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Abstract

Theory ‘and computer simulations are used to describe the inelastic vortex-vortex
and vortex-wave interactions that lead to the quasi-coherent transport of plasma across
a constant magnetic field. Monopole and dipole drift wave vortices with radii ro large
compared with the ion inertial scale length p; are shown to produce transport at the
rate uny [ do(b) < nyvgero where n, is the vortex line density and do(b) is the inelastic
collision cross-section for impact parameter b. The transport during collisions and

mergings is evaluated from the evolution of a passively convected scalar concentration

of test particles.



I. Introduction

There has been numerous studies!=® of the anomalous plasma tra,nsport produced by drift
waves from the point of view of turbﬁlence represented by a spectrum kw of wave fluctuations.
Typically, weak turbulence theory'~* or renormalized turbulence theory*~® based on a short
correlation time and weak field correlations is used to calculate the anorﬁalous transport
due to the fluctuation spectrum. In the present work we consider transport arising in the
opposite limit where coﬁerent or quasi-coherent vortices” interact through vortex collisions
and mergers.®° During these interactions E x B streamlines reconnect allowing the rapid
transport of plasma from one vortex center to another é,s well as the loss of some plasma to
the wake of emitted drift waves.

In contrast to small amplitude drift waves, which spread out and lose strength as they
travel, the solitary drift wave vortices are coherent, self-sustaining packets that retain their
strength over long dista,nces.. These coherent vortices trap particles'® that are consequently
also transported over long ciistances.

The anomalous transport of plasmé. is determined from the net flux (v, f) of a test particle
field f(z,y,t) being passively E x B convected by the nonlinear drift wave flows. Depending
on the particular application, the passive field f may represent the temperature, the poloidal
flux function, or the density of charged particle species. Using a typical coupling of the test
field into the drift wave equation, an estimate is made for the maximum value of the coupling
below which the the passive approximation remains valid during the time of a typical vortex
collision.

The vortices studied are of two types: the monopole vortex representing a net excess in
the local charge density and the dipole vortex representing a local polarization in the local

charge density. A vortex of scale #~! and amplitude ®; is characterized by the internal




circulation rate Qg(k) = ckyky®i/B. The vortex turnover time is 27/Qg(k).

The vortex behavior of self-binding and the trapping of the drift wave wake sets in when
Qg(k) > wy the linear drift wave frequency. In the case of monopoles the transition from
wave packet behavior for Qp < w; to a wakeless vortex behavior Qg > wy, is not sharp but,
nevertheless, is clearly shown by the simulations when Rp = Qg /wy ~ 1 —2. For dipoles the
transition to the wakeless solitary drift wave is sharp and given by the theoretical formula
for the two parameter (7'6, u) family of Bessel function dipole vortices.” Here rq is the radius
of the inner negative curvature part of the vortex field, and u is the speed of propagation.
The properties of the dipole vortex solutions are extensivély developed in Ref. 7 and will
not be repeated he;e. We note that the minimum amplitude ®,,(ro,u) for the dipole vortex
solution is just above the corresponding mixing length level amplitude with ro taking the
role of 1/k; in the mixing length formula. For example, the dipole vortex amplitude given
in Eq. (26) of Ref. 7 is ¢®,,/ B = 1.28v4.rg where vg, is the electron diamagnetic drift speed.

The dipole vortex structure is the natural, long-time, finite amplitude solution for the
problem in the absence of a sheared E x B flow and the monopole is the natural, finite
amplitude solution in the presence of a sheared flow. The relevant sheared E x B flow can
arise from neighboring vortices or long wavelength waves (A, > 7o) in which the vortices
are formed. Dipole vortices are produced in thé turbulent wake of a 2D fluid flowing past an
obstacle. The double sheared flow in the wake of the obstacle produces alternating signed
vortices which are observed to merge into .dipole vortices.!!

Dipole vortex collisions have been studied before in both numerical simulations®® and
experiments'!~® with neutral fluids. The numerical studies have considered the zero impact
paramefer b = 0 collisions which are elastic in nature and show no net transport of test
particles across the magnetic surface. Here we show that the maximum inelasticity and net
transport occurs for the impact parameter b ~ r, where ry is the radius is the larger of the

two colliding dipole vortices. In an example shown here, the final state after the collision is




a newly formed single dipole vortex along with a monopole vortex and a drift wave wake.

During the course of the vortex collisions the passively convected field develops very steep
gradients within the vortex due to the merging and mixing of the combined vortical flows.
The steep gradients are then acted on by the background classical diffusivity to produce a
rapid transport across the magnetic surfaces within the vortex. In the limit of vanishing
background diffusivity the collisions produce very fine scale granulations and associated
fluctuations due to the area preserving mixing within the vortices. 'Withoult a background
diffusivity the energy or enstrophy moment (mean square gradient) associated with the
passive field diverges in time due to the continual mixing into finer scales. In the simulations
we limit the increase of the gradients with a background diffusivity D such that the Peclet
number P = ¢//D = ¢®/BD < 10* which is typical of a tokamak plasma. This limit on P
prevents the number of Fourier modes required for resolving the field from exceeding (256)>2.

The vortex dynamics itself can be computed in the Hamiltonian or inviscid limit (Reynolds
number R, = /v — oo) without an appreciable change in the enstrophy (AU/U < 107%)
or energy (AE/E < 107%) during the course of a typical collision teq ~ 4ro/Au < 100p,/vge.
Thus, the self-consistent velocity field maintains its smoothness during the interactions and
mergings.

The study of large scale vortex dynamics can be further motivated by the observation that
the drift mode fluctuation measurements indicate that the maximum fluctuation amplitudes
occur at the longest length scales where 7/ky ~ ro > p,. Furthermore, the measured
amplitudes may be sufficiently high® so as to put the fluctuations in the regime Rg =
Qg (k)/w, > 1 where theory and simulations predict that the vortex features of the dynamics
dominates over dispersive wave features. The neglect of magnetic shear and profile variation
limit the maximum vortex size to ro < min(ry, Lsps/rs) in the present work. -

The dominance of the large scale modes in the measured fluctuations may be understood

from the quasi-2D nature of the magnetohydrodynamic system. Simulations for 2D hydro-




dynamics and magnetohydrodynamics show that fluctuation energy is transformed to the
largest scale of the system. In quasi-2D systems where V; > V”.there remains a stroné
tendency to build up large scale fluctuations. In tokamak experiments the largest scales that
are not strongly damped are determined by the magnetic shear which is not included in the
present study.

In Sec. IT the dynamical equations, conservation laws, and dimensionless parameters of
the study are given. In Sec. III the properties and dynamics of the drift wave vortices are
given. In Sec. IV the dynamics and anomalous transport during inelastic collisions with
merging and scattering processes are studied. In Sec. V the anomalous transport model for
a vortex gas is developed and compared with the transport model from weak turbulence

theory. In Sec. VI the summary and conclusions are given.

II. Drift Wave and Transport Equations

In the dissipationless limit the basic model equation for drift waves is the Hasegawa-Mima
equation.! The same basic nonlinear wave equation describes the slow, nearly incompressible
motions of shallow rotating fluids. The rapidly rotating neutral fluid experiments serve as
analog simulations of drift waves described by the Hasegawa-Mima equation. The analog of
the E x B plasma drift velocity in the rotating fluid is the geostrophic flow v, = (g/f)z x
Vh(z,y,t) arising from the balance of the Coriolis force fv x Z with f = 20, = 2x (vertical
component of the angular rotation frequency) with the pressure gradient Vp = pgVA. Here
h(z,y,t) is the variable part of the fluid depth H = Hy(z) + h(z,y,t). The analog of the
plasma quasineutrality condition V -j = 0 determining the dynamics of the electrostatic
plasma potential ®(z,y,t) is the height integrated continuity equation for the neutral fluid
which gives dH/dt + HV - v, = 0 where the compressible part of the flow velocity v(®
is given by the balance of the Coriolis force with the inertial acceleration giving VS_Z) =

f*2 x dv/dt = —(g/ f*)dVh/dt. The non-geostrophic flow v(® is the analog of the plasma




polarization current. The scale length for wave dispersion follows from these compressible
inertial drift velocities a;nd is ps = c(m;T.)/?/eB = c,/w,; for the plasma drift wave and
pg = (gH)'/?/ f for the Rossby wave. Here the ion acoustic speed ¢, = (T%/m;)*/? is analogous
to the gravity wave speed ¢, = (gH)Y/2.

The derivation and procedure for solving the dissipative drift wave equation used here is
given in Terry and Horton.® The dissipative drift wave equation differs from the Hasegawa-
Mima equation in the presence of electron dissipation. The plasma density fluctuations given
by

6ne(k, 1) = neo [1 + ioky(cr — k2)] [eg(k, 1)/ T.]
effects the nonlinear mode coupling in the Hasegawa-Mima, equation due to the presence of
the vg - Vi, nonlinearity in the electron continuity equation. It is the vg - V. nonlinearity
that causes saturation of the drift wave turbulence at the mixing length level. Recently, Kono
and Miyashita' report simulations of dissipative drift wave turbulence that evolves through
an inverse cascade to a final state containing a large amplitude dlpolar Vortex structure.

Statistical turbulence theory was compared with strong (§y ~ 0.1) driven turbulence in
Ref. 6. With strong driving the vortices appear unimportant compared with short lifetime
fluctuations: in the long-time limit with reduced values of & long-lived vortex structures
emerge from the turbulence.

The plasma equations used in the present study are conveniently written in the usual

dimensionless variables as

de(z,y,t)  Bp [0p 0 5<P<9 4 _
(1+£)T+1’da—+ 5 5y(£90) 5, LP)| +vVie =0 (1)
with '

,C = —'Vz + 50(61 -+ Vz)ﬁy

and the convection of the passive scalar distribution f

U(zy,t) | 0p0f 000f pone_ . (2)
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The equations are solved using fifth and sixth order Runge-Kutta variable time stepping and
a truncated Fourier series transformation (z,y) < (ky, ky) at each time step. The principal
computational improvements since the earlier turbulence work® are the use of the CRAY II
and the vectorized (VCFT) fast Fourier transform. The runs presented are from either a
(85)% k space with N = 3612 k() modes or (171)?k space with N = 14620 ¢y (t) modes
using the (128)? and (256)% FFT respectively. Typical CPU times for a vortex collision
experiment are 50 min CPU/1007,/¢s or 200 min CPU/1007,/cs, respectively.

The symmetry property of Eq. (1) is that for every solution ¢(z,y,t) there is a reflected
solution @ with @ = —¢(—z,y,t). The nonlinear equation does not have the symmetric
solutions ¢(—z,y,t) = ¢(z,y,t) of the linear wave equation.

Equations (1) and (2) are written in the usual dimensionless drift.Wa;Ie units of p, for z,y
and r,/c, = ps/vq for t and with a constant kyr, assumption. The electrostatic potential @
is given in terms of o(z,y,t) by e®/T. = (ps/rn)p(z,y,t). For quasi-geostrophic dynamics
the equation (1) follows for z,y in units of the Rossby radius p,, time in units of p,/vg
with vg = (Hog/f)8stn(f/Ho) = c;(py/ L) where ¢, = (gHo)*? and the amplitude 2/ H, =
(pg/H)p. The dissipation 'coefﬁcient v for the plasma arises from the ion-ion collisional
viscosity v = 0.3(rnv;i/cs)(Ti/T.) and for the neutral fluid v = vy;/ p,vr from viscosity. The
dimensionless diffusion coefficient for test electrons is D = (me/m;)(rnvei/c;s) ~ (me/m;)Y?v
and for test ion is D ~ v. For typical tokamak plasmas v ~ 1072 and D ~ 1074,

The transport equation (2) is integrated simultaneously with the vorticity equation (1)
to determine the convection of plasma test particle field. Depending on the application, the
passive plasma field f (z,y,t) may be the distribution of test particles, the temperature or
the poloidal flux function. Other studies with f actively coupled back into the vorticity
equation will be reported later. Here we note that a typical form of the coupling for the back
reaction of f onto ¢ is the addition to the right-hand side of Eq. (1) of the term —g(89f/dy) or

B,0,(V?f). When the back reaction coefficient exceeds a certain critical value the vorticity



B,0,(V?f). When the Back reaction coeflicient exceeds a certain critical value the vorticity
equation is destabilized. Below this value the effect of the back reaction is small provided
(u—va)lell ~ kvallell > gl f]-

Here we define the characteristic dimensionless numbers describing the state of the system
governed by Egs. (1) and (2). A fluctuation of amplitude ®x and scale k = (k, k,) has a

linear frequency of oscillation wy and a nonlinear frequency of circulation Qg (k) given by

kyvd ky [Cs }

RETrR2 T 142 L,
- (3)
CRg Cs

(i) = Z22 8y — kb [r—] .

The ratio of the vortex rotation frequency Qg(k) to the linear frequency wy is defined as the

dissipationless E x B Reynolds number Rg and is given by

_ QE(k) _ (e@k) _ : .
Rg = Tk- = k:zrn T = Kz¥k - (4)

The magnitude of Rg measures both the balance of nonlinearity in Eq. (1) with wave disper-
sion and the balance of nonlinearity in Eq. (2) with the convection over the linear gradient
r;' = —0,4nf(z). The mixing length level is defined by Rr ~ 1 and the self-binding vortex

dynamics occurs for Rg 2 1.

Conservation Laws

The drift wave equation (1) in the dissipationless limit poses three conservation laws: mass,

energy, and enstrophy. The equation itself is a statement of local momentum conservation.

(1) Mass Conservation

Integrating (1) over all z,y gives

d

d
7 Pk=0 = gg/‘ﬁdxdy =0 (5)



which is equivalent to the conservation of mass since the plasma density is N = N, [1 +(ps/rs)
(bn/n — w)] and én/n = ¢ + bo(c; — V?)9yp, and thus [ dzdy N = [ dzdy ¢ + const.
(2) Energy Conservation

The local energy density w(z,y,t) is the sum of the electrostatic potential energy %eénego ~

2¢? and the ion kinetic energy $minovg ~ 2(Vy)?. In the dimensionless variables
=11 Vi)? | 6
w(z,y,1) = 5 [¢* + (V)] (6)

in units of wy = n.T.(ps/7s)?. The local conservation of energy is derived using the energy

flux
1 2 Op 2 A 2
Fu = 5vap” —pVor — Vi x V(¢*/2) (7)
in units of vgTe(ps/rn)?, and the conservation law is
%% +V -Fu=-vpVip (®)

derived using Eq. (1). Thus, E = [ dzdy w = const. when §,F, -d€ x 2 =0 and v = 0.
(3) Potential Enstrophy Conservation
- The potential vorticity for Eq. (1) is
1=V —p+uv (9)
and in the dissipationless (Hasegawa-Mima) limit the dynamical equation® becomes
dll/dt =0 . : | (10)

Equation (10) is Ertel’s theorem for the conservation of potential vorticity as given in the

Appendix of Ref. 7. From the convection of II, the conservation law
/ II?dzdy = const.

9




and the energy conservation law F = [wdzdy = const. suggests the definition of the local

enstrophy density

1 1
u(z,y,t) = -é-(V(p)Z + _2_(V2‘P)2 (11)
and the enstrophy flux
2 dp d¢ 1,2, vz,
F, =vi(Vp) - Vo 5 Zio day + E(V ©)*2 X Vo . (12.)

The dynamical equation (1) leads to the conservation law

% + V- -F, = ViV (13)

with U = [ dzdy u = const. when §. F, -df x 2z =0 and v = 0.
The dynamical equation (1) is a constraint (the vorticity equation) derived from the local

momentum balance equation. The integration of (1) over y leads to the Reynolds stress

7(z) = U0y = — dy 0¢ Op (14)

L, 0z Oy

governing the flux of y-momentum from z to 2+ dz. In the regime V2 > ¢ the mean flow

net = [EE ey (15)

satisfies the simple transport equation

o, o _ o,

Bt "8z oz (16)

with the kinetic energy transferred from the mean flow % f i)'zdw to the wave and vortex flow
¢(z,y,t) given by

T= / Ty 6 (17)

The transfer of momenta in the drift regime (V2p < ¢) is complicated by the existence

of a mean j,B,¥ force due to closure of the current loops V -j = V1 -ji + V)jj = 0.
The mean current 7, = — [“de'V)j with V)jj = —(ne?/T.)(6:® + v4.0,8) levels to

10




Je = —0: Jy dz'(a’,t). With the dimensionless 7, B, acceleration, the momentum balance

Eq. (16) is modified to

ov, Om _ s ., d*v,
Tt =0 [ APt

Here we note that the effect of a large scale sheared flow ¥,(z) with r007,/0z R vg is
the rapid transformation of the dipole vortex into a monopole vortex. The transformation
occurs due to the stagnation point introduced on the counter streaming side of the dipole.
The sensitivity of the dipole vortices to a large scale (R r) sheared flow may explain the
pre-dominance of monopoles in many laboratory experiments.

The conservation of potential vorticity dII/dt = 0 in Eq. (10) implies the existence of an
infinite number of constants of the motion of the form [ G(Il)dz dy = constant which might
suggest that the system is integrable. In contrast, the numerical simulation clearly suggest
that the presenée of the drift wave component makes the vortex collisions inelastic. Math-
ematical results consistent with the simulations are reported by Zakharov and Schulman?!®
showing that the existence of infinitely many invariants does not imply the integrability
of such Hamiltonian field equations. They suggest that additional constraints on the wave

spectrum are required for integrability.

111. Drift Wave Vortex Dynamics
A. Monopoles and Wake Fields

In the 2D Euler equation the axisymmetric monopole vortex is an exact motionless solution,
and the dipole vortex is an exact solution that translates with a constant speed in an ar-
bitrary direction. The Euler equation has no preferred direction and no linear waves. An
experimental example of a gas of Euler equation-like dipole vortices is given in the soap film
experiments and computer simulations of Couder and Basdevant.!! -

In contrast to the Euler equation, the 2D drift wave equation has a continuous spectrum

11



of linear wave modes

k'Vd .
Yk = TR (18)

with vg = —(cT./eB)bo x Vénn, giving the preferred direction and velocity of wave prop-

agation. Arbitrary small amplitude Rg < 1 structures propagate along = = zo, y

Yo + (Ow/ Ok, )t with the wave dispersion given by
w2, y,t) = Y prexp(tkyz + thyy — twit) (19)
- .

where @_x = ¢y. The central peak of ¢,, given by Eq. 19 loses strength due to the spread
of wave energy given by Az? ~ (8%w/0k?)t ~ p?uwy,t which is a strong effect except for very
large-scale structures.

The characteristic propagation of a general initial field ¢(z,y,0), however, depends sen-
sitively on its amplitude and scale size 1/k,. The ratio of the nonlinear binding compared
with the wave dispersion is given by Rz in Eq. (4). For Rg S 1 we observe the dispersion of
the wave packet as given by (19). For Rg R 1 the nonlinear self-binding dominates producing
a long-lived localized packet. The typical self-binding behavior for a monopolar structure is
shown in Fig. 1 for Rg = 10. This self-binding structure occurs above the transition value
Rg ~ 1.

For structures with Rg 2 1, the binding nonlinearity captures much of the wave energy
due to the nonlinear feedback that occurs in the structure when the circulation time 27/Qg
is less than the oscillation time 27 /wg. The typical Rg R 1 structures are described as long
lived monopole and dipole vortices with localized fields of the form ¢, (z,y — ut) = ¢,(r,0)
where r = [22+(y—ut)?]'/? and r cos § = z. For Rg R 1 the computed fields are qualitatively
better described by the combined field ¢ = ¢, 4 ¢y, of vortices and waves than by either
individual component.

The steady-state symmetric monopole ¢(r), while long-lived, is not an exact solution

of Eq (1) due to the linear terms which drive up an asymmetric z dependence to . The
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dipole solution has the correct  asymmetry to balance the linear wave terms and is an exact,
long-time solution to the Hamiltonian wave equation. The positive potential monopolar-
like solution that develops from ¢(r) has a shelf on the positive z (low density) side with
a smaller flow velocity and a steeper gradient, higher flow velomty on the high density
side. The negative monopolar-like solution has the shelf and steeper gradient sides reversed
The reversal follows from the symmetry property of Eq. (1) with the reflected solution
? = —p(-z,y,t).

The nonlinear localization of the wave field into a vortex field is a very important mech-
anism for minimizing the effects of wave diffraction and wave scattering by inhomogeneities
in the system. For drift waves in a sheared magnetic field the local radial dependence
of the parallel gradient. described by k| = ky(z — 20)/L, is typically the most impor-
tant inhomégeneity for the wave. Wave packets with Rp <« 1 spread from z = z, to
z = z; where k| = ky(z; — z0)/L, = wi/v; at which point the wave energy is rapidly ab-
sorbed by resonant thermal velocity v; ions. The distance Az to the absorption region is
Az; = Ly(w/kyv;) = ps(Ls/rr). The numerical experiment in Fig. 1 contrasts the spreading
of the linear and nonlinear disturbance. While shear is not included in Fig. 1 the result tends
to support thé calculation in Meiss and Horton” with the asymptotic matching method find
that the nonlinear localization of the vortex energy E, to ro & Az; = p,(L,/r,) strongly
reduces the ion Landau resonant absorption of the structure. The approximate calculation

in Ref. 7 gives the decay rate dF,/dt ~ —FE, exp (_WTI:' |1 — ) The nonlinear suppression

of shear damping is also investigated in the simulation of Biskamp and Walter!® by solving
the drift wave-ion acoustic wave equations in the sheared slab model.
In Fig. 1 is an example comparing the linear Rz < 1 behavior with the strongly nonlinear

Rg ~ 10 > 1 propagation of the same size initial disturbance which clearly illustrates these
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binding or self-focusing effects. We choose the initial disturbance as a gaussian monopole

¢(z,y,0) = Aexp (“ r2 L ) (20)

with ro = 6.0[p,]. Down the left side of Fig. 1 is shown the evolution in the linear regime
Rp < 1 and down the right side of Fig. 1 is shown the evolution in the nonlinear regime
with Qg(k) = 5 and w; = 0.5 for R = 10.

From the left column in Fig. 1 we see that the long wavelength components of Eq. (1)
propagate with a speed near vg but that the.small scale components have nearly zero speed.
The waves propagate symmetrically in z giving an approximately parabolic envelope to the
expanding wake ¢(z?, y —v4t,t). In contrast, the nonlinear evolution given in the right-hand
column of Fig. 1 develops an asymmetrical z depen.dence. The growth of the asymmetry and
the weak wave emission are limited after a few rotation periods with the reformed structure
propagating as a vortex ¢,(z,y — ut) for as long a time as computed in the dissipationless
system. |

Considering the effects of inhomogeneity and wave energy dispersion in Fig. 1 we see that
by tcs/rn = 24 only three contours of ¢ remain in the central Wavé froﬁt and considerabl;a
wave energy has reached to Az & 20p, where magnetic shear of the strength L,/r, = 10
to 20 will cause strong wave absorption. In contrast, the nonlinear vortex at the same time
has only the first contour level expanded slightly outside the initial gaussian perturbation.
At the time tc,/r, = 60 (not shown) most of- the wave energy has been dispersed out of the
initial structure in the linear system. We note that the long wavelength head of the linear
wave packet keeps up with the vortex, but the rest of the wave energy propagates at much
slower speed. Since the passively convected field f(z,y,t), or distribution of test particles,
is trapped in the nonlinear vortex, the transport along v, of the trapped particles is nearly
complete in the nonlinear vortex. For the linear wave packet the net transport is essentially

Zero.
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Repeating this experiment for various values of A and r(;, we find that the transition to
the monopole vortex behavior is continuous with Rg, but that pronounced self-trapping has

set in at Rg ~ 1.5 to 2.0.

B. Coalescence of Drift Wave Vortices

One of the most important processes in the nonlinear dynamics of vortices is the merging or
coalescence of like-signed regions of vorticity. In the merging process streamlines reconnect
producing a mixing of the transported fields previously trapped in the t\.avo separate vortices.
Since the merging process itself happens in about one vortex circuiation period 27r/QE(k)
and the reconnection quickly mixes the fields f; and f; over the new larger vortex, the
coalescence of vortices produces a rapid, local transport mechanism. Nezlin!? gives a réview
of the types of vortices, turbulence, and coalescence phenomena found in the rotating water
tank experiments.

The coalescence of two-dimensional vortices with cores of constant vorticity for the Euler
equation is shown by Overman and Zabusky® to occur for equal strength vortices when
the separation of the vortices is less than a critical value of dx = 3.2R where R is the core
radius of the constant vorticity vortex. Asymmetric merging of Euler vortices proceeds as
shown in Melander et al.'® The merging of vortices is observed in the nonlinear stage of the
Kelvin-Helmholtz instability where the local growth rate for merging can be predicted by
the linear stability analysis of the period doubling perturbation of the periodiq vortex chain
as given by Pierrehumbert and Widnall®® and Horton et al.?

In the case of the drift wave-Rossby wave equation, the coalescence process is observed in
the rotating neutral fluid experiments. Recent rotating water tank experiments by Swinney
et al.?? and Griffiths and Hopfinger'?!® show the importance of vortex merging in E X B or
geostrophic vortices which are governed by equations close to the drift wave Egs. (1) and (2).

Swinney et al.?? report that merging of up to five vortices into one vortex takes place when
y ging p .
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the pumping rate driving the fluctuating flow is sufficiently strong. Griffiths reports that two
anti-cyclonic (positive h and negative @) vortices again only merge for separations d < 3.3R
where as cyclonic (negative k and positive @) vortices merge for larger separations-distances
d < 5R where the upper limit was given by the size of vessel and wall effects.

For the drift wave equation (1) the positive ¢ perturbation corresponds to negative
h which is a low pressure cyclonic disturbance. The reversal of the signs from cyclonic
(negative h) to positive ¢ follows from the transformation required to take the S-plane

equation [Egs. (1) and (2) of Ref. 9 or Eq. (6.3.21) of Ref. 23]

¢ sz ¢ S
5? - E +b— + ['5/" C] —kV4C (21)

with
(= Vi . (22)
into the drift wave equation. The transformation is z — —y, y — z (rotation by 7/2) and
Y — —p for b = vy = 1. Thus, the positive potential vortices correspond to the cyclonic
vortices on the ,B—plane.'
For a ‘simple, generic drift wave coalescence experiment we take two positive, gaussian
vortices displaced in radius by d = 2z and E x B rotation frequencies somewhat greatér

than unity. In Fig. 2 we take

2 4 .2 N2 a2
o o -

with A; = A; = 50, rg = 2[p,] so that the maximum (isolated) vorticity is (o = —4A/rZ = 50

and the rotation frequency at the 1/e radius of pi(ry = 1) is O = —2A4/r§e = 9.2. In

the experiment shown in Fig. 2 we choose d = 2zy = 8§[p;] so that the overlapping of the
potentials is

©(0,0,0)/A; = 2exp(—z2/rZ) = 0.037 . (24)

Figure 2 shows that immediately after releasing the initial condition in frame (a), the

mutual convection forms the substantial m = 2 distortion of the structure shown in frame



(b) at tc,/r, = 4 (Qgts = 37) and the reconnection of the streamlines in the coalescence
is essentially complete in frame (c) at tc;/r, = 6 (gt, = 55). During the coalescence the
circularization of the resulting vortex and the separation from the drift wave wake takes about
5 to 10 rotation periods in this experiment. The resulting monopole vortex has Oz < 9.0 and
is shown at ¢,t/r, = 60 in frame (d) along with its wake field which has max |pyave| S 0.1.

The positive A;, merger shown in Fig. 2 corresponds to the cyclonic merger reported
experimentally to occur for large relative separations. When the direction of the vortex
circulation is reversed with A; = A, = —50, Eq. (1) predicts the merger occurs for exactly
the same d over rp rotation. The pictures obtained with negative A, is the z-reflection of the
positive A; 2 mergers. Thus, for both positive and negative gaussian drift wave vortices the
critical separation distance d* is about d*/re &~ 5.5/2 =~ 2.8, similar to or somewhat smaller
than that reported by Griffiths and Hopfinger for the anticyclonic merger. The difference is
discussed further in the conclusions.

It is interesting to note that the m = 2 coalescence instability appears to be the time
reversed evolution of the well-known m = 2 instability of a rotating plasma as can be seen
qualitatively by comparing frame (c) in Fig. 2 with the flow lines for the m = 2 instability

of the drift modes in the rotating (tandem mirror) plasma in Fig. 14 of Liu et al.24

C. Dipole Vortex Formation From Pairing

Two oppositely charged drift wave vortices can also merge to form a dipole vortex through a
process we may call pairing or coupling.'’. Since drift waves are emitted during the pairing,
the inelastic merging process is analogous to the atomic process of radiative recombination.
The presence of the drift wave component of the excitation spectrum is particularly important
in the pairing process since it is through the shedding of energy and enstrophy in the radiated
wake that the vortices can be modified to produce a bound state characteristic of the dipole

vortex state. In the absence of drift wave radiation the invariants of the equation of motion
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would exclude the formation of the dipole vortex. Another way of expressing the difference
is to note that when the shelves on the monopolar constituents extend inward toward each
other the coupling process is weaker than when the steep gradient sides come together.

For the drift wave system the invariants are still sufficiently restrictive to prevent the
complete overlapping and thus neutralization of the charge separation or vorticity (V)
contained in the neighboring lobes of the dipole vortex. Since the dipole vortex state is
known to be an exceptionally stable state, the overall process is well thought of as a radiative
recombination with the cross-section o for pairing comparable to the vortex diameter.

For a generic drift wave pairing or recombination experiment we use Eq. (23) with A; =
—Al = 50 and ro = 2.0 giving {, = .50 and Qg(r+ = ro) = 9.2. In the experiment shown
we choose d = 2zo = 14[p,] so that the initial overlap at z = 0,y = 0 is ¢4(0,0,0) =
Aexp (—(z0/2)*) = 4.8 x 107%. The experirﬁent is shown in Fig. 3 with a fixed contour
interval of Ay = 4.0.

After launching the initial condition shown in Fig. 3 the mutual convection advances the
vortex cores with a speed u R vy while leaving a wake of oscillations of amplitude of order
unity as shown in (3b) at tc;/r, = 20 (Qgt = 184). The pulling together of the vortex
cores is a rather slow process compared with that in the corresponding like-signed merging.
At time tc;/r, = 20 the core separation is dyo ~ 8 and at tc;/r, = 60, shown in (3c),
the pulling together is nearly complete with dgg = 6.0. The final separation of the dipole
centers is d ~ 6[p,] — one half the initial separation giving an average attracting velocity of
£19 ~ —6/60 = —0.1[v,] during the drift along the magnetic surface with § =~ 60/60 ~ 1.0[vg]
during the pairing process.

Reversing the signs of the initial monopoles (A; = —A, = 50) produces a different result.
With negative potential on the left and the positive potential on the right the monopoles do
not pull together to form a dipole pair. Repeating the experiment in Fig. 3 with this sign

reversal we find that at ¢t = 60r,/c, the monopoles have slightly separated to d = 15p; from
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the initial dg = 12p,. The physical difference between the two configurations is given by the
magnitude of the potential vorticity II. With the polarity leading to coupling the ¢ — V2
contribution partially cancels (small IT) the ambient density gradient vgz whereas, with the
repelling polarity the so}itary, wave adds to the density gradient (large II). Another way of
stating the difference is that when the shelves of the monopoles extend toward each other

they inhibit the coupling process.

D. The Dipole Vortex

The 'dipole vortex is an exact solitary wave solution to the Hamiltonian or dissipationless
drift wave equation in the limit of constant equilibrium gradients. Although the conditions
required for natural formation of the dipoles are not well known, the solitary wave proper-
ties of the dipole solutions have been the subject of numerous theoretical, numerical, and
experimental studies. The dipole vortices have been created and studied in several neutral
fluid experiments. In the present work the dipolar vortices are used extensively as initial
conditions.

The dipole vortex solitary wave is a linear relation between excess charge density or
vorticity V2 and potential ¢ propagating with speed u parallel to v4. Outside the circular

boundary r > a the vortex solution decays exponentially exp(—kr) as given by
Vie=Fkyp for r>a (25)

with
=1-250. (26)
u
The condition for a localized solution given in Eq. (26) defines the vortex velocity regions

u > vg and uvy < 0 that are the complements of the wave phase velocity Tegion given by

Eq. (18) with vy, = w/ky = vg(1 + k2)™" and k? > 0. Inside the circle » = a the solution
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has negative curvature for regularity at the origin with
Vip + plp = [(1 + p*)u — vd] r=gqz. | (27)

The solutions of Eqgs. (25) and (27) with continuous ¢ and V2o is

___ga Ky(kr)
P T TR Ki(ka)

k2 'jl(p7) 7 .
—_ . > .
qa {k2 2 7 (ka) cos r>a (28)

cosd r>a

The condition that vy = Op/0r be continuous at r = a determines p = p(ka) through

1 Ky(ka) | 1 Jo(pa) _ (29)

ka Ky(ka) ' paJi(pa)

In this é,nalysis z =rcosf and y — ut = rsinf. The solution (28) is a two parameter (a,u)
family of dipole vortices for Rz > 1 just as the waves (18)-(19) are a two parameter (ky, k)
family for Rz < 1. The properties of the dipole vortices such as the energy FE(a,u) and
enstrophy U(a,u), and the dynamical form factor S(k,w) = §(w — kyu)S(ks, k) are given
in Ref. 7. |

The dipole vortex requires a critical amplitude ¢,,(a,u) for its formation. The critical

amplitude is determined from Eq. (28) and occurs near r £ a/2. For ka < 1 the value is
©m = 1.28v4a (30)
which, with the ideﬁtiﬁcation k; = 1/a, yields the critical E x B Reynolds number
Rg = kpkyom/kyvg = 1.28 . - (31)

We often use somewhat large amplitude dipoles in the numerical experiments to reduce their

exterior scale size and increase their robustness.
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E. Stability of the Dipole Vortex

The stability of the dipole vortex structure has been investigated previously both numerically
and analytically. Probably the most convincing demonstration of the stability and robustness
of the dipoles is given by their ability to reconstruct their initial form after the strong
distortions that occur during the zero impact parameter b = 0 head-on and overtaking
collisions first shown by Makino et al.® and investigated in more detail by McWilliams and
Zabusky.®

McWilliams and Zabusky state that the zero impact parameter head-on collision “is
remarkably non-destructive” as is clearly shown in their Fig. 9. They report that the longer
the overlap or collision time the stronger the merging tendency with the extreme example
of a smaller diameter dipole vortex being absorbed by the larger diameter dipole during an
overtaking collision (their case 6, Fig. 8). In the work reported here we emphasize the effect
of impact parameters b of order the vortex radius, and the fact that the Bessel function
solutions are not unique to the solitary vortex properties of the nonlinear system.

Here we examine the stability and the attraction of the flow to a dipole vortex state by
its ability to é,djust to distortions in the initial flow distribution. Since the dipole vortex
formulas (26)-(27) are complicated, it is useful to consider the replacement of the Ji(pr)-
Bessel function by the truncated polynomial expansion Ji(pr) — (pr/2)(1 — p?r?/j%) and
to match this approximate solution to the asymptotic form K (kr) of the exterior solution.

The resulting eigenvalue equation for continuous ¢ and VZp has the solution

» _( 1+4a, )1/2 U N' FEbs for kro <1
° 1/} +4ai /2 P EroKn | & for ko> L.

We find a rapid readjustment in several rotation periods with the initial perturbed dipole
vortex adjust to the usual state. The adjustment can require the ejection of small amplitude

waves 1n some cases.

The J;(pr)— K1(kr) solutions (27)-(28) of the Rossby-Drift Wave equation are not unique
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since they assume linearity in the of the II = V2p — ¢ + z versus ¢ — uz functional and
a circular boundary r = a. We find that good dipole solitary waves are created from the

nearby initial condition

o(z,y,0) = Arcosf e (32)

with k = (1 — va/u)'/? and A R 3vg/k. The curvature of this function is continuous and
changes sign at r; = 3/k which defines the effective radius a of the corresponding Bessel
function dipole vortex. The amplitude dependence of the speed of the dipole vortex generated
from Eq. (32) is slightly weaker than that of the Bessel function vortex. For example, with
u = 2vy we observe that u = vy(1 + .0124) for the vortex evolving from Eq. (32), whereas
the corresponding Bessel function vortex with a = 6p, has u & vy(1 + .017A4).

Our investigations of the stability of the dipole vortices indicate that the most dangerous
perturbation to the dipole is an ambient shear flow with §p = vz%/2. The sheared flow
places a stagnation point (x point) in the flow at a distance Az = u/vy on the side of the
dipole with opposing flows. When this x point is within the distance u/vf < max(1/k,2ro)
of the vortex center, the lobe of the vortex with the stagnation point opens up dumping its
vorticity into the counterstreaming plasma. The remaining lobe forms a shear flow driven
monopole vortex as given, for example, in Horton et al.2° |

To consider whether the dipole vortices prefer the circular shape of the Bessel function
solutions, we have to replace r(z,y) with r = (22 + €2y?)'/? in Eq. (32) and run with e = 0.5
and e = 2.0 and A = 50. In both cases an approximately circular dipole propagates out
of the initial data and leaves a wake behind. The elliptical perturbation with the long axis
parallel to y(e = ‘0.5) produces less distortion than the e = 2.0 distortion with the long axis
parallel to z. Both disturbances form a Bessel function-like dipole vortex and a secondary

wave field.
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IV. Anomalous Transport During Inelastic Vortex
Collisions

In the first studies of the dipole vortex collisions, the elastic nature of the collisions was
emphasized. Makino et al.® investigate head-on and overtaking collisions with zero impact
parameter and conclude that the collisions are nearly elastic. McWilliams and Zabusky®
extend the study of dipole vortex interactions with a set of eight collision experiments still
using zero impact parameter and show that while some (head-on) collisions are essentially
elastic, other collisions are strongly inelastic. They report observing a fusion or capture event
during an overtaking collision W.here like regions of vorticity permanently merge during the
collision, and a fission event splitting apart one dipole during a head-on collision where
opposite signs of vorticity come together. We also find this event for u; = 2v4, us = —vg and
b=0.

In our studies we are particularly interested in collisions that give rise to anomalous
transport across the magnetic fleld. This transport appears to be strongest for inelastic
collisions due to ‘the permanent reconnection of the streamlines that takes place during the
inelastic collisions.

Furthermore, the symmetry present in the zero impact parameter collisions reduces the
net anomalous transport. We find that the largest net radial transport due to collisions
occurs when the impact parameter b is comparable to the vortex radius ro. In collisions
with b ~ ro the symmetry of the vortex field is broken and like regions of vorticify merge
permanently into a new final state. During the merging, the plasma, initially trapped in
separate vortices, mix over the core of the new vortex. We observe large net values of radial
flux (6fv,) S —rou (df/dz) during this type of collision.

As an example we consider the collision of the two vortices shown in Fig. 4. Both initial

dipoles, with opposite polarity, have the radius a = 6p, for their circular boundaries. The
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impact parameter defined by the relative displacement of the dipole centers in the z-direction
is taken as b = 5p,. The amplitude and structure of the dipoles follows from Egs. (26)-(27)
for the chosen speeds u; = 2v; and uy = —v;. The negative ¢ with positive vorticity V2
regions meet in the collision and merge into a single strong vortex as shown in Figs. 4(a).
The merging event is similar to that shown in Fig. 2 with a strong m = 2 distortion followed
by re-circularization.

During the collision the left-hand region of positive ¢ with negative vorticity is rotated
under the newly formed, larger positive vortex (V¢ > 0) and couples to it while growing
in strength. This process forms a new dipole vortex with approximately the same circular
boundary a’ ~ 6p, and strength as the original u; = —v; dipole during ¢ = 32 — 40 and
shown at ¢ = 80.

The newly created dipole (¢ > 30) contains a mixture of plasma from the original dipoles
and is created with its axis rotated by about 45° from the direction of the magnetic surface.
Plasma trapped in the new vortex is transported across the magnetic surface by Az ~
2rq ~ 10p, in a time of order At ~ 20r,/cs as seen in Figs. 4(b). The newly formed
dipole propagates with y ~ 0.5v4 and its axis slowly rotates with 6 ~ —.03 rad/s continuing
to rotate past the u_sual aligned position (¢ = 80). The monopole propagates with speed
v = 1.0vy and contains plasma that moved from z & —a to z = 0 during the course of the
collision. ‘

The perturbation §f to the distribution f of test particles in the vortex field is shown
in Fig. 4(b). The plasma is assumed to have a uniform background gradient df/dz =

—f/r; = const. across the magnetic surface. The evolution of §f is computed from

| S0 57
(6:+vg -V —DV?) 5f=—5‘y55£ (33)

and shown in Figs. 4(b) for D = 0.05. Other experiments with DV? — —D,V* have been

used to test the small D limit of the convective transport.
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Integrating Eq. (2) over y gives the net convective flux I'(z) across the magnetic surface

at z with

T 2 (v-n)-o

where I'(z) = 7o; = —L;! [ dyO,¢6f. The total or global flux I'r is given by

dzdy 9
Ir= / ka4 SOaf szygokéfk (35)

and is evaluated as a function of time during the collision. The approximate formula for 'y
following from Egs. (33) and (35) is | |

~ k7 bk of
Iz Z (w—Qg(k))+ k2D oz

(36)

where Qg(k) is the vortex rotation frequency used as a local estimate of vg - V§f), o
iQg(k)éfr. The exact calculation of T' requires the solution of the second order partial
differential Eq. (33) for 6f. The solution for I'r of a single sinusoidal wave is given in Rosen-
bluth et al.** For two drift waves the stochastic diffusion!® at D = 0 occurs for Rp S 1

For isolated vortices the convection of §f evolves to vg - V6f = 0 giving rise to the

stationary trapped particle distribution
6f(z,y —ut) = =~ - (37)

with ¢(z,y — ut) given by Egs. (28)-(29) for isolated dipole vortices. This stationary distri-
bution gives perfect transport of the trapped plasma along the magnetic surface with speed

u and zero net transport across the magnetic surface since

laf 2dy 890

udz 8y =0

P(z) = nvy) =

between any points 1,2 where ¢? = 2. In the presence of the small backgl-‘ound diffusivity
D(P = tvg/D > 1) there is a residual diffusion varying as D, = (Davg)Y/? due to the sharp

boundary layer gradients occurring between the trapped and passing particles.
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The distribution in Eq. (37) and shown in Fig. (4b) at ¢ = 0 for §f/dz < 0 describes an
excess of density 6f > 0 (solid lines) in the upper positive vortex (V2@ > 0) coming down
(us < 0) and a density deficit in the lower positive vortex going up (u1 > 0).

During the collision the regions of positive and negative § f are brought together creating
sharp gradients (>> |6f|/ro) in the merged vortex as shown at ¢ = grn /‘cs. After one vorteé)c
turnover time these regions are mixed with further turnovers producing a spiraled filamentary
structure of positive and negative §f. With the estimate that the gradients of 6 f build
up as k2 =~ Q%t?/rZ the time for the background diffusivity to stop the filamentation is
tg = (ro/DO%)Y? whereupon the distribution again evolves to a state with vg - V§f =~ 0
and with 6f given again by Eq. (37) and shown in Fig. 4(b) at t = 80r,/c;.

Although this description of the effect of the collision on the test particle distribution
is overly simplified, as seen from Fig. 4(b), where it appears that a substantial number of
particles are lost during the collision, it describes the essential features of the collisional
interaction. Based on this description that states there is a complete mixing of the trapped
plasma over the vortex size ry each collision, assuming the time between collisions 7, is long
compared with interaction time A¢ < 107, /c,, we construct a model for the quasi-coherent
transport of plasma induced by vortex collisions in Sec. V.

During the collision in Fig. 4 the net volume averaged flux I'r = (v,6f) reaches a value
of ~ —0.1rqvy(8f/8z) which is about 10 times larger than the residual background flux
between collisions.

The measure of the filamentation of §f occurring during the collision is Uy(%)

Uy =5 | TiVen? = 5 ((V61P) (39)

Before the collision Uy is constant at Uy & 2.5. During the collision Uy increases to a peak
value of ~ 8.0 and then decays to about 3.0 after the collision.

Increasing the impact parameter b while keeping other parameters fixed in the experiment
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in Fig. 4 shows that the final sfate consisting of a new dipole and a monopole occurs until
bR bx =~ 10p, S 2ro. An experiment with b = 2rg = 12p, shows a kind of resonance in which
the quadrupole interaction appears strong. In this case we find that Out to ¢ ~ 50r, /c, the
four vortices retain their identity but remain grouped together with an inner vortex spacing
of rjj ~ 2rg. The four vortices propagate together with a reduced speed § =~ 0.6vy. In this
last experiment (not shown) the diffusion of f was taken with —D;k} = —0.01k% replacing
—k% D. The pulse of volume integrated (§fv,) reached —0.6(c,p,df/dz) with a width of
At = 3r, /c;. The value of Uy increased from 2.5 to 10 and decays back to 3.0.

V. Quasi-Coherent Transport from Vortex Collisions

The vortex collision experiments in Sec. IV show a fast, transient plasma transport over the
vortex radius ro 3> p, d.uring a vortex collision. It remains, however, to determine the net
plasma transport than can occur due to the vortex-vortex interactions.

Let us consider a gas of vortices .With line density n, = N,/L,L, where L, and L, are the
dimensions of the periodic 2D box V = L,L, and N, is the number of vortices in the box.
We define the average distance r;; between the vortices by WT?jNv =LyL,orr; = (7rnu)‘1/ 2,

For N, vortices with average radius o the packing fraction f, is defined by

N,7r2 r2 .
fr= 7 LO =7rnvr§=—§ (39)
zly

T'l:j

with the restriction that f, < 1. The fractional area perpendicular to B covered by vortices
is fp.
For an electrostatic potential field
Nu .
p=3 i+ vt ~ (40)
: 1=1 k
composed of vortices and waves (see the Appendix for details) the energy density w in the

~drift wave field ¢ compared with free energy density wy = nT.(ps/rs)? has a vortex and
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wave component given by

w T pZ ~w\2 T2 2
L (1+%) + @ (14 Fe) (41)

where A2 is the average (dimensionless) vortex amplitude
AZ=—Y A '
=N ; ; (42)

and @ is the root-mean-square wave amplitude
1/2
¢ = (E (2 |2) : (43)
k
In obtaining Eq. (41) the waves and vortices are assumed uncorrelated. |
The ratio of the energy in the vortices to the waves can be estimated for a spectrum
of waves saturated at the mixing length level ¢* = o/2/%, (corresponding to e®/T, ~
a/?[k,r,) and noting that the dimensionless vortex amplitude satisfies A, & urg for self-
binding. We use the dimensionless constant? o < 1 to describe the saturation level of those

fluctuations not strong enough to form vortices. From these amplitudes the ratio of the

energy densities in vortices to waves is given by
EY/E® ~ fkor? . (44)

Since both simulations and experiments show that large scale fluctuations condense into
vortices, we mﬁy expect that FZT% > 1. Thus, for a packing fraction f, R 1 /7527"3 the energy
density in the vortices is equal to or greater than the wave energy density. The appropriate
division of the fluctuation spectrum into waves and vortices is discussed in Sec. IITA and is
based on the onset of self-binding that occurs for Rg R 1 — 2.

From the vortex collision experiments in Sec. IV we find that the cross-section o(b) for
strong inelastic collisions is peaked at b o~ ry where o,y =~ 2r¢ and is negligible for b R 3.
This range is comparable with the coalescence range reported by Overman and Zabusky'®

and Griffiths and Hopfinger.!?
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The mean-free-path Ang, between vortex collisions is defined by
nv/\mfpo' =1 (45)

and with ¢ = 2rg, where ry is the average vortex radius, the mean-free-path is App =

1/2ron,. The time T between collisions is
TUN,o = 1
and the vortex-vortex collision frequency is
. | .
Yy = = = MU0 ~ 2n,ToVg - (46)

taking the average vortex speed as u R vg. The numerical experiments indicate that the

vortex-vortex collisions should lead to an effective diffusion D, of the vortices given by
D, = v,r3 = n,ravge (47)

which increases as r3 at fixed n, and vy. The plasma trapped in a vortex is nr3n. per unit
length, and the total trapped fraction of the plasma density is newr¢N,/L;L, = fpn.. Thus
the net plasma diffusivity D, from vortex trapped plasma is related to the vortex diffusion
D, by

D, = Dy = fi(uo/7) = firovg (48)

where rovg = (ro/rs)(cT:/eB).
Adding the transport from the uncorrelated wave field ¢* we obtain that the total plasma
diffusivity is given by

D= fpzro'vd + QA Te (49)

where the vortex induced diffusion arises from structures with Rg =& 1 or ¢®, /B > rovg and

the wave diffusion from cp¥/B =~ A vz0*/? with o the empirical mixing length saturation
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constant describing the broadband fluctuations. In dimensional units the diffusion is given

by

gk, Kok
Dp-—fprneB arn eB

(50)

The strong packing fraction square f? dependence of the vortex diffusion component
in Eq. (50) arises from the increases of the vortex-vortex interaction rate with f, and the |
increasing fraction of plasma trapped in the vortices with f,.

A theoretical determination of the packing fraction f, and average vortex size ry appears
to be an important, unsolved problem. Both f, and rq are associated with rate of buildup of
wave energy at large scales due to mode coupling or the inverse cascade of ﬂuctuation-energy
from active regions of scale p; or smaller to large scales of order rg. The rate of damping of
the large scale motion and the effect of magnetic shear may both influence the final value of
ro. For sufficiently energetic system the mean value of ry may be as large as r, which could
account for the large amplitude, perhaps coherent, structures observed in the edge regions of

some plasmas. The experiments of Couder and Basdevant!! indicate the possibility of high

packing fractions under certain conditions.

VI. Conclusion

The nonlinear drift Wavg-Rossby wave studies show that for a potential fluctuation with an
amplitude large enough that the E x B rotation réte Qg(k) around the fluctuation of scale
k, is greater than the linear wave oscillation frequency wx(k) the convective nonlinearity of
the plasma vorticity produces a self-binding in the fluctuation. The self-binding is shown to
allow the fluctuation to propagate over long distances without the loss of energy that occurs
in the same space scale, but small amplitude disturbance. The amplitudes required for the
onset of self-binding are shown to be just above the equivalent mixing length levels where

the role of the mean radial wavelength X, in the mixing length formula is replaced with the
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vortex diameter 2rg.

We show that monopolar perturbations from a local charge excess in the plasma or
a local high or low pressure in the Rossby wave equation trap any passively convected
field and coherently transport the field for long distances. An initial monopole develops an
antisymmetric dipolar component due to the vy term and propagates over long distances
without appreciable loss of energy.

With regard to the interactions we show that liked signed gaussian monopoles merge
for separations similar to those reported by Overman and Zabusky'® for piece-wise constant
Euler vortices. Merger occurs when the separation d is less than three times the 1/e radius
of the vortex potential d* ~ 2.6r,. We find that there is no difference in the merger of
two positive and two negative vortices within the context of the Hasegawa-Mima equation
in plane-slab geometry with constant coefficients. The identity of the dynamics for positive
and negative merges follows from the symmetry of the equation under the transformation
¢ — —¢p and £ — —z. Since the two positive vortices have their shelf on the positive z
- side while the two negative vortices have their shelf on the negative z side, the merger may
occur at different sepa,r::a,tions when the right and left sides have different properties as in
cylindrical geometry due to 1/r or from nonuniform v4(z) or 8(z). These effects may account
for the different critical distances observed by Griffiths and Hopfinger where ds ~ 3.0r¢ for
anticyclonic and dx R 57 for cyclonic vortices. |

The conditions for the coupling of opposite signed vortices is shown to depend on the
polarity of the electric field or the internal flow velocity with respect to the drift term vy
or B-term. Since the monopolar structures develop an z-asymmetry in the form of a shelf
with lower velocities on one side, the internal z-gradient of ¢ and the associated internal
flow velocity is stronger for the case when the polarity of the couple is such that the steep
gradients comes together. This is the polarity with the internal flow parallel to vy;. We

observe that coupling to form a dipole occurs for considerably larger separations (for a fixed
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amplitude) for the polarity where the shelves are external and the steep gradients are internal
to the couple. |

We emphasize, and study by integrating a passively convected scalar field, that when
like signed vortex regions merge there is a rapid reconnection of flow lines and the mixing
of plasma properties previously localized to different spatial regions. For long-lived dipole‘
vortices the inelastic vortex collisions resulting in the merging of vorticity produce strong
mixing. The cross-section o for the inelastic merging and mixing is a maximum for the
impact parameter b comparable with the dipole vortex radius ry. The zero impact param-
eter collisions studied earlier®® are more elastic and producé much less radial or latitudinal
transport than those with b ~ ry. |

Based on our simulations we develop a model for the rate of plasma transport produced
by vortex interactions for a system with a given vortex line density n, (number of vortices
per unit area) and of mean radius ro. The packing fraction f, = n,mré is assumed sufficiently
small that binary collisions dominate. We compare the vortex interaction induced transport
with the wave induced transport. For comparable energy densities in vortices and wave
fluctuations we estimate that for ro > A, the vortex induced transport dominates the wave
induced transport for f, > 1/(kzro)'/?.

Much work remains to determine the formulas governing and the overall importance of
the vortex-wave transport problem. These studies serve to point out the real possibility for
the practical importance of long-lived, large scale ro > p, or p, vortices in determining the
transport and the large scale fluctuation spectrum in quasi 2D systems such as magnetized
plasma or rapidly rotating neutral fluids.

The importance and prevalence of 2D vortical flows arises from the self-binding or self-
focusing nature of these finite amplitude (Rg R 1) structures. The self-focusing of the
structure allows it to avoid the destructive effects of system inhomogeneities leading to

diffraction and energy absorption such as by Landau damping induced by magnetic shear,
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or for Rossby vortices by bottom topography, which are so effective in limiting the lifetime
of small amplitude fluctuations. Further research is required to determine the limits of the
2D approximation to the 3D systems and the limits on the critical magnetic shear and other

inhomogeneity parameters for the validity of the 2D vortex description.
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Appendix A — Moments of a Distribution of Vortices
and Waves

Here we give the three invariant moments of the Hamiltonian dynamics for a model distri-
bution of vortices and incoherent waves. For simplicity we parameterize each vortex ¢ = 1
to N, as in Eq. (20) with amplitude A; and radius r; =1 /7i. The waves are given by go'ﬁ
- and are assumed to be the Fourier modes of the difference field p — ¢ = p — XN ©?. At a
given time the total field is represented by

. N

o= ¢l —ziy — ) + gsozef“ (A1)
where the waves ¥} = (p})* are uncorrelated with ¢?.

We calculate the three moments defined in Egs. (5)-(13) as follows:

Mass Moment

M = /dmdy(p =7 ZA ri + Ly Lyok_, (A.2j
i=1
Energy Moment.
. Ny
E=3 E +ZEU+L L Z(1+k2)lso P (A3)
=1 _ 1<J

where the vortex energy is

T A? T 1,
Bi= o+ = 542 (1+57) (A4)

and E;; is the vortex interaction energy which is only simple in the case ; = ; = 7. For

this case the interaction energy FE;; is the function of the separation
ri; = (2 — 5)" + (v — 95)°

given by

2,2
VT
Eyj=-—"A4 > <1+27 —~4r )exp (— 2’) . (A.5)



The interaction energy has local extrema at
rij =0 and 1y = (144712 /4

and vanishes (E;; = 0) at

2\1/2
rij=o00 and 1= w— .
Y

Enstrophy Moment

Ny Ny

U= Ui+ U+ L, L, S K1 + k)| P

=1 i< k

where
2
U; = W?’ (1+479)

and the interaction enstrophy is only simple when v = v; = 7; where

. 2 1 2r.2.
Uij = TA;A; [1 +44% — (% + 474) r?j + —767"?]} exp (——7—2”-) .

2

The interaction enstrophy has extrema at

Tij'-ZO

Tij

1/2
[1 +129% 2+ (1+ 1272)2]1/2} /

24 2/374
and 12
|11 +a+ 124%)2/?
1% 274 2\/@74 - .

The interaction enstrophy vanishes at

T','j=OO

2
= 1+872+[1+(1+(872+1)2]”2 K
g 2,),4 2\/5,74 '
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(A.6)

(A7)

(A8)

(A.9)

(A.10)

(A.11)

(A.12)

(A13)



and 12
. 1 +8’)’2 _ [1+ (1 + 8’)’2)2]1/2
(Ve 2,},4 2\/'2',),4

The packing fraction f, for this model field is defined by

N 7r? _ Nymr 9

fp:ZLzLy - LzLy =TTy

i=1

1/2
where we define the average vortex radius ro by ro = (Fl; Ny rf) / and the line density of
vortices by n, = N,/LzL,.

The line mass density is then
m=M[LsLy = fA+ ¢k=0

where A =3 A;r?/ Y r? and ¢¥_, = 0 by definition.
The line energy and enstrophy density are complicated functions that depend on the
pair correlation P,(r;;) function of the vortices. For a dilute, uniform distribution where

<rf_7> = L;Ly/TN, = (7n,)”" the interactions E;;, U;; are weak. In this limit we have
2 .
BiLty = 54 (1+ 5) + 50 + Bkl
0 k

and

0 To

A? 4
UjL.L, =12 (1 ¥ —5) + R+ )l
k
where A? is an average of A? over the distribution of vortices.
The presence of the vortices can strongly change the skewness and kurtosis of the fluc-

tuation field. For small f, the third and fourth order momentums are

Ny
(¢) = X %okl + LAY et
ki +ko=k =1 k

2
(¢*) = 3(2 |¢iﬁl|2) + A S lei? + fpA*
k k

(¥")

pr2 + Z ,90ﬁ|2 .
k
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Thus, the Kurtosis is
_ LAY+ A (%) +3 ()

K A% + ()2

For f,A? > (©?)

and K & 3 for f,A? < (?).

Assuming that the dgcomposition in Eq. (A.1) with a quasi-normal distriBution for ¥ is
valid and that suitable ordinary differential equations could be derived, the original problem
of 2N k space equations would be reduced to 5N, equations for A;, r;, z;, y; and 2N,
equations for . The reduction would be significant when N,, N, € N. Since we know
that even in the limit of N, = 0 that poiht vortices and modulated point vortices fail,
except when used in large numbers, to describe the collisions between distributed vortices
and, furthermore, in the drift wave collision the numbers N, and N,, change during a collision,
the prospect for a quantitative reduced description based on small N, and N, seems rather

dim.
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Figure Captions

1. Dispersion and self-binding of a gaussian-¢ drift wave monopole. (a) dispersive prop-

agation in the linear regime (b) self-binding in the nonlinear regime.

2. Coalescence of like-signed vorticity regions produced by two neighboring positive (charge

filaments) gaussian monopoles.

3. Pairing of opposite signed vorticity regions produced by neighboring positive and neg-

ative (charge filaments) gaussian monopoles.

4. Collision of opposite polarity drift wave vortices with impact parameter b = 5p, and
dipole radius @ = 6p,. (a) contours of potential with the contour interval Ay = 2.0
(b) contours for perturbed distribution §f with contour interval A§f = 2.0. Positive

values of the functions are solid lines and negative values are dashed.
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