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Abstract

| Hamiltonian or variational formulations of the Maxwell-Vlasov equation naturally
yield expressions for the free energy available upon perturbation of an equilibrium. The
noncanonical Hamiltonian, Hamilton-Jacobi, and Lagrangian formulations are'used to
obtain such expressions. It is concluded that all interesting equilibria are either linearly

unstable or possess negative energy modes.
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I. Introduction

The main result of this paper is that all interesting equilibria of the Maxwell-Vlasov system
are either linearly unstable or possess negative energy modes. By the latter we mean that
the free energy surfaces in the vicinity of an equilibrium are not closed and bounded (in
any reference frame), in spite of the existence of linear stability. It has previously been
conjectured®® that equilibria with negative energy modes are generically susceptible to
nonlinear instability; that is, instability due to nonlinearity which occurs for arbitrarily
small perturbations about an equilibrium. Moreover, it is believed generally that systems
with negative energy modes are structurally unstable to dissipative perturbations of the
governing dynamical equations. If a negative energy mode is dissipated, then it loses its
spectral stability.

The conclusion we come to is that equilibria for which the “monotonicity-isotropy” con-
dition of inequality (18) is true, have negative energy modes. Here f(® is the equilibrium
distribution function of species v and k is an arbitrary vector. This result depends only on
the velocity dependence of the equilibrium distribution function; it is independent of the
structure of the equilibrium fields.

It is obvious that in order for us to arrive at the criterion of inequality (18) we must have
an expression for the free energy. An important result of this paper is such a free energy
expression. This is given by Eq. (68). The word free is used here because the perturbations
away from the equilibrium state are required to obey the Hamiltonian constraints.

Our results are obtained within the context of three Hamiltonian/Lagrangian formula-
tions of the Maxwell-Vlasov system. In Sec. II we present results using the noncanonical
Hamiltonian formalism.*~7 This can be viewed as a purely Eulerian variable description—
one where particle orbit information does not explicitly appear. Here, after reviewing the

formalism, we physically describe the meaning of negative energy perturbations for non-
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obtain the monotonicity-isotropy condition in the purely electrostatic context. The slight
generalization to equilibria with current free magnetic fields is presented.

Section III utilizes a variational formalism based on Hamilton-Jacobi theory.®1° This
formulation can be viewed as a combined Eulerian and Lagrangian variable description. It
appears presently to be limited for practical reasons to equilibria of one spatial dimension.
However, it might turn out to be useful for obtaining the free energy within the context of
kinetic guiding-center theories.>!® Section III is designed to be read independently of Secs. II
& 1V. |

In Sec. IV we begin with the Lagrangian variable description of Low!! and then use
Noether’s theorem (or equivalently the Legendre transform) in order to obtain the energy.
The expression obtained is expressed in terms of the Lagrangian displacement and its time
derivative. Requiring that these pertui‘bation.s arise from a generating function leads to the
desired free energy expression, Eq. (68). Formally this expression is valid for all equilibria.

In Sec. V we use the results of Sec. IV to treat examples. These include electrostatic
equilibria with electrostatic perturbations, homogeneous equilibria with electrostatic and
then with electromagnetic perturbations, followed by the case of general equilibria. It is here

that we draw our conclusions detailed above.

II. Eulerian Description

Consider now a strictly Eulerian description, i.e., one where particle motions are not moni-
tored. The state of the system is given By the phase space density of species v, f,(x,Vv,1),
and the fields E(x,¢) and B(x,t). We will state the results obtainable by free energy ar-
guments that are accessible by this description and show how these results arise naturally
from the noncanonical Hamiltonian formalism. In essence the results presented are a review
of material contained in Ref. 3, although a more complete interpretation of the results is

given. Also a variational principle for magnetized current free equilibrium and subsequent




stability analysis is given, which is new. This section is included for completéness and for

later comparison with the methods of Secs. III and IV. |
The Euierian description can be thought of as arising from an underlying particle descrip-

tion by the elimination of particle labeling information. On the particle level the equations

of motion have the Hamiltonian form one would expect of Newton’s second law, while on

the Eulerian level the equations have the noncanonical form (for review see Ref. 7), which is

given by |

ox . 6H

2 (1) =[x, H] = I 5 (1)

Here. x' denotes the field components (e.g. f,, E, and B) defined on some “spatial” do-
main z (e.g. the phase space (x,v)) and temporal domain ¢. The expression §H/6x? is
the functional derivative of the Hamiltonian functional H[x] and the quantity J¥(x) is the
cosymplectic operator, which possesses the necessary properties to make the bilinear oper-
ator [ , ] a Poisson bracket. Unlike conventional Hamiltonian field theories, brackets for
media fields possess a special class of constants called Casimir invariants that commute with
any functional F, i.e.,
§F .. 6C

FCl=55 7" 55 =0 2)

This implies that §C/ 8%’ must lie in the null space of J¥, thus one can find Casimir invariants
by analyzing J“. These invariants are special in that they are constant for any Hamiltonian,
whereas constants such as angular momentum, etc. depend upon the specific form of H. For
now we will restrict ourselves to the use of Casimir invariants and H to obtain Liapunov
functionals for stability, but note that addition of momenta correspond to frame changes.

Evidently equilibria are critical points of F' = H + C. This is apparent from Eq. (1) since

axi_— i _ ”6F_
‘g—[ JH+C)=J 57 = ’(3)

Usually in Hamiltonian systems equilibria are critical points of H, but in the Eulerian de-

scription such points correspond to the “vacuum” state and are thus uninteresting. One-
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requires the C’s to constrain the equilibrium away from such minimum energy states. It was
shown in Ref. 2 that F is the free energy, which serves as a Liapunov functional for stability

if 6F/6x* = 0 is the equilibrium of interest and

1 &°F o
ep— [ 2 iy
6°F /2 5o 6x'6x?d=

is definite. The quadratic functional 62F corresponds physically to the free energy accessi-
ble to the system upon perturbation away from equilibrium. This functional is important
because it determines the existence of negative energy modes. Such modes exist when 6°F

is indefinite in all frames and there is linear stability.
First we consider one-dimensional Vlasov-Poisson equilibria. In this case the energy

functional and Casimir invariants are given by

m,v?
H[f)] = Z/ ; fu(z,v)dz dv
+ 3 [ehla)® (@ f)dedo @
COlR) = [FV(f)dodv, ®)

where the dynamical variables are f,, v indicating species, and ® is a shorthand notation
for the Green’s function solution of Poisson’s equatioﬁ. The constants C*) [f,] physically
corresponds to the conservation of phase space volume (c.f. Ref. 3). Variation of F =
H+Y,C® yields

§F=%" / 51, &+ F ()] dz dv = 0, (6)

where &, = %myv2 + e,®. Solution of Eq. (6) for all §f, requires &, + F*V' (f,) =0, an
equation that is solvable for an equilibrium distribution f{°), provided F®)' is monotonic. If
we assume so, then we obtain monotonic equilibria, (% (£,). In a strictly Eulerian model

these are the only equilibria for this system that are obtainable from a variational principle,

although nonmonotonic f{% (&,) are also equilibria. In Ref. 3 nonmonotonic equilibria were




obtained by adding a passively advected Eulerian tracer field, which was assumed not to
“slip” relative to the dynamics of f,. This artifice amounts to the inclusion of Lagrangian
variable information.

Now we consider the second variation, but for convenience we restrict to a single species
of charge e. One obtains the same expression for the perturbed free energy in both the

monotonic and nonmonotonic cases. Varying Eq. (4) once more (and dividing by 2) yields
1 | 1
2 — 1 ( £(0) 2 2
82F 2/.7— (£ (65 dzdv+ /(53) dz, (7)

where (6E)? is shorthand for the second variation of the second term of Eq. (4). We will
neglect this term since its apparent stabilizing effect is mitigated by the fact that we can
choose éf so as not to produce a charge perturbation (c.f. Ref. 3). This is general enough

for our purposes. Differentiating the equilibrium relation we obtain

af©

which upon substitution into (7) yields
1 (6f)2
2 T e ——————————
6*F . / OF)2%) dz dv. (9)

Thus we have stability if 8f(©)/0€ < 0 and indefiniteness if f© is nonmonotonic. In the
later case the Penrose criterion may predict spectral stability, in which case we have negative
energy modes.

What physically is the meaning of the expression of Eq. (9)7 To answer this consider a
distribution function with a single maximum at £,. Suppose the phase space is divided up
into cells labeled by various energies, &, &, ..., &;, etc. Recall that the Liouville constraint
can be succinctly stated as follows: particles can be moved afound in phase space such that
the number of cells with a given number of particles remains fixed. We are free to position any
cell at any phase space point, i.e., at any energy. Let us investigate the energy change that

-results from the interchange of particles-between a cell &;, where-&; > &,, and its neighbors. -
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If we take f; — fiy1 particles from cell & and add them to cell £;; we maintain the Liouville

constraint and obtain an energy change of AE(f; — fiy1), which is a poéitive quantity. A

similar exchange between &; and &;_; yields another positive energy change, AE (fizy — fi).

This occurs for all exchanges where 9f(©/9E < 0. Alternatively, exchanges in the vicinity of
an energy &, where £ < £*, yield a decrease in energy, e.g., taking f, — f; particles from
&; and placing them in & yields, —AE(f; — f1), a negative energy perturbation. Physically
the sign of this energy perturbation arises because particles have been slowed down. We can
only do this and observe the Liouville constraint if 8(9/9€ > 0. In fact it is simple to see

the origin of §2F as given by Eq. (9). Estimating the change in energy AE, assuming small

A€, yields

AE = —AE[fOE+AE) - fOE)], | (10)
but

. af©
6f = fOE+A6) - fOE) mAE ==, (11)
so finally we obtain
© 2
AE = —(AE)? o7 _ __)) (12)

8~ afOyjaE
Summing over many such exchanges we obtain Eq. (9).

It is evident that something peculiar happens at the maximum, &.. To begin with,
since this is an absolute maximum one cannot add particles to this cell without violating the
Liouville constraint, since there is only one cell with f(&,) particles and none with more. But
this cannot be the entire reason for the singularity, since we still have divergence if §f (€,) is
negative, corresponding to a subtraction of particles from this cell. Also if f(E,) were only
a relative maximum we would still get divergence even though the Liouville constraint can
be satisfied. The problem arises because of nonanalytic behavior of the energy upon 6f at

this point, if 6f (£,) # 0. This is evident since we must expand Eq. (11) to higher order to
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get a nonzero contribution. We obtain

2 £(0) 2
6f (&) = 3fag§5*> (Af) (13)

which yields the following expression for the energy change:

|6f|3/2
YZRCE

unless §f (£.) = 0. It remains to address the question of accessibility, i.e., is it possible

AE = AESf= (14)

for 8f (E.) # 0 to occur during the course of the dynamics. From Eq. (41) of Ref. 3 we
see that 6f (£,) # 0 implies that the tracer field slips with respect to f. If the Vlasov
equation becomes singular in time, this is the likely place of trouble. The situation is much
like that in ideal magnetohydrodynamics where kink or ideal perturbation are required to
vanish on rational surfaces. Such trial functions are inserted into §W. In the same spirit
we will consider only “ideal” perturbations, i.e., such that §f (5,,.) = 0. In fact, if we choose
of = [G, f (O)] where [ , ] is the usual Poisson bracket and G is an arbitrary function, then

the Casimir constraints of Eq. (5) are maintained to first order. This follows since
5C = / F(fO)éfdadv = / F (1) [6, 9] de dv
= [16.Fldzdv=0.

The perturbation can be written out as

' 1 [0G 8f©@ oG 6f©@
— © — (= _ 7
of [G’f ] ™m [8:6 ov ov Oz
_ [,96 _ < 9806 55
= Y8z “m oz ov| BE°
whence we obtain
op _ 1L 2 01
§°F = 5 (£, G] 5% dz dv. (15)

In the case of homogeneous equilibria this becomes
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dz dv.

_— __1_ aG\* of©
OF = (am ov

Our conclusion with respect to one-dimensional Vlasov-Poisson is that all nonmonotonic
distribution functions possess either linear instability or negative energy modes.

Now consider three-dimensional Vlasov-Poisson equilibria, putting aside the question of
existence. The procedure carried out above can be formally mimicked in this case yielding
Eq. (6), which means that here f(® has to be isotropic. Taking the velocity and space

gradients of the equilibrium relation yields the following:

, 0f© , 0f© 0%
F e —-mv, .7-" T T (16)
which imply
"o . [Ga ‘S]
R D)
Now assuming, as in the one-dimensional case, §f = [G, f(o)] we obtain upon substitution
1 0 f
2o 32 43
08 = [16,6p Z—d% v+8 /(5E (17)

Again, as in the one-dimensional case the crucial quantity is the first integrand. In the case

of homogeneous equilibria Eq. (17) reduces to

§°F = —-—/< ) (6G 5;5))) Pz & +/

If we assume G ~ e*¥% 4 c.c., then we have positive definiteness if and only if

(k- v) (k- 355)) <0, (18)

for all k, x, and v. This monotonicity-isotropy condition is quite general and not only valid
for homogeneous and isotropic f(®; it will emerge again in both Secs. III and IV and will be
proven there for general f(O(x,v).

If f© is a nonmonotonic function, then inequality (18) can be violated. This is clear
since we can pick k in the direction in velocity space where there is nonmonotonicity,; then
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defining vy = k - v we obtain

3f(°) o 2af(0)
B = Fveges

(k-v)k-
where & = $v}. Thus condition (18) essentially contains the condition of Eq. (15), and one
can relocate the particles to obtain a lower energy state when it is violated.

If we assume f(°) is monotonic decreasing, then inequality (18) is violated if and only if

f© is anisotropic. To see this suppose there is a point v in velocity space where there is

anisotropy; without loss of generality we assume

1 §£0) )
199 1 0f

vy Ovy ~ v, Ovu, '

where the expressions on both sides are negative. Let

R |1 09 1 9f©
el

then evidently 1 > R > 0. Choosing k = (1/v,6/v,,0) we obtain

af© 1 9f@

vk-
kv ov v, Oy,

(R+6)(14+6)

which is positive for —1 < § < —R. Physically these negative energy anisotropic perturba-
tions can be explained in a manner similar to that giveﬁ above for nonmonotonic f(©(€).
Given any anisotropic distribution one can relocate particles so as to approach isotropy, in
a manner consistent with the constraints where the resulting energy change is negative.
There is one other class of equilibria that is accessible to the strict Eulerian description.

In addition to the “Liouville” Casimir invariant the Maxwell-Vlasov equations possess the

following:
Cp = /U(V-E—z;yr/efd%)dsm - (19)

Cp = / 4V - Bd%, (20)
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where U and ¢ are arbitrary functions of x. It is of course well known that if these quaritities
are initially zero then they remain zero, but adding them to the free energy allows us to
obtain slightly more general equilibria. In the perturbed free energy these quantities should
be satisfied to first order. Including Egs. (19) and (20) we have the following free energy

functional:

F = m—”f(x v)dsmdSv—l-—S-l—/ (E? + B?) d3x+/.7-'d3z v

— __1__ B — 3 3 _l_ . 3
47T/U(VE 47r/efdv>dx+47r/xv B &%z, (21)

where the first two terms correspond to the (0,0) component of the Maxwell-Vlasov energy-
momentum tensor (c.f. Ref. 10). Again for simplicity we have assumed a single species.

Varying F' yields
= [sf [— U+ F(f)| oo
n é / [6E - (E + VU) + 6B - (B — Vy)] &%, (22)
which implies the equilibrium relations
FOE), EO = VU = —vV3O, B = vy, (23)

The equilibrium electric fields are electrostatic and the magnetic field is derivable from a
potential, which means there is no plasma current since V x B(®) = V x Vx(® = 0. Taking

the second variation of (22) and assuming 6§ f is ideal, we obtain

oF =1 [lo.ep 2 af Podv+ o [ [(6EY + (6BY] Pz, (24)

Equation (24), with the appropriate choice of G results in the same necessary and sufficient
condition for positive definites as before, i.e., that of Eq. (18). Let us now turn to the

Hamilton-Jacobi description.
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ITI. The Hamilton-Jacobi Description — A
Combined Eulerian-Lagrangian Formulation

In Refs. 9 and 10 it was shown how to derive the Maxwell-Vlasov theory from a variational
principle by employing Hamilton-Jacobi theory. For completeness we will briefly review this
here, before proceeding to the question of negative energy perturbations in this context.

The Lagrangian is given by
88 1 (08, e ,\”
- 3 3 hiaid e y_
L= zy:/dwdaqﬁ,,[at +e"q)+2m,,<3x cA>}

+ %/d% (B2 - B7), ‘(25)_

where the functions S,(x, e,t) are Hamilton-Jacobi functions for the particles of species v.
The quantities a and B = 05,/0c are constants of motion. The densities, ¢,, can be

expressed in terms of the distribution function f, by

%S,
b = Sleof)|Zo (26)
where
aZSy
D, = m (27)

is the so-called Van Vleck determinant. Variation of the action, [ L dt, with respect to ¢,,
S, and the potentials ® and A yield equations equivalent to the Maxwell-Vlasov system.

We expand the Lagrangian by assuming
¢u = ¢;(/0) + 6¢l/7 Su = Sz(/o) + 551/,
d =00 440, A=A 45A, (28)

where the superscript 0 denotes unperturbed quantities and the 6 indicates perturbation.

Equations for the perturbed quantities are obtained by expanding Eq. (25) to second order

L=LO 6L +8&L. .
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The term L(® describes the unperturbed system. When varying with respect to unperturbed

quantities, the following holds:
¢
§ 7 LOdt =0, (29)

131

One can view Egs. (28) to be a trial function ansatz where the “0” variables are assumed to
be equilibrium quantities. If they are assumed to be known Eq. (29) is manifestly satisfied;
if not, Eq. (29) yields equilibrium equations. In the following we assume the equilibrium is
~ at hand and then search for neighboring solutions by varying with respect to the perturbed
quantities.

Now at first order we obtain no new information. Since 6L is just the first variation of
LO) 6 [ 6L dt = 0 is automatic because of Eq. (29).

Proceeding, we are then left with the second order Lagrangian

068, 1 (950 e 968, e, .
2[ = — 3 4 v _ S a@) . (902 _ &
8L = Z/d d {5@[ te ‘M”’m,,(ax 2 A ) (6}{ c&m)]
1 968, e z 1
= 40 [ ZZr  Ev all 3 2 __ 2
+ 59 <6X ccsA,,) }+87r/d:c(6E §B?). (30)

Variation of (30) with respect to §¢,, 65,, 6@, and 8A, ie.,

t2
1) §°Ldt=0

5]
yields the correct first order equations for these perturbed quantities.
, From 62L one can in the usual way find the expression for the energy from the canonical

energy density, 62@g. This is equivalent to Legendre transformation. We obtain

20 _ 3,62 - 3., 73 (0) (0)
5 5_/d 2800 = /d:cd [eu6<1>6¢,, T (602 40 + 26v, - v 5¢,,)]
— [ e [— §E - 6A + 8— (sB? - 532)] . (31)
Here we have used the abbreviations .
1 [88©® ¢
0 —_ _— v __ v A(0) 9
Vv my( ox ¢ A ) (32)




1 [06S, e,
ov, = m_,,< o . ) (33)

It holds furthermore that
%51& = —6E — V§® (34)

> [ dae,b, = b, (35)
where §p is the perturbed charge density. Upon making use of Egs. (34) and (35), the energy

becomes
526 = Z / P do 2t (524 +26v, -v(064,) + — / &z (§E? +5B?) (36)

Recall that connection with the distribution function is made by Eq. (26), which relates
é., Sy, and f,. There is some subtlety in expanding this equation to relate the perturbed
quantities. We assume the perturbations are turned on at time ¢ = —oo and rise adiabatically.
Since the distribution functions f,(a, 8) are only functions of the constants of motion, the
functional form remains unaltered for such an adiabatic turn on. Since at ¢ = —oco one has
f(a, B) = fO(e, B) and since the f, are constant along the particle orbits this must hold
for all times. It is the meaning of o and B that changes as the perturbations rise. This

observation simplifies the perturbation of Eq. (26). We obtain

¢ = fOa,B) DY (37)
ofl0 968
— £0) v, v p(o)
6¢, . | (e, 3)6D, + 50 £ D,{ , (38)
where the D, given by Eq. (27), can be written as
*0S, as, 0S,
D, = V6a1 ' ( Oarg V@as) '
Thus to zero and first order '
9SO [_ 950 _ 95O
(0) — v, v
D,, V 8041 ( 6&2 % V 8a3 ) (39)
3. 565, [0SO _ os®
D= 2 Ve (V Bo " aak) | 0

cychc
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There is some freedom in choosing S{%), but in order for §2€ to be a conserved quantity it is
required that 85(”)/0x be time independent. This will be the case if one assumes a variable
separated form

SO(x, a,t) = —EO¢t + 50)(x, o),
where E() = EO(a). Note also that f(%)(e, 8) must be time independent.

In expression (31) 65, A, and §A can be chosen independently, whereas é® is bound by
the constraint V-6E = 4nép. The field quantities §A and §A are indepéndent of the particle
quantity 55,,, because Maxwell’s equations allow for the production of a displacement current
that makes a given particle-field configuration consistent. Fortunately, §& and §A do not
enter the phase space (f d®z d®a) contribution to §2£. It is thus convenient to replace the
§® and SA variations by a 0E variation that is subject to the Poisson equation constraint.
The equivalence of these variations follows because 8p is linearly related to the particle
perturbations (but not identical to, since phase space information has been integrated out)
and because §%£ is bilinear in the perturbations.

In light of the above, the positive semi-definite electric field energy contribution can
be considered independently. We incorporate the Poisson constraint by using a Lagrange

multiplier 6U(x) as follows:
5/ [5—E—2 — §U(x)(V - 6E — dxép)| = 0. (41)
(Note that this procedure is in essence equivalent to that of Sec. IL.) Equation (41) yields
§E = —V6U. (42)
In terms of initial conditions Eq. (42) means
§A =0, 6¢=06U(x)

with
ViU (x) = ~4nbp.
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The minimum electric field energy is therefore achieved for 6p = 0.
Subsequently, we also wish to write our energy expressions in terms of physically recogniz-
able quantities. This requires transformation from the variable « to the velocity variable v,

-related to the unperturbed state. The following replacements must be made:

1 [0S0 e,
v=vd = m—( x —%A(°)> (“3)
DOFa = midv. (44)

Also, it is desired to write év, as a function of x and v. To accomplish this we write §S, as
a function of x and v and use Eq. (33). To complete this transformation requires §D,. If

we define P = p + 6p, then the following expressions are exact:

&PzdP = dzd’aD, = Pz d®e (DO +6D,)

068,

dP; = dp;+dép; =dp; +d
8:1,‘,'

o

!
dz; = dz;,

where we have used ép = 865, /9x|,. To first order

Pz d®P = (H—%(% )) Pz d®p

= (D® +6D,) d*z d°a

6D,
= (1 + D(°)> d’z d°p (45)
and therefore
i, oS (Plnatenis) ) w0

Finally we transform from the variable p to v using, p = m, v + & A,
We are now in a position to rewrite the expression of Eq. (36) for §2£. Assuming for

the moment that our equilibrium configuration is determined by the constants o alone, i.e., -
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e, B) = f(e) = fO(x,v), which is often the case, we obtain upon making use of
Eqs. (37)-(40), (43), (44), and (46),

6 = Z/d“’” (0)[

988, (x, a (x, m,v + & A(O)) ,t)

2m,, 0x @
2
e, 96S,| e ..\ O 055,
- ?6A| +2v-< . 6A) e }
T [ &z (58 + 6B?) (47)
8w

where we have absorbed a factor of m2 into the definition of f().

If one drops the assumption f{?) (e, 8) = f{®(a) in Eq. (36) the term D af©/53 -
as,/ aavmust be taken into account. To write this term in terms of x and v we must know
the dependence of a and B on these variables.

Now consider a simple example, that of a one-dimensional electrostatic equilibrium. In

this case one has

550
P= "5z
Setting A9 = §A = 0 and restricting to one-dimension and single species, Eq. (47) becomes

dz dv 968\ 065 5268
20 _ (ON N i —
& / 2 f {( oz ) +2v ox 8'0(918]

= i/2m (@ — e2O)(z). (48)

1 v 2 -
o / dz §E?. (49)
We wish to compare this expression with that obtained in Secs. II and IV. Thus we map
from the function 6S5(z,a) to a generating function G(z,p). To this end we expand p =

95 (z,)/8z about z = £© + §z and obtain

865(z©), ) y PS5O0z o) 0G

=" i Cnd1C) R ©
0 T = g (& P (50)

Define G by 665’8(3::1:,01) aG{;x’p) Upon dropping the superscript (0) and making use of the

derivative of Eq. (48), Eq. (50) becomes

oG aa+ E(O)(:v) 8G
0z 8z Bp°
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Replacing 65 by G, Eq. (49) can be written as

ree L (@O [m? oL [ sp
55_-2/02:34@ |5 6 +8W/5de,

and we can replace G by G; noting that [m2”2 , G’] = [€, (), yields

af©

2 1 2
S [£,G] +8W/6E de.

1
2 T e —
6°E = 2/d:z:dv

This expression is in agreement with Eq. (15) of Sec. IT and the one-dimensional restriction
of Eq. (73). Unfortunately the generalization of this result to three-dimensions is hampered

by the fact that there does not in general exist a G such that

065 (x, a)
0x

_ 9G(x,p)
«  Ox

)
4

where a(x, p). This apparent shortcoming is overcome by the method of Sec. IV.
To conclude this section we note that 62€ is gauge invariant. If welet A(® — A0 47

and 6A — 6A 4 Vé1), then

Gy(v,x) = G, (v + v¢<°),'m> -2 5. (51)

"V

With these substitutions it is evident that Eqs. (47) and (50) do not change.

V. Lagrangian Description

It is well known that the Maxwell-Vlasov equations possess an action principle when the
media is represented in terms of Lagrange variables. This is because the usual concept of
a field is replaced by a continuum of particles, which of course are governed by Newton’s
second law with the Lorentz force. We will not review this here, but refer the reader to
Refs. 11, 12, and 13. The main contribution of this section is a procedur¢ for obtaining
the general second order perturbed free energy. To our knowledge this quantity has not

previously appeared-in-print. - -
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Recall that in order to uniquely label a particle in phase space two continuum labels are
required. This is because more than one particle can occupy a configuration space point.

Thus we suppose particle orbits are given by
x(XD,vOat) ’ (52)

where x (Xo, Vo, 0) = Xq and % (xg, vo,0) = vo. We expand about an assumed known reference
trajectory according to

x = x© (%0, Vo, t) + 6% (%0, Vo, 1) (53)

with corresponding field perturbations

1 6A© 1 96A
- EO = _vp 29477 _ %4
E EO(x) + 6B(x,t) = —=VOl) — = = — V60 — — —
B = BO(x)+6B(x,t) = Vx A® 4+ V x 6A. (54)

We assume that the reference orbit gives rise to macroscopic quantities that are stationary

in time. Expanding in the smallness of éx, 6B, and §E one obtains the second order action

/52[/ dt = /dt/d3$od vofo (XO’VO) { (8;:{)

960 1 62@(0)5 o g L5 o0 106w A®
ox 2 0z;0z; Ti0%j + c ot c Ot O,

+ e[—&x ox;

1 0; 084; 1 0z; 6249

+ c Ot Oz, i +2c ot Oz;0z;

5:1:]5.%1] } + §17—r / 6B - 6B°] d*z.  (55)

In general, the integrand of Eq. (55) contains explicit time dependence that arises because
the field quantities are evaluated on the reference trajectory, x(®. This occurs if we are
interested in nontrivial equilibrium, i.e., ones for which there is particle motion. Because of
this the action 6%5 is a éomplicated object. In general one cannot obtain it explicitly since
explicit expressions for the reference trajectories do not exist. This complication is avoided
by referencing the perturbation with respect to the reference frdjec’tofyr at time t, rather
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than its position at time ¢ = 0. Calling x(¥ = v and dropping the (0) superscript, x(© — x,

we write the perturbation as follows:
6x'(x,v,t) = 6x (%o, Vo, 1). (56)

The map between (x,v) and (xo, Vo) formally exists since the Jacobian, 8(x, v)/d (xo, Vo),

is unity. Also we have

0éz ,
o = Do -»
where
0 0
= 2 . 0y, =
b= gtv-V+al =
and

a©® — £<E<0)+.VX_B(3>,
m C

and finally fo (%o, Vo) d®zod®vo = fO)(x,v)d%z d®. Here f©(x,v) is the equilibrium distri-
bution function, which is assumed to be time independent. With these substitutions the
Lagrangian becomes (dropping the prime on 6x)

1 9290

2 bnbe
2 0z;0z; z:62;

8L = /d3xd3vf(°)(x,v){%(D5x)2+e[—&x-VcS(I) —

Tj

©) | o 5240
+ %5A . Dbx + %5:8,. 38’4’ Déz; + % 5z, 004 v OA; 5xj5x,J }

5:11j 52 8.’23]'5.’171

+ §1; / 6E? - §B%| d°z, - (37

which now has no explicit time dependence. Moreover, this expression is gauge invariant
and produces the correct linearized equations of motion upon variation.!!
The transformation performed above is quite desirable since it allows one to obtain the

conserved second order energy. This can be achieved by either Legendre transforming or
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equivalently by calculating the (0,0) component of the canonical energy-momentum tensor,

both of which yield

552L 66°L .
2 - 13 13 . 3, 2
6°H = / 6xd:cd'u+/66. 6A d°z — 6°L. (58)

The canonical momentum density conjugate to §x is given by

65L

b= e =

= fO(x,v) [m05x+ 6A + = 5x VA(")} (59)

but we will find it useful to use the perturbed particle momentum defined by ép = mDéx -+
£6A + £6x - VAO), Performing the operations indicated in Eq. (58), making use of the

linearized equations and Egs. (54), and writing the result in terms of §x = 96x/0t yields the

following:
PH = [Eods “”{ (165 — |dsx[?] +§5x b0, 02 6‘5’2‘362
- 5[5‘” 52i 5 5 3;@2 + (déz;)bz; 854 i + 06 agfk +6A; ‘déx,} }
5 oot vem, -

which is equivalent to

217 3. 73, £(0) M eo2 _ 2
8H = /dmdvf (x,v){2[|5x| déx[?]

) ©
[-——25}( . (" a 5B> + (_53%5}___) - dx — 6x - (6% - V) (E“’) + Y——-XCB—H }
(4

+ 8% [ &= (557 + 857), (61)

Do) o

where we have used the shorthand d=v -V +a(© . %.

Since the equations of motion are second order in time, the variable §x% is independent

of éx. This independence would be manifest if we rewrote Eq. (61) in terms of the particle-
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momentum conjugate to 6x. As in Sec. IIT we desire to restrict our choice of x and 6% in
such a way that these quantities are dynamically accessible; that is they must arise from
infinitesimal canonical transformation. Suppose the total dynamics, x = x(©) + 6x, arises

from a mixed variable generating function F'(P,x), which we suppose is near identity
F(P,x) = P-x+G(P,x). (62)

The perturbations are then generated by

0G
ox = %(p’x) (63)
= o2 (p,x), e

where as usual the infinitesimal transformations are not of the mixed type, i.e., we can
replace P by p to first order. Perturbations §x and ép that are obtained from a generating
function, as in Eqs. (63) and (64), can be viewed as arising out of the infinite past. In the
case of instability this happens for an infinitesimal perturbation at ¢ = —oo. In the case
of a linearly stable system, one can imagine an external perturbation to the force law that

adiabatically generates 6x and 6p. To relate 6p and 6%, note that p = mDx + £ A, and

thus

6p = mDéx+S6A = —%g‘ (65)
or using 6% = Déx — déx we get

6% = Déx—dsx=——29] _° sa_ d-[ﬁ . (66)

m Ox |[p mec op Ix
Writing G(p,x) = G (mv + BAC(O),X) this becomes
1 4G e 9G| 0A" e 1 ,8G
¢ = - L I LAY R L 67
o m 0x lv ' m? Bv; Ix Ox mc oA m OV Ix (67)

This expression for 6x is gauge invariant [c.f. Eq. (51)], and the same can be said for éx.

Thus when we substitute Eqs. (63) and (67) into Eq. (60) or (61), we obtain an expression for
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the second order gauge invariant energy, where the particle degrees of freedom are contained
entirely in G. Gaugé invariance follows from Eq. (61), but we choose to write our energy

expression in terms of the potentials, as follows:

2

G, e, 8G, 040 ¢,
+

d*z d®v
207 (0) —
A6 H Z,,:./ 2m, 1 (x,v){ Ox myc Ov; Ox myc sA
L 9q28y |0Gy _ e 8G, 04D e (| e 8G, 0G, 8°20)
ov ox myc Ov; 0Ox c m, Ov; Ov; Oz;0z;
e, [8G, 8G, 8240 080G, ,0G, 049 2, [0G, 96A
Vi +2 d _——— Vg
myc| Ov; Ov; — Oz; Oz Ov;  Ov; Oz c | Ov Oz;
+ 6A,d0—w]}+-8;/[5]5 + 687 d*z. (68)

Here we have generalized the result by adding the species index v.

Equation (68) is a complicated expression that can be written in many ways by integration
by parts and neglect of surface terms. In Sec. V we will examine it in greater detail in special
cases. For now we restrict to a single species and neglect the equilibrium field A©® and, as
well, the perturbation §A. In Sec. V it is shown that spatial localization of the perturbation
from equilibrium renders the positive energy contribution, arising from the fields, negligible.

Without the magnetic field, the energy expression of Eq. (61) becomes

© [ |G
2 _ [ ] oG
SH = / 2m { ‘6){

1 243
+ o / §E*dz, (69)

+2d

2
G 0G e 0G 0% HG .
8_v'8_x+m@v Ox0x Bv}dxdv

where the operator d reduces to
d=v: e————— . —=—[£,]. (70)

In the next section [Sec. VA] we see that positive definiteness of Eq. (69) depends upon the

monotonicity-isotropy condition of Sec. II. Assuming f©)(E), where £ = mv?/2 + ¢ is
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the particle energy, a sequence of integrations by parts and neglect of surface terms results

in the following:

of©
2 o€
As shown in Sec. II, the expression on the r.h.s. of Eq. (71) is positive definite if and only

§*H =

1
2 53 3 213
[£,G] dmdv+—87r/5E dz. (71)

if inequality (18) is satisfied. This velocity-space criterion is the crucial thing in the general

case.

V. Examples

Now we consider several examples, beginning with Eq. (68), the energy expression of Sec. IV.

A. Electrostatic Equilibrium — Electrostatic Perturbations

For simplicity we consider a single species with an equilibrium characterized by f©(&).
Equation (69), with the neglect of the electrostatic energy term, (indicated by prime) can

be written out as follows:
&3z dBv oG |?

52H, — (0) bl

[ S e ){ =

_ 260G &G 990 | e 0G 0G 5701 (72)
m O:ck a'vi avk 8:121' m ka 81),' a.'L'k 6:1;,- ’

oG 0 0G

9 I . 2 Y7
u Oz vi Oz; Ov,

Integrating half of the second term of Eq. (72) by parts in v; and the other half by parts in

z; yields

§H' =

o 006 9 (96 900
Bx [g 5 o€ mf Ovi Oz \ Ov; Oz

2m

B Po { Ye af©
mv

m@:z:k 8:Bi 8vi8vk )

Integrating the second term by parts in z; and the third by parts in v, yields the desired

result

(0) 2
FH = [ Pody af 1€, G2 + /55 &a, ()
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where we have added back the electrostatic energy term. This is consistent with the results

of Secs. II and III.
B. Homogeneous Equilibria — Electrostatic Perturbations

For this first example we suppose E()) = 0, A(® =0, 50 /0x = 0 and set §A = 0. Equilibria
of this type can be written as f(®)(v). In this case the integrand of §2H is independent of
X, so it is natural to suppose that the spatial domain is a large periodic box of volume V.

Perturbed quantities such as G, which minimize §2H, are represented as follows:
G, = G,(v,k)e** + c.c. (74)

Thus Eq. (68) for §2H becomes (upon dropping the “caret”)

aG oG
2 — 3 2 *
8H = Z/d [A|G|+G vk vk 2
2
1671' 6B - (1)
Integrating by parts yields
afl v
52 = 3 v e 2.
H E/d |G k- vk 2 4 — |6E| (76)

If the frame of reference is chosen so that

Sm, [viQd =0, (77)

62H will not contain a contribution from the center of mass kinetic energy. We assume this

. is the case.
Choosing a “particle perturbation”; that is, one for which §E = 0, the stabilizing effect

of the electrostatic energy is lost and 6°H can be made negative if

f(O)
k-vk. >0 (78)

for some k and v. Note that again we have obtained the monotonicity-isotropy condition. As
already shown in Sec. IT any deviation of f(%) from being a monotonic function of v? results in

‘the existence of negative energy perturbations. This includes all non-isotropic distributions.
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C. Homogeneous Equilibria — Electromagnetic Perturbations

Now consider the question of whether, fbr the same unperturbed system as that treated in
Sec. VB, a nonzero choice of §A could lead to lower energies. If so, the §2H threshold for
the transition to negative energies would be given by a condition that is less restrictive than
Eq. (78). A somewhat ‘lengthy calculation is presented in the Appendix, which shows that

this is not the case; the condition remains unchanged.

D. General Maxwell-Vlasov Equilibria

We conclude with a sufficient criterion for the existence of negative energy modes in general
Maxwell-Vlasov Equilibria. To this end we localize our perturbations G,, for one species v,
to intervals of size Az, Ay, and Az, each being small compared to the typical gyroradius of
this species. All other G,’s we set equal to zero. Furthermore, we take our perturbations,

which are localized inside these intervals, to be proportional to e** with
kxTLy, kery, kZTLu > 1. ‘ (79)

The right-hand side of Eq. (68) is then dominated by terms that are bilinear in 4G, /8x
and 0/0x - 0G,/0v. These terms form the same expression as the exact one for the homo-
geneous magnetic field-free case with A = 0. We obtain again condition (78), now as a
sufficient one, for the existence of negative energy perturbations. We draw therefore the con-
clusion that, for negative energy perturbations to exist in any Maxwell-Vlasov equilibrium
it is sufficient that at least one particle species has an unperturbed distribution function in
the vicinity of a single point, that deviates from a monotonic function of the energy. We
require this to occur in a frame where the energy of the unperturbed system is minimized.

It seems likely to us that this sufficient condition for the existence of localized negati\;e
energy perturbations is also necessary, jﬁst as in the case of the field-free homogeneous

plasma. Nevertheless, there does not exist an inhomogeneous plasma fulfilling the sufficient

condition.
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The strongly localized modes considered above possibly are not the most dzingerous ones.
It is therefore of interest to investigate the degree of localization required for negative modes
to exist. Since the Vlasov equation is only valid for wavelengths larger than the Debye length,
one must check to see if the localization hedges this validity. Preliminary calculations suggest

that this is not the case. We will report on these calculations in the future.
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Appendix

We consider an equilibrium with E©) = 0, A = 0, and 9f(9/8x = 0, but allow variations,
6A 50, in the vector potential. By a sequence of extremizations we seek the minimum value
of 62H. Assuming §A = 6A(k)e** 4 c.c. and G, = G, e** + c.c., Eq. (68) becomes (upon

dropping the “caret” again)

§H = 2/d3 QV [

kG,

2
+v-<—ikG;—25A*>i .95, ]
m, c ov
4 —V-[|6E|2+k2 |5A|2-—|k-5A|2]. (A1)
167

The question of interest is whether the presence of §A leads to a condition less restrictive
than (78) for the existence of negative energy perturbations. Manipulations paralleling those

of the electrostatic case of Sec. VB result in the following expression for §2H:

1% 1
2 —_ 3 -
§SH = zg/vamu[ |5A|
— ifO <k 6A*G, 4+ v - 6ATk - aG”) + c.c.}
c ov
V 2 2 2 2
+ —— [I6E[" + ¥ |6A* — |k - 6A["]. (A2)
Miniinizing 62H with respect to §A* yields
' 6G e |4
_V 3 ©) v _ & Vo 125A 1k 6A) =
Z/d e IS [ T ]+16F(L5A kk-6A) = 0. (A3)

_ We define
e f 02
Z/d3 om, Z 87r = gﬂ (A4)

where wy, is the plasma frequency for species v. With Eq. (A4), Eq. (A3) becomes

E [ &g 189 ( L+ vk aaci“)

+I‘E/‘[<Q +A>5A—k(k.5A)J = 0. (A5)

~Combining the first two terms of (A5) and then integrating by parts yields
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R 0z
3 . 2 _
Z/d gV Ok 2 +16 [( + k%) 6A —kk-6A| =

Multiplication by k yields an expression for k - §A,,

5 € Bfo v _
Z/d -Gk vk S+ o 2k GA =

and the minimizing §A is then given by

iv ., o1 Sl V(2 N
7 2 Pog Gl {V“‘k R v A K

We will use this expression subsequently.

Symbolically we can write Eq. (A2) for 62H in the form
6?H = 6A* - R-6A +6A* T+ 6A-T*+ S,

where we explicitly display the dependence on §A and 6A*. Thus Eq. (A3) reads

=y

6A+T = 0.

Since R is real and symmetric, the complex conjugate of (A10) is

SA*-R+T* = 0,

(A6)

(A9)

(A10)

(A1)

which corresponds to the minimization of (A9) with respect to §A. If we solved (A10) and

(A11) for 6A and 6A*, respectively, and inserted the result into (A9) we would obtain the

“6A” minimum of §2H. More conveniently, we multiply (A10) by §A* and (All) by SA,

and then eliminate the linear terms of (A9) to obtain
6*Humina = —06A*-R-6A+S
Noting that

V(9 ..
Ry = 16_7r[(_c—'7+k Oir — kiky|
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and S is given from Eq. (A2), Eq. (A12) becomes

QZ
6 Hping = — 16% [(—czﬂ + k2) I6A) — |k - 6A|2]

’

©)
k- 3g" (Al4)

|4 1
) Z/ vy
where §A is shorthand for the expression resulting from Eq. (A8). Note that we have
neglected the electrostatic term since its minimum is zero.
Since the first term of Eq. (A14) is always negative, we conclude that a sufficient criterion
for the existence of negative energies 62H is the same as the sufficient and necessary criterion

for purely electrostatic perturbations, namely

05

k-vk- Sy

>0 (A15)

for some k and v.
If inequality (A15) is nowhere fulfilled we can further seek the minimum of §2£ by varying
with respect to GG,. Since 62H is now a purely bilinear expression in the functions G, we

require a normalization condition. It is most convenient to choose, as such, the following:

|4 3y af(o
-5 2 [og By

This is by assumption a positive definite quantity reminiscent of the kinetic energy norm for

(A16)

the usual MHD energy principle. Our variational principle can then be written as

- / PoGia, BT / BV Gay, + AT / G, |2 b,d%, (A17)

where A is a Lagrange multiplier and the a, and b, follow from Eqgs. (A14), (A8), and (A16),

respectively:
[V 87 e, af c? |
= =X —kk- Al
A 167 Q2/c? + k? 2m,c k av \" + Q2 kk-v (AL8)
Vo1 af
= vke<te_ . : Al19) -
v 2 2m, ke-vk ov (A19)



Now, variation of (A17) with respect to G% yields
—a, B Y [0Gas +2Gb, =0. (A20)

Defining
y = Z/d% a, G,

Eq. (A20) can be compactly written as
> [ev22 Ry =)y. (A21)

This is an eigenvalue problem for the vector y with eigenvalue A. Knowing ), we can write

the minimum &2H as

82 i = (1 = D) 3 / & |G, [*b,. (A22)

This follows from Eqgs. (A14) and (A17).

From Eq. (A22) we observe that if Ay, > 1 there can be negative energy perturbations
without inequality (A15) being fulfilled, i.e., with b, < 0. Hence, it is important to consider
the eigenvalue problem in some detail. Using Eqgs. (A13) and (A18) the eigenvalue equation
(A21) becomes |

A_g-(;+-§—2kk)-y=Ay, (A23)

p

where the matrix M is given by

drel 1 of '
_Z/ Qz/cz-l-k2 myc? k- vk. av (A24)

Since we are interested in the case where (A15) is not satisfied we specialize to isotropic

d1str1but10n functions, f{% = f{% (v¥/2). The matrix of Eq. (A24) becomes

1 47
- 3 v p(0)
M ;/dvﬂz/cz-l—kzmc?f vV

_ 3 v (o)""
- Z/d Q2/c2+k2mc2f =

M, - ' (A25)
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and Eq. (A23) is then simply
2
M (;-i-h—z-kk) 'y = Ay.
The eigenvalues of Eq. (A26) are easily obtained

2k2
)\ = M,M,]\j (1 + W) s
and the existence of negative 62 H;, occurs for
22
M (1 + 'Q_Z) > 1.
P
For general isotropic distribution functions

2

2
/dsv Flor (%) %— = —47r/vzdvflfo)

= — [ s = a0,

and therefore

YT
Q2/c? + k2’
and thus
c2k?
ugp) -

(A26)

(A27)

(A28)

(A29)

(A30)

(A31)

Hence Eq. (A15) is necessary and sufficient for the existence of negative §2H, a result identical

to the purely electrostatic case.
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