parity modes are observed, though
the odd parity mode is usually substantially weaker than the even parity mode
for most of the mode numbers. This is expected, due to the greater damping for
the odd parity mode. The interfered potential for the m = 2 even mode is shown
at the top of Figure 4.14, with the theoretical eigenfunction shown at bottom
(obtained through use of the shooting code). In Figure 4.15 the interfered
potential for the m = 1 odd mode is given, along with the theoretical result.
Both of these show good qualitative agreement with the theoretical result. (The
reduced strength of the imaginary part of the odd mode may be caused by the

interference effects discussed above, in light of the greater damping of the odd
mode.)

In general, the interferograms are somewhat less oscillatory than the
theoretical eigenfunctions (perhaps also caused by interference ‘effects). In ad-
dition, the signal strengths show only a slight rise awéy from the méde rational
surface, compared with the strong localization away from the mode rational
surface seen in the theoretical result (which results from the “anti-well” near
the mode rational surface). This behavior is seen nﬁost clearly by examining
the amplitude of the eigenfunctions, which is shown for the even parity com-
ponent of modes m = 1 through m = 4 in Figures 4.16-4.17, along with the
theoretical result. Plots involving the amplitude are better suited for theoret-
ical comparison, since the amplitude is free of the arbitrary phase factor and
" interference effects discussed above. The cause of the discrepancy near the
mode rational surface is likely due to a lack of resolution, but inaccuracy in the

theoretical eigenmode equation (from violation of the k,p; < 1 assumption)
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is a possibility. The localization of the modes roughly follow the theoretical
expectation, as seen from the plots. Finally, the decrease in the amplitude of
the m = 1 interfered potential towards the boundaries indicates that the jon

resonance condition is reasonably well satisfied, though boundary effects may

still be a factor.

4.3 Drift waves in toroidal geometry

4.3.1 Introduction

The shear stabilization of the drift wave in the slab model is funda-
mentally altered by spatial inhomogeneities encoﬁntered in a toroidal system,
as was pointed oﬁt by Taylor [13] in 1977. In a toroidal configuration, the
magnetic fields have a strong variation with the poloidal coordinate 6, and the
Laplacian operator itself has f-dependent terms. This results in coupling be-
tween the drift wave eigenmodes at neighboring mode rational surfaces, which
can inhibit the convection of energy. Since it is this convection that is primarily
responsible for the stabilization of the mode in the slab model, the stdbilitgr

properties of the drift wave are substantially modified.

The model employed by Taylor [13] was that of a plane slab, in which
the magnetic field strength or shear varied strongly in the “poloidal” direction
(represented here by the y coordinate). This variation coupled the poloidal
Fourier components, resulting in a differential-difference equation in the (z,y)
coordinates. The electron response was assumed to be adiabatic, and the fluid
ion response was used. The assumption that the variation with poloidal mode
number (m) was weak allowed m to be approximated as & continuous quan-
tity, the so-called “strong-coupling” approximation. This leads to a differential

equation in terms of a single variable, expressed in terms of a combination of



151

both z and m. The main conclusion of this work was that the shear damping
normally associated with the drift wave is severely reduced, resulting in 2 mode
that is radially extended over an appreciable length of the plasma (in contrast

to the slab-like drift mode, which is very localized around the mode rational

surface).

The nullification of the shear damping of the drift wave in a toroidal
system was subsequently éxplored by a number of researchers, using more real-
istic theoretical models. The radially extended nature of the mode was verified
by Ross and Miner [76], using a finite element method to solve the differential
equation for the coupled Fourier components of the perturbed potential. The
two-dimensional eigenmode equation in a toroidal configuration was consid-
ered by Horton et al. [77], who obtained solutions in both the weak-coupling
and strong-coupling limits. Subsequent research eflorts [78,79,14,80,81,82] have
employed the ballooning mode representation to express the perturbed quan-
tities, in order to rigorously satisfy pe;iodicitfy in both 6 and ¢. With this
approach, the validity of thevso]ution spans the range from weak to strong cou-
pling. The majority of the research eflorts, however, have not pursued a fully

kinetic treatment (represented in the nonadiabatic particle response).

The published literature on fhe toroidal drift wave problem shows
a great deal of variation in the handling of the particie response, which is
a consequence of the complexity of these terms in toroidal geometry. Adia-
batic electrons and fluid ions are often employed, perhaps with the addition
of a destabilizing trapped electron response term. This approach is sufficient
for investigating the qualitative character of the mode, including its radially-
extended ballooning char.acter.‘ Hc;wever, the importance of the full kinetic

effects on the stability is hard to gauge. A formal expression of the full particle
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response was given in 1980 by Connor et al. [83], but the expressions must
undergo considerable approximation before solution is ‘possible. If nonadia-
batic terms are kept, the manner of solution will necessarily employ either an

integral formulation or an iterative method, which makes theoretical analysis

much more difficult.

The nonadiabatic electron passing response was included perturba-

tively by Chen and Cheng [14] and via an integral method by Hesketh [82].

Each of these papers employed kinetic ions (under. the assumption w > wp,) .

and obtained qualitatively similar results. The growth rate was found to in-

crease without bound as k| p; is increased, as well as with increasing toroidicity -

(measured by the parameter €, = L,/ Ry). For the parameters studied by Hes-

keth, the mode reached a maximum growth for a shear of § ~ 1.7. The neglect

of the ion drift resonances, however, is not justified at larger values of &k p;,

since the real frequency decreases as this parameter increases. The inclusion

of this resonance proves to be an important stabilizing effect, as was shown by

7 subsequent papers [15,16,17]. The result is that the growth is maximized at a

value of k p; ~ 0.3-0.4.

To date, the most complete theoretical treatment to date of the toroi-
dal drift wave problem, including the nonadiabatic electron response and ion

drift resonance, is found in a paper by Schep and Venema [17]. This inves-

tigation was based on the earlier work of Schep et al. [84], which considered

approximate forms for the integral trapped and paséing electron responses. It
was found that when both response terms are kept, large cancellations may
occur, and the total response gives the proper behavior when one passes to
the infinite aspect ratio limit (plane slab). When this was applied to the drift

wave problem [17], along with the inclusion of the ion drift résona,nce, the
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real and imaginary frequency variation was found to be qualitatively similar to
that predicted by Cheng and Tsang [15] and by Hesketh [16). In seeking the-
oretical comparison for the toroidal drift wave simulation, we therefore choose

parameters similar to those studied by Schep and Venema. [17].

An additional point discussed in the literature concerns the relation of
the toroidicity-induced mode to the slab-like mode, as the toroidicity (i.e. €,)
is increased. In the work of Hastie et al [78] and Choi and Horton [79],
the slab mode was observed to evolve continuously into the toroidal mode,
but was found to be a completely different branch by Chen and Cheng [14].
The apparent conflict between these observations was resolved in a separate
investigation by Schep and Venema [85], where it was shown that the slab
mode always connects to one of the harmonics of the toroidicity-induced mode.
(This is usually §ne of the higher, mofe heavily damped harmonics, depending

on parameters. The same point was discussed briefly in Ref. [82]).

The appearance of multiple drift wave harmonics in toroidal geometry
can be understood by analogy to solid state physics. If the radial variation of
the equilibrium quantities is sufficiently weak, the botential will be symmetric
with respect to a translation in the radial coordinate (with the exception of a
possible phase shift). This situation admits solutions which are Bloch functions
and results in a band structure for the eigenvalues known as the Brillouin
effect. Similarly, the toroidal drift wave eigenmode equation admits a number of
solutions in terms of multiple harmonics, resulting from the additional degrees
of freedom in the presence of multiple mode rational surfaces. Although the
fundamental harmonic will have the strongest growth (or least damping), the
higher harmonics may be unstable or only weakly damped as well. However,

the higher order harmonics are usually not considered in the theory. Dependihg
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on parameters, the slab-like mode may connect to the lowest even harmonic
(as observed in the earlier papers) or, more usually, to a higher even harmonic.

Parameter studies in Ref. [85] were presented in which the slab-like mode

connected to the n = 6 or n = 8 toroidicity-induced mode.

4.3.2 Theory

In this sec;cion, we briefly consider the theoretical treatment of the
toroidal drift wave problem, with an emphasis on understanding and qualita-
tive behavior. Formally, the procedure is the same as in the slab. problem. The
particle distributions are assumed to satisfy the Vlasov equation, in Whitch the
lowest order distributions repfesent the equilibrium solutions. For an electro-
static perturbation, the perturbed distributions are obtained via a time integral
of the electrostatic potential and zeroth order distributions, with fche particles
following their unperturbed orbits. (The velocity distributions are usually as-
sumed to be Maxwellian.) The perturbed densities are obtained by velocity
space _integration', and the quasineutrality condition gives an (integral) equa-

tion for the potential.

In the slab analysis, the integral equation for the potential is usually
approximated as a differential equation of a single variable. In this case, the in-
tegral term is evaluated via the Taylor expansion of the potential (in z), which
is valid for sufficiently small radial wavenumber (kyp; < 1). For the toroidal
problem, however, two difficulties appear. First, the perturbed quantities must
be a function of both r and 6 due to the poloidal inhomogeneities. This ieads
to a partial differential equation of two variables, which is generally much more
difficult to solve than a one-dimensional equation. Second, an integral term

will be necessary in the toroidal problem to retain the nonadiabatic particle
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responses. This occurs due to the increased complexity of the particle motion,
which cannot be given in a simple, closed form. The perturbed disfribution
functions can be obtained through adoption of gyrokinetic coordinates [83];
however, the resulting expressions are very complicated and do not exist in
closed form. Although approximate forms of the perturbed distributions ex-
ist [83,84], the subsequent velocity space integrations (to give the perturbed
densities) present additional difficulties.

We will therefore consider a simplified model which retains many of
the features of a more careful treatment. (The analysis pursued here follows
Refs. [78] and [86]; also see Ref. [79].) The fluid ion résponse is adopted, and
an electron response of the form

Ne = Mg (%?) (1—-128) (4.34)

where 6 is some (unspecified) operator that governs the nonadiabatic electron

response. The perturbed potential is written in the form
#(0,p)exp [i(N{ — MO) — iwt] (4.35)

where p = 7 — 7y is the radial distance from the mode rational surface given
by M = Ng(ro), with g the safety factor, and N the toroidal mode number.
The toroidal dependence can be dropped by axisymmetry, and the resulting

eigenvalue problem takes on the general form
L(9,pw) $(6,p) = 0 . (4.36)

The operator L is in general an integral operator, which is represented by the

16 operator in this analysis. With some approximation, £ can be given by

i 8 i 8\
L= ke o? <5§ + z:c) —€ (cos 0+ issin 9-8—) =X (4.37)
T
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where k = nq/r, s = rq'/q, = = kps, and the parameters o and € are given by

€n 2¢,
-7 = 4.38
7 qrbs’ €T Ths? (4.38)

where ¢, is the toroidicity (= L,/ Ro) and b = k?p?. The eigenvalue ) is related

to the frequency by

' w/w*—1+bl+7)—16 ’
A= 4.3

bs?(1 + ) (4:39)

(Note that in Ref. [86] an additional term was included, resulting from the

variation of w* with radius.)

For the drift wave problem, the modes of interest have long parallel
wavelengths and short pefpendicular wavelengths. The requirement of long

parallel wavelength is given as
"B-V& =0 (4.40)

This condition is well satisfied in the present analysis only when ¢(r) = M/N,

that is, when at a mode rational surface. Aliernately, we can adopt an eikonal

form of the perturbed potential as
3(r,0) exp (iS(r,6,0)) (4.41)

such that

B-VS5(r6,{)=0 (4.42)
This representation satisfies the long wavelength requirement, but the resulting
functions ®(r,6) and S(r,0,() are periodic in theta only at a mode rétion_al
surface. The dual requirements of periodicity and long parallel wavelength can
be satisfied through use of the ballooning mode represéntafion for the pefturbed

potential [87,88]. We then make the expansion

“+o00

®(0,z) = > exp(—inf) /_-:o d6.&(6, ) exp(ind) - (4.43)

n=-—oco
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where the dependent coordinate in the poloidal direction has become 6 = +

- 9mn (the “extended” poloidal variable), and $ is given by
&(6,2) = A(z) exp [—iz(8 + 64)] £(B,=) (4.44)

Here A(z) is a slowly varying envelope for the mode, and f(§,z) satisfies to
lowest order a one-dimensional eigenmode equation in the extended variable é,
for z fixed. (Here, 6 is a slowly varying function of radius, and is not specified
to the lowest order.) The lowest order eigenmode equation in the toroidal
model is given in terms of a poloidal variable, compared to a radial equation in
the slab model. This occurs as a result of the poloidal inhomogeneities, which
dominate the weaker radial dependence. The radial dependence m the present
model can be obtained via a radial eigenmode equation to higher order in the

expansion parameter 1/N.

With inclusion of the nonadiabatic reéponse terms (and ion drift res-
onances), the equation for f(4,z) takes on the general form
d? ~ n R ” O
[?-lé—'z - V(e,w)J of,w) & = / db' K (9, ) (4.45)
(after Schep and Venema [17]). The method of solution for‘ Eq. (4.45) in Ref.
[17] employed a shooting code for solution of the hor’nogeneoué equation (ini-
tially neglecting the integral'term); the perturbed potential & was then riumer-

ically integrated to obtain the right hand side as part of an iteration procedure.

Where possible, the full plasma dispersion function was employed.

This theoretical procedure »pfedicts the existence of unstable solu-
tions. The most unstable mode is the lowest harmonic (n = 0), and is the
only harmonic considered. The ion drift resonance has a stabilizing influence
on the mode, so that the perpendicular wavenumber of maximum growth oc-

curs at about kjp; ~ 0.2, for system parameters of § = g =17 = 1, ¢, = 0.1, |
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m;/me = 1836 and € = 0.1 (inverse aspect ratio). For comparison purposes,
these parameters were duplicated as closely as possible in the simulation, but
numerical constraints prevent an exact match (most significantly in the mass
ratio). Furthermore, the need to maintain adequate radial resolution ensures
that the equilibrium quantities will vary significantly over the width of the
mode. The varying quantities in the simulation are the shear (3), toroidicity
"(€n), and diamagnetic frequency (w*). The variation of the equilibrium quanties
in the simulation may require the higher order equation for the radial depen-
dence to b‘e solved, in order for close correspondence with theory. In addition,
the theory is strictly valid only in the limit of high toroidal mode number; the
relative smallness of the toroidal mode number in the simulation (n = 9) may

" require calculation to higher order.

The effect of varying the diamagnetic frequency has been examined
by Connor and Taylor [86); it is shown that a decrease in the strength of
coupling between modes at neighboring mode rational surfaces will result. This
coupling crucially determines the qualitative nature of the m;)de. For very
weak coupling, the Fourier modes at neighboring mode rational surfaces are
nearly independent and are radially localized, as in the slab limit. These modes
posse.ss weak “sidebands” on neighboring mode rational surfaces, which become
stronger as the coupling is increased. For sufficiently strong coupling, the
Fourier modes sum to become a single “quasimode”, which extends over many
mode rational surfaces. The quasimode tends to be localized in 6, so that it
‘may appear to “balloon” towards the outside of the torus. The parameter
regime considered by the simulation does produce the theoretically predicted

ballooning behavior, although effects due to the variation of w* may also be

prés ent.
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4.3.3 Simulation results

Simulation in the toroidal configuration emplc;ys a single toroidal
mode numberyn = 9. This choice is necessary to allow many coupled poloidal
harmonics, given a physically plausible safety factor (g). The mode rational
surfaces contained Withiﬁ the system range from ¢ = 0.56 (m =5) to ¢ = 1.67
(m = 15). The safety factor thus varies from about 0.5 at the origin, to about
4.0 at the outer boundary. The MHD constraints on g are inapplicable to
this simulation, since the magnetic fields are static. Undesired mode rational
surfaces are excluded by eliminating the appropriate Fourier components of
the electric potential. The slab-like drift ion resonance layers will therefore be
contained within the simulation region for each mode rational sﬁrface, satisfy-
ing the stability conétraint. Although actual tokamak plasmas will unavoidably
contain mode rational surfaces for which the ion resonance layer is absent (near
the edge or the magnetic axis), this occurs for no more than about 20% of the
radial extent (TEXT parameters). Thus it is reasonable to require that all of

the ion resonance layers be within the simulation region.

* The use of such high mode numbers (high by particle simulation stan-
dards) necessitates a fairly large number of particles—nearly 100,000 for each
species. These are well distributed throughout the region of interest for the
gaussian density profile employed. This allows the use of a highly nonuniform
radial grid, while keeping an acceptable number of particles per cell (as dis-
cussed in section 2.3). The number of particles per cell as a function of cell
number is shown in Figure 4.18, along with the radial variation of the initial
electron density and the variation of grid spacing in 7. The marks above the
nonuniform grid ticks indicate the locations of the mode rational surfaces. The

electron /ion profiles have been loaded in the manner discussed in section 4.1.
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and number of particles per cell (bpttom). The grid and density profile are
plotted versus radial variable; the particles per cell is plotted versus radial cell
number. The mode rational surface locations are indicated by the marks above

the nonuniform grid ticks.
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In Figure 4.19 we give the radial variation of different simulation
quantities in 7, including the safety factor g, shear parameter § (=rq’/q), the
ratio of shear scale length to the density scale length L,/L,, and the toroidicity
parameter ¢, (=L,/Ry). ‘Parameters in the central region are comparable to
those used in the theoretical calculation of Schep and Venema [17], for which
€, ~ 0.1 and § ~ 1. In addition, the simulation employed k, p; ~ 0.2, for
which the growth is expected to be a maximum. The velocity distributions are
Maxwellian, with T, = T}, Tj/TL = 2, and v = 1.56 Agw;’. The remaining
simulation parameters are given by : N, = 98304 (number of particles), ¢, = 0.2
(inverse aspect ratio of 0.4), N, = Ny = 128, At = 4.0w]", me/m; = 0.01,
fle/w, = 10, and particle “size” of one grid spacing in both u and x (using
two passes of the binomial digital filter in ). The gaussian density profile was
given by

n(r) ~ ng exp [—(KOT)Z/Z] - (4.46)
with kga = 4.8, and a = 1284, the minor radius (kpp, ~ 0.041). We then

have

o 19 - (rps)(kLps) . ' (4.47)
= m(rop,)’ . (4.48)

5o that the only variation of the diamagnetic frequency is througil the poloidal
mode number m. The value of k) p; evaluated at the mode rational surfaces
varies only weakly, having a minimum value of 0.165 for m = 6 and a maximum
of 0.219 for m = 15. The location of the ion resonance layers for the slab-like
drift wave each mode rafional surface is calculated using a nonli'near rootfinder,

which solves the equation

w;n = tky(z;; mn) v; (4.49)
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using the given safety factor (z; denotes the location of the ion resonance layer).

For the given parameters, the ion resonance condition is well-satisfied for each

mode rational surface.

The simulation was run for a total of 15,000 time-steps (T’ = 6000 ;).

Energy conservation was 15% over the length of the run. This gradual increase
in energy is caused by inaccuracy in the timé integration due to undersampling
of the highest frequency waves, and can be reduced through a reduction in the
time-step (However, the gain in thermal energy of the simulation plasma does
not appear to affect the low frequency response significantly). The time-step
was chosen somewhat larger than usual in order to attain the long time scales
necessary for resolution of the mode structure. The temporal evolution can be
grossly observed by comparing the electron density profile at several points in
time to the intial profile. It is observed that significant profile modification
takes place until a;bout 1200Q;". In Figure 4.20 we plot the electron den-
sity profile at time ¢ = 1200 Q7" (dashed line) overiaid on the profile at time
t = 0 (solid line). The positions of the mode rational surfaces are given by
-vertica) lines. The most obvious feature is a definite profile modification about
the m = 5 mode rational surface, which is highly localized. Significant profile

modification also occurs from about the m = 7 to the m = 9 mode rational

surfaces.

The profile modification seen in the early stages of the simulation
suggests that an instability may ha.ve'occured, with saturation due to flattening
of the density profile. Thus we examine the temporal behavior of the potential
amplitude [e®/T| for evidence of a growing mode. Prior to the calculation of
the amplitude, the high frequency components are removed from the potential

by the temporal application of Va»digi‘tal filter (cf. section 2.5). Although a
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large number of digital filter passes is much more computationally intensive
than a Fourier filter, this method avoids the imposition of arbitrary boﬁndary
conditions by “dropping-off” a point at each end of the time interval for each
pass. The resulting loss of information is minimal for the modes of interest.
The logarithm of |e® /T versus time is plotted in Figures 4.21-4.23 for the
m = 8 through m = 10 mode numbers, given at several radial positions near
each respective mode rational surface. In each case, there is an indication of
exponential growth until roughly ¢ = 1000 Q;’. The growth rate is measured
to be approximately v/ ~ 1.25 x 1073, or v/w* ~ 0.075 (using m = 8 for
calculation of w*). The measured value is roughly a factor of three larger than
the value predicted by Schep and Venema [17], which may be reasonable given
the rough association of parameters between the theory and simulé,tion. Note
that the inverse aspect ratio in the simulation was twice the value employed
in Ref. [17], and a mass ratio of m./m; = 0.01 was used (a realistic mass
raﬁo was employed in the theoretical work). The aflect of incredsing either
of these parameters is expected to be destabilizing [17], which may account
for the increased growth rate. Saturation for these modes occurs at a level of

le®/T| ~ 0.04 (recall that k,p; ~ 0.2, and T, = T3).

Here we have omitted mention of the m = 5 mode, although the
growth is very strong at about 7y/w* ~ 0.3. This large growth rate is not easily
explained by the TI-mode theory; nor is the mode coupled to neighboring
modes toward the inside of the torus as required by theory (the poloidal mode
spectrum is truncated at the m = 5 mode, and smaller mode nurnbefs not
allowed). Further, the profile flattening accompanied by this growth is very
localized, unlike the broader flattening ‘see‘n with the m = 8-9 modes. The ion
resonant surfaces for absorption of energy associated with the slab-like drift

- mode are very close to the mode rational surface for m = 5, eliminating this
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as a candidate for the growth. An identification of the mechanism behind
the growth at the m = 5 rational surface is therefore left to future analysis.
A further concern is the somewhat poor conservation of energy due to the

large time step, and its possible effect on the observed growth. This has been

minimized by the filtering of the highest frequencies, which are expected to

be the most affected by the size of the timestep (although the energy gain is
observed to be primarily an increase in kinetic energy). Since the low-frequency
potential does not show any global (radial) increase, and saturates at a finite
time (at which point the profile evolution slows), it is clearly unaffected by the

small gain in total energy of the simulation plasma.

We next examine the mode structure of the potential on long time

scales via spectral analysis. The spectral density is calculated by the maximum

entropy method (cf. section 3.1.2). A peak finding routine is employed to

identify the peaks in the spectral density, for each radial position and mode
number. The criterion for identification of a peak is that the spectral density
must exceed the background level by a factor of about four. Only the strongest
_power peaks are output, and the resulting data set is compared t¢ the spectral

density plots visually to verify correct identification.

The observed frequency spectf;ulm, as a function of radius and mode
number, has many interesting features. First, we see a multiplicity of modes
with frequencies below the diamagnetic frequency. This is not unexpected,
because the many degrees of freedom from the coupled poloidal modes allows
multiple toroidal drift harmonics to occur (as was discussed in the previous
section). That these are real and not a numerical artifact is indicated by their
persistence across many radial grid points. This is shown in Figures 4.24-4.27,

where we have plotted w/ SL (top) as a'fiubnction of radial cell ilumber, and
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power versus w/); (bottom) for the m = 7 through the m = 10 modes. In
these plots, each mark denotes the presence of a signal, and some of the lowest
power signals have been removed. A sample spectral density plot for several of
the modes (at different radial positions) is given in Figures 4.28-4.29, clearly
showing the multiplicity of frequencies observed. Note that the ion magnetic
drift frequency is on the order of wp, /§2; ~ 0.001, so the ion magnetic drift
resonance may significantly affect the lowest harmonic. The propagation of the

modes is in the direction of the electron diamagnetic drift.

- To obtain a clearer picture of the nature of observed modes, we com-
pare the frequency dependence on the radius for neighboring mode numbers.
Plots of w/§; versus the radial cell number are given in Figures 4.30-4.33 for
the m = 7 and m = 8 mode numbers to the m = 10 and m = 11 mode numbers,
respectively. Points associated with a given mode number are indicated by the
chosen symbo] (“O” or “+4”). In these plots, there is a dramatic preference
for certain frequeny “bands” (which may vary with position), especially at low
frequency. The lowest two frequency bands show a high degree of overlap. The
frequency of the lowest harmonic is given roughly by w/w* ~ 0.26, compa.red
to the value in Ref. [ll7] of w/w* ~ 0.4. This is reasonable agreement given tixe

rough match in parameter regimes.

In order to obtain a more global picture of the mode structure, we
plot the frequency versus radial cell number for all the poloidal modes in Figure
4.34. In this figure, we have eliminated many of the lower power signals, in
order to concentrate on the strongest components. (although some important
information inevitably is lost). Nevertheless, the spectrum remains somewhat
complex. The overlapping bands are due to signals of different mode number
at néa,rly the same frequency. Since the af:curacy of tihe w/§Y; 'ca,lculatiori is

/
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estimated at only about & 0.0005, it is likely that these represent single modes

that exist across multiple mode rational surfaces, or toroidicity-induced modes.

The “banded” structure seen in the frequency spectrum is charac-
teristic of the strong poloidal mode coupling introduced through the toroidal
geometry effects. These modes are not observed to exist across the entire radial
extent of the mode rational surfaces, however, but a significant number of the
mode rational surfaces are involved in any one mode. This is consistent with the
physics of the parameter regime stu&ied. The variation of the diémagnetic fre-
quency with m will decrease the amoﬁnt of mode coupling; here w* varies by a
factor of 3 between the highest and lowest mode numbers. (The strong variation
of the shear may decrease mode coupling as well.) This situation may not be
completely described by either the strong coupling (ballooning mode) or weak
coupling (Fourier mode) behavior, but a mix of aspects of each. Qualitatively,
the variation of w* with radius ;zvill reduce the number of m-modes involved in
a single quasimode, and limit the radial extent. The changing w* is expected to
give a ra.dia,i variation to the resulting frequency spectrum, although the exact

dependence is not known. This behavior is seen in the simulation results via

an upward trend in frequency with increasing radial position.

Another diagnostic which confirms the toroidal nature of these modes
is an interferogram in the poloidal angle, which returns the mode structure in
6 at a given frequency. Theofetically, strongly coupled modes exhibit “balloon-
ing” towards the outside of the torus (see the discussion in the last section).
This ballooning behavior is observed in the simulation, for several frequency
ranges and at many radial grid points. The interferogram amplitude at two
representative radius/frequency choices are displa&ed in F igurg 4.35. In one of 7

these, the maximum amplitude occurs near § = 0 (center), while in the other,
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the maximum occurs off axis. The short wavelength noise is due to the empha-
sis of the last harmonic harmonic kept in the poloidal mode spectrum (due to

the manner of truncation).

Finally, the radial structure has also been investigated via the inter-
ferogram diagnostic. Strong peaking of the potential is observed near the mode
rational surface for the observed frequencies. The waveforms are typically very
oscillatory in 7, which is a consequence of the weakly dampled (or unstable),
radially éxtended character of the mode. In addition, the waveforms gener-
ally overlap an appreciable number of adjacent mode rational surfaces. This
is in contrast to the rapid radial decay expected of the slab-like mode for the
- current parameters. Radial interferograms for three of the observed frequencsr
bands are given for several mode numbers in Figures 4.36-4.37. The interfered
potential is shown at right, v&’/ith the real part indicated by the solid line and
the imaginary part by the dotted line. The amplitude of the mode is shown
at left. Although adjacent mode numbers generally show similar mode struc-
tures, more bwidel‘y separated mode numbers 'may not. It is also seen that the
radial width of the waveform tends to increase with increasing mode number.
This béhavior may be understood as resulting from stronger coupling, due to a
smaller fractional change in w* between mode rational surfaces (~ Am/m) as
the mode number increases. In addition, the waveforms fvztv different frequency

often shows significantly different structure.
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Chapter 5

Summary and Conclusions

A major goal of this research effort involved the extension of particle
simulation methods to nearly arbitrary curvilinear coordinates. Kinetic and
nonlinear effects play an important role in plasma behavior; thus the capability
for modelling realistic geometries via parficle simulafion is greatly desired. The
toroidal coordinate system considered here has many features of more complex
metrics, including the vanishing of the transformation Jacobian at 7 = 0 and
the nonseparable field equations. The algorithm developed in the course of this

- research thus is Virtuaﬂy metric-independent, and extensions of this work to

other coordinate systems are envisioned.

We have found that few major conceptual changes are required by the
introduction of the toroidal metric, though structural changes are significant.
The use of a radial nonuniform grid is a natural construct in a cylindrical or

“toroidal sysltem, giving increased radial resolution while maintaining nearly uni- .
form particle/cell ratios. Implementatioﬁ of the nonuniform grid is reasonably
straightforward, requiring only a finite-difference (rgal space) handling of the ra-
dial coordinate and the aaoption of a real-space or digital filter for smoothing of -
the interpolated quantities. The association of the curvature of space with the
grid (instead of with the particles) in the charge density calculation avoids diffi-
culties with the vanishing of the coordinate metric, as well as being conceptually
simple. The resulting accumulation /filter/field-solver/filter/interpolation pro-

cess is shown to be rigorously momentum-conserving, as with the usual slab
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methods.

The particle equations of motion in the toroidal metric contain non-
linearities that makes ihfegration considerably more difficult than in slab ge-
ometry. Therefore the ions are advanced using a transformation pusher, which
models the cyclotron gyration well. (The parallel motion, however, is not as
accurately reproduced. An improved model, mentioned in the text, is being
considered for future simulations.) The electron dynamics is modeled via a
guiding center formulation, which is well-suited to thié system. The parallel
motion is separated from the perpendicular drift motion in the usual predictor-
corrector scheme, employing only two additional particle quantities than the
slab model—the magnetic moment (x) and velocify along the field line (vy).
These pushing algorithms have been extensively tested in a variety of configu-
ra.ﬁions, including tokamak magnetic fields; the particle orbits are consistently
obtained regardless of the pushing method, with excellent cénservé.tion of par-

ticle invariants (energy, magnetic moment, and toroidal canonical momentum).

The ability of the simulation code to reproduce collective plasma ef-
fects has been demonstrated in the code’s slab limit, for the plasma wave and
ion Bernstein wave. In each case the simu‘latién results closely followed the the-
oretical respoﬁse, with the exception of a small systematic deviation increasing
with mode number (this resulted from grid effecté, which was not accounted
for in the analysis). A good test is possible only when the theory is well un-
derstood, so that the séurce of discrepancies can be identified. Thus, reliance
on tests in the slab limit for testing of the code is entirely reasonable: (Note
that the accurate reproduction of the theoretical perpendicular plasma wave
response in the slab limit required that the n = 1 and n = 2 ion cyclétron

contributions be kept. This is surprising in light of the “ysual” approxima-
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tions, and points out the importance of verifying the approximations made in
the theory when a close comparison is sought.) The correctness of the toroidal

field-solver itself has been verified via internal consistency checks and through

observation of test particle motlon

An additional question which appears with the simulation model con-
cerns the initialization of stationary particle distributions. This is necessary in
a particle simulatiop so that subtle stability effects can be observed. In the to-
roidal system, the broken symmetry in the poloidal variable causes large-scale
charge separation when the distributions are loaded in the usual way. This
problem has been solved through a “phase-mixing” procedure, for which the
ion distribution is allowed {0 evolve to a steady state (without electric fields),
prior to starting the simulation. A quiet simulation thereby results with fluc-

tuation levels on the order of thermal equilibrium levels.

The simulation of the slab drift mode was performed in order to gain
insight into the nature of the mode and for comparison to the toroidal re-
sult. The slab limit of the toroidal particle code was emp]byed, and reasonable
comparison to theoretical expectation was seen. The radial mode structure dis—.
played the characteristic localization about the mode rational surface expected
for the slab drift mode, becoming increasingly narrow with increasing k. p;.
The observed frequencies agreed with the théoretical values by a factor of two
or less, ‘and the modes exhibited no growth. The difference in frequencies is
significantly larger than the accuracy of the spectral estimator, and may result
from the neglect of important terms in the theory. Inadequate spatial resolu-
tion or fluctuations in the background profile (from a small number of particles

per cell) may have also had an effect.

- The simulation of the drift wave in toroidal geometry utilized a sin-
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gle toroidal harmonic (n = 9), with multiple poloidal harmonics (m = 5 to
m = 15). The poloidal inhomogeneity in the magnetic field and the Lé,pla—
cian operator stfongly couples the poloidal mode numbers. The drift wave
thus takes on a ballooning structure, and this new branch is known as the
toroidicity-induced drift mode. This mode is predicted by theory to be unsta-
ble for fairly small perpendicular wavenumbers (kyp; ~ 0.2) and values of the
- shear relevant to tokamaks (§ ~ 1). This instability results from the inhibi-

tion of the radial convection of energy by the strongly coupled mode rational

surfaces.

The simulation parameters were chosen roughly similar to the pa-
rameter regime used in the theoretical study by Schep and Venema [17]. The
electric potential was observed to grow exponentially for the m = 8 to m = 10
modes, and saturation occured at a time t = 1000 at a fluctuation level
of [e®/T| ~ 0.04. This was accompanied by profile flattening in the vicinitLy
of the m = 8 to m = 9 mode rational surfaces. After the satﬁration time
was reachéd, further significant profile modification did not occur. The growth
rate was measured at y/w* ~ 0.075, or roughly a factor of three greé.ter than
the theoretical prediction. The difference between the measured and predicted
growth rates m;a,y be due to the rough correspondence between parameters used
by the simulation and theoretical model. (Specifically, the values of the inverse
aspect ratio and mass ratio were greater in the simulation than in Ref. [17],

which has a destabilizing effect on the mode.)

The long time-scale response of the simulation exhibited a “banded”
frequency structure, not unlike the discrete frequencies seen in a crystal lattice.
This structure results from the additional degrees of freedom in the presence of

strongly coupled poloidal modes. Although variation of equilibrium quantities
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such as the diamagnetic frequency results in decreased mode coupling, cer-
tain frequencies are observed to persist across a significant radial extent of the
plasma. The observed modes can therefore be identified as the theoretically pre-
dicted toroidicity-induced modes. The fundamental harmonic observed in the

simulation occured at a frequency of approximately w/w* ~ 0.26, in reasonable

agreement with the theoretically-predicted value of w/w* ~ 0.4 {considering

the differences in parameters). -

The toroidal nature of these modes is further supported through ex-

amination of the radial and poloidal mode structure. Interférogram analysis
of the potential shows a strong peak in amplitude near each mode rational
surface, and the radial mode Width is much greater than that seen in the slab-
like drift mode (as well as being more oscillatory). In addition, interferogram
analysis in fhe poloidal variable shows a localization in theta céntered roughly
about 6 = 0, that is, the mode “balloons” toward the outside of the torus.
The theoretical expectation of a marginally damped, radially extended mode

(i.e. ballooning mode) is thus confirmed by the simulation results.

The success of the particle simulation model in modeling the toroidal
drift wave is highly significant, for this mode appears only when toroidal effects
are considered. This research demonstrates that particle simulation in complex
geometries can be an important tool in the understanding of the underlying
physics. However, despite the difficulty of the associated theory and the com-
plexity of the observed phenomena, this investigation is only the starting point.
Many additional effects may be added, such as multiple toroidal modes or tem-
perature gradients, in the electrostatic model alone. The extension to longer
time scales via gyrokinetic and/or implicit formulation of the field equations is

under consideration, as well as inclusion of self-consistent magnetic field effects. -
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Finally, the methods developed in the course of this research may be well-suited
for the geometries encountered in astrophysical problems as well. This might
include simulation of the magnetosphere, or the region near a black hole (for

which a Schwartzschild metric would be necessary).



Appendix A

Here we consider further the properties of the charge-conserving filter
"given in section 2.5 near the point where the Jacobian vanishes, that is, near
7 =0 in a cylindrical system. We apply the filter to the first grid point, which

is a distance of A/2 away from the origin for a uniform grid. The charge-

conserving filter is given by

1o (e |

Expanding the derivatives in the above expression in terms of finite-differences,

we obtain

4
At the first grid point, the 2 — 1 index refers to a wvirtual grid-point outside

A Tpi — 20+ pici 1 pig1 — pica
ot o [y B e

the system, and is defined only in terms of the parity at the boundary and
the known charge density. Indexing the charge density array by distance (in

number of cells from the origin), a single pass of the filter at the first grid-point

yields

A? P3/2 — 2p1s2 + P-1/2 1 paje—p-1y2
P1/2—9p1/2+-4—[ A2 A2 oA

which reduces to
1/2 = % ?1/2 + p32|
p
The filtered value of p at the first grid point is thus completely independent of

the boundary condition at the origin, since no boundary conditions were used
in deriving the above expression.

193




194

The above filter is essentially one-sided at the origin—a reasonable
result considering the intent on conserving charge. However, this is not the
behavior we desire at the origin; ﬁhe charge should be smoothed through the
origin, to minimize fluctuations and to more faithfully represent the continuity
boundary conditions there. This is especially critical given the small cell size
at the origin; the number of particles in these cells will be very small for any
reasonable plasma profile, enhancing fluctuation levels there. In addition to
the charge density fluctuations, the Ey field component is a concern due to its
1/r dependence.l A ﬁltef Whiéh does not conserve charge will smoolth through
the origin, thefeby helping with this iyrob]em (as does stretching the radial grid

near 7 = 0, to increase the number of particles in the innermost cells).
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