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Some Aspects of Plasma Kinetic Theory: Energetic Particle Physics;
Renormalization Theory; Anomalous Electron Transport in Tokamaks

Yang-zhong Zhang

This dissertation discusses three special topics of collisionless plasma kinetic theory and
their applications pertinent to high-temperature magnetic confinement experiments oriented
to nuclear fusion research. The first special topic is the energetic particle physics. Appro-
priate equations are derived from first principles and applied to mirror configurations. A
significant contribution is the prediction of a diamagnetic limit due to negative energy pre-
cessional waves. Discussion is given on whether experiments exist that violate this stability
limit. The major theme of the second special topic is the construction of a set of rigorous for-
mal systematology for nonlinear Vlasov equation with electromagnetic interactions in order
to produce a renormalized perturbation theory to arbitrary higher order. This systematol-
ogy makes is possible to clarify some ambiguities of previous theories as well as to improve
a few aspects of calculational techniques. The last topic of the dissertation is the theoretical
study of anomalous electron energy transport in tokamak. In combination with phenomeno-
logical analysis, a formula for local electron energy transport coefficient is proposed on the
theoretical basis for strong microturbulence on the scale of the electromagnetic skin depth.
The transport consequences of this formula are found in good agreement with a variety of
tokamak experiments. Attempts have also been made to derive such a formula from first
principle to clarify the underlying mechanism. Thus far these approaches have not proved
to be successful.
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I. Introduction

I.1 Overview

‘There is a general consensus that any magnetic geometry meriting consid-
eration as a fusion reactor must satisfy the equilibrium and stability limits set

by ideal MHD (magnetohydrodynamics).}~* If not, violent termination of the

plasma on a very short time scale, the Alfven time 74, is often the consequence.

There is overwhelming empirical evidence that ideal MHD provides a rather

accurate description of a wide variety of macroscopic plasma behavior.5~8

While favorable ideal MHD properties are necessary in a react§r, they;

may not; éven in the restrictive context of low frequency macroscopic behavior,
“be sufﬁcierit. It is someti:ﬁes possible fdr\ nonideal effects such as electrical
resistivity to allow the developmeﬁt of weaker instabilities on a slower time scale,
the resistive time 7x , which, set b};, resistive MHD, nevertheléss may still lead to
enhanced transport or even, 1n certain circumstances, violent termination of the
p]ésma...\ﬂfhi]e the theory of ideal MHD has been refined during the past three
decades, a substantial céorre;pondence has been estabiished betwegn resistive

MHD predictions and éxperimentally observed gross instability phenomena.®1?

Sufficient collisionality is required for the MHD description to be valid,
especially to limit heat transport along the field line. However, this situation is
not generally true even for present-day laboratory plasmas.!* The use of MHD

theory may be restricted to the description for those phenomena in which the

1



equation of state does not play an important role. In open systems, MHD must
be modified to include anisotropic pressure effects; nonetheless, it still provides

a poor description of plasma behavior along the field line.12:13

In the opposite limit, the high temperature collisionless regime - the regime
of fusion reactor interest-, the plasma confinement Will nﬁost likely be dictated
by microinstabilities. | These instabilities which can only be derived from a
kinetic description of the plasma ( as opposed to gross instabilities or macroin-
stabilities which can be obtained from the MHD descriptions ) are generally

short wavelength modes with high frequency.

Not every kinetic description must result in microinstability. For instance,
a negative energy wave of kinetic nature can be coupled to a gross positive
energy wave , giving large spatial scale instability. For example, this kinetic
negative energy wave is associated with the precession of a hot component, like
« particles in fusion reactor, immersed in background plasma. A new branch
of plasma physics, the energetic particlé physics, is thus developed and closely

related with the study of consequences of the negative energy wave.

In contrast to the macroinstabilities, it is not yet clear how to stabilize
microinstabilities. In fact, it is quite likely that not all of them can be stabi-
lized, and the best that one can probably do is to alter the field geometry and
other equilibrium parameters of a particular device to minimize their effect.
Their high growth rates and short scale lengths mean that most microinstabil-
ities will grow rapidly into the nonlinear regime, whereupon their growth will

be saturated. They are thus not expected to be as large scale and chaotic as




macroinstabilities. However fhey can cause rapid, small scale, but relatively
ordered, plasma transport and hence be very detrimental to plasma confine-
ment. In the present generation of devices the energy conﬁnément times are
usually much shorter than classical and are thought to be a direct consequence
of anomalous transport due to small scale turbulence induced by microinstabili-
ties, although this is not a universally accepted point of view. Other possibilities
have been proposed such as losses by impurity radiation, larger scale reconnec-
tion of magnetic field lines, or hidden enhancement of neoclassical transport.
- Certainly, fluctuations at approximately the right frequency and wavelength.

have been observed in many devices.14~17 However, the correlation betweep |
the intensity of these fluctuations and the diffusion has not yel been demon-
strated, .fof i-nétance, in tokarﬁaks. The identity of the fluctuations in tokamaks
is also unlclear,'tlh'is is mainly due to the large‘number ofﬂiﬁ'erentiinsta.bilities
R havin"g similar wavelength aﬁd frequency, thus making a pre‘cise identification

“very difficult.

While it is generally difficult to establish correspondence between the pre-
dictions of kinetic description and experimental observations in high témpefa—
vture plasmas due to their microscopic feature, the study of energetic particle
physics appears interesting in cases where kinetic instability associated with
negative energy wave has macroscopic consequences, which can be identified
by less sophisticated experimental techniques. On the other hand, as currently
conceived, energétic particle physics is a crucial issue for tokamaks in D-T oper-

ation that will occur in the near future. In fact, the issue has been investigated



in bumpy tori and in single mirror cells for more than one decade.

There are several types of free energy which are available for driving in-
stabilities. Their sources can be identified by finding the current form in terms
of fields or, equivalently, the quadratic form of fields. Among others, there are
currents due to curvature drift, polarization drift, drift associated with density
and temperature gradients. Since the drift current due to magnetic field gradi-
ent is by and large cancelled by its counterpart in the diamagnetic current, it is
not a free energy source unless the S-value of the plasma is quite high, so as to
leave the pressure gradient alone to be the driving force. Currents responsible
{or free energy sources can also be induced by velocity space anisotropy; exam-
ples of this are the ion distribution of a mirror machine which has an inherent
loss cone nature or the distortion of the distribution function due to the plasma
current as in a tokamak or the distortion of the distribution function due to the
pressure of trapped particles.!®*® However, free energy can be either a source
or sink. It depends not only on the relative direction of current and wave but
also on the relative energy signature of waves. A microins’ﬁability with negative
energy signature, when coupled to a macroinstabilty with positive energy signa-
ture, may cause new instabilities. The above observations of free energy source
provide an insight to the nonlinear saturation mechanism. It is conceivable
that the current due to nonlinear effect tends to balance the linear current that -
drives instability. This estimate is even quantitatively plausible to the order
of magnitude in the context of kinetic theory where the linear growth rate is

believed to be balanced by the nonlinear damping rate.®




This dissertation expounds several kinetic aspects of plasma theory, with
special attention paid to specific issues. These issues are of fusion interest for
near-term as well as long-term machine operations. The phenomena for these
issues usually have time scales considerably shorter than collisional scales, which
allows the application of the collisionless plasma approximation. Certainly,
this does' not mean that interaction between particles is neglected, for it is the

Coulomb force that also leads to the formation of self-consistent electromagnetic

fields in collisionless plasma, with the interaction between particles coming in

through wave-particle interaction.

The above discussions justify the application of the kinetic Vlasov equation.

19:20 for jons and electrons and the Maxwell equations for the self-consistent

electric field to the theory of waves in a collisionless plasma. This is a closed
- set of nonlinear integro-differential equations in space and time. Its complexity

- leaves no hope for a general solution, and therefore certain approximations are

used in each particular case to simplify the initial equations and then to find

‘the solution of the simplified set of equations.
1.2 | Organization and Contributions'of This Thesis

The main achievements of the work reported in this thesis fall into three
catogories and will now be summarized. Each corresponds to a part (A, B, C

), and each part begins with an introduction to its topic [ of. II, VII, XI].



(A) Energetic Particle Physics

The main work in this area is devoted to a study of the precessional wave
in a hot electron annulus configuration like ELMO Bumpy Torus ( EBT ) [ cf.
V,VI ]. The remainder of the work in this area is devoted to a study of the
high frequency hot electron interchange mode and the interacting background
interchange mode in a hot electron disk configuration, such as the proposed

axisymmetrical tandem mirror [ cf.IV ].

* Diamagnetic stability limit in hot electron annulus

We discovered a stability threshold for the precessional wave, which may
give the diamagnetic stability limit for the pressure gradient that can be sus-
tained in hot electron experiments. This limit predicts that instability will arise
if the self-consistent equilibrium with a diamagnetic well begins to produce a
minimum-B ﬁeld. This conclusion is not consistent with the traditional opin-
lon that a deep enough magnetic well ( or drift reversal ) had been achieved in
EBT-like machines. We point out that indirect measurements based on the Hall
probe were probably not accurate enough for verifying if drift reversal existed,
since resolution of the radial structure is very difficult to be accurate. Recent
direct measurements in the STM experiments at TRW based on the Zeeman ef-
fect have found that the current distribution is too broad to form a minimum-B
well. Earlier reported achievment of drifi reversal in EBT experiments, when
reexamined, were found to be inaccurate. No direct experimental measurement
has yet found a drift reversal configuration. However, we should be cautious in

concluding that there is a universal limit on the diamagnetic limit, since these



particular experiments may have merely encountered a technical limit.
On the other hand, we point out that this study is significant for the un-
derstanding of energetic particle physics as well as of the kinetic theory of a

collisionless plasma. The prediction of the diamagnetic limit is a direct conse-

quence of destabilization due to wave-particle resonance. The relative simplicity

and clarity in both the experiments and the theoretical prediction prov1de in-

sight into the kmetlc theory of plasma physics [ ¢f.V,VI ].
* High frequency interchange mode

A layervmode analysis is done for disk-like hot electron pressure profile with

inclusion of electromagnetic component. We established the stability window

in parameter space. In particular, the density ratio of hot to cold plasma is -

bounded by the hot electron mterchange mode on the upper side, being in-
sensitive to dlamagnetxc eﬂects and by the 1nteract1ng background interchange

"'rnode on the ]ower s;de, if the dxamagnetlsrn is not too high [ cf.IV ],

(B) Renormalization Theory
- This part is devoted to an investigation of several generic problems in
plasma turbulence:
* Perturbation fheory and renormalizability
A systematic perturbation theory to deal with stationary, homogeneous
turbulence in a dispersive dissipative system, with focus on a Vlasov-Poisson

system, is developed and is shown to be renormalizable by using diagramatic

technique. The theory can be viewed as a generalization of the renormalization



theory developed by Dupree and by Rudakov and Tsytovich , to arbitrary higher
order. In particular, the incoherent part of the perturbed distribution function
is treated in light of matched perturbation theory, so as to resolve the difficulty
of Dupree’s theory which fails to reduce to the standard weak turbulence theory
[ £ VIIL1,2 ]. The origin of this difficulty is then clarified by studying the

renormalized dielectric function.
* Renormalized dielectric function and spectrum equation

Use is made of the above formalism for calculation of the renormalized
dieleétric fun_ction and for derivation of the renormalized Kadomtsev spectrum
equation to lowest non-trival order. Their asymptotic expressions in weak tur-
bulence limit are found consistent with the known resulis from DIA. This man-
ifests that the origin of the difficulty of Dupree’s theory lies not in the ill-
treatment of iteration, as criticized by the DIA approach, but in the use of

unmatched perturbation theory [ cf.VIIL.3,4 ].
* Energy conservation

The energy conservation for electrostatic drift waves is proved to all orders
in perturbation theory. It shows that Dupree’s theory and DIAC will violate
the energy conservation starting from the next order to the lowest non-trival

order [ cf.IX |.
* Gyrokinetics

Use is made of the iteration procedure to develop a formalism for renormal-
izalion of gyrokinetic equation. In contrast to the known result, this formalism

makes manipulation of large Larmor radius effects analytically tractable. Non-




linear transport equations are derived on the eikonal approximation basis. It
shows that the energy transport of electrons is usually smaller than that of ions

for drift wave turbulence [cfX ]

(C) Anomalous Electron Transport in Tokamak

This part is devoted to a study of anomalous electron transport in toka-
maks due to turbulence of microinstability. The survey of experimental phe-
nomenology indicates that anomalous electron transport, rather than that of _

ions is the dominant energy loss channel in typical tokamak discharges [ cf. XI

]. We are thus motivated to consider fluctuations which have less effect on loms..

Electromagnetic turbulence obviously meets this requirement.
* Electron energy transport coefficient

A quel Aelectromagnetic microturbu]en-ce theory of electron energy trans-
port in tokamaks is proposed for derivihg electron energy t.ransport coefficient.
The cofresponding energy transport equation is solved in a cyliﬂdrical plasma.
The predicted central electron temperature and the temperature profiles are.
found to be agreement with various experiments, including the “ supershot ”

in TFTR and the “ monster mode ” in JET [ f.XII].
* 7e mode

This is an electrostatic wave, to which ions respond adiabatically. The
marginal stability of the kinetic 1. mode is solved analytically in a shearless
slab model. The analysis of its nonlinear behavior shows that the transport

due to 7me-turbulence is more than one order smaller than that of tokamak
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experiments [ cf. XIIT .

* Magnetic fluctuations induced by 7, turbulence

We have shown that 7, turbulence causes an effective collision frequency
which reduces shear damping of the electromagnetic waves. Use is made of the
formalism developed in X.1. to derive an eigenmode equation for electromag-
netic waves under the influence of nonlinear 7, waves. The calculations are
carried out on the basis of perturbative expansion for small fluctuating am-
plitude of the Fourier modes. The solution of the eigenmode equation shows
that destabilization due to 7. turbulence is insufficient to balance the shear
stabilization to electromagnetic mode, as the perpendicular wavelength of the
7e turbulence is taken to be the order of the electron Larmor radius [ ¢f. XIV,1
]. We also calculate the annihilation process of two 7. modes into one electro-
magnetic wave. This may serve as an alternative candidate for the excitation
of electromagnetic fluctuations in tokamak. For the two 7, process, the elec-
tromagnetic fluctuations are still insufficient to explain the anomalous electron
transport in tokamaks. However, we observe that the multi-wave processes such
as annihilation due to three, four ... 7. modes give the same order contribu-
tions as the two wave annihilation. The above conclusion is limited by the

perturbative approach of the present work [ cf.XIV,2 ].



PART A

ENRGETIC PARTICLE PHYSICS
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II. Review of Energetic Particle Physics

I1.1 Overview

The use of hot electrons in several magnetic configurations such as a sym-
metric tandem mirror or EBT was primérily motivated by the attempt to con-
fine plasma stably in an otherwise unstable MHD trap by forming a diamagnetic
well with the hot component plasma. It was hoi)ed that the hot component
could anchor the magnetic field lines in much the same way as the quadruple
fields of a minimum-B configuration, but with the advantage of axisymmetry in
a tandem mirror and relative simplicity of the magnetic coil geometry in EBT.
Therefore, the hot electron diamagnetism must be sufficient to reverse the mag-
netic drifts of the core plasma 2! and to do so in the appropriate line average
sense for flute-interchange instability.?2 However,stability theory has indicated
limitations of this method. These limitations include:

(1) alow stability limit for the beta of the background plasma,known
as the Lee-Van Dam,Nelson limit?®?¢ that puts a more stringent condition for
the background beta value than that obtained by treating the hot electron
annulus as a rigid non-interacting current ring®®; and

(2) the existence of a negative energy wave at the curvature drift
frequency of the hot component that will be destabilized by the excitation of
positive energy waves or with the dissipative mechanism of the background

plasma and walls.
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The mode at the curvature drift frequency is quite analogous to the near
rigid precessional mode of Astron,?® where it was found that a ¢ forwardl”
preceésing mode is a negative energy mode that is readily destabilized by dis-
sipation or by excitation of positive energy waves of the background system.2”

‘ The coupling of the negative energy mocie to the background plasma MHD
- mode yields the hot electron interchange modes [ cf. Eq.(5.1) ], if the ideal MHD
growth rate is not too much less than the curvature drift frequency. Krall®® con-

sidered this effect for the hot electron ring configuration and showed that,with

a sufﬁéient]y large amount of cold plasma, the mode is stable. Berk2® extended .

Krall’s mode] to describe stability when the electron drift frequency exceeds -

the jon cyclotron frequency. Dominguez and Berk3° treated the electromag-.

- netic aspects of the problem in a self-consistent, fashion and verified the results.

of Krall?® and Qf Berk.?® Hence, the hot component energy ﬁmes the ratio Qf
cold to hot plasma density is requi.red to be sufficiently large for the stability,
Whéreupon the response of the hot component decouples from MHD response
of the background plasma. "

When the curvature drift frequency is not sufficiently less than the com-
pressional Alfven frequency, a new magnetic compressional mode is present. As'
a result, the ratio of cold to hot plasma density is required to be not too high,
in order to have a stability window in background beta value, as was pointed
out by El Nadi®! and Berk et al.3? This compressional mode has been numer-
ically studied in great detail by Stotler 33 with inc]usion of trapped pafticles,

arbitrary drift reversal, and magnetic component and also has been applied to
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tandem mirror by Rosenbluth.>* These comprehensive studies of the compres-
sional mode revealed the origin of a pessimistic prediction from energy principle
constructed by Van Dam et al 3° that is more pessimistic than the conventional
kinetic energy principle of Kruskal and Oberman,?® which itself had been un-
able to indicate stability unless the hot electrons are treated by fiat as rigid and

non-interacting with background plasma perturbations.

If the negative energy spectrum of the precessional mode is broadband,
there are likely to be modes of excitation to match those of the background

plasma such as shear Alfven waves 37~3° and whistler-like waves.°

A frequency shift that keeps the precession frequency away from the posi- }
tive energy wave frequency is favorable for stability. An example, pointed out
by Tsang and Lee?! , is the radial electric field stabilization in a syrﬁmetric tan-
dem mirror, when the E x B precession is opposite to the hot electron curvature

drift.

Berk et ;1l_42 have studied how the Lee-Van Dam,Nelson limit is altered in

the presence of the coupling of precessional mode to positive energy mode.

More generally,as coupling to positive energy waves is increaged by increas-
ing positive energy coupling, the negative energy waves are destabilized. Thus
one finds that a small increase of a positive energy source that arises from line
bending energy and magnetic compressional finite Larmor radius (FLR) eflects
is at first destabilizing.*3** However, with enough line bending and FLR effects
(this is a stronger stability mechanism than conventional FLR stabilization 45

, all perturbations can be converted to positive energy, and a robust stabil-
; P gy,
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ity regime, where all excitations are positive energy, can be found under some
conditions.>*#6:47 The FLR effect on long wavelength layer modes was derived
by Hammer and Berk.4® Recently,Wong *° developed a variational form in the

Jong-thin limit for FLR effect in an arbitrary non-eikonal form.

It was also found that ifnage currents generated in nearby walls could
change the sign of the precession and convert the mode to a stable positive
energy. °%%! Unfortunately, this stabilization mechanism®2 is not applicable to
a hot plasma ring configuration, as in EBT, since the stabilizing ‘Wa.l] image
current 1s considerably reduced from that of a disk-shaped pressure profile, as

in a tandem mirror configuration.

All radial analyses in the aforementioned publications were restricted ejther -

to short radial wavelength modes,which can be examined using WKB methods, -

or to ]bongvradial wavelength modes (referred to as layer modes), for which
WKB is invalid. These calculations, though often simplified, are analytically
tractable and indicate the important effect of the radial mode: structure on
stability boundaries and growth rates. In order to allow more realistic mode
profiles and to better understand the shért and long wavelength limit (as well
as intermediate cases), Spong 5% developed a shooting code for solving the full
radial eigenmode equation in a Z-pinch configuration. In the axial analysis an
analytical solution is found only for large drift reversal] ,38:43:52,54 Otherwise,

one has to numerically solve the ballooning mode equation, which is a integro-

differential equation.

In addition to destabilization due to the coupling of the precessional mode
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to positive energy mode, the precessional mode can be destabilized by the in-
teraction with a positive energy dissipative mechanism. Antonson and Lee 55 in
very general geometry of EBT indicated that the precessional mode is always
unstable in the drift reversal limit. This instability arises from the positive
energy dissipation due to the bounce resonance in background plasma, while
dissipation (both the positive and negative energy) on thé hot component is
assumed to be zero. Berk and Zhang “° included the dissipation due to the
curvature drift resonances in hot components to find a stability threshold. In
the hot electron annulus, as in EBT, the positive energy dissipation arises from
hot particle resonances occuring at the inner edge of the annulus, while the
negative energy mode is stabilized by negative dissipation arising from the par-
ticle resonances located on the outer edge of the annulus. Particle resonances
occur from both regions before drift reversal is achieved; generally the effects
of the outer resonances are stronger, and the mode is stable. If the drift on the
outer edge changes sign, resonances on the outer edge does not occur, while the
resonances on the inner edge still arise, thereby causing destabilization of the

precessional mode.

The stabilizing effect of hot component still remains on the background
perturbations, even if the drift reversal is not achieved. This stabilization
mechanism arises from the difference in density between the ions and electrons
in background plasma, referred to as “ charge uncovering ” effect,3? since as
plasma ions and electrons are displaced according to E x B motion, the hot

component are not, which sets up an electrostatic restoring force proportional
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to their charge difference. This results in a frequency shift proportional to the
charge difference for the interchange mode, which, in a manner analogous to
FLR stabilization,*> produces stability. Another stabilizing effect results from
the field compressibility coexistent with the presence of hot particles. It is
this stabilization mechanism that plays the role to access the second stability
of ballooning modes from its first stability in tokaﬁlak, as was proposed by

Rosenbluth et al %4

The precessional wave induced by hot components in tokamak is likely-

to be coupled with positive dissipation inherent to the background plasma,

which produces instability. Chen et al 56 explained “ fishbone ” oscillations; ...

discovered in connection with perpendicular neutral beam injection on PDX,57
as a precessional drift resonant destabilization of the m = n = 1 int;,ernal kink
mode. 56,58,59 An alternative interpretation , proposed earlier by COppl, 60 has
‘been described bv Porcelli.®! They contend that the negative energy dissipation
- arising from the wave-hot ion resonance is sufficient to destabilize a positive

‘energy wave at the jon diamagnetic frequency.

Subsequently, although the energetic particles may have a stabilizing in-
fluence on the low frequency MHD branch, a new unstable branch may emerge
from the coupling of the precessional mode to the background ballooning mode,

. in a manner analogous to the hot electron interchange mode.52-66

Since the hot component beta value is relatively small in tokamak, both
the mode coupling and negative as well as positive energy dissipation should

be taken into account simultaneously to give a valid threshold for comparison




18

with experiments.

Both the stabilization and destabilization mechanisms of energetic particles
in the research in mirror machine and tokamaks are significant to the study of
ignited fusion plasmas with a-particles. In fact, this subject is becoming an

extensively active research field.59:66,87

I1.2 Simplified Model

Below we illustrate the hot electron physics by studying electrostatic in-
stabilities in a sharp boundary model with hot species.
Let us consider a plasma slab with an artificial gravity model acting on

each of the species. The force equation is

dv; ‘ q;
d_tj =V; Xezw°j+m_JjE_gjez' (21)
Let E = —V¢,w ~ w,; (ion cyclotron frequency ), and suppose w ~ we; & Wee

( electron cyclotron frequency ),

T, T.
Mege = migi'f ~ mhghﬁa (22)

where e, 1, h refers to electrons, ions and hot species respectively. For simplicity

take the hot species to be electrons. Let us consider an equilibrium where
jo, T > Oa
;= 2.
i ‘{0, z <0, (23)

and neoge + m4509; + npogn = 0, where g is the charge. We shall derive the

equation for stability.
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In equilibrium

VJ‘O = eygj/wcj = vdjey (2.4)

and the continuity equation V - (nv) = 0 is satisfied.

The solution of the linearized fluid equations for background ions, where

6E = —ik,6¢e, — aﬁééez, is
T

b= _9“) [i(w — wai)E + wei(e, x 6E)], (2.5)

mi(w? — w?

where wy; = kygi/wei = kyvg;. For the hot and background electrons we use the

low frequenc:yb drift approximation

: c
bv=—=6Exb
A% B X

These velocities need to be substituted into the continuity equation which de-

- termines the perturbed density on;:

For ions

il — gV = 9 [0 8,

w — wy;)dn; = (@ = oF) {(w Wqi) La:rm 5 kyni]
5 ! (2.6)

n;
_ kywcia—}éqﬁ |
and for electrons
) . ¢ On,

—t(w — wge )dne = 5 Eky&b, (2.7)

and similarly for hot electrons ( hereafter, the subscripts 0 for equilibrium

quantities are ignored ).
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Now, substituting for én.,én; and én; into Poisson’s equation yields the

eigenmode equation

&, o w2(z) 8 ky 2 we 0w
(G =008 = Gy o oy 0050 () |~ [y )
L Lo B TN 5¢
Wee | Oz (w— wge) Or (w—wgp) ’
(2.8)
where ng = dmgin;/m;.

Notice that the solution of this equation is §¢ = exp(—|kyxz|). If this
equation is integrated from z = 0~ to z = 07, we obtain the contribution from
the discontinuity Ow?;/0z. Assuming wg;,wqe < w, and integrating Eq.(2.8)

over the discontineous layer, we obtain

_Bsg(0F) | 969(07) . wpi  884(0%) _ { kyw? weiwg;

Oz Oz w? — w2, Oz w?(w? — w?) (2.9)
wwgiky waew? ky ""p?h k, 1 1 .
+ 5T — — — — | p64(0).
wei(w? — w2) WeeWw wee |(W—wgp w
Use is made of the following equations
0 -
5-0¢(z = 0%) = Flk, 184(0%),  wi(07) =0,
and wg; K wp;, thebdispersion relation can be written as
w 7§4HD n n
e Ne e
w? <1 + Sgn(ky)— — T‘") + Yo, + _.'YﬁfHDe
Weq w., T4 n;
c ) oy 2 (2.10)
_ w(w® —wd) YuuD, nh

= > ,
Cw—kyvg, W oy
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where
'YJ\2/!HD,, = |kylgnme/m;, 7]2MHD,- = |ky|g;, and 712WHD¢ = |ky|geme/m;.
For small 42, D.;» the hot electron interchange mode results from the high

frequency branch of the dispersion relation, Eq.(2.10):

2
Y nh n
w? — w<kyvdh + Sgn(ky)M—@h_—> +YMHD, ;}1 = 0. (2.11)
Noting that |k, Jvgs = —fy]%,!HDh /wei, we write the stability criterion as,
nhp 2w |wa| |lwa | .
T S Y . (2.12)-.
ni  |wan 2we; Wei

For low frequency limit we have the low frequency interchange branch of Eq.: -

(2.10), with the dispersion relation

: '7MHD 23 n
w? = “T% b — S+ YhMHD, +Yirup, — = 0. (2.13)
yVdh T4 ] ng

The middle term ( proportional to ny /n; ) is the charge uncovering term, that is
stablhzmg The stabilty condition to the low frequency hot electron interchange

mode is

w2, n? :

y :f > Yinp; + YD, nj : (2.14)
The electrostatic sharp boundary model, however, does not give a valid descrip-
tion for the diamagnetic stabilizing effect on the background interchange mode.

The analysis including the electromagnetic effects will be discussed in TV.
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II1. Variational Form

The use of a variational expression to determine the governing equations
of a system is a compact way to derive the appropriate normal mode equations
and to achieve insight on how to determine approximation solutions.

The energy principle for an anisotropic, guiding center plasma was orig-
inally obtained by Kruskal and Oberman.3® Its isotropic form was simultane-
ously derived by Rosenbluth and Rostoker ® using a kinetic approach.This
energy principle has subsequently been studied by Taylor and Hastie®and by
Grad.”™ It was then generalized to include electrostatic effects,”* which were
found to be stabilizing.

The derivation presented by Kruskal and Oberman was a thermodynamic
argument. That is, they constructed a general macroscopic constant of the
motion, namely, the entropy, and varied it so as to remove any variation in the
microscopic distribution function.” It has been pointed out,”®74 however, that
the derivation of this energy principle can be obtained by requiring that both the
single particle magnetic moment and the longitudinal action be adiabatically
conserved. A key assumption in the derivation of the kinetic energy principle is
that instabilities, if they exist, develop on the MHD time scale, or equivalently,
that particles and field lines move together. However, this assum\ption is invalid
for a rather energetic plasma component. For this hot species, the normal MHD
response is negligible, and the time response is strongly affected by the large

precessional magnetic curvature drift, that results in the “ charge uncovering ”
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eﬁ'ect.

Accordingly, a new variational energy principle was derived by Antonsen
and Lane,” which yielded certain necessary conditions for stability of short
wavelength modes in an isotropic, equal electron and jon temberature plasma.

In a subsequent derivation by Van Dam, Rosenbluth, and Lee,?® the gen-
eral change in potential energy of an anisotropic plasma due to a zero frequency
magnetic perturbation was calculated. This quadratic form gives sufficient con-

ditions for the stability of purely growing magnetic modes.

Antonsen and Lee "¢ developed an elegant form for variational principle..-

which was capable of analyzing the stability of equilibria with electrostatic:,-

potentials.

Certain relationships between these formalisms were analyzed by Antonsen-

et al ** in a subsequent paper dealing with ballooning perturbations.

A generél variational formalism including FLR effects, equilibrium rota- -

tion and arbitrary particle bounce effects for both the eikonal and non-eikonal
mode was obtained by Berk and Lane,”""® whose derivation in the eikonal limit
started from the results of a forma.lisbm developed by Wong."®
~ The comparison of the kinetic variational form with those more familiar
obtained in MHD is shown in Appendix A.
Physical insights usually arise from analysis in a rather simple geometry,
as long as the more complicated geometry is not essential to the underlying
mechanism for both stabilization and destabilization. It is found that many

important features of energetic particle physics can be studied in a rather simple
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cylindrical model with embedded current. Since the embedded current, which
simulates the equilibrium curvature effects, is not a plasma current, none of the
known variational forms is readily reduced to the appropriate one, as derived in
II1.2., for this configuration. In order to complete the derivation a drift kinetic
equation in axisymmetric configuration is rigorously derived in IIL.1. The new
term is found unimportant for long parallel wave length. It is found helpful
to invoke a current approach in the derivation of basic equations, namely to
construct the perturbed plasma current from the Vlasov equation, as to access
further understanding of physical essence in connection with more fundamental

considerations. This approach is shown in IIL.3.
ITI. 1 Drift Kinetic Equation in an Axisymmetric Configuration

In the nomenclature of plasma physics the drift kinetic equation is the
Vlasov equation in the guiding center approximation. It is given directly from

the Liouville theorem for guiding center distribution function.

dFF OF oF
_d?: N +’U||b VF +v,- VF+H<8H>—O, (3.1.1)

where F is the guiding center distribution function, v = p;/msy,the parallel

velocity, with py being the parallel momentum and ~ = H/mc? and

vy = (1/mQ)b x [uVB + Tﬁ'yzvﬁn] +c¢(E x B)/B, (3.1.2)

,u@B

o (3.1.3)

H= gEjvy+qE, vy + =
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with 2 = gB/mcy the gyrofrequency, p = pi /2mB the magnetic moment,
with p, being the perpendicular momentum « the curvature of magnetic field,
E the electric field, B the magnetic field, m the mass, ¢ the speed of light. The
polarization drift is ignored in the expression of v, for the later convenience,
although it is important for ions.

Equilibrium electric field and its perturbed parallel component are assumed

zero. The power is then contributed from two terms:

H— 6H = g8E, - vy + E-QéB, (3.1.4)
~ Ot .

The coordinate system in the cylihdrical]y axisymmetric configuration is:. -
chosen as (1,6, s), where 1 is the flux variable, 6 is the azimuthal angle, and.

's'is the distance along the field line. The equilibrium magnetic field is defined :

by the Clebsch representation
B =Vy x Vg (3.1.5)

The coresponding geométrical properties in this coordinate system are listed

bélow:

Vi =rBey, VO=eg/r, b-Vip=0, b.Vl=0,
VS=b—gyV$, bxVf=—e,/r, bx Vi =rBeg,

where ey, e, and b are unit vectors in the V4, Vé, and B directions, respec-
tively, and g,y is a component of the metric tensor of the curvilinear field line
coordinates.

The equi]ibriﬁm version of Eq.(3.1.1) is
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where f = fo + 6f with fy the guiding center distribution function in equilib-
rium. For the axisymmetric configuration v4 ~ V8, and v4 - Vfy = 0. It yields

a constraint on fy:
0fo/0s = 0. (3.1.7)
The linearization of Eq.(3.1.1) leads to the equation for éf:

—5f+'l)”b Véf+va- V5f+vl|5b Vio+bvg- Vfo—l-(SH(Zg) =0 (3.1.8)

The Fourier transform of Eq.(3.1.8) is
0 0
[ z(w - wd) — V|5 Bs ]5f = 'U”5b Vfo + 6Vd Vfo + 6H (82) (319)

with Wy = lVd - V8.
In terms of new variables a; = 63 and 81 = §6 for periurbed fields, the

displacement of field line £, defined by

B=Vx(£xB), (3.1.10)
is expressed as
{ = —(a1/rB)ey — rPiey, (3.1.11)
and
§B = 6B = B(%J +3lf; — gs¢%> (3.1.12)

§b= 6B, /B = (1/@)(3?) ¢—r<—8£>eg (3.1.13)
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Now,we have

6a1 6fo

8fo L iwg B 10f0
6H3H [— Jo wac — tw— 5B]3H | (3.1.15)
and
6vy - Vo =V fo - [(1/mQ)(6b x uVB + b x uVéB
(3.1.16)

+ b x m‘yzvﬁ&s) + ¢(6E x b/B)]
Using the equations §x = (6b- V)b + (b V)éb, Eq.(3.1.13), ep - 6b/Oy¢ =
0, eg:0b/ds =0, eg-Oey /Os = 0, eg-0ey/0s = 0, and eg-6b /06 = 6r /s,

we obtain
- 0fo, 8 ,08
: =_2J0 - (3.1.17)
Vo bxbx = —ZR Bt (3.1.17)
1 .C 8/61 BB afo :

s = £ 2010505 1.1

- mQ Vfo ob l‘lv‘B Q’Yﬂ Os Os Oy : (3.1.18)
¢ 0fo

— = 2o 1.1
o Vfo b x uV6B = 5y iludB (3.1.19)
Vo (¢/B)SExb =20 iway. | (3.1.20)

| O
Substituting Egs.(3.1.14) - (3.1.20) into Eq.(3.1.9) yields

) 0 Oa; 6 15}
!Z(w—wd)—v||£]5f=—vu"§ia—]$+w(qwd o - Lom) 2
| R TV 00 29,
5 g 0Y Os
3fe af

(3.1.21)

Cwag.
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Defining
8f=6fL—€- Vo, (3.1.22)

we obtain an equation for éfy:

0 0
il =) oy 51] 651 = =it~ ") (G0 ) Qs + mefafe )

3.1.23
4 i[m'yv”caforzaﬁl] ( )
RAd O0s q O Os”
where
o
le Gy
e .1.24
w . % (3 )
OH’
and .
QL =6B+¢-VB. ’ (3.1.25)

The last term of Eq.(3.1.23) results from the combination of the perturbed
curvature and the perturbed unit vector b. This term does not appear explicitly
in the conventional approach. It is observed®® that part of this term will be

cancelled when a FLR correction to 6§17,

1 __mc 8[31 afo
ﬁ((v X 5b) . VfO)o: = 7’0“7'2_8—3—%

is included, which leaves a higher order term for large bounce frequency, (w —
wq)(me/q)vyr?(0P1/0s)(8f0/ ). Since our use of Eq.(3.1.23) will be restricted
to the high bounce limit in the later applications of the thesis, this term can be

neglected and we will not discuss it further.

III.2 Quadratic Form in Cylinder with an Embedded Current
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In an infinitely long cylindrical model with only azimuthal currents the
total magnetic field B is created by the background plasma current Jpe, the
hot plasma current Joh, and an exﬁbedded current Jz;. The total plasma
current is denoted by J » = Jpr +Jpe. The currents are in the 8 direction; they
depeﬁd on r but are independent of § and z. The configuration is shown in
Fig.1.

The momentum balance equation for the plasma is

pm<%vi— —I—V-Vv) =-V-P+J, x B, (3.2.1)

where pr, is the mass density and v the fluid velocity. In the guiding center:. -

limit the pressure tensor P has the form
P = P, (I-bb)+ P;bb.

~ Since V x Bu‘t =Jde,Vxb= J, 4+ V x Be: and since there is‘no equilibrium

“flow, Eq.(3.2.1) yields the perpendicular equilibrium condition

0 B? OBezi
E<PL+-2—> =B 5 (3.2.2)

Note that the role of curvature in maintaining pressure balance is roughly re-
placed by the external field gradient. Specifically, Eq.(3.2.2) replaces the three-

dimensional equilibrium condition

V1(PL + B?*/2) = ¢B%, (3.2.3)

where k= (b-V)bando =1+ (P, — Py)/B?. Thus, we see that the quantity

(1/B) - (8Be¢z1/0r) replaces ok. Further, our model has the simplifying aspect
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jayr—<

Fig.1 Cylindrical model with an embedded current

Fig.2 Radial pressure profile for hot electron and background pia.sma in a

cylinder.
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” that there is no axial dependence in the equilibrium. A similar model has
been used by Ohsawa and Dawson®® in numerical simulation of hot particles to

produce “ curvature ” -driven modes.32

The perturbed electric field (with Ej = 0) can be written as
6E = iw(¢é x B). (3.2.4)

The inertial term in the limit of the cold fluid model is3?

wév = A + i(w/we;)A(E x b), - (3:2.5)

where A = w?/(1 — w?/w?),w,; is the ion cyclotron frequency.

The perturbed pressure is obtained from a pérturbed distribution function A

of;:
'5P_‘ ‘dl" BI - 2,2 Bbbé‘-. 6B o .
—Z dT[uBI + (my*v} — uB)bb6f; + Ty ,
j (3.2.6)
Y / dr(my*sf — uB)(§B 1 b + bsB ,)B~
j | )
with
3
ar— &P _ M, : (3.2.7)
Y 2(H —uB) : :
§By=6B=—-BV -£—¢.VB, (3.2.8)
§B. =B. Ve, » (3.2.9)

In Eq.(3.2.6) fo; is the equilibrium distribution function for species j. We

also note that 6 Bezy = 0.
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Therefore the linearization of Eq.(3.2.1) becomes

Lw
—pmAE — z:pm}‘(é X b) =

V. <Z/dI‘[pBI + (my*vff — uB)bbsf;

) 8P
+ Z/dr(mvzvﬁ ~ uB)(6B1b +bBL)B fy; + 6B, ;@)
J

+(V xBp) x 6B+ (V x §B) x B,
< (3.2.10)

where By, is given by V x B, = J,.

Here we explicitly define the adjoint of ¢ in the following forms:

¢ = &r(r)ezp(—ilf — ik, 2 )
&) = —&o(r)exp(—il6 — iky,z )

We integrate over the volume of the plasma, and obtain the quadratic form

—2AW = /dr[pm/\fT €+ z'}pm,\g‘f - (€ x b)

—5T-V5P+5T-(Vx13p><5B+5*-(V><513)><B}

:/dr(pmAET-§+z’

+5P:vgf—5BT-5B+%§5T-v-P>

ww prmAEl - (€ x b) (3.2.11)

ct

+/dAn.[(5TxB)st—g’f-ap]:o,

{

where we have used 6B = V x (¢t x B) and Egs.(3.2.8) and (3.3.9), and dA is

the incremental area of the bounding surface.
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The second equality of Eq.(3.2.11) is obtained by integration by parts, and

by using the equilibrium condition. This gives the equation

6B _

£ (VxB,) x 6B = VP ¢t (3.2.12)

The surface term vanishes if the pressure is zero on the boundary and if
(6-n) =0,(B-n) =0 ( nis the normal unit vector at the wall). The latter
condition is a property of our equilibrium , and € - n = 0 is the boundary
condition we impose at the wall. After substitution of Eq.(3.2.7), the pressure

term in Eq.(3.2.11) becomes

/drﬁp : VET‘zv /dr <V{T :/dF[;LBI + (m’yzvﬁ — uB)bbléfr

§B.b+béB, )

- (3.2.13)

- Vel (€ VP Ve (7 - P!
oP
\vZal
+5B £ B)’
Where 6fL is solved from Eq.(3.1.23) in the small || limit,

6fL =8f+&- V],

lw-w* ko) 8fo , Fnvy 87y (3.2.14)
y <1+ ) 6BL BH w—wy " o

YW - wy W — wy

Because there is zero curvature and zero parallel equilibrium current, we

have the following equalities for future manipulations:

6B, = —BV .¢,

VEL: (- V)P = (Veh (e - vy,
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B.(6B.- V)¢t =0.

Then we find

—2AW = /dr[(pm)\ — ok2B?)¢t . €+ z‘%pm,\gf . (¢ x b)

1
Tr2B3

dl (w=w"\ Ofoy 27cpt 144 1
+/ 0% (UJ _wd>(6H )Iu’ (6BL + 7_5 V-Bez:i) (5BL + 7_5 V.Bemg) 5
* (3.2.15)

— 6B} - 6By + (- VY)(€- V4)(VPL - VBest)

where

6By, = 6By, — 77¢ - VBeg, %= / drrB.

The following equalities were used for the derivation of Eq.(3.2.15):

§BI
—L(¢.VP
p (& VP (3.2.16)

1 ~
= —76B] 6By + —5 (6" VBes)(€- VL PL),

—76B16B + %g* VP, +

(6" VBeai)(€- VL)
1 . ; (3.2.17)
= 553 (VBest - VLPL)(E - VH)(E - V).

The independent variables in the quadratic form Eq.(3.2.15) can be chosen

as 6By, and §,. Here g is given in terms of 6By, and ¢,

oo (B B 1, 6Py
=T\ B or TB2" or /"

(3.2.18)

The quadratic form Eq.(3.2.15) is explicitly self-adjoint.

III. 3 Eigenmode Equation and Current




35

The variation of Eq.(3.2.15) with respect to 5BE yields

2 ir (6B, df, 1 P,
A4 g2 —sR2p2) . ¥ [(0bL | @& 3
(” taB+6i)-oB k”) z ( B & rBEY 5 )

! 4B l (3.3.1)
= [ —-p2lezt ¥y _;lp2 il
_< er - +wCipmA ZTB (1+Gl)rdr7'>f,.,
where
10P, 1 [dl[8fo\w—-w. ,
'~ BB B/7(6H w—wg" (3:3.2)
Using the equality
1 1 w w?
Lt e W 3.3.3
w— wy Wy w3+w§'(w—wd)’ (3.3.3)
we write
_ (dBext/dr\ 1dB dPi, w
1 Y= [ ext — — + K (w .3.
o ( dB/dr ) Bar dr TP g, TR, (334)
where
__ e (dB\?[d /ny\]7"
UJdb:'—'_—qur2 <_(F> ,:E (§'>:, 3 (3.35)
w? (8fon/0r)p, '
Kilw) = ~ma(lc/qB?r)(dB dr)? / 4Py dp Cw-wg (8.3.6)

and py is the parallel momentum and mj, is the mass of the hot species. In

attaining Eq.(3.3.4), use is made of the equality
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<%> - <%) + <%) . (3_H>
Or 2l or )y OH) \ Or -
We also note that Egs.(3.3.4)-(3.3.6) give essentially the same function for

1+ G, that was calculated in Ref.32. Explicitly, we rewrite some important

definitions:
_ _ple dB _ P
wq = 2By dr and pu= 5B (3.3.7)
_ 2 fo :
P_L = 2mmB dp”d,u,u—, (338)
24
where

v = (1+2pB/mc® + pf /m?c?)'/2, (3.3.9)

The variation of Eq.(3.2.15) with respect to £} gives the second equation

T dr dr T r

! (dBeyy\ [ dP I (dBear\® .1
{—z—( i)( i>+z-B< = i) — i~ B(pmA — k20 B?)
™

l d
—l—i—Bdeeu}ir—iB pm/\—uj—'r &
T dr rdr 7 dr Wes
l2 B2 dBezi l AB E d ( A k2 Bz) (3310)
2 dr Pm Wei; T odr pm 7

ir (6B | dE, 1£8P¢
I\'B " dr B2 or )

- Combining Eq.(3.3.1) and Eq.(3.3.10), we obtain the radial eigenmode

equation:
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1d oo T d 2 (dB..;\ [dP,
rdr(pmA—akn‘B )5(1+Gl)d_’l’ 5 Er{ ( dr dr

+ 4 (Pm’\l(w/wci)(l + G1) = (pmA = UkﬁBz)(T/B)(dBezt/dr)>
dr Q ‘
3.3.11)
w 2 (dB..; 12 2 12 (
_pmAw—mQ—B(7> —a;(pmA—O'knB )(1+Gl) .
A2 2 p2\ 2 2 2 2
Ll BN W) Brama) 1N
Qvg PA w?, T dr Q
where , '
Q=1+G1+0kir? /12 — Xr2 /1242, (3.3.12)

Equation (3.3.11) is quite similar to the radial eigenmode.equation for the .

Z-pinch model®? if we note that (1/B)(dBezi/dr) plays the role of curvature.

- The cylindrical conﬁguration does not produce the G, G5 terms which exist'

m the Z-pinch model. This is due to the absence of curvature drlft We note
that these terms are proportlonal to the parallel temperature and arise because
of bendxng~stress¢s in the equilibrium. In the present model there are no such
bending stresses and th and G3 do not appear. Even in Ref.32, G, and G;
are of minor importance and can even be ignored if Py/P; < 1. Thus these
are not essential terms in the hot particle theory. However we keep perturbed
line-bending terms ignored in Ref.32, which dealt with the flute mode. In this
- way we shall be able to study the interaction between the precessional wave
and the whistler-like or shear Alfven waves in the core plasma.

Egs.(3.3.1) and (3.3.10) can also be derived from the linearized momentum
equation Eq.(3.2.10) by calculating eV : 6P , and e,V : 6P on the basis of the

“expression of 6P given by Eq.(3.2.6). It resulis in
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eoV : 6P = —B%G, (’;) - 5ﬁﬂ +k2B%(0 — 1), (3.3.13)

e,V : 6P = —&‘iBzGl V-€—— <£r dpl) +k2B* (0 —1)¢,  (3.3.14)
T

which may be combined as

V.6P=V.[6BLBG, — - VP.]+k2B(0 — 1)t. (3.3.15)

Substituting Eq.(3.3.13) into the 6 - component of Eq.(3.2.10) yvields the
first equation,Eq.(3.3.1). The r-component of Eq.(3.2.10), with substitution of
Eq.(3.3.14), are then combined with Eq.(3.3.1) to obtain the second equation,
Eq.(3.3.10).

It is also interesting to derive the perpendicular perturbed current form in
the cylindrical model. This is an alternate approach that leads to eigenmode
66

equation in current literature.

The linearized current in the zero-Larmor radius limit is given by

5 .
6JJ_ = —;—{—FB}D X [VP_L —f—f‘d(P” —P_L)] +b x H(5P|' — 5PJ_)
+ éb x [VP_]_ -+ K,(P” . PJ_) ] (3.3.16)

+b x [ V(S.P_L —+ 5&(_?3“ — PJ_) ]} +nq5\7d,

of which the last term on the r.h.s., ngé¥, , is the ion polarization current.

For cold ions it is associated with the inertial term given by Eq.(3.2.5). The
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remainder of the r.h.s. of Eq.(3.3.16) results from the linearization of CGL (
Chew-Goldberger-Low )8 current to express the perturbed current in terms of

the perturbed pressure.

IO

J. =(c¢/B)b x [VP, + k(P - P.)]. (3.3.17)

Use is made of Eqgs.(3.1.22),(3.3.2) and the definition of 6P, ,

6P, = 632&‘ + /dl‘,uB&f, ' (3.3.18)
0B
to obtain
6P, = -B*G,V .£—¢. VP, (3.3.19)

We note that b,« - term does not contribute (k = 0 in the cylindrical
model ); while éx contributes a bending term. The perturbed perpendicular

current is thus expressed in terms of € to be

I, =—<bx [V(BzG'l'V-f—l—é"-VP_L) + (if VB -V -.f)VPJ_ »
B B
(3.3.20)
+ kZB*(1 - a)fJ + [pm)\f + iipmA(f X b)J x b.
Wei
Substituting Eq.(‘3.3.20) into Ampere’s Law yields the same equations as
Egs. (3.3.1) and (3.3.10). The physics contained in the parallel perturbed

current is retained in the formalism through current conservation V.6J = 0 ,

although 6J does not appear explicitly.
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IV. Hot Electron Interchange Mode in Disk-like Configuration

The hot electron interchange mode has been studied for both WKB - type

modes®®2%%2 ( Jow and high frequency ) and for the layer - type of mode42 (low

frequency only in ring - like configuration )- This interchange mode is believed

important since it sets an upper limit on the ratio of hot to cold plasma density
for the stability. For sufficiently high density of hot electrons the MHD growth
rate is likely to approach the curvature frequency of hot electrons, which results
in coupling between positive energy MHD mode and negative precessional mode.

For the theory presented Below the hot electron interchange mode of layer
type is analyzed in a disk configuration with steep boundary layer (Fig.2) in
connection with interacting background interchange mode. Comparison is also
given with numerical sirnu]ations‘?vin the electrostatic limit [ cf. II 1.

In the theoretical analysis; use is made of the eigenmode equation in the
cylindrical model with embedded current, Eq.(3.3.11) with the following ap-
proximations:

(1) &y = 0 ( flute - type).

(2) For low background plasma density and steep boundary layer, the 4th
and 6th terms of Eq.(3.3.11) are negligible and we may take

Ar2

vy

(3) The exponential hot electron distribution is replaced by a § - function.

Then Eq.(3.3.1) reduces to an eigenmode equation
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‘ 2 ~ 1A 2
_d_pAT_ti¢_¢{nl_<dPh¢> @+ B +Kl£_<dPC_L>
dr dr

dr dr T by—(1-4 T
] @ (1= fe) . (4.2)
+ -pA [li ~ ke (a _'BCJ_‘ — C)] + —P)\} =0,
dr Wei (:)—"(l—ﬁcl) T .
where & = w/&,, with @, = (T,cl/eBr)k, the curvature frequency, K =

(1/B)(dBezt/dr), the effective curvature, { = (1/xB?)(dPy,/dr),¢ = ré.,and
Ber = (1/xB?)(dP.y /dr).
For a steep boundary layer we expand

¢:¢0+E¢1> €NZA/7"

with A the boundary layer width.

The lowest order equation is
—pAir— = 0. 4 - (4.3)

We only take the layer - type solution, a slowly varying solution within the
layer: ¢o = const.

The integration over 7 to r; ( Fig.2 ) vields the first order solution:

dpi(r) K (IN\*[[dPia\ & +Bcs dP,
dr ‘5<¥> K dr )a—(a—éu)%drﬂ%(r'”)
2

: E el ll £ Pqo— _K/‘:J—(l—BC_L“C)
N +<T>wci¢o-r2<r>(1 )¢0 G)—(l—ﬁcL) do-

The dispersion relation is obtained by integrating of Eq.(4.2) over the steep

(4.4)

boundary layer, substituting Eq.(4.4), and matching the solution in the homo-

* geneous plasma regions:

1 do(rp) _ U (4.5)
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where 7, is the boundary position in Fig.2. The dispersion relation is

-~ S::(l)f’- + ’)’12\41113“) _w(—; fcgin)‘bn -+ Yarp, =0 (4.6)

with
Varp = |Gxlwei(nn/ns), (4.7)
’)’}2\4HDC = (BL/¢ irerps (4.8)

and n;, the hot electron density, n; the ion density.
A similar dispersion relation is derived from the sharp boundary gravity

model in the electrostatic limit83

2 , 2
w 2 2 2 w
+YMHD — +YMHD. T YMHuD,—5—— =0 (4.9)
1+Sgn(ky)§~. W — Wy w2, — w2 ’

where ky — I/r, and vi;yp = Yirup, + (nE/ni)')’Isz’HDe? with n. the back-
ground electron density, ¥3/up, = lky|gi,Yirup, = Ikyl(me/mi)ge, with g; =
ln|v12h’j > 0, 7 the species and v;;, ; the thermal velocity ofj species. For later
convenience, we also introduce vi;yp, = lkyl(me/m;)gn, and have 42,4, =
Yirup, (nh/ni). We note that Eq.(4.9) is an alternative form of Eq.(2.10) [ by
transforming k, — —k,,vq — —vy4 and identifying w, with kyv, ].

When comparing Eq.(4.9) with Eq.(4.6), we find that the 8., term is neg-
ligible in the electrostatic gravity model; however, the finite ion temperature for
finite w,; is neglected in the cylindrical model since the w,; effect is merely taken
into account in the inertial term of the quadratic form, Eq.(3.2.15). Hence, the
dispersion relation,Eq.(4.6), is valid only for low ion temperature, T; — 0, if

the yprpp, term is important when w > w,;.
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Eq.(4.6) is a cubic equation in w. For low frequency limit we ignore the

cubic w® terms. The stability criterion is found to be

Db 5 4l9] mul—mg(r+@*)3(1‘3*—1) (4.10)

n; Wei ¢ ¢
If¢>1-f..,the diamagnetic well effect plays the role of stabilization and there
is no restriction on ny/n; for the interacting baékground interchange mode.
However, this mechanism does not exist in the electrostatic limit. Instead, the

stability criterion then becomes | cf.Eq.(2.13) ]

nh  4(|0k|/wei)(Pe/ Py)
n; (14 P./P)?

When the diamagnetic well vanishes, charge uncovering effects enter for stabi-

~lization and set a lower limit on ny/n;.

- The hot electron interchange mode is the solution of Eq. (4.6) with neg]ec—~

'tlon of 'yM gp, term. The stablhtv criterion is

(048 /Qm/m) = (1= Bea]” | mp wer
Pelp s By Bl )

Weq

For small 3, /¢ Eq.(4.12) can be reduced to either

C'l-

ﬁus1+%~—¢4<:.f><1+gf,>-

In the limit of B.; — 0 this criterion Jjust reduces to that from an electrostatic

—<1—i-2|~ l+,8c_l_ . |\/ 1+ E, ﬂul I) (4.13)

or

model®? | cf. Eq.(2.11) ].

(4.11)
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The solution for marginal stability of Eq.(4.6) is given by Fig.3 and Fig.4.
In Fig.3 we also give the marginal stability determined by Eq.(4.13) for com-
parison. In Fig.5 we show the results for fixed ny, /n; and |w,|/we;, including the
results given by Eq.(4.14), which is valid for small 3., /¢. Note that Eq.(4.6)
is more pessimistic than Eq.(4.13). Results only agree for B, < (.

When ( is below unity, the behavior of hot electron interchange mode
undergoes a change. Its turning point occurs at the place where the r.h.s. of
Eq.(4.14) equals zero. For example, when ny/n; is just a bit higher than the
critical value ( for |@|/we; = 3.0, this critical value is ny/n; = 1/3.0 ), the
marginal stability of hot electron interchange mode does not have a large ¢
limit ( curve hd in Fig.5 ).

Because the hot electron interchange mode sets an upper limit of ny/n,
while the low frequency mode sets up a lower limit of ny /n;, when ( < 1— BCJ_,
we expect there is a situation for which no stable region can exist. Using
Eqgs.(4.11) and (4.12) and assuming (1 —I—BC_L/C)(nh/ni) & 1—f,,, we find that

there is no stable region unless the following inequality holds:

1-— écJ_ 16BC.L 1-— BC..L _1
el = Bex [, 1@al . s B \°\ ¢ '
1+ Wei /BCJ_ + T {1 - Wei (1 _ﬂcl):, (1 + %)
(4.15)

Since smaller |@,|/w.; favors the existence of stable region, Eq.(4.15) can be

simplified to be

(1= Ber)(A+ Ber /C) > 168, (1= Bec1)/¢ - 1 (4.16)
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1 1 ] | i
0 1.0 20 30 4.0 50 60 70 .
Wil /Wi '

Fig.3 Marginal stability for hot electron interchange mode. Curve 1, 2, and

* 3 are numerical solutions of Eq.(4.6) with ¢ =5.0,4,, = 0.1, 0.3, and
0.5 respectively. Curvé 4 and 5 are approximate analytical results
from Eq.(4.13) for ¢ = 5.0,8., = 0.1, 0.5 respectively. Curve 6 is the

exact analytical result of Eq.(4.13) with 8., = 0.0. The stable regions

are below the corresponding curves.
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|.O T T T T 1l 1
0.7

T
[ O |

] 1 1 !
0] 1.O 20 30 40 50 60 7.0
lel/wci

Fig.4 Marginal stability for hot electron interchange mode. Curve 1, 2 and 3
are numerical solutions of Eq.(4.6) with ¢ = 1.0,4., = 0.1,0.3 and 0.5

respectively. The stable regions are below the corresponding curves.
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1.0 S

Fig.5 Marginal stability for hot electron interchange mode and low fre-
 quency mode. The solid lines are hot electron interchange branch (
curve hl, h2, h3, and h4 with |0, |/we = 3.0,n‘h/ni =0.1,0.2,0.3, and

0.335 respectively ); the dashed lines are low frequency mode branch

( 11,12,13, and I4 for the same respective parameters |@.|/we; =

| *3.0,7’Lh/ni = 0.1,0.2,0.3, and 0.335 ). The marginal stability curves
given by the approximate analytic expression as C — oo are shown by

the dash-dot straight lines on the right part of the plot ( 51,52, and

53 with @, /we; = 3.0,n4/n; = 0.1,0.2 and 0.3, respectively ). The

stability region corresponds to the area enclosed by the h;,l; curves.
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or

¢ > 1580 (1—Ber)/(14156.1) (4.17)

We illustrate two examples for small stable regions in Fig.6. Higher values
of Bc 1 decrease the stable region.

In Fig.5 we find a transition between low frequency branch to high fre-
quency branch or vice versa occuring at cusp points for various ny/n; with
|&4]/we; = 3.0. This phenomenon is indeed valid as the solution of our disper-
sion relation, Eq.(4.6), but we should be careful in evaluating its significance, as
our theory is subject to a restriction that bthe diamagnetic drift frequency of the
background plasma is less than curvature drift frequency of the hot particles.

Therefore, there exists a constraini on parameters:

I& E ﬂcJ_
Ey, n; ¢

& Apk (4.18)

where T is the background plasma temperature and E},, the hot particle energy. |
Thus, typically, kA, > 0.1 is the restriction that needs to be satisfied near the
cusp points.

Comparisons are given between the analytical theory for the electrostatic
gravity model,Eq.(4.9)%, and numerical simulation done by T.Kamimura®2.
The time evolution of the hot electron interchange instability is illustrated in
Fig.7. It shows that the growth rate is smaller for lower hot to cold density ratio.
In Fig.8 the theoretical curve of growth rate is compared with the simulation
points for the following parameters: g, = 6.25 x 107%,g, = 2.5 x 1072, g; ~
0, [@x|/we; = 3.927. We find that the agreement between the two is fairly good,

considering how simple the theoretical model is.
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1.0p T T T T T T .
o.7§
0.5r .

N

N ;4\‘

o~ A .

1 1

1 1
0 0 20 30 40 680 60 70
Wk I/UJC| ‘

Fig.6 Stable region bound by hot electron interchange mode ( upper bound
) and low frequency mode ( lower bound ) when ¢ <1 — ... Stable
regions are labeled by shaded area. Region lisfor { = 0.4,06., = 0.04;
Region 11 is for ¢ = 0.4, 3., = 0.01.
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Fig.7 Time evolution of numerical simulation in a sharp boundary gravity

model®? for |&,|/we: = 3.927.

Fig.7 (a) ny/n; = 0.5.
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Fig.8 The growth rate of hot electron interchange ( electrostatic ) mode in
the sharp boundary gravity model. The solid line on the upper half

- plane is the solution of Eq.(2.11), that is equivalent to eq.(4.6) with

Bei = 0,74mp. = 0. The dots with error bar are the results from

numerical simulation?
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V. Diamagnetic Limit for a Hot Particle Annulus

The dispersion relation,Eq.(4.6) reduces to a simple form in the limits of

ﬁcJ.,')’]zuHDc and w/wc,- — 0:

2
6@~ 1) = ~IMHD (5.1)

x
The quantity (1/N?) , with N2. = ©2/v34p , is known as the “ coupling
constant ”. It is a measure of the coupling strength between the background.
interchange mode, w ~ Y"YMHD, and the precessional mode w ~ &,. The de-
coupling condition is thus found to be N2 > 4. However, when this decoupling .
condition is satisﬁed, the precéésional mode still can be destabilized by positive
energy dissipation. Previous papers investigated the limit of large drift rever--
s>al, in’ which limit there is no negative-energy dissipation mechanism to coun-
terbalance pbsitive-energy, dissipation mechanisms. Hence, the negative-energy
 precessional mode is predicted to be unstable.26:37:3% Ag will be discussed be-
low, in systems with smaller pressure gradients, where drift reversal has not
been reached, strong negative-energy dissipation mechanism do exist to stabi-
lize the negative-energy precessional mode. It is thus im‘portant to investigate
the threshold for such an instability as a function of the reversal parameter,
¢ on the outer edge oi" the hot electron annulus. The study will be confined
to hot electrons in a thin annulus of thickness A, and long wavelength waves-
are analyzed where IA/ry < 1. We shall also assume P, /B? P;/B? < 1, and

o=1.
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V.1 Layer Precessional Mode in Ring-like Configuration

In the thin layer approximation the lowest order term of Eq.(3.3.11) is the
first term and we take the layer solution, ¢o = (r€,)o = const ( taken as 1
hereafter for convenience ). In weak coupling approximation (1/N? « 1), the
first order term of Eq.(3.3.11) is the third term. Thus, the first order layer

solution of Eq.(3.3.11) is

dpy [l w 1 K
dr <rwci 1 — k2v% /A - 1+G1>’ (51.1)

where ¢ = 7€, = 1+ ¢; with ¢; ~ O(IA/r) and k = (1/B)(dBey:/dr) is the
effective curvature.
Integrating Eq.(3.3.11) across the layer and substituting the approximate

solution for ¢, we find

[ ol (3) (-2 - )
; <d§)<l) (g - - ct)-4a)]
] R (5.1.2)
- [”"‘ ( >Q V3
+6y)

PmAMw/wei)(1 + k2v2\ kr ™t
e (- 52)75] =5

]

where r_ and r, are to the inside and outside of the layer, respectively, and
K = (1/B)(dBest/dr) is the effective curvature and ('(r) is the local reversal
parameter.

We also note that from the equilibrium condition, we can write

1dB 1 dBm . '
5T =% 22zt 1~ B — (). (5.1.3)
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. The r.his. of Eq.(5.1.2) is then matched with the core plasma at r_, where
Gl — ﬂc_L and

Q= Qe =—[Mvh — ki — (1+BeL)(U/r)?)/(1/r)?; (5.1.4)

and with the vacuum at r_., where G; — 0 and @ — 1. Then the r.hs. of

Eq.(5.1.2) becomes

o , 14061 !
S () Ry ey sy (>

.Ki_#)lf@_G)—’\-“r (5.1.5)
vi ") $dr r) v weil,
where we neglect the x term. The boundary conditions are
with |
Ay = Telm) 1 (5:1.7)

After the substitution of Egs.(5.1.6) and (5.1.7) into Eq.(5.1.5) we find

5=5 (l)p(;ﬁ 214+ Ay w? ) (5.1.8)
= Sgn(l)= [ k2v ) — ) 1.
g v2 \'mA Ty Sng(l)w/we;

where we have assumed that B < 1.

In the case when there are no hot electrons, the dispersion relation is
determined by Eq.(5.1.8) being set zero with an error of O(lA/r). Its solution
is given in Fig.9 for k2v% /w? < 1. The wave is a surface shear Alfven wave

with a dispersion relation w ~ £(1 + Ap)?kava.8 For k202 /w2 > 1 there is
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: ' - —" 148K VB

Fig.9 The dispersion curve of surface shear Alfven-whistler mode.
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Fig.10 Curves of functions % (b), ®(b), andY (b).
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a branch where w — —Sgn(l)w,; and a branch that is a surface whistler wave
with w = Sgn(l)(k2v3 /w.;). This branch crosses the cyclotron frequency when
k2v3 Jw? = (1/2)(1 + App). If |w/we;| < 1 one can show that the surface shear
Alfven wave is damped for a diffuse density profile.3 This damping is related
to the vanishing of A/v% — k2, which leads to resonant dissipation. However, for
|w/we;| > 1, which corresponds to the surface whistler wave, A/v% — k2 cannot
equal zero, and there is no resonant dissipation present. |
The first term on the Lh.s. of Eq.(5.1.2) is small, by the factor (IA/r),
compared to the r.h.s. In further calculations of 1 + G,, we take for, =
mpn(r)§(py)h(uB(r)/n)(27) ! with the normalization/omJ duBh(uB)/n) = 1.

Note that 7 is a parameter that measures the thermal energy. Then

sy w? d (na h(uB/n)
Kalw) =~ (le/qB>?r )(dB/dr)2 dr <§> .A wB w — wa (5.1.9)

- In the limit of P;u_/B2 < 1 we can assume (1/n,)(dny/dr) > (l/B)(dB/dr)

and for s1mphc1ty we take (dPyy/dr)/(dni/dr) independent of space. For
dB/dr we use Eq.(5.1.3). ‘We define global “ curvature ” drift frequency (i-e.,the - .
mean drift frequency in the external magnetic field including the-embedded cur-

rents) as

- lc dBe, Py len [ dBegs
= - b 5.1.10
s, qur( > )(nh) praed G VOB AR )

[ zh(z) 1, bk 1,
(8) =/0 d”(1+bm)1/2 - {(7{'/2)1/2/2, b>1,

with b = 2n/myc?. We write wq as

and:

<

wa = &n[Bu/w(b)n(l +bBp/n) %) (1 - 4. - ¢) (5.1.11)



Then we find for 1 + Gy,

‘where

For h(uB /n) we shall use an exponential distribution function,

h(pB/n) = (1/n)ezp[—pB(r)/n),
so that Eq.(5.1.14) becomes :

[ exp(—z)
He) = / o ()1 + b))

60

(5.1.12)

(5.1.13)

(5.1.14)

(5.1.15)

(5.1.16)

In further analysis we need to relate b and 1(b) to the mean kinetic energy 7.

If we define ®(b)-= T}, /myc?,we have

®(b) = /0°° dz[(1+ b:z:)l/?‘ — 1lezp(—z)

b/2, bk 1,
(mb)*/2/2, b> 1.

The equation of state of our relativistic component can be written as

}r(b — Py — b¢(b) R 1, bk 1,
T T 2‘1’(1)) 1/2, b> 1.
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The curve 1(b), ®(b), and Y(b) vs b are shown in Fig.10.
We simplify the layer dispersion by substituting our relation into Eq.(

5.1.2), and we find

L&) O Ea-cen)

B? w?
= (k203 (1+Ay) - :
v2 ( nva(l+ Apy) 1+Sgn(l)w/wci>
Then assuming
P
dd:.J: — Zh.'j' (7'0 — r_), r-<r<r_+4+ Ain)
dPy, - P
d:‘—L - Ahl (T— + Aoui + Ai'n. - T)’ (5118)
out

e+ Qi KT <o+ Ajpy + Ay =7y,
with the pressure gradients locally constant but with opposite sign in the inner
and outer edge of the hot electron layer,respectively, and dP.; /dr = 0 in the

- inner edge (see Fig.11), we obtain the final form of the dispersion relation:
. v .

1+al @+aoé ~1
ag <(1+a§)2—d;ag‘[1+a(—‘—z’r( )] >

1+a(
L1-B—¢ (-4 —¢F )
)]

¢ <1—' 1—Be— ()2 4+ (1 + 6 — ¢ —ol(—2
| (’ ﬂf)( Be—CP+a([1+8. ¢ (1—5c—<

2 2 0’32
= N R
V(50 A o)
(5.1.19)
where @i = Sgn(l)(wei/@x),¢ = —Pa/ApuB% > 0,04 = kyvy/Gr,a =

Bout/Diny Doy, Ay are the thickness of the outer and inner edge of the layer,
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1Bout’0] Doy
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Fig.11 Radial profile of pressure.

welb)/3,

W

2.\

Fig.12 The relativistic eflect on the real frequency w /@, at marginal stability

in the limit of large N2.
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respectively. We also note that &.; > 0 if the hot species are electrons.The I'(@)

is a function defined by Eq.(5.1.14) and has been expressed by Eq.(5.1.16) for

‘the exponential distribution functions.

V.2 Analysis

We now analyze Eq.(5.1.19) for marginal stability and growth rates. In the

- limit of N2 >> 1, one can show that the dispersion relation predicts instability

" when

1>6.>1-¢. (5.2.1)

- Since the r.his. of Eq.(5.1.19) is large in this limit, a mode can only arises

if one of the denominator of the Lh.s. of Eq.(5.1.19) nearly vanishes.The two .

denominators are:

Qun()= (1 +a)? —GaCll + af —oT(B/(1 +a))] ~ (5.22)

Qout(®) =(1 - B))(1 = B — C)'2
+ &1~ e — COT(@/(1 - B~ )]

(5.2.3)

with the imaginary parts, for & real, given by

Iinn ((.:J) =

{ wSgn(l) ?——L [2(@:n)]

&%al - ezp[—X (@in)], if Bin > 0,
0, ' ‘ if @i <0,

-1
' Oz

: Ionut(L;J) =




-1

X |2(@on . e
WSgn(l)la—%—)—] 02 - exp[— X (Dous)], if @our > 0,
T
0, if Doyy < 0,
where
_ @ _ w
i = ————, Doy = -
mn 1+a§7 out 1——,6c——C,
X bz /2
X(z) = z d 1+ bz/

Y(B)(1+b2)72" dz  H(B)(1+ bz )/,

o(5) = b*(0)%/2+ /PO [+ D)7
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We note that Sgn(l)ImQ;, (&) < 0, while Sgn()ImQ,y,; > 0. One can show

that ImQ;, (&) contributes to damping of cold plasma waves (or more generally,

positive energy waves), while ImQ,y:(&) contributes to the growth of positive

energy waves. On the other hand, for negative energy waves one finds ImQ;,, (&)

contributes o destabilization while Im@Q,,:(&) contributes a stabilizing term.

In order to balance the r.h.s. of Eq.(5.1.19),we look for a root & near L:J(),.

which satisfies

ReQout(io) = 0.

Then, defining 6w = & — &, we have

(*%)

0 . . .
Qayt(uﬁ) = 5&57R6Qout(u30) + 1ImQ ot (Wo + 60)

(5.2.4)

Now, substituting this relation into Eq.(5.1.19) solving for é&, and assuming
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we can set @ = Wy in the other terms, we find
0 ¢
bw| — out(Wo) | ————
w(awReQ t(wo)> (1=F.—¢)
¢

"R o)

b\ 1-7 (5.2.5)
[N2<931(1+A|z|)— =2 >+ .

1+ LTJ/LDC.;
1 (14 aC)*[ReQin (o) — z’Iinn(&:d)]J ‘1.
ag aClQin(‘QO)P

+

Now if N? is large, and &y is primarily real, so that we need only retain the

leading imaginary contribution of Eq.(5.2.5), we find

i (%RCQ”‘(%)HTE%TCF): A+iB, (5.2.6)
with |
A= ETT R a e T O 627)
_ (i + a¢)PImQin
- aCiQizlzN“[Qi(l +HAp) = @o/(1+do/des)? (5.2.8)
- mlonut(@o + dw).

Since Sgn(1)ImQ@;, < 0 if &g is real and positive, and ImQ,,; = 0 H¢>1- 5,;,

instability (which requires @,Im(6&) > 0)requires

<8%Rec2m(ao)>(1-ﬁ”c-<)-3>o for ¢(>1-f.  (529)

We can explicitly show that this condition is achieved when 1- 8. —

¢l € Tor ¢ > 1. We shall also assume f?c < 1 in this discussion so that we
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need not discuss the MHD instabilities associated with the Lee-VanDam,Nelson

threshold.?3?* We first construct OReQoy:(Wo)/0% and find

0 Rerut( ) C(l - ﬂ-c - C) <1 - Doutp‘/; dm‘;mi(—:z;;)

%
5.2.10
Xezp(—z) ( )

C 0 (wout - X)z
Thus using ReQ,,1(&o) = 0, we find

3Rerut(“"JO) = —(—1“_ﬁ°—‘0(1 —B.) + (P /Ooo dm(_{‘_em

6“" Woyt Wout — X)2

2(1-—,@C C me:cp ) o
REEI / EEET ifo>1.

For ( > 1, we have the appromma.tlon solution from Eq.(5.2.4) and Eq.(5.2.2),

wo = (1 _éC) + O(I/C)a

and therefore

(aaa Rerui)(l - BC - C)_3 = C—l > 0. (5211)

Thus instability is'guaranteed for ¢ > 1 if 8. < 1.

For |1-f.—¢| « 1,we can solve the dispersion relation by taking @ou; > X.

Then by using

1 1/ x x? x®
= = 1+ +_2 +_3 +"'7

‘Daut - X Wout

the solution to ReQoy:(&o) = 0 is found to be

LDOZ_C_)/°"dmm2emp(—m)Jr (1-B.-¢ C/ _zeap(—z)
. 0

$2(b 1+ bz Worp3(b 1 + bz) (1 + bz)3/2 (5.2.12)
[(1 - :Bc
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To the lowest order in (1 — G, — ()

- [2 bk
wo 4¢/m for b>> 1.

A plot of &g as a function of b when ¢ = 1 — 8. is shown in Fig.12. Substituting
Eq.(5.2.12) into Eq.(5.2.10) then gives

8 ) = s 22(b .
(3 Re@uuslén) J(1-Be=0)* = — 22061 5 (5213
oo / zezp(—z)
0 1+ bz
which guarantees instability if ¢ >1- EC, so that Im@Q,.: = 0.
We find éw from Eq.(5.2.6)

o 2
86 = [2¢02(b)i-1 | z*ezp(—z)
o=y ) [ aet e

1
X{szi(l + Apy) = &g/(1 + ©o/des))
i (1+a¢)*ImQ;y
aCllezN“ [Q4(1+ Apy) — &o/(1 + @o /Wei )]
CIonu,(wo +5w)}
(1-B.—¢p [

(5.2.14)

Thiis f¢<1- ,@c,Sgn( )Ionut > 0 and stabilizing. However, we see that
lonut 1s exponentially small for small |1 — ,Bc ¢|, and thus, the ImQ;,, term
will be larger, and destabilizing for 1 — G, — ¢ sufficiently small. For ( >
,Bc,lrnQout =0, and Eq.(5.2. 14) is always unstable.
‘The above analytic analysis indicates that relativistic dynamics do not
alter the stability conclusion in any essential manner. The numerical work we

have performed has primarily been for the nonrelatijvistic case (b = 0) since it

is easier and faster to compute. In this case we neglect the relativistic nature -
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of the hot electrons, but assume that Newtonian dynamics can be used for
electrons at 0.5 Mev. When b = 0 is chosen, the other parameters are chosen
self-consistently with a Newtonian dynamics model. As a check our assertion,
we will also show some numerical results for b = 3.5 (7,=0.5 Mev). In Fig.13,
the marginal nonrelativistic stability boundary of ¢ vs. lNz for a standard
parameters set (,éc =0,04 = 0,a = 1,0, = 1.3) is shown by the si)lid curve.
(The sensitivity to 14 is shown in Fig.17.) The dashed curve is the prediction
of marginal stability obtained by our analytic method, which shows excellent
agreement for N2 > 2. Recall that the analytic results showed the relativistic
and nonrelativistic merginal plots in cilose agreement. In F ig.14, we plot growth
rates as a function of N2 for the standard parameters set and with { = 1.1 and
1.5 for b = 0. We observe the rapid fall-off as N~%. The isolated points are
the results froni the b = 3.5 relativistic calculation which show nearly the same
dependence as the nonrelativistic case. In Fig.15, we plot Athe real frequency
as a function N2 for the same parameters. Observe that the real frequency
sy ~1— 2,Which is characteristic of the precessional mode. In Fig.16, we
examine the effect of skewness where we compare the growth rate at { = 1.1
for a = 1 and a = 2. We see that there is little sensitivity to the parameter
a. In Fig.17, we vary 24 for ( = 1.1 and 1.5 to show how resonance with
the surface wistler wave can enhance the growth rate. We choose N? = 12.6
and w;; = 1.3. In Fig.18, we plot the dependence of the growth rate on { for
N2 =12.6,0. = 1.3,a =1 and fB. = 0.1.We see a maximum in the growth rate

at moderate (. In Figs.16-18, b = 0 is chosen.
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g ——————
T ——
—
—

Fig.13 The marginal stability boundaries. The solid curve represents the

numerical result and dashed curve is the analytical result ( Bc =

0,24 = 0,a = 1,0 = 1.3).
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Fig.14 The growth rate versus NZat 3. =0,04 =0,a = 1,0, = 1.3. The
solid curve ( for ¢ = 1.5 ) and dashed curve ( for ( = 1.1 ) are the
numerical results in the nonrelativistic case. Dots ( for ( = 1.5 ) and

triangles ( for ¢ = 1.1 ) are the numerical results in the relativistic

case (b=3.5).
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Fig.15 The real frequency versus N? for mthe same parameters as Fig.14.

Y/Jx
A

03r

OC.l1F

Fig.16 The effect of skewness on growth rateat ¢ = 1.1,3. = 0,4 = 0,d¢; =
1.3. The solid curve represents a = 1 and the dashed curve represents

a=2.
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1.0

QZ(1+A,)
Fig.17 = The growth rate due to interaction with surface shear Alfven-whistler
wave at N2 = 12.6,d¢; = 1.3,8. = 0,a = 1. The solid curve represents

¢ = 1.5 and the dashed curve represents ¢ = 1.1.

v/,
x 1072 W‘

8-

6..

4.-

2.-
- | i i 1 ‘ 1 1 —> ;
4 8 12 16 20 24

: Fig.18 The ¢ dependence of the growth rate at N2 = 12.6,0,; = 1.3,a =
1,8.=0.1,04 =0.
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In these calculations we can observe that the threshold for instability is
associated with the disappearance of negative energy dissipation source, which
then allows for the destabilization of the negative energy precessional wave
due to the remaining positive energy dissipation source that arises from the
particle resonances on the inner edge of the layer. To avoid the destabilization
it is necessary to have a negative energy dissipation mechanism which our model
has discarded. One possible mechanism comes from considering a smooth radial
pressure profile rather than the tent-like profile we considered in the text. Then, -
even in large ( cases, there is always sources for some negative dissipation.- -

These arise because on the outer side of the layer the pressure gradient is small

near the peak and at the wings of the radial pressure profile. In these regions: -

hot particles can still resonate and give a negative dissipation contribution.

Accordingly, we have solved Eq.(5.1.17) for a pressure profile of the form

Pr, =Py, exp(—(r — Tp)2/Ac2)]

"The bresu']ts for how the growth rate changes as a function of (o((o =
,_30;/2/~:A0, Bo. = 8mFy./B?), for N2 = 10 with the assumption that the
curvature is nearly constént over the layer thickness, is shown in Fig.19. Two
profiles ;re compared, the tent-like pressure profile used previously and the
smooth pressure profile written above. The local value of ¢!(r) becomes ('(r) =
2¢oy ezp(—y?), with y = (r —r,)/ Ay, for the smooth pressure profile. Observe
that the growth rate is somewhat lower than that of the tent-like profile, and

the threshold for (o somewhat higher. However, even for the marginal condition
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o
T

0 2 4 6 8 10

Fig.19 Growth rate versus ( at N? = 10, = 1.3,a = 1,8, = 0,§24 = 0.

0

The solid curve represents the result from a tent-like pressure priofile.
The dashed curve represents the result from a Gaussian-type profile.

Both are nonrelativistic cases.

Fig.20

Schematic diagram of broadened pressure profile in (a). The solid
curve in (b) represents the vacuum field. The dashed curve in (b)
represents the magnetic field due to a plasma with substantial st}ored

energy but without drift reversal.
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Co ~ 1.2, drift reversal is not quite achieved at the maximum of ((at y = 1/4/2).
Hence, the conclusion of instability arises as drift reversal is reached still re-

mains for the smooth pressure profile case.

V.3 Discussion

We have demonstrated that for the model studied here, the approximate

threshold of instability of a hot plasma ring arises when the pressure gradient -

is large enough to reverse the gradient of the magnetic field in the hot plasma

“region. For our model this instability is intrinsic to a hot plasma annulus.

~ The reason for this is that there is a negative energy wave that is excited
ata freqﬁenc;y comparable to the mean curvature drift frequency. The mode is

- damped by negative dissipation and amplified by positive dissipation. However,

the dominant mechanism for negative dissipation disappears with achievement

- of drift reversal, as the particles on the outer edge of the annulus.can no longer

resonate with the precessional mode frequency (which is approximately at the
curvature drift frbequency), as the grad-B drift of these particles is now of op-
posite sign to the curvature drift frequency. The negative energy wave is then
destabilized by the positive energy dissipation, which arises from the resonance
of particles, in the inner edge of the annulus, whose grad-B drift frequency
matches the wave frequency. Since grad-B and curvature are of the same sign
“in the inner edge of the layer, such a resonance can always be found for a

distribution function that is continuous in energy. The sign of the dissipation




76

is proportional to the radial pressure gradient, which on the inner edge is in-
creasing (opposite in sign to the pressure gradient on the outer gdge) and leads
to positive dissipation. Thus,when drift reversal is achieved on the outer edge,
conditions are established for the dissipative destabilization of a neéative energy
wave which oscillates at the curvature drift frequency (precessional frequency).

A crucial question is what are the consequences of this instability. One
pessimistic speculation is that a hot electron layer is broadened radially to
produce a profile close to a marginally stable profile. Then when a large amount
of stored energy is present, ther radial pressure and magnetic field profiles would
resemble the profile shown in Fig.20. Then, even though there can be a large
‘amount of stored energy present, grad-B drift reversal is not achieved. One
may also note that reversal factor is proportional ﬂo the stored energy divided
by the square of the thickness. Therefore, the thickness of a layer, which is
difficult to measure, is a crucial element in the experimental determination of-
whiether drift reversal is attained.

The question of whether any experimént has actually achieved drift rever-
sal 1s crucially important to the validify of our speculation. If the experimental
claims of strong grad-B reversal being achieved are correct,la major reassess-
ment of our theory is needed to find a crucial aspect that is missing. Our theory
may be deficient in being too simplified, and a mor-e realistic axial geometry

model may alter our conclusions.




7

VI. Trapped Particle Effects on Diamagnetic Limit

The previous analysis in cylindrical model with embedded current shows
that instability of the negative energy precessional mode arises just below the
formation of a magnetic well by hot electron ring. However, in a mirror con-
figuration the entire disappearance of the negative energy dissipation in the
outer edge is governed by the drift reversal condition for the hot particles with
largest pitch angle. Therefore, it is possible for formation a magnetic well near
the mirror midplane because of this mechanism.

The flute-type global dispersion relation is constructed by a quadratic form
WJth the assumption of a radial trial function [ cf.VI.1] and a trapped particle
distribution function | cf. V1.2 ]. The numerical solution [ cf. VI.3 ] of the
dispefsion relation shows that the> drift reversal pé.rameter at the midplane
Co ~ 1.5 can be reached for typical ‘pararﬁeters‘in experiments, but that the
mean bounce averaged drift reversal parameter is not reversed.

The ﬁotation used in the following is the same as that inr III_,I for a simple

mirror configuration (Fig.21). The equilibrium equation is
VJ_P_L +BV_LB= (7':‘\:',B2

with

o=1+(P,—P )/B?

and

2nB [ dudE
=y / £ B,
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Fig.21 The single mirror cell configuration. The dark area denotes hot elec-

tron ring.
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2B dudE
P=Y E2 mod fo

’I'n2 ]v"l
The summation is over all species, as well as positive and negative parallel

velocities.
VL1 Trial Function Method. Limiting Cases.

The eigenmode equations are derived from the following quadratic varia-

tional form”® with finite ion gyrofrequency included in the inertial term:

. dypdsdf | ww )
W:/ ¢B {—px\[ET-E+E(E"><€)-b]+0Q1'Qi+TQEQL

- - 0 —-w* . -
—§~_K<§§-VPL+§-VP|,>——/dI“(E%)w u KTK} =0,

: W — Wy
' (6.1.1)
where , A
1 1 . ] '
§= E[olbkx.VG—‘ Z,—l(%—xlal)bwij, (612)
e =82 (2 g O om0, (6.1.5)
X161 = 54\ B gswasa1 T B -1
Qr=9% vo_ rzB%VB, (6.1.6)
O0s Os
Bo )
K= pQu+ € mlp=" +mad), (6.1.7)
d
ol
= v"
-4 = —'73—- (6.1-8)




80

. The eigenmode equations in the fluid and vacuum part obtained from sta-

tionary variation with respect to Q]t and af are

2
[lz_l (ATZB + __Q_,,.2B 6 )]QL

B 0 Os
va 0% (6.1.9)
4 )\TZB+ 0 233 c o Aw lo 0
-7 - —_—— =
vi Os Os X1 vﬁwci 1
and
2 A n 0 1 0 I Aw o
vir2B Os 2B 0s %1 sziwci !
Aw /\rzB 0 ,, 0 Qr . '
- {lvAwm +X2[ A ar BE]}(F - Xlal) =0
' (6.1.11)
where
10 10 ko 10 '
= ___ — —_—— 1,11
X201 = B&,bB 173 Bsngal r'rBal B 6¢BC¥1, (6 )
In a long thin approximation and in the assumption
: M2 9 ,_ 0
2 —r2B— 6.1.12
>>A+asr ‘85 ()
Eq.(6.1.8) gives .
1/Xr?B 8 0 Bal Aw |
=== —_—. 1.13
QL l2< 'U,24 + = aS B ) 5'¢ lviwcial (6 ; )

Substituting Eq.(6.1.13) into Eq.(6.1.10) in the assumption that for surface

wave in cold plasma
2

s
- ‘ .1.14
F-— <1 (6.1.14)

with

F

1 /A*B 8 ,_ 0 Aw A
— — = - 6.1.15
B< + Bs B@s) s viwe’ ( )
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we obtain an eigenmode equation for cold plasma waves

i(z\rzB 0 .B 0 \ By 12 (B 8 zBﬁ
EY 5 8% ~ riB? t o Chs

Eq.(6.1.16) has a solution with appropriate boundary conditions

ar = £(s) x {(¢/¢ JH/E for (¥ < 9.)
' Ay for (¢, > ¥ > 1),

where Ay is defined by Eq.(3.1.7),with r replaced by 1. For the thin layer we

>a1 =0 (6.1.16)

approximate a; ~ f(s) within the layer as the lowest order of the layer mode.

The essential assumption in the layer is the use of a trial function

_1_5PhJ_
B 8y

QL(¥,8) ~ C(4)

This trial function rather than Q(%,s) ~ C(+)(0B/0%) guarantees the valid« .-

low frequency limit ( see the discussion at the end of this section ). Then the

‘quadratic form after the above assumptions is writlen as

SR dipds 1 6P\ ,, | a@Ph_L 61’”) )
7 ‘/,ay;, B { (rB 59 )C“” rB<r B T )

[ s R ew - (50T em)] )

1 w?

Weq

(6.1.18)

where

(A)= 4

In the derivation of Eq.(6.1.18) we neglect those terms in the layer which have

the similar form in the core plasma ( fluid + vac. part ). Also we note that the

contribution from f;-term in the layer is small and neglected.

(6.1.17)-

i 1 /J:luid-i-v;lc. ds{_ 2 (1 + Sgn(l) od >f2(8) s AM)<%>’2} -0
v4 n(l)—
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The variation of the quadratic form Eq.(6.1.18) with respect to C(%) yields

an equation for C(%). Its solution gives

ds Ofo\w—w 1 OP Kk , oB |
L 15 dl‘( P)omar( o) (5T i)
8fo\w—w 1 6P, 1 /6P \2%
-/E[/dr<aﬂ>w—wd <TB 59 > B< 54 >]

(6.1.19)

In a tent-like pressure profile [ Fig.11 ] , C(y) becomes piecewise con-
stant on the inner and outer edges respectively. Substituting the expression
for C(%), Eq.(6.1.19) into the quadratic form Eq.(6.1.18) and assuming f(s)

| approximately constant in the layer, we obtain the global dispersion relation

(2 [dbi]esan e
< ~ r Oy rB oY |

= ]l|/ds{ ( w? w) —kﬁ(1+A|u)},

14 Sgn(l)

7=

where .
ds - 8f0 * 1 EPM 1 éﬁhl 2
o= [ [/“”( >w—wd (5ot) ~m () | o
ds dfo w* 1 6P, k , oB o
/ /dP( )w s <7‘B B > <E(,L&—T— +mv”)>, (6.1.22)

H; = /ds [/dl‘(af°>w_wd<f§(g?+mvﬁ)>2+r<§>2}, (6.1.23)
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and kﬁ is a small quantity, measuring (8f/ 0s)? in the whole bumpy cylinder

region. Here, ¢ = %+ stands for outer and inner layer respectively.

In the derivation of the global dispersion relation, Eq.(3.1.20), as well as

the calculation of trapped particles we find that the contribution from parallel

motion is not important for small mirror ratio:. For the present purpose, all

parallel contributions will be neglected.

In cylindrical limit the quantities become constant along the field lines.

Assuming v is small we find that

B \7B 0Oy

‘ "dipds [ 1 (9Ph_L KO\ ~;
A = ‘[ B <7g 5 )\ 7 ) O
dpds [or\ > =i
]Z{l - ‘/1 B (;) (T—Gl),
S 0fo\w—w" ,
| Gl:/idr<(9]1'>w—wd#’

A 2
Di — _/d’ﬁdS(iaP“) (r+ G,

where

and

(6.1.24)

(6.1.25)

(6.1.26)

(6.1.27)

(6.1.28)

Substituting Eqgs.(6.1.24)-(6.1.26) into Eq.(6.1.20) yields the dispersion re- -

lation in cylindrical limit, that is the same as Eq.(5.1.19), obtained in the

cylindrical model with embedded current. This agreement indicates that the

radial dependence of the trial function is reasonable.
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It is also important to check low frequency limit of the global dispersion
relation,Eq.(6.1.20). With the assumption that w — 0 in the layer and the

contributions from §, and parallel motion are ignorable, we find
o [ [ ()5 () (5] s
o [SEGRNE e
- [52] fan(%)5

- —ph=, ‘ 6.1.32
Wwq q#&b ( )

with

and

— - — = —. 1.33
B Oy rT Oy (6.1.33)
Using Eqgs.(6.1.32),(6.1.33), we find, afier some algebra
A? dpds ox 6B
= _H,=-— .1.34
D; A ‘/1 B r oy (6.1.:34)

When the driving forces to the interchange mode, such as é/ &y and B,
are dropped, we arrived merely at the surface Alfven wave:

w2

v4 <] + Sgn(l)§>

We stress that the exact Eq.(6.1.35) can not be obtained if the trial func-

— kﬁ(l -+ A|l|) = (. (6.1.35)

tion for @7 is chosen to be C(¢)(8B/6vy): This choice leads to unphysical

instabilities for the surface Alfven wave.

2 <:—:>2+T(%“>2], (6..1.‘31)
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VI.2 Calculation of Trapped Particles

\

A trapped particle distribution function of the following form is chosen for |

the calculation of macroscopic quantities of hot electrons:

fO(H,,lL) = a- V/J'BC—H'emp(—H/T)a (621)

where @ is the nomalization and B, is the maximum magnetic field. The mag-

netic field in the hot electron region is approximated by

B(s) = Bo(1 + s%/L2). (6.2.2)
Then we obtain ,
By, B.-B
Tlh(s) = Tlho FO . m, (623)
By B.—B /3 B
(s) = Do SO T 6.2.4
Pri(s)= Py B B. B <4+4Bc>, (6.2.4)
| B.— B
_ c =D 6.2.5
Py(s) 2Ph¢(8)<3Bc +B>’ ( )

with

Mo E’nh(O), PJ_O EPhJ_(O).

The energy integral shows that T}, = 2T, where T, is the hot electron temper-

ature.
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: ' 1
In the long thin approximation, assuming that the flux ¥ ~ §Br2 and the

urvat O h
a ~ —
c ure £ ~ ==, we have
' 1 2_32
£ _ 3 (8B\' 188 _ 1 % (626)
rB Os 2B 8s>  BoL? . s2\* o
(+5)
Then,
%\/H uB erv”
—mo?
rB I ds
vH - pbB (6.2.7)
3/29
_ 4B 5 (#PBo
-z () ]
and
‘ OB
0B\ ] H—uB oy
o/ j{ ds : .
vH - pB ' | (6.2.8)

_ OK BO H—/LBO =
- <T)0{1—C0[1—2(BC—B0) ,LLBO ]—:BC}a

- where hereafter quant.ities' with a nought subscript indicate the value at the
midplane.

For (B. — Bo)/Bo <« 1, which implies small (H — pBo)/uBo, we ig-
nore the paralle] motion contribution to @, and assume that (ok/r7) and

(1/7B)(8P../ &) are slowly varying functions along the magnetic field line.
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Then the quantities contained in the dispersion relation Eq.(6.1.20), D;', A;, H;

are written as

D; = /d‘bds{(";) (1-4.)2Ky—2 (T >(1—ﬂc)K1+K2}, (6.2.9)

A; = /idléds{(’r—”)z(l ~ B.)Ko — (-‘?)Kl} (6.2.10)

_ [dids (ok 2
H, _/,- 2 (7) (1+ Ko), (6.2.11)
where
af(] * 2 .
_ 2.12)-
Ko /dl‘<8H)w_de, (6.2.12)
2.1
K, /dPBHw—wd<8y> | | (6.2.13)
' 8o OB 1 (6P \?
K. /dr<aﬂ>w_—wd<a7, > iy (——w ) ; | (6.2.14)7
with | | | |
_ le (oK ; gg By . H —ﬁBo
‘“d’\';/i<r><1‘ﬁc Co + 5 B _ B, B, ) (6.2.15)'

Making use of standard results

9fo __l_éph.L |
/dl“(c,w) 5k, (6.2.16)

Ofo . 08B\ _ 8 (ns |
/dI‘<6¢ ﬁ%)_36¢(B>, (6.2.17)




88

we may write

“ w(%) +l_c(%)
/gf& :/iF/dP oy u, (6.2.18)
PR Ofo | 050 OB
[EKI*[f{_E 54 +“’/dr, - u}, (6.2.19)

dibds dipds oK - 18P, w 8 [ny
[5m= [ {-(5)o -2 % ‘(l_c>35a<§>
0fs | 0fo 0B

2 T T Hag AT
RN i 13}

L)y
q

In the integration of the phase space (H, u) we introduce a new variable

~ (6.2.20)

by 7 = [(H — uB)/u(B. — B))*/?, and approximate the exponential argument

in the distribution function by
=0 e e TF (6.2.21)

This allows us to perform the 7-integration analytically. Then we obtain

oh , 06108
/dI‘ ¢ OH & _ 4<6nh0> ! [1—To(3, )], (6.2.22)

w— @y O /) @rolo
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3f0 afoaB
/ dra‘” “or W 4(3""")-1 (3)[1—11(.&,40)], (6.2.23)

0y ) oo \ Bo

o (8fo\  lc/8f, |
/drw(ﬁ> +%<%> #2:4(ag£°)wico< ! )[2 IWNE 40)] (6.2.24)

= (2)(22) (6.2.25)

W — Wy

where

and

w_m(l_ﬁc 40/2)
\' o—z(1-8, - Co+§o$ /2)’

I'n(s,¢o) = / dza™ - exp(- (6.2.26)
0

- with § = s/s. and B(s.) = B.. In the Eqs.(6.2.22),(6.2.23) we have assumed
w L w",Bh < 1,B. — By < By. |

The integrand of.Eq.(6.2.26) reveals the stabilizing effect of trapped par-
ticle. In the cylindrical modelv we rgcall» that the negative energy dissipation
originates from the Landau damping in outer edge, where (; is positive. There-
fore, once 1 — . — (o < 0, the Landau damping no longer exists, so that the
nega<ti\'e’.énergy dissipation mechanism vanishes. In lieu of 1 — BC — (o, we find
a line-dependent quantity 1 — B. — Co+ (o 2/2 whlch determines the existence
of Landau damping. In the midplane, where § = 0, the critical condition for
the vanish éf Landau damping is unaltered. However, at the farthest end of

the hot layer, where § = 1, the critical condition becomes 1 - B - ¢o/2 > 0.
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This implies that even the negativé energy dissipation mechanism vanishes in
the midplane when (o > 1, the same mechanism still persists at the places off
the midplane. Averagely, we expect the critical (o lying between 1 — 3. and
2(1— fe). | |

In the integrals containing K;(j7 = 0,1,2) the integration over field line
(8) can further be performed analytically, so that D;, A;, H; can be calculated
explicitly.

Defining the line average function T',,(¢o) = (T'n(4, (o)),

f‘n(CO) = /°° dzz"e™" /d) il G e C0/2)$Arcsin / Coz/2
0 \ \ w - (

COm/2 1 _Bc - Co)m’
| (6.2.27)

we obtain the final form of the dispersion relation, Eq.(6.1.20)

1 - 4= 2Fa(-a0) - 22— 20(1 = F(~aQ))F
o —%a—c-i— 4 —Ty(—al) + %Cd; + 20%(1 — Tg(—a()) = 4(1 — Ty (—al))

+2Ty(—al) —4 + —2394} + —2— : {

(1= o) = 285(Q)) + 5¢ ~ 20(1 — Ty ()

(1= Be)l — 460 = Ta(O)) + (1= B)(4 ~ 2T5(0)) — 2 +22(1 = To(¢)

~2

+21‘“2(C)—4—§C—Bc} :N2<f”)[91(1+1\,”)— ud = |» (6.2.28)
" 1+ Sgn(l)—

Weq
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where © = w/&y = 2w/ ), Wi = wei/@po,a = Dout/Din, Vg = kva/J),;o;
N? = &2 /73 ups Le- the length of the field line, Lg- the length of the hot

electron region [cf.Fig.21]. More precisely, it is

ds
L. _ Nho Enc
LH Tico is'nh

B
V1.3 Numerical Results and Discussion.

The dispersion relation, Eq.(6.2.28), is numerically solved for the preces-
sional mode which is chacterized by the real frequency around the curvature-
frequency L:J,;. For simplicify, we assume a = 1,3 = 0,0% = 0, = 1.
The results are given in Fig.22 through Fig.25 in contrast with those in the
cylindrical modél'( Fig.13-15,18)‘. For con\}enience we introduce the parameter
Nesz = N?(L./Ly), to indicate an incomplete coupling between cold plasma
and hot electron. This indicates that the coupling constant is less than that we
have considered in the cylindrical model by a factor of LC/L;}. It introduces a
stabilizing effect. Fig.22 illustrates the marginal stability. For the moderate N2
(or Nesz

mode] ( (o ~ 1.5 ) so that a shallow magnetic well can be formed around the

) the stability threshold is almost the twice of that for the cylindrical

midplane without destabilizing the precessional mode. The resemblence of the
real frequency behavior between the cylindrical model and axially dependent
geometry shown in Fig.23 indicates that they belong to the same kind of mode.

In Fig.24 we have shown the mode growth rate versus ¢ for different fof.
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Fig.22 ‘Marginal stability in cylindrical model ( curve a ) and in a single

mirror cell ( curve b ). Stable region are below the corresponding

curves.
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Fig.23 Real frequency of precessional mode in cylindrical model ( curve a

with N? = 10.0 ) and in single mirror cell ( curve b, ¢, d with fof

= 50.0, 20.0 and 10.0 respectively ).
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Fig.24 Growth rate of precessional mode in cylindrical model ( curve a with *

N? = 10.0 ) and in single mirror cell ( curve b,¢,d with NZey =

10.0,20.0 and 50.0 respectively ).
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Fig.25 Growth rate of precessional mode for same parameters as Fig.24.
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Compared to the growth rate in the cylindrical model it is almost suppressed
one order of magnitude for the same N2 ( N, ff 7 )- Therefore, we can not rule out
the possibility that a ra.thez/‘ deep magnetic well can be formed if N ezf 5 is large
enough. The growth rate versus ¢ in a larger scale is shown in Fig.25. Though

the growth rate is depressed in large ¢ limit, the mode is always unstable.

Now we discuss whether experiments exist that violate our prediction for

the diamagnetic limit.

In bumpy tori as EBT-S8 and NBT(Fig.26)%¢ the drift reversal parame-
ter ¢ is now thought to be considerably less than unity so that the instability
described here should not arise. In bumpy tori the radial component of the
toroidal drift may make it difficult to achieve thin layers. Thin layer are more
likely to be achieved in simple mirror machines where there is no radial com-

ponent to the grad-B and curvature drifts.

In fact, in simple mirrors very high stored energy has begn obtained, and
analysis of the data in the SM experiment 87:®8 indicates that mid-plane ¢ val-
ues of order 6 has been obtained with no detrimental containment or obvious
instabilities at the precessional drift frequency being observed. The determi-
nation of such a large (-value is based on a reconstruction of the hot particle
diamagnetic currents that are needed to match Hall probe measuremenfs of
the magnetic field. The analysis performed in Refs.87 and 88 concludes that
it is highly improbable that radially broad-pressure profiles could produce the
magnetic field measured by Hall probes. Nonetheless, one must be cautious

with the complete acceptance of such a conclusion as it is well known that a
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given magnetic field configuration in a fixed region of space can be produced
by a continuufn of different current configurations. For example, a separabil-
ity assumption in the axial and radial dependences of the presgure profile is
made. The actual experiment may not have this separability. As a result, a
fit close to the true experimental conditions may have been filtered away. The
assumption on separability is more likely to affect fits on broader profiles than
narrower profiles as more structure is possible in smooth broad profiles than
in smooth narrow profiles. It appears that auxiliary and/or alternative mea-
surements are needed to determine whether drift-reversal configurations have

indeed been produced.

A direct measurerﬁent, using the Zeeman principle, of the magnetic field
structure has been developed and employed in hot-electron experiments in
STM.®® To date, the observed radia.l‘ pressure profiles have been too broad
and the stored energy too low to produce grad-B reversal (Fig.27). There are
several technical factors that makes plasma conditions in STM experiment dif-
fer_ent than in the SM experiment. Thus, it is not clear whether the failure to
obtain grad-B reversal in experiments that can measure grad-B directly, was
due to a technical failure to obtain the optimal experimental conditions such
as were achieved in the SM experiment (or even in ELMO ) or is due to an

intrinsic stability limitation.

To our best knowledge, the only unmentioned set of experiments that
claims achieving of the drift reversal is that carried out in Constance B,?°

where a hollow hot electron plasma is found stable. Since the baseball config-
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uration of the Contance B is an intrinsical three dimensional one and the axial
length comparable to radial length, it might be too simplified to account for
the experimental results by using a two dimensional axisymmetric model with
the long thin approximation. The motivation behind searching for the correla-
tion between our axial dependence calculation and the results in Constance B
1s merely to show whether or not the prediction of the diamagnetic limit can
be severely altered in any circumstance where the negative energy dissipation

vanishes ( at least partly ), while the positive energy dissipation presents.

It is observed in the Contance B that a local maximum G, ~ 0.3 - 0.45

has been achieved with a typical hot electron density thickness A;, ~ 6cm and-
- k7' > 30cm ( Note that the effect of inner and outer edge on the precessional -

instability is interchanged for the good curvature baseball configuration ). Al- -

~ though, ‘the ‘pressur'e gradient of the inner edge ( measured only for [3;@ ~ 0.3
) has not been deter_mined precisely, it is believed very close to the measured
aénsit)f gradient, while their difference at the outer edge looks quite large. Two

| independent measurement methods (.visible light imaging and X-ray imaging )
are adopted for the determination of the density profile, giving results in good
agreement. The pressure gradient is determined by the magnetic measurement
similar to that performed in SM experiment, particularly, the separability is
assumed in thier pressure model. Making use of the pressure gradient given
above, we find the typical local maximum drifi reversal parameter ( ~ 1.1 for

Bri ~ 0.3 ( the local curvature radius at the largest drift reversal is k=1 ~55

cm ). There are some complexities in the determination of Nesz. For example,
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we do not know exactly what is the least mode number ! and how to identify
the ratio L./Ly: If the least mode number ! is assumed to be 4 from symmetry
consideration and L./Ly is simply taken to be 1, the N ezf ; is then typically
about 5. Our axial dependence calculation predicts the local maximum (~1.3
(Fig.22), obviously above the experimental observations in Constance B. It
seems to be very intriguing then to increase the store energy in Constance B

furthér, to see if substantial augment of { can be obtained.

Although the experimental results in EBT-S, NBT, STM and Constance
B (in the latter case the extreme good geometry severely complicates interpre-
tation ) are not inconsistent with our theory, it is still worthwhile to examine if
in the SM experimental circumstances exist some potential stabilizing mecha-
nisms that may cause substantial augment of the (-value beyond our theoretical

prediction.

An additional stabilizing source for negative energy dissipation is available
through hot particle bounce harmonic resonances. However, since the bounce
frequency is typically much larger than the precessional frequency, only hot
electrons that are barely trapped contribute to this dissipation mechanism, and
"we doubt that there are enough such hot electrons present to alter our stability

predictions.

The possibility that a smooth radial profile can lead to a qualitatively
different stability resulls seems to be ruled out from the results of Fig.19, which
also shows that the instability threshold is near the grad-B reversal condition.

In this case instability arises even though there is always some source of negative
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dissipation, which is not enough to produce stabilization.

The results that we have obtained from the axial geometry calculation are
based on a tent-like radial pressure profile, in the long thin limit. In an actual
geometry, the long thin limit is often a marginally accurate assumption and
radial pressure profiles are smooth. Thefe are further complications in the lack
of separability in axial and radial dependences. Thus, it is possible that our
improved calculations are still too idealized to properly describe the stability

mechanisms that are present in an actual experimental configuration.

Finite Larmor radius effects might be another aspect that can be invoked.

as a limitation of our stability calculation. Previous work analyzing the type of
layer modes described here?® indicate that finite Larmor radius effects do not
strongly influence this theory if the Larrﬁor radius is less than the_layer width.
~ FLR corrections are nondissipative and of order (lpy /79)?, where pj is the hot
parﬁ.icle Larmor radius, [ is the mode numbér, and rq the plasma radius. How

ever; it should be noted that in the SM _experimenﬁ, where Bygeyum ~ 1600G,

the Larmor radius of 400 Kev hot electrons is ~ 1.5 cm, while the clairned half-

- width is 3cm.. Thus the analytic theory is on the edge of validity if the layer

W]dths are indeed as narrow as claimed, and perhaps finite Larmor corrections

may be strong enough to bring in dissipative approximations.
Another possibility is that the instability saturates at a sufficiently low
level to lead to benign consequences. Direct measurements of the fluctuation

spectrum are needed to support this viewpoint.
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VII.VIntroduction to Renormalization Theory

There are two different popular approaches to deal with strong turbulence
in a Vlasov-Poisson system; the perturbative and the non-perturbative (func-
tional épproach). The former was initiated by Dupree’s pioneering work,®!
commonly known as the “ resonance broadening theory ”, in which the bare
propagator (w — k-v)~! in the Vlasov equation is intuitively replaced by a.
renormalized propagator (w —k - v + il'x)™1, where iT'; stands for the stochas-
tic diffusion arising from the turbulent fields acting on the particles. Further
progress in perturbation theories consists mainly of the following two develop-

ments:

(1) The “ single renormalization theory ” ( named by Horton and Choif? )
s replaced by the “ fully renormalized theory ”, in which Ty is related to the

spectrum and is no longer determined through the bare propagator alone.?2-9¢

(2) Dupree and Tetrault®® added the famous B-term to the honlinedr co-
herent dielectric function ( the terminology of coherent dielectric function will
be explained in VIIL3 ) in order to conserve energy in electrostatic drift waves.

- This property of the exact system was violated in earlier versions of the per-
turbatio;1 theory.

The incorporation of these developments has led to the new widely used
‘modern perturbation theories.®>~9 These theories are limited to second order

(of coherent part) in expansion, although the concept of “ order ” is not unam-

biguous. An important shortcoming of these conventional perturbation theories
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consists in their failure to reduce in the corresponding limit, to the commonly
accepted weak turbulence theory, e.g., the well-known Kadomtsev spectrum
equation [ Eq.(11.50) in Ref.99 ] does not follow from the weak turbulence limit

of Dupree’s equations.%°

The non-perturbative approach!®® for a Vlasov-Poisson system can be con-
structed on the basis of the rigorous MSR ( Martin - Siggia - Rose ) system-
atology .1°! It is basically a generating functional method for constructing the
Green function. However, the system of equations in the MSR systematology
contains a functional differential equation for the renormalized vertex I". Its
rigorous solution seems illusive with present mathematical techniques. In .prac-
tice, progress is achieved by introducing a rather ad-hoc closure technique of
replacing the renormalized vertex I by its lowest order approximation - the bare
vertex =, which is a known quantity. This is the Direct Intefa.ction Approx-
imation (DIA).100:202-10¢ The DIA, although an approximate thoery, has the

advantage of keeping the form of the exact equations in the MSR systematology.

A very important success of the DIA (which is not solvable in the gen-
eral form) lies in its ability to reproduce the weak turbulence equations. In
addition, the dielectric function derived from the DIA equations for the Vlasov-
Poisson system corresponds precisely to the definition of the dielectric function

in statistical mechanics.

This success of the DIA is to be contrasted with the already mentioned
failure of the perturbation theories. We should also mention that the coherent

dielectric function used by Dupree is indeed different from the rigorously defined
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dielectric function in statistical mechanics.

The failure of the perturbation theories to yield the correct weak turbu-
lence limit has been attﬁbufed to their lack of proper, self-consistent treatment
of the Vlasov-Poisson system..100 The difference between, for example, Dupree’s
approach and the DIA emerges when we examine the renormalized propagator
used in these two approaches. The propagator used in Dupree’s approach con-
tains only the diffusion part ( which is related to the self-energy eflects ), while
the propagator used in the MSR systematology and hence the DIA includes a

- polarization part also; this part is related to the polarization cloud around a

test particle and to the statistical fluctuations in the dielectric response. We :

shall see in VIIL3 that the effects like 67;(¢(9))/66(S)|se1o0 for & # k' are

intrinsically related to the incoherent waves, or more precisely, to the correla-

~ - tion between the background waves and the induced ( by the external source )

waves. 1t is precisely the exclusion of the incoherent wave effects which renders’

the standard perturbation theories incapable of yielding the correct form for
the limiting cases. In fact, the coherent appréximation to DIA:(DIAC: intro-
duced and analysed by Krommes'%®) with deffusive part alone in the propagator
suffers from the same problems and is equivalent to the theory of Dupree and

Tetrault.

To make further progress one must either deal with the DIA in its entirety,
or find a way to improve the perturbation theory so that its glaring failures
can be overcome. Unfortunately, the theories based on the DIA, when applied

to problems of strong turbulence, have gone little beyond the perturbative re-
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sults. For example, the renormalized versions of Kadomtsev’s equation and the

dielectric function have still not been derived from this approach.

Thus we seek an alternative perturbation theory which is internally consis-
tent and which includes all the effects contained in DIA. We must remark that
the effects like the “ polarization ” do not have to appear in the propagator
as they do in DIA. In fact, the secularities appearing in higher order terms of
the weak turbulence perturbation series can be wholly eliminated by just the
self-energy renormalization of the propagator (akin to the maés renormalization
of the Dirac propagator). The physical effects represented by the polarization
part etc. can be readily displayed by the correct manipulation of the incoherent

part in a properly matched renormalized perturbation theory.

The perturbation theory presented in VIII.1 fulfills the above mentioned
requirements. Thérenormalizabﬁlity is demonstrated by generalizing the proce-
dure of Rudakov-Tsytovich to arbitrary higher orders. Renormalizability, here,
means that the counter ( or compensating ) term iI'y ( corresponding to fre-
quency broadening and shift in the propagator ) formally added to equations,
has to be eliminated in each perturbative order | cf. VIIL.2 ]. The proof of
renormalizability thus leads to a self-consistent deter‘mination of 2I'g, and in
addition, provides a unique definition of “ order ” ( counted by the numbers of

vertices in the diagram ) putting the theory on a firm formal footing.

The proof of renormalizability, however, is not enough to guarantee that
the perturbative approach is, at least, equivalent to the DIA. To do this we must

demonstrate that this approach can match the most important success of the
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DIA in the weak turbulence limit, i.e., the calculation of the dielectric function
and the derivation of Kadomtsev’s spectrum equation. Therefore, we present
in VIIL.3 a detailed derivation of the renormalized dielectric function ( starting
from its statistical mechanics definition%® ), and then obtain its explicit form
to second order and Ashow that it reduces to the correct weak turbulence limit.
The renormalized version of Kadomtsev spectrum equation is derived in VIII.4.

The correct weak turbulence limit is readily verified.

Proper treatment of the incoherent terms distinguishes the present pertur-
bation theory from the earlier ones. Although both the DIA and our theory .,
reproduce the standard weak turbulence results, our theory is not equivalent to
DIA. In fact, the propagator in our thoery has contribution from the self-energy--
eflects only while the propagator in DIA includes the effects of polarization as

well. -

We must, however, mention that Dupree did include contributions from
the incoherent part in the framework of a two-point theory.1°7=110 We do not
discuss these complicated theories here, because this thesis is devoted to the

proper development of a one-point perturbation theory.

It is to be noted that the lowest order of the incoherent part corresponds
to the té;;rns associated with the three wave interaction in the weak turbulence
limit. This process gives substantial contribution only if the phase space for
the three wave resonance is sufficiently large. In many cases of interest to
the “ physics of fusion ”, the phase‘ space 1s so small that the effect of the

three wave interaction is believed to be unimportant. However, the conditions
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for the three wave resonance ( in a linear sense ) are somewhat relaxed in a
renorﬁalized perturbation theory. For a given k, the frequency w is no longer
solely determined by the linear dispersion, w(k). Instead, the spectrurﬁ is spread
in wj it is centered at w(k) and has a width Aw,( known as the correlation
broadening ).}'! The broadening is caused by the three wave interactioﬁ in
the allowable phase space. This phenomenon becomes very important in the
processes involving the annihilation of two high frequency waves to produce
a low frequency wave. In fact, the three wave resonance condition is always
satisfied if the correlation broadening of the high frequency waves is equal t‘o
or greater than the frequency of the low frequency wave. This effect is studied

in VII1.4.

In IX we deal with the problem of proving energy conservation for the
electrostatic drift waves to all orders in the perturbation theory. This is a crucial
test for the validity of several theories. The perturbation approach passed this
test to second order only after Dupree and Tetrault introduced their S-term. We
show that for orders greater than two the incoherent part starts to coﬁtribute
to the energy, and thus the theories v»;ith no incoherent part ( like the DIAC

etc. ) are not expected to conserve energy for these orders.

Use is made of th.e perturbative procedure to study the nonlinear gyroki-
netic equation in X. Since finite Larmor radius effects are considered quite
important in plasma microturbulence we choose a low-8 gyrokinetic system as
our object of study. We first show that the perturbative procedure is ideally

suited to develop an analytical “ finite Larmor radius ” renormalized theory [ cf.
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X.1 ], then apply it to illustrate the nonlinear behavior of the kinetic n; mode;
i.e., we derive the coupled nonlinear wave equations. The transport equation is
derived in X.3 so that the turbulent transport coeflicients are readily identified.
The general properties of the energy transport coefficients are discussed with
particular emphasis on the finite Larmor radius effects.

The formalism constructed for the Vlasov-Poisson system can be readily

generalized''? to a variety of models used to describe the nonlinear behav-

ior of physical phenomena in different areas of physics and engineering. The

renormalizability can be proved for all the nonlinear systems with Yukawa—typew:

interaction, i.e., for systems like the Korteweg-de Vries equation,!® Boussinesq

-equation,’’* Navier-' Siokes equation.!’® However, the equations with Fermi-

type interaction, like the nonlinear Schordinger equation!!® do not fall within
the scope of the present renormaliiation procedure. »

| The work preéented-in the fol]owing»is essentially of a formal nature. No
.sAelf-consis.tent solutions ( i.e., a rigorous simultaneous determination of iT'y and

the spectrum ) are presented; they remain a challénging task for the future.
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VIII. Renormalized Perturbation Theory

Diagrammatic techniques are used for the development of the renormal-
ized perturbation theory. We believe that these techniques are particularly
suitable for proving reﬁormalizability and demonstrating energy conservation
to arbitrary high orders. Out of this analysis an unambiguous definition of ¢
order ” automatically emerges. Details about the rules guiding diagrammatic
manipulation are given in Appendix B.

In VIIL.1 the perturbation procedure is described primarily for a stationary
homogeneous plasmé without magnetic field. However, it is straightforward
to generalize the formalism to an inhomogeneous magnetiéed plasma to deal
with the cases for which the turbulence scale length is much shorter than the

‘macroscopic scale lengths.
VIIIL.1 Perturbation Procedure

For simplicity we study the Vlasov equation without external magnetic and

electric fields.

O, +v-V+(¢/m)E-0|f(r,v;t) = 0. (8.1.1)

Ensemble averaging on Eq.(8.1.1) yields

(8,+v ) o + (a/m)(B- Bf) = 0, (8.1.2)

where fo = (f), f' = f — fo, (- - -) means the ensemble average.

’
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The equation for the fluctuating distribution function is

(8 +v-V)f' = —(g/m)E - 8y - (g/m)(E - 87", (8.1.3)
where
(E-8f') = (E-8f') - (E- 8f')

is the fluctuating part of (E - 8f").

Taking the Fourier transformation of Eq.(8.1.3) and substituting E = — V¢
into Eq.(8.1.3), yields

(k- v)§fi= —%(k . 8)fobd + 7% kz;;k(kl . 8)6¢k, 6fker,y  (8.1.4)

where 6fr and 8¢y, are fluctuating quantities. ‘Using the notation

L(k) = —(g/m}(k - 9),

Eq.(8.1.4) becomes

(w—k-v)6fy = L(k)fobdr + D L(k1)8fu—r, 864, (8.1.5)
k1#k

Adding 1T’ fx on both sides of Eq.(8.1.5) ( T is the frequency broadening

operator ) and defining

G E(w—k-v-{-irk)_l, (8.1.6)
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we have

8fr = GrL(k)fobdr + Y GiL(k1)6fk1, 66k, + CriTsbfi. (8.1.7)
k1 £k

S

It can be drawn diagramatically as

K | K K X .
/-_— ?/ + E %“ + ?{ (8.1.8)
i (Kl) '
. K-k ‘

The precise deﬁnitiqns of various terms, and furthell discussion of these
diagrams are given in Appendix B

The first term on the r.h.s. of Eq.(8.1.8) is the lowest order coherent term
and the third term containing iI'; on the r.h.s. of Eq.(8.1.8) is the frequency
broadening term. We cease further iterating on these two terms. The iteration

of the second term on the r.h.s. of Eq.(8.1.8) gives

(8.1.9)

For a given 6¢i(k # 0) which is characteristic of the coherent wave, the
waves 8¢y, and é¢y, in the first term on the r.h.s. of Eq.(8.1.9) must not be §¢.
We call this term the intrinsically incoherent term. The last term of Eq.(8.1.9)

is the term containing iI'; which is not iterated any further. The important step -
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at this point is to note that before we make a further iteration on the second
term on the r.h.s. of Eq.(8.1.9) we need to separate the self-energy structure.
The self-energy terms are just the objects that are needed to cancel the i,
terms.

Correlation expansion of 8¢r, 60k, given in Appendix C constitutes the

required separation:

8br, 68k, = (8x,)(6¢%,) + ((66k,60,)). (8.1.10)

Notice that, by assumption, the nonzero contribution of the correlation

function ((6¢x,8¢y,)) stems only from the case k; + ky = 0. Hence, the corre-

lation function can be represented by the closed wiggly lines diagramatically:

The separation of the second term on the r.h.s. of Eq.(8.1.10) is thus drawn as

o (8.1.11)

(k)

- The waves denoted by (k') ( with parenthesis ) are uncorrelated with each
| other, while the closed structure ( the first term on the r.h.s. of Eq.(8.1.11) )
represents the correlated part.

Eqgs.(8.1.8),(8.1.9) and (8.1.11) form the renormalized perturbation theory
to the second order ( counting order by the number of wave - particle interaction
vertices excluding the shaded bubble @ ) when we ask for the cancellation

between -iI'y and the self-energy structure,
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+ = 0 (8.1.12)

This is more or less the same theory as given by Rudakov-‘Tsy1;ovich94 and
Choi-Horton.?? A crucial point at this step is that we cannot ignore the contri-
bution of the last term in Eq.(8.1.11) to this lowest order in the renormalized
theory. This inclusion is the essential difference between the theory of Dupree-
Tetrault®® and previoué theories. Since the last term of Eq.(8.1.11) implicitly
contains contribution to the same order, the first term of Eq.(8.1.13) shown
below is formally as important as the frequency broadening terms; its omission
can lead to serious errors, e.g. in a related drift-wave problem it leads to a
violation of energy conservation.

The next step goes along similar lines with only some additional observa-
tions.

The iterations of the last set of terms of Eq.(8.1.11) gives

. K kK K X
- (k) (k) (k) T3
= + +
b k) ko (k) (8.1.13)
K .
K-ki-K;

\

Both the first and the third terms on the r.h.s. of Eq.(8.1.13) cease it-

erating. Further decomposition is needed for the second term before iter-
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ating it. This decomposition is the same as the correlation expansion for

(66%,)(86,)6¢4,, [ cf. Eq.(C.7) ],

(6¢k1 )(5¢k2 )5¢k3 = (5¢k1 )(5¢k2 )(5¢k3) + (<5¢k1 5¢k3 >> (5¢k: )
+ <(5¢k2 5¢k3 )) (6¢k1 ) + <<6¢k1 6¢k2 6¢k3))

(8.1.14)

The nonzero contribution from ((6¢r, §dr,8¢x,)) exists only if ky +kotks =

0, as we had argued for ((6¢k,6¢r,)). The decomposition corresponding to

Eq.(8.1.14) is thus drawn as

* © (8.1.15)

k)

We note that the second tei"m on the r.h.s. of Eq.(8.1.15) cancels the last
- term on the r.his. of Eq.(8.1.9), if one uses the lowest order ( second order
) expression for the frequency broadening term. However, we must now add

- an additional term to the frequency broadening to third order, the frequency

broadening term is given by

Continuing the iteration, we have
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K
(%)
" (8.1.17)
() (%)
K, K k
) (8.1.18)

The second term on the r.h.s. of Eq.(8.1.17) and (8.1.18) needs séparating.
It yields

4
(] &) -
= K )+ +
(k) 2 (kl) x;)
(8 (k) Tkp)

K (ko (8.1.19)

] n)
+ B &
(l’) (x;)
K K 3 k
Lk (ke)

(8.1.20)
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The correction to the fourth order for the frequency broadening is thus

determined by the eighth term on the r.h.s. of Eq.(8.1.19) and the last term of |

Eq.(8.1.20). The second term on the r.h.s. of Eq.(8.1.19) will cancel the last
term of Eq.(8.1.13) to this order. To the appropriate order the fifth term on
the r.h.s. of Eq.(8.1.19) is the necessary correction for the cancellation between

the last term of Eq.(8.1.19) and the second term on the r.h.s. of Eq.(8.1.15).

Except those self-energy terms all other terms in Eqgs.(8.1.19) and (8.1.20)

should be iterated to produce the next order.

The general rules for the perturbative expansion are summarized as follows: -

(a) The terms containing the shaded bubble, the self-energy terms and: . -

the frequency broadening terms ( which contain a hollow bubble ) will be kept:

without further manipulation except that a cancellation between the last two

" sorts of terms is required.

(b) A term, not belonging to the above mentioned catogories, contains an
external wiggly line without parenthesis, it needs separating according to the
correlation expansion.

' (c) After the separation those terms, which do not contain a self-energy

structure, need iterating to produce the next order. We shall prove that there

will be an exact cancellation between the terms containing self-energy structures

and the terms containing frequency broadening. The final result for § fr is -

illustrated diagramatically ( to the fifth order ) in Appendix D.

Now we manipulate the perturbative expression of §f; further since the

wiggly line pertaining to the shaded bubble may be still correlated with other
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. open wiggly lines in the diagram.
It is easily seen that the first terms on the r.h.s.of Eqs.(8.1.8) and (8.1.9)

retain their form. The first term on the r.h.s. of Eq.(8.1.13) becomes

(8.1.21)

(k'h'k‘ )

The diagram obtained by connecting the wiggly line of ¢, with the wiggly
line 6¢r—k,—r, in the last term of Eq.(8.1.21) is not pfesent. It requires the
propagator corresponding to solid line between é¢;, and é¢y, to have zero
momentum, which cannot be produced in the iteration procedure. The first
term on the r.h.s. of Eq.(8.1.21) is the coherent term to second order of the
perturbation theory, because all parts of this term except é¢; belong to the
non-fluctuating effect. The last term of Eq.(é.1.21) is thus the intrinsically
incoherent term to second order, i.e., any wiggly line in this term cannot be
assigned a momentum k, for such an assignment will result in an excluded
diagram. For example, if we assign a momentum k to the wiggly line under
the shaded bubble, it will force k; = —k,, which is an excluded choice for the
last diagram in Eq.(8.1.21) owing to the separation of the self-energy term in
Eq.(8.1.11). Thus, we conclude that in a diagram in which all the wiggly lines
are uncorrela.téd, none of them can have a momentum k.

For a consistent renormalized lowest order ( second ) theory, all of the

second order terms must be retained. As can be easily seen, the first term on
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the r.h.s. of Eq.(8.1.21) is a second order term, and is just the 5-term proposed
by Dupree and Terault®® to maintain energy conservation in the drift-wave
problem.

In third order, ( after the renormalization cancellation in Eq.(8.1.17) ) the

following terms contribute to § Ik

(x)
(t,)
(&) (t w

k-b-k-ky 8 1.22)

(x-x-k1 - )
The first ‘two; terms on the r.h.s. of Eq.(8.1.22) are coherent terms, while
‘,A.the last three terms on the r.h.s. of Eq.(8.1.22) are intrinsically incohefent
terms. | |

The first term for 67, in Eq.(8.1.18) is an intrinsically incoherent ‘term,
since the setting of k; — ky = k or ks = k gives zero contribution to this
diagram.

Whithin the framework of the preceding discussion, it is convenient to

devide fluctuating function into a coherent, and an intrinsicslly incoherent part:
§fr = 619 + 61, (8.1.23)
where § f}gc) represents all the coherent terms, and §f; represents all the inco-

herent terms. To third order of perturbation they are expressed diagramatically

as:
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57 = ?/ . Qj . g . g/,, (8.1.24)
B i
+ g é;g +f 4+ ... (8'1.25)

A perturbative expressions for é f up to fifth order, and other general rules

for diagram constructions are given in Appendix E .
VII1.2 Renormalizabilty

The statement in VIIL.1 implies that all terms containing self-energy struc-
ture cancel with all the terms containing frequency broadening so that none of
these terms explicitly appear in the final expression of é§fy. By virtue of this
cancellation, we will show that iI'; is determined as the sum of éll possible
irreducible self-energy structures taken once and only once. We note that the
definition of renormalizability means that iI";, can be expressed as the sum of all

self-energy terms, and that all diagrams, containing self-energy and frequency
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broadening sub-structure, will cancel each other.

We first discuss in detail several properties that manifest themselves as

results of our iteration procedures.

Observation I.  In a given order all possible self-energy structure must
appear except those ( and never those ) that contain self-energy sub-structures.

( Henceforth, the allowable self-energy structure will be called a completely

overlapping diagram in which no self-energy sub-structure can be isolated. ) .

Proof. Acoording to the iteration rule indicated in VIIL.1, when a simple.
self-energy diagram once appears, further iteration of the diagram ceases. This .

means that any term in higher order does not contain the self-energy structure .

of lower order. In other words the allowable self-energy structure can only be

- formed by connecting the lowest wiggly line ( we refer it as the active line ) with

the upper lines ( we refer to them as the passive lines ). Because no self-energy

structure can appear above the active line, the connection can only produce the

completely overlapping diagram.

'in order to show that all types of completely overlapping .patterns" are
possible, we need only note that all types of vertex structures are possible in
the terms of lower order since the operation &; — (k;) makes each active line
connect with every possible combination of passive lines_. Therefore, all types
of self-energy structure should be taken into account except those containing

the lower order self-energy structure as a sub-diagram.

According to Observation I the following diagrams are examples of struc-
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tures that should be excluded from the proper self-energy diagrams :

Fig.28

Observation II. A given diagram can only appear once. There is no
- repeated diagram.

Proof. All terms appearing in the theory can be produced in t§vo ways only.
One is the iteration, the other is the separation ( i.e., the operation k; — (k;)).
The iteration obviously cannot prodﬁce a repeated diagram. In the operation

? meaning

ki — (k;), only the lower wiggly line is active ( the word “ active
that the lower line can correlate with any other passive lines ). In contrast,
the passive lines, for which the momenta have been denoted by (k;) cannot be
correlated with any but the active wiggly line . Hence, new diagrams can oﬁly
be formed from the active part, i.e., by connecting only to the lowest line. This
kind of diagram certainly does not appear in the previous order.

Observation III.  For non-seli-energy diagrams containing self-energy sub-
structure all types of self-energy sturcture produced in the lower perturbative
order are reproduced totally in the higher perturbative order.

lProof. All diagrams containing self-energy structures form a subset of

diagrams produced by the operation k; — (k;) on the lowest wiggly line. Clearly

all (n+1)th order diagrams contain the nth order diagrams in their entirety. As
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a result all the self-energy structures in the lower order diagram are faithfully
reproduced in the higher order diagrams.

Observation IV.  In the higher order diagrams there exists no new type of
self-energy sub-structures with the same number of contracted vertices ( order
of the sub-structure ) as the self-energy structures that appeared in a lower
order diagram.

Proof. According to the Observation I, the completely overlapping struc-

tures exhaust ( to a given order ) the set of allowed diagrams, so no new type

of sub-structure which has the same order as a sub-structure in the lower order ..

~diagram can appear in higher orders.

With the help of these four observations, it is now straightforward to prove:

the renormalizability of the theory, and to obtain the genera‘l. form of the renor- -

-malized propagator to any specified order.
~ Observation I suggests that —ifk be the sum of all types of possible self-
energy structures. The combination of Observation 11,111 and IV would then
imply that there will be a complete cancellation diagrams that have any struc-
ture plus iI"y with the diagrams with that very structure plus all self-energy
structﬁres. Thus a unique expression for i’y results, and the expression for & f
will contain no terms including iy or self-energy structures.
The explicit diagramatical expression iI'; to the sixth order is given as
follows; the iterative order of each diagram is readily recognized by counting

the number of vertices.
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VIIL.3 Renormalized Dielectric Function.Weak Turbulence Limit

We now use the methodology developed in VIIIL1 to calculate the renor-
malized dielectric function for the Vlasov-Poisson system. We use the standard
statistical physics definition of the inverse dielectric function (ex! ) pertain-

1.

ing to the electrostatic waves. Defined through the Poisson equation,'°® €, is

given as the functional derivative

K2 §(ga(4)
Gl= %2, | (&3.)

where ¢y is the potential induced in the plasma in response to the disturbance -
¢'®) generated by an infinitesimal external (unrandom) source p(®). Note that

the bare source quantities ¢,(:) and pie). are related through

el o
b= el S (832)

and the potential ¢ is determined by the Poisson equation

b =4 - F/dvfk(é(e)) =47 + 8ufu(0),  (833)
where f is the plasma distribution function which obeys the Vlasov equation

[0+ v -V = (a/m)Ve(¢19) - 6] £(39) = 0. (8.3.4)

Making use of Egs.(8.3.2) and (8.3.3), Eq.(8.3.1) takes the form

_ ‘ 6fk(¢""))>
V=146, (2827 7 . 8.3.5
Ek + k< 5¢l(ce) ¢(=)=0 ( )
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Thus to calculate e,'c'l, we must solve f in terms of qﬁgf), and obtain the required
functional derivative. The problem is, in fact, not forbiddingly difficult, since
we need to calculate the response only linearly in the infinitesimal source ¢(€).
Before manipulating the‘Vlasov equation, we notice from Eq.(8.3.3) that the

variation in the induced potentizﬂ due to an infinitesimal source ¢(¢) is

(e
Sk = Br(¢'7) — ¢1(0) = [, + @k%] ©, (8.3.6)
k! '

where

61(0) = D5 1 (') (0105

and 6¢y is linear in ¢§;)
With the definitions (f(¢(®) = 0)) = fo, and f(¢(®) = fo + 6f(4(%)), the

Fourier transformed Vlasov equation becomes

| K | K K K
5fk(d’(e)) = / = ?{ + @/ + Z
' | ) M
+ Z /{ + { (8.3.7)
) k

where the wiggly lines represent ¢, (0), the dashed lines represent §¢;. The it-

- eration procedure for fj(6¢(®)) should be modified to include the dashed lines.

Since the external source §¢(¢) makes sense only in its linear form, all diagrams-

containing more than one dashed line are automatically dropped; their contri- -

bution to the dielectric €;* is zero. The manipulation of the stochastic field ¢ is
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done exactly in the manner described earlier. Clearly, in the relevant diagrams,
the dashed line will always be an external line. This realization allows us to

write

F1(68') = fi(0) + filopendumsons - (838)

where the first term, fi(0), is just the solution obtained in VIII.1 (i.e., without
the external source ), while the last term of Eq.(8.3.8) stands for terms that
have the same structure as f, %(0), with each open wiggly line replaced once and
- only once by a dashed line. Using Egs.(8.1.23) and (8.3.8), we obtain

K23

1— @A) —T5 = &, 4,8, 4 8.3.9)
( kA) 6%(6,) kAkSk k +q)kfklopen¢ki_‘5ki_kl+¢k 6f(k)) (8.3.9)
‘where we have defined ( the superscript (c) means coherent )
_ "
LI

and the last term of Eq.(8.3.9) stands for terms that have the same structure as
5fx [ the incoherent terms without the external source as shown in Eq.(8.1.25) ],
with each open wiggly line 6¢, replaced once and only once by bk, kr + P, 6¢(C)

The forma] expression for the inverse dielectric function €, ' is thus found

6
-ef:1+m<4%>
(5d>k #l<)=0

= (Q;,}B>q)k‘4k + Z<Q;,}ciq)kifki,¢kj —'5k_,»,k>,
k;

to be

(8.3.10)

where Q;.lk, is the inverse matrix of Qki,k,- with
1,55

Qki‘,kj = (] - q)k{Aki)ék,’,kj - Pk,',kj) A (8.311)
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and Py, x; is defined by

§f. _ -
Z‘thk’@k‘ : = @kifkil SFpe. (8.3.12)
k; T sy i =Pk, 67,55

.
.D' .
.

K
I+ Kook K } (8.3.13)

K; kl-l]'
By following our general perturbative technique, we now calculate an ex-

pression for the renormalized dielectric function e correct to second order.

Setting k' = k in Eq.(8.3.9), we have ( to second order )

| - K
) e)~ 1! )", 0 fr-
s ]?:) = (67 —1+¢” Q)k{ @ﬁ' Lr-ky fk(e'];1

oy

Kk, (8.3.14)
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where

k
65:)5 —@kAk—)l—Qk{ @/ +

:k
=1+ [ ve, i L(k1)Gr, L(k)G—p, L(~k:)I
=145 [ &Gy |L(k) + ) L(k1)Git, L(R)G g, L(~k1) I, | fo,
k1
(8.3.15)
iwith Ix, = (¢r, 8%,)-
. :Tihose terms like
K
)1 . 6fk- 1— K2
Ei ) q)}g @k—kr-kz -—‘fk kée) u
k; 5¢k

D KKk,

do not contribute to the second order because ¢k, and ¢, are uncorrelated.

An iteration of the 5fk1/5qb,(:'), and 5fk—k1/5¢§:) [ Eq.(8.3.14) ] to the second

order gives
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. k;
& )1 =1
N S
. 69y, ;

0.'k -
(8.3.16)
-1
+ e }
. k'k;
@k—}h fk(;l;l = E](g—)ok] ¢k-k1{ %l 62)
6¢k .l‘
v'k
(8.3.17)
-1
+ ¢ }
Then we obtain '
1)
el =1+ ¢k<%>
. 5¢k ) ¢(e)=0 X
(8.3.18)

-1 a-1_ o -1 -1
Cl(c) +46§c) ei(czl),k—klegc—)kl 6(—21)91,k6§c) I,

where
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xl*kl kl"k)_
(2 1 ..'.. ‘ ".. .
Eiu),kz = ‘2‘¢k1+k2 ky -+ k;
ks : &

!

-2 . R . .
=iy | Gk LG L) + L), k)] o

(8.3.19)

Substituting Eq.(8.3.15) into Eq.(8.3.18), we obtain the renormalized di-

electric function to second order

. c - —1_ '
€k = Eﬁ: ) - 4 Z 6](021),]0—}01 61(5(21!:1 655])9_]91 Ikl 4 (8'3'20>
ky .

with

k
C;(CO? E‘]. — (bk [ @/ :' =1 @kai(k)fo (8321)

:K

In the limit of weak turbulence, the rehormalized propagator must be ex-

panded to second order yielding
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k
55:) — € (weak) = 1 — B4 [ @/ J

I.K

with

2mg 0) 2\ (0)
= Ikl +k, + kslz /dVG§c1+kz+kaL(kl)sz+ka

E(42)GL Llke) + L(k) G (k)| o
(8.3.23)
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where G’io) is the bare propagator. Finally, Eq.(8.3.20) becomes

(2 2

! 3 €ky,k—ky Ck k
Eh(weak) = €0 +2 ) 5:1),—1: B 42 : i bk kb 0 (8.3.24)
kl . kl
where e,(cf), x, and ei) are just 6(2) , and eio), respectively, with G replaced by
G,

Equation (8.3.24) with Eq.(8.3.22) is just the dielectric function ( in the
weak turbulence limit ) obtained by Krommes and Kleva using DIA.1'7 Thus
the perturbation theory developed in VIIL1 has the correct weak turbulence

limit for the dielectric function.
VIII.4 Speétrum Equation. Correlation Broadening

Since the concept of ¢ o;'der ” is cléarly delineated in our pertui‘batioﬁ
theory, it is obvious that the contribution of the lowest order incoherent source
' term ( to the equation describing the fluctuation spectrum ) should be more
important than the higher order corrections due to the renormalization of the
propagator. When the phase-space available for the three wave interaction
becomes significant, the incoherent source is expected to play a crucial role in
the determination of the saturated level of the turbulence. For electrostatic
turbulence ( Vlasov-Pbisson system ), a closed set of spectrum equations can
be constructed from the renormalized perturbation theory, provided e¢/T | the
ratio of the potential to the kinetic energy ] is small enough to be a perturbation

parameter.
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From the formalism presented in Sec. II, it is straightforward to derive the

nonlinear Poisson equation ( to second order ),

eogn= 3 &2, Sdr,6¢n, + > @, k35¢k15¢k25¢k3, (8.4.1)

ki+ko=k ki+kytks=k

where the coherent dielectric function e( <) is given by Eq.( 8.3.15), ei ) k, 1S Biven

by Eq.(8.3.19), and

~(3 _ 4mq - . .
5:1),k2,k3 = _lkl +ky + ksizv/dVGk1+k2+k3L(k1)Gk2+k3L(k2)Gk3L(k3)f0'
(8.4.2)
Multiplying both sides of Eq.(8.4.2) by é¢} and ensemble averaging yields
[ I = (6¢xb4%) |

G h= Y @D (68t 80t + Y & (60k, 6k, 66,687).
k1+ka=k k1+ka+ka=k

(8.4.3)

Notice that the last term of Eq.(8.4.3) does not contribute to the lowest

order ( quadratic in Iy ). When the triplet is evaluated By the quasi-Gaussian

process

—(2) -(2) -(2)
<6¢k16¢k26¢k> =2 Chaikz IklI}cz +2 C—ki ik T, It + 2 C-ka kazlk, ' (8.4.4)

I(C) Egcz) Eil)
converting Eq.(8.4.3) to
(c) \ ~§c2)k k (212 . |~l(c2)k 2
[ek —42 L (c; L JliIk =2 > ez’)f I, I, (8.4.5)
k1 k1+k2=k k
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which alongwith the other independent equation ( correct to second order )

~iTh = G — 67 = 3 B(k)) G, B k) k., (8.4.6)
i ks

where G’,(co) o G;l — It is the inverse bare propagator, provides a closed
set of equation for I} and G ( all & ’s are functionals of Gy ). Egs. (8.4.5)
and (8.4.6) are quite similar to the equations proi)osed by Biskamp''® ( using
diagramatical technique ), and by Orzag and Kraichnan,103

If the turbulent level is so small that the renormalized propagator G;l-‘
can be replaced by the bare propagator G{” [ making Eq.(8,4.6) trivial ],
Eq.(8.4.5) with e,(cc) given by Eq.(8.3.22) reduces to the standard spectrum equa--
 tion in weak turbulence theory |[ cf. Appendix of Ref. 116 ]. In a sense the set
'of Egs.(8.4.5),(8.4.6) is the renormalized version of the weak turbulence theory,
- in Which the resonance broadening ( and shift), the three wave interaction and
the nonlinear scattermg are all included in a consistent way.

For small, but finite I, Eq.(8.4.6) is approximated by the single renormal-
ization

Gyt~ GO ZL kl)G(o) L(=k)I,,. (8.4.7)

Substltutmg Eq.(8.4.7) into Eq.(8.4.5) yields a spectrum equation for I, only.
The back reaction of particle on waves still exists through the spectrum equa-
tion.

By doing explicit calculation to second order ( for the construction of the
spectrum equation as well as the calculation of the dielectric function ) , we have

demonstrated that our perturbation approach is, indeed, naturally reducible to
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the weak turbulence theory in the appropriate limit; this constitutes a definite
advantage over the conventional perturbation approaches®~%® which do not.
Generally, the spectrum equation [ Eq.(8.4.5) ], a highly nonlinear integral
equation, is very difficult to solve. Nonetheless, much useful information can
be gleaned by simple arguments. As an example, the correlation broadening of
the frequéncy spectrum will be briefly discussed.!!
Since I}, is positive, we may neglect the second term on fhe Lh.s. of

Eq.(8.4.5) as a first approximation to estimate the correlation broadening, i.e.

Z lgg),kz I?Ik1 Ikz

ki+k=k
I = :  (8.4.8)
lex |

In the weak turbilence limit, the r.h.s. of Eq.(8.4.8) becomes

/ dkydkalel”, 126(k — ky — k) Iy, I,
l
e’ +2> e, TP
k1

I = : (8.4.9)

where eg) is the linear dielectric function [ the first two terms on the r.h.s. of
Eq.(8.3.22) ], e,(c.z:),kz is defined by (8.3.19) with replacement of the renorma}ized
propagator G by the bare one, G,(CO), and eg)’ kq,ks 15 defined by (8.3.23) and
is essentially characteristic of the Compton scattering in the weak turbulence

theory.

Expanding the denominator of Eq.(8.4.9) at the linear frequency wi. yields

Qg

(w — wi’(v)2 + (%J(V)z’ (8.4.10)

Iy =
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with
2R€Z€k1 —k1,ka1
N _ 1
wh =wl - (8.4.11)
k k ael(cl) ’ A
Ow w=wl

where the second term of the r.h.s. is the nonlinear frequency shift due to the

Compton scattering, and
2Im EECS)—kl,kal

(l) k1 )
V= (8.4.12)
k 861(:) ) |

Ow

=l
w=wy

where the second term of the r.h.s is the nonlinear growth rate due to Compton

scattering, -

/ dkydkalel), 26(k — ky — k)1, Iy,

2
< 4 Reeg) )
(l)

Ow
' Since ag.is a rather weak functlon of w and k, when w — w{¥, Eq.(8.4. 10)

(8.4.13)

‘implies that the correlatxon broa.demng in a turbulent plasma is approximated
by the nonhnear growth rate Y in the above weak turbulence limit. For
a plasma turbulence with the correlation broadending smaller than its linear
growth rate, Eq.(8.4.12) indicates that the Compton scattering is more impor-
tant for the nonlinear saturation of the linear instability than the three wave
interaction. Otherwise, the three wave interaction plays a role either in the
éaturation mechanism or in the introductioﬁ of the correlation broadening.
The correlation broadening is significant for the relaxation of the strict
linear conditions for three wave resonance. For the process involving the an-

nihilation of two high-frequency waves to yield a rather low frequency wave,
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the limitations on the three wave resonance condition disappear completely,
when the low frequency is of the order of the correlation broadening of the high

frequency waves.
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IX. Energy Conservation in Electrostatic Drift Waves

It is well known that energy conservation is an essential test for the validity
of a nonlinear wave-particle interaction theory. For the electrostatic drift waves
the perturbed power term (6j1 -8B L) is rigorously equal to zero. This property
- should remain valid for any approximate theory with the implication that any
f)lausiBle and acceptable perturbation theory must conserve energy in each order
of perturbation. | |

We now show that the perturbation theory developed in VIII does meet, -
the required demands of energy conservation. In particular, we prove the en- -
ergy conservation in the perturbation order higher than the second to which
most earlier analysés' ( including DIAC with diffusion approximation ) were
limited.gs’gefms For simplicity, we begin with the shearless slab model, then
' géneraliée the pfdof to a sheared slab model and to the ballooning representa-
tion. |

The vstarting-p»oin‘t here is the Fourier transformed drift kinetic equation |

Vlasov equation for the guiding center in a uniformily magnetic plasma ],

67k = GrLo(k)fobbi + Gr Y L(k, k1)6¢u, fss, + GiTsbfr,  (9.1)

ky

where

~

Lo(k) = ~(e/Te) (kv — w?,)

L{k, k1) = (e/m)ky1,10) = i(c/B)(k x k1) - b = L (k, k) + La(k, k1)

G, = (w - k”’U" + irk)_l, 3” = 6/6’0”
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with the ambient magnetic field B = Bb, the electron diamagnetic drift fre-
quency w;, = (cT./eB)|dinn/dr| and vy = v - b. The rate of work done by the

drift current is expressed as
(6jL - 6EL) =ie / dvydkG® ™ (85,647), (9.2)

where

(0T
Gk) :w—k”v”.

Notice that Eq.(9.1) is formally equivalent to Eq.(8.1.7).
Substituting 67, = A8¢x + 6f; and G{© = G;? — il'} into Eq.(9.2), we
have

(651 - SEL) = de / dv,,dk{(5¢;G;1A5¢k> + (6% (~iT%) Abdy) |
(9.3)

+ (66167767 + (643(~iT)6R) .

All four terms on the r.h.s. of Eq.(9.3) can be expressed by connected
diagrams. Energy conservation holds if we can show that sum of the four t.ermé
is zero in every order. For convenience, we first prove the following two useful
lemmata. |
Lemmal

In a given diagram if two wiggly lines k and k;, connected to the highest
vertex, intersect at a multi-wave vertex, the contribution of this diagram to
Eq.(9.3) vanishes | Fig.29 ].

Proof:

The part relevant to k and k; in the diagram can be written as

L(k, ks )P(k — ky)o¢u, 667,
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where P(k~k; ) is some functional of k— k;. Notice that L(k, k1) has two parts.
For the highest vertex, the contribution from the part with the explicit velocity
derivative, i.e., fll(k, k) = (e/m)ky 8, becomes zero after integration over v).

The contribution from the second part also vanishes, because

Ly(k, k1) = —i(c/B)(k x k;) - b

1s odd under the transformation (k < —k;) while the rest of the term are even.

Let us define that two diagrams are adjoint to each other, if they have °
the same highest vertex ]:(k,kl) where the two wiggly lines k and k; meet, -
and if their remaining parts transform into each other through the operation -

(k < —k1). An example is illustrated in Fig.30 [ also cf. Figs.32, 33 and 34 ].

This leads us to the second lemma.

Y

T

>

~
}

Fig.29 (a)  Fig30 (b)
Lemma II
The sum of the contributions of two adjoint diagrams to the integral of
Eq.(9.3) is zero.
Proof:
For the highest vertex the contribution from L is trivially zero, as each
term individually integrated to zero. The sum of the contribution from f;z(k, k)

temnrs vanishes because zg(k, k1) is odd under (k — —ky).
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IX.1 Explicit Illustration up to Fourth Order

We shall show the energy conservaton in the first few orders explicitly by

using the above two lemmata.

To zero order only the linear term Lo f, from (641G  Ab¢r) contributes
which changes sign under k— inversion and thus the summation over k yields

Zero.

To first order only the incoherent source (§¢}G _15 fk) contributes a term

[ Fig.31(a) ]. It gives no contribution because of Lemma L

ﬁ}

(2) - (b) (a) (b)
Fig.31 . . Fig.32

In the second order, we have three nontrivial terms making up the energy:
the term from the incoherent term (64%G; 6fx) [ Fig.31(b) ], the term from
(641G Abdy) | Fig.32(a) ], and the term from (8¢} (i) A8¢y) [ Fig.32(b)
]. It is obvious that energy conservation is valid in this order because the
contribution from the diagram of Fig.31(b) is zero by Lemma I and the sum of
diagram of Fig.32(a) and Fig.32(b) is zero by Lemma II. Notice that violation
of energy conservation would occur if we had kept only the term proportional to
the resonance broadening i’y [ (6¢;G 5 > A6¢:) ] and neglected the second order

contribution from the term (§¢} G, ' Aé¢:) which represents the renormalized
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average distribution function. This latter is just the f-term introduced by

Dupree and Tetraut to insure energy conservation to this order.

The energy conservation in second order is essentially a consequence of
the cancellation of the two coherent contributions because the incoherent con-
tribution was indentically zero due to Lemma I. Thus up to second order, a
theory would pass the energy conservation test even if the incoherent part were
neglected altogether. The situation changes entirely in the third and higher

orders where incoherent terms are not individually ( and hence trivially ) equal

to zero. Thus the proof of energy conservation in third ( and higher ) or- =

der becomes a crucial test to any progress beyond Dupree and Tetraut. In" -
third order, (6¢}(~i'y)6/;) gives a term [ Fig.33(a) ], cancelled by its adjoint |
Fig.33(b) ], contributed by (643G A64y), which also gives a term [ Fig.30(a)
| cancelling its own adjoint | Fig.30(b) 1, origina,ting from (665G 6fk). The
ﬂén—Géussian frequency broadening term | Fig.34(a) ] adaed to its adjoint éom-
ing from (§6;G 16/} [ Fig.34(b) ], also gives zero contribution to the integral

~of Eq.(9.3); the conservation of energy in third order, thereby, is proved.

kl
s
%
a b a (b)
(@) Fig.33 ®) = Fig.34

At this point we would like to stress that the eneréy conservation in third

prder resulted from exact cancellation between the non-Gaussian contribution
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from the coherent part, and similar contributions from the intrinsically inco-
herent source. Clearly a theory like DIAC ( without diffusive approximation )
§vill violate energy conservation in this order because it neglects the incoherent
part altogether. To the best of our knowledge, energy conservation has not yet
been proved for DIAC.

The energy conservation to the fourth order is shown explicitly in Ap-

pendix F.
IX.2 General Proof to Arbitrary Higher Order

We 6rganize the géneral proof by a sequence of definitions and lemmata.
The proof will be completed with a summary at the end of the sequence.
Definition I  Power Term:

The four terms that appear in the expression for the work done by the drift

current in the r.h.s. of Eq.(9.3):
(8LGL Abdr), (86L(~iTx)AbRr), (681Gy 6k), (86i(—ilk)éfw).

Each power term corresponds to a set of connected diagrams according to the
diagrammatical rule in Appendix B.
Lemma IIT

The highest vertices in the diagram c;Jrresponding to the power terms are
all the same.

Proof:
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In the construction of diagrams we assumed that k is the momentum of
the highest propagator. The other momentum pertaining to the highest vertex

is k;. Hence, the expression of the highest vertex is IZ(k, ky).
Definition II  Derivative Primitive Frame Diagram:

A diagram that is derived from the primitive frame diagram | defined in

Appendix E | by replacing the highest propagator Gy by 6¢; [ Fig.35 ].

s PP

Fig3s . Fig.36
Lemma IV
For a given perturbation order any topologic structure of the power term is

a type of closed structure by connecting all open wiggly lines of the derivative

primitive frame diagram of the same order.
Proof:

For (84} G " Aé¢y) and (6¢}; G5 674), in which A6¢; and 67, are formed by
primitive frame diagram, the operation acting é¢} on a prirﬁitive frame diagram
is merely a replacement of the primitive frame diagram by the derivative frame
diagram. In (6¢};(~iT'k)Aé¢y) and (6¢;(~4T")6f,) the parts (—il'y)A6¢, and
(—iT4 )6 are connected diagrams satisfying the conservation law at the vertex
that connects —iT'}, to the lower parts, because the highest solid line of A6¢; and

§f is Gy. Putting 6} on the highest vertex of —iI'; and ensemble av_eréging
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the terms yield closure of all open wiggly lines in the diagrams.
Definition III Non-Zero Power Term:

For a given power term if k and k; intersect at a multi-wave vertex, it is
named as zero power term ( due to Lemma I ); if k and k; intersect at other
wave-particle vertex than the highest, it is named as the non-zero power term.
Lemma V

Foz; any non-zero power term there exists at most one self-energy structure
in the diagram. If any, it must be located at the upmost part of the diagram
with the following property that if one of 6¢} and ¢y, is a wiggly line in
the self-energy structure, the other must be connected to the part outside the
self-energy structure in an overlapping manner.

Proof: | |

In (5¢ZG;1A5§>k> and (5¢;G;16fk) the self—enerlgy siiructure, if any, can
only be formed by connecting ¢}, that is bound to the highest vertex, to the
lower part, because there is no self-energy structure in A8¢y and &%, in which
the open lines are all uncorrelated with each other. The self-energy structure |
can appear only at the upmost part of the diagram. On the other hand, a

self-energy structure has been already contained in the terms
(6¢%(—iTk)Abdr)  and  (64%(—ilk)67%)

due to the term —iI'y. New self-energy structure besides this can not be con-
structed, since any non-overlapping connection of §¢} must cause a zero mo-

mentum propagator just beneath the new self-energy structure | Fig.36 ].
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Lemma VI

For all non-zero power term no self-energy structure can be isolated from
the diagram by cutting solid lines alone. |
Proof:

Owing to the Lemma V the self-energy structure must be connected to
8¢} or é¢,, which is connected to the other parts of the diagram outside the
self-energy structure in an overlapping manner.

Definition IV Quasi-Self-Energy Diagram:
The diagram of a non-zero power term is a quasi-self-energy diagram if a

self-energy structure can be isolated by cutting a solid line and a §¢, [ Fig.37].

/“‘__ m/k

Fig.37

k

Definition V Self-Energy Free Diagram:
. The diagram for a non-zero power term that contains no self-energy struc-

ture.
Lemma VII

The quasi-self-energy diagram can only appear in the terms of
(64iG7 AS¢)  and (663G} 64).

Proof:
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The Lemma V demands that the self-energy structure only appear at the
upmost part of a diagram, whereupon the §¢} and é¢y, are connected. How-
ever, 6¢; is not a part of the self-energy structure in (8¢} (—iI'x)Ab¢;) and
(65 (—iTk)éfr), and 8¢y, must be a part of self-energy structure. Thus, there
is no quasi-self-energy diagram in (8¢%(—il's)ASdy) and (6¢%(—iT1)éfx).
Lemma VIII

All non-zero power term are different. There is no repeated non-zero power
term. |
Proof:

| It is obvious thal no repeated term may exist in the four power terms

individually, since there is no repeated terms in Ab¢y + 6f% énd —iI'y. Fur-
thermore, (6¢5G; A¢r) can not be repeated with (6¢%(—il'%)6f%). If the
former term does not contain a self-energy structure, they have the different
topological structure; the possibly existed self-energy structure in the former
term must be associated with é¢, while §¢) must be outside the self-energy
structure of the latter term, (6¢%(—il'x)6f%). For the same reason (QSZGEI(S]E;C)
can not be repeated with (643 (—iTk)Ab¢y). Finally, (665G ' Ab¢y) can not be
repeated with (6q§2(—if‘k)A5¢k), and (5¢5‘ZG;15fk) can not be repeated with
(5(;5;(—'21“;:)5];;;), because there is no self-energy sub-structure in 46¢; and & f.
Lemma IX |

For a given quasi-seli-energy diagram there must exist a unique adjoint
diagram in (8¢ (—1T;) Aédy) or in (8¢%(—il'x)6f%).

Proof:
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According to Lemma VII the quasi-self-energy diagram exists only in
(661G A6¢x)  and (641G - k™61,

where k is leaving the vertex, while k; is entering the vertex. After the transform
(k < —ky) this property is unchanged. The isolation of a self-energy structure
in the quasi-seli-energy diagram ( after the transform k « —#k, ) results from
cutting ¢, and a solid line, i.e., an isolation of 6¢5(—il'x). If 6¢} connects

to a wave-particle vertex, the remaining diagram must belong to Aé¢y. If 6¢}

connects to a multi-wave vertex, the remaining diagram must belong to § feo It

is because the remaining structure is formed by the primitive frame diagram.

without any_seif-energy sub-structure in it. Use is made of Lemma 1II yields
the clo'nc]usion that they are adjoint diagrams. |
Deﬁnitipn VI é—Operétion:

For a given non-zero power term thisAopera.tJ'on is the cutting-up the inter-
nal line associated with §¢; or disclosing the multi-wave vertex connected to
647, then replacing the b¢; by Gj. |
Lemmé X

For any non-zero power term in (6¢} (—iI'x) Aé¢i) and (8¢5 (—iT')67%) with
6¢r, being an internal line in it, Vthere always exists a unique adjoint diagram
in (667G ASdy).

Proof:

After the transform (k < —k;) of the term in

(68%(—iT'x)A8¢x)  and (61 (—iT%)65%)
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and the é-operation, the resultant diagram must belong to Aé¢;, because there

is no self-energy structure in the diagram any longer [ Fig.38 ].

—k

x = Abdi

Fig.38

Lemma XI

For any non-zero power term in (6¢2(—ifk)A5¢k) and (8¢%(—iTx)67%)
if ¢y, connects to a multi-wave vertex, there always exists a unique adjoint
diag}am in (5¢;G;15fk).
Proof:

After the transform k < —k; of the term in

(68%(—iTk)Abdr)  and (67 (—iT%)61%)

I

and the £-operation, the resultant diagram must belong to éf; [ Fig.39 ].

l/ T &/ \

>

k— —k € - operation
Fig.39
The combination of Lemmata IX through XI implies that all the quasi-
self-energy diagrams in (§¢} G Aé¢;) and (541520;15];19) cancel all terms of
(8¢5 (—iTk) A1), (66} (—iT'%)6Fx) completely.
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Lemma XII

If 8¢} is an internal line in a self-energy free diagram the corresponding
diagram exists only in (643G} > AS¢y).
Proof':

Because none of open wiggly line in ka 1s 6¢g.

k

Abdy = —  (6¢;G; 1 Abpr) = —_
{ ko —k
- = Ab¢k
k/ ¢ - operation \
Fig.40

Lemma XIIT |

For a’se]f-energ‘}f free diagram if both 8¢, and é¢y, are internal lines,
this type of diagram must appear pairwise in (671G 1 Abgy) a1"1d. the pair is
composed of the adjoint diagrams.

Proof:

If there is such a diagram, it must belong to (6¢3G; 1 Ab¢r) according
to Lemma XII. Making a transform k « —k; to‘the former type of diagram
we have an adjoint diagram that belongs to another term in (643G Abgy),
because it becomes one diagram of A§¢; after the E—operation [ Fig.40 ].

Lemma XIV

If ¢y is an internal line in a self-energy free term of (61 Gt Ab¢y), while
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6¢x, connects to a multi-wave vertex, there must exist a unique adjoint diagram
in (5¢:G;15f~k), in which é¢y, is an internal line and §¢} connects to a multi-
wave vertex.

Proof:

When a transform k < —k; is applied to the given diagram in the Lemma,

the 8¢y in the resultant diagram will connect to a multi-wave vertex. Making

~

the {-operation, we obtain a diagram belonging to §f; [ Fig.41 ].

F =
@g o @g e

Fig.41

/K K,

l . = Abdy
k= —ki ¢ - operation

Fig.42

»

Lemma XV

If 6¢r, is an internal line in a self-energy free diagram of (6@‘)2@;15];;:'),

there must exist a unique adjoint diagram in (641G Abdy).

Proof:
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The 64} can not be an internal line in (5¢';G;15fk). After the transform
k < —k,, it becomes a diagram,in which 8¢y becomes an internal line ( between

two wave-particle vertecies ). The £ -operation then results in Abgy | Fig.42 ].

l/ - /t'
— (663G 6fi) = @ —_— ﬁ
) ke —k;
— &

T

- = 6Jk
€ - operation ‘ Fig.43

Lefﬂma XIv a,h.d Lemma XV imply that the sélf—energy free diagrams -
: with one of ¢y ari'd 5‘¢k1 being an internal line and the other connecting to
a multi-wave vertex will cancell with éach other between (6¢;G; ' Aé4:) and
(66,67 6F). |
Lemma XVI

If both é¢; and ¢y, in a self-energy free diagram of (§¢;G;6f:) connect
to the different multi-wave vertex, this type of diagrams must appear pairwise

and they are adjoint diagrams.
Proof:

When the transform k < —k; and the é—operation are applied to such a
diagram, the resultant diagram must belong to 6];;“ since there are more than

one open wiggly line [ Fig.43 ].




152

It becomes apparent now that the Lemmata IX through XI have demon-
strated the cancellation of all terms containing self-energy structure. The seli-
energy free terms are devided into three catagories: (1) Both 0%, 6y, are inter-
nal lines, their contribution equals zero by Lemma XIIT; (2) One of 6¢3, 6, is
an internal line, while the other is connected to a multi-wave vertex, their con-
tribution equals to zero by Lemmata XIV and XV; (3) Both 6¢%, 6@, are con-
nected to different multi-wave vertex, their contribution is zero due to Lemma
XVI. Therefore, we have shown the full cancellation of all non-zero power term
by the dilagram‘matical technique. This completes the proof of the energy con-

servation for the electrostatic drift wave to arbitrary higher order.
IX.3 Sheared Slab and Ballooning Representation

In a sheared slab model the only change in the nonlinear equation Eq.(9.1)
lies in the wave-particle interaction vertex, _i}(k, k1). It becomes

'8 0

1y 5 —kya), (9.3.1)

L(k, k1) — (e/m)ky, 0 — %(k

where k stands for w, k, and k,, 8/0z acts on all quantities behind it , while

8/6z only acts on the wave pertaining to the vertex. The ensemble average is

~ taken as the integral over x-space, merely for rapid variations.

The relavent quantity in the proof of Lemma I becomes

(681205, b2 )o PO: = ) = (561 1ny o6, 1y (20202 | P - )
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An integration by parts, and the transformation k <o —k, makes the equation
change sign. The Lemma I is thus verified for the sheared slab model.

Since the pair of adjoint diagrams are defined in the §heared model by
(88 L(k, k1)6¢%, P(k, k1)), and (863 L(k, k1 )8%, P(—k1, k),

we find that one of the adjoint diagrams becomes the other with a minus sign
after integration by parts in x-space and the transform k& « —k;. So the Lemma
Il is also generalized to the sheared model. Based on these two lemmata, in
addition to the other fourteen lemmata that are only consequence of the diagram .
topology and independent of the geometry, we then complete the proof of the:
energy conservation in the shea;ed slab model. |

For a cylindrical configuration we replace k, by m/r and z by r, 8/8z by .

. .0/0r, dz by rdr. Obviously, the consequence of integration by paris over 7 is

just the same as that for z, since there is .only one vertex, the highest: vertex,
in?olved. |

We wish to emphasize that the energy conservation in eléctrostatic drift
waves 1s a consequence of the antisymmetry ( ch.ange of sign for k < k; ) of the
wave-particle interaction vertex. Explicit antisymmetry must be maintained
in any treatment, otherwise energy conservation will be violated. To illustrate
our poixﬁ, we meke a small digression to show that there exist examples in
pubnlished literature!?® ( using balloohing representation ) where antisymmetry
and hence energy conservation is not preserved.

Manipulation of the gyrokinef;ic equation in the ballooning representation (

in the electrostatic, and small gyro-radius approximation ) yields the explicitly
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antisymmetric nonlinear term

W(C/B)ﬁ' Z NNy Z [emp(—27ri§n'1l)6<,{$n1 (,6 + 27rl)¢5izn2 (¢,6)

ni+nz=n i

— ezp(—2mignyl)6n, (1, 8)6hn, (4,8 + 271)],
(9.3.2)

where 6h, (1, 6) is the non-adiabatic part of ballooning amplitude 5q3n defined
by

6¢(¢,6,¢) = Z erp [m (C_ /‘9 dt9'q(¢; 9!))} Z 645,1((,‘15, 0+ 2nl)exp(—2mingl),
n 1
: (9.3.3)

with
‘ . 6
i= fatas,0), = V(c -/ de'q<¢,e')) X Vg-b.

It is obvious that it.is only the combination of the two terms on the r.h.s. of

Eq.(9.3.2) that guarantees the antisymmetry which makes Eq.(9.3.2) correspond

to the slab model nonlinear term} |
(¢/B)(Vég x b) . Vég = 0.

Unfortunately, the second term in Eq.(9.3.2) is missing in the aforementioned
treatment, and in that treatment there is no way to assure energy conservation

in each order of the perturbation theory.
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X. Renormalized Gyro-Kinetics

The methodology developed in VIII can be readily generalized to deal with

more complicated and realistic problems in plasma physics.
X.1 Collisionless Plasma with Finite Larmor Radius Effects

An obvious extension of the renormalized perturbation theory in VII is to
develop a renormalized theory of collisionless plasmas including finite Larmor .-
radius effects. Clearly one must begin with the nonlinear gyro-kinetic version
- of the Vlasov equation. To make the problem more realistic and interesting, we

allow the equilibrium to have temperature and density gradients also.

Notice that in a gyro-.kinetic theory, the perpendicular (‘to the magnetic
field ) thermal motion of the particles ’come‘sA into its own implying that self-
energy term, etc. will become function of the perpendicular velocity v, . Thus
the evaluation of all the renormalized ( linear as well as nonlineé.r ) terms
will involve cumbersome v | integrations.!1” It fums out, however, that in slab
model and to second order in perturbations, the v_-dependent sel{-energy terms
can be replaced by the v -averaged teﬁns ( independent of v ) provided the
drift frequencies are ignored. As a result, only the familiar v|| integration ( just
like the drift-kinetic treatment ) will be necessary to derive the nonlinear wave
equation.

In a slab model, the non-adiabatic part of the perturbed distribution func-

tion obeys ( in Fourier space with §A | = 0 )
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(w — kyvy)8hs = Lo(k)Jo(v Lk /) Fobipi

b Y Ba(knk)o(osky /)6 b, OO
ki1+ko=k
with the definitions
Eo(k) = (a/T){w — wil1 +n(H/T - 3/2)}} (10.1.2)
Ly(ky, k) =i(c/B)(ky x ko) - b (10.1.3)
and
5’Lﬁk = 5¢k - (’U“/C)(SA]C, (1014)

where w? = (cT/eB)(k,/L,) is the density gradient induced diagramatic fre-
quency, L, is the density scale length, 7 = L,,/Lr, LT is the temperature scale
length, H = (m/Z)(vﬁ +v2) s thé particle energy, (1 is the gyrofrequency, B is
the ambient magnetic field and Jy representing finite gyroradius effects, is the
Bessel function of order zero. Direct renormalization of Eq.(10.1.1) would yield

the v -dependent self-energy term

—iTp = Y (¢/B)?[ki x k-bJ2J2(voky, 1 /Q)C s, |6k, | (10.1.5)
kq

and an appropriate expression for the distribution function 6hi(v). As pointed
out earlier, it is much more convenient to deal with the v -averaged distribution

function

(ﬁbk(vn) = Iv_,_tShk(V) = / 'U_]_d'UJ_Jo(’UJ_kJ_/Q)5hk(V), (10.1.6)
0 )
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whose equation of motion is obtained by applying the operator,I, , to both sides
of Eq.(10.1.1). Standard manipulation of the resulting equation along with the
reasonable assumption Fy(v) = Fy(v ”) Fy(v?) yields the renormalized second

order expression,
Shi(vy) = GuL$ (k) Fy(v?)695%

+ Z GkL k1, kz)Gk2 (kl,kz)Fo(U||)5¢k15¢k2
ky+ky=k

+ Y GiL(ky,k = ky)Giey, L(ks, ks)Gh,

ky+ka+ks=k
kaFk

Ly, k2, ks) Fo(v? )6, 63, 631,

(10.1.7)

" opoo

L (key & 5/ Ldvy Jo(vy ke 4 + ke /)
o (k1,kz) i vydvg O(U_Ll.l,_L 2,11/92) (10.1.9)

Jo(’v’l_]C]A_/Q)Jo(’l)_]_kg,_]_/n)io(kz)Fo(”U_zL),,

Léz)(kl,kz,ks) = / vidvido(vylky, o + ka1 + ks 1 ]/0)-
0 S '

Jo(vik‘l,L/Q)Jo(U.Lkz,.L)Jo(vikS,L)zO(ka)FO(sz_)a

(10.1.10)

i = (w — kyoy +iT%)", | (10.1.11)

and

—ily = Z.Hu,ku kl,k)Gk b L(=ki, k= ky)|6%r, 2, (10.1.12)
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with

/ 'UJ_d’U_LJg(v_]_k_]_/Q)Jg(v_Lkl’_[_/Q).io(k)Fo('U?L)
0 .

J(kJ_,k]_’_L) = (10.1.13)

/ vidvy J2(v k) Q) Lo(k)Fo(v?)
Jo

Substituiting 571k(v||) into Poisson equation and Ampere’s law will yield

the set of nonlinear coupled equations in 8¢ and §4;.
X. 2 Nonlinear Kinetic ; Mode

The renormalized gyrokinetic formalism presented in X.1 can be used
to delineate some general features of the behavior of the 7; mode which is
thought to be a possible candidate responsible for anomalous particle transport
in Tokamaks.**® Since the n; mode is essentially electrostatic, the basic dynam-
ics is contained in the equation of quasi-neutrality. Perturbed density can be
readily calculated from Eq.(10.1.7). We begin with the first term on the r.h.s.
which leads to the renormalized linear ion response ( Gy is the renormalized

propagator )

§nD = _(en/T)6e [1— (1—w], Jw)To(be) — (wip/w)bilTs(b:) —To(b:)] = 5(k)]
(10.2.1)

where

*

(k) = (%L1)Fo(bi)m(c)+

w

T {1,(¢) 8T (5:) + 1+ CZ(QP (5}, (1022

where W, = 14 ¢Z((),Wa(¢) = (Wi(¢) — Z(()/2, Z is the plasma disper-
sion function, I'(b) = b[T1(b) — To(b)],Tn(b) = ezp(—=b) - I,(b), I.(b) is the -
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modified Bessel function, and b; = k3 p?/2. Notice that the argument of the
Z-funcﬁon (= (w+ i)/ kyv; = ¢+ it /k)v; contains the effects of renormal-
ization ( frequency broadening and shift )- .Since the electron response for the
7 mode is adiabatic, a nonlinear dispersion relation is obtained by equating
5n,(:) = e@r/T.. The solution ( of the nonlinear dispersion relation) at marginal
stability yields the saturation level for the spectrum allowing us to determine
the saturation frequency broadening wh]ch can be associated with the transport
coefﬁments At this level, the result has no contribution from the incoherent
part, particularly, the three wave interaction. Since longer perpendicular wave-"-
length modes cause a large;‘ transport, while the shorter wavelength (kj p; ~ 1)

| " modes are more easily destabilized ( due to finite ion Larmor radius efects ), it

" is important to examine the three wave i;lt’eractidn processes Which can carry
. energy from the shortér to the longerbwavelengthupart of the spectrum.

“Let k3,1, and k2_1_ be the two short wavelength modes which produce a
long wave length (small k) beat wave k 1. This process will be mediated by
the term Lo(kl, k2) given by Eq.(10.1.9). Straighfforward algebra leads to the
nonlinear perturbed density ( the density characterized by k, driven by the
interaction of waves k1,1 and ky 4 ) éorresponding to the second term on the
r.h.s. of Eq.(10.1.5),-

o = ile/Buen/T) (s x ko) b{ (B2 son(k) 2(0)

ki+ky=k ‘
— sgnlka 1 2(C2)} — wir(2)To(b:){sgn(ky)W (¢) — sgn(ka )W (C2)}]

[ kZ,H(w + irkz) — k”(w;g + irk2)]—1 - (1 — 2)}5¢k15¢k2’
(10.2.3)
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where

~

4(2) = [wa — Wi, (2)ITo(b;) + wip(2)b:[To(b;) — T'1 (b:)], (10.2.4)

W(¢) = ¢1+¢Z(Q)] - 2(¢)/2, (10.2.5)

which, incidentally, is just the term Z E(z)(kl, k2)6¢k, 8¢k, in the nonlinear
k1+k2=k

wave equation Eq.(8.4.1). In a similar manner, we can evaluate 5n§:n’l)” which
corresponds to the third term on the r.h.s. of Eq.(10.1.7), and is naturally
devided into the coherent and the incoherent part. As expected these terms are
nothing but the appropriate explicit expressions for the terms in the nonlinear
wave Eq.(8.4.1); the coherent part is determined by €®)(k;,k,—k;), and the
incoherent part by 6(3)(k1,k2,k3). The finite ion Larmor radius effect i;s thus
explicitly expressed in terms of the I functions , and the rest of the manipulation

is the same as that for the zero Larmor radius case.
X. 3. Transport Equations in Gyrokinefic Theory

Several of the recent candidates believed to be responsible for causing tur-
bulent transport in Tokamaks are modes which depend on finite Larmor radius
effects. Now we derive the transport theory relevant for these modes. We begin
with the ( for simplicity, the drift frequency w, has been neglegted ) collisionless

gyro-kinetic equation??°

[ +vb-V -~ Q5-1f = —q(6Rf) (10.3.1)
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with

0 vy 8 vxb d 1 -
fR= -V . [vo 4 YL 9 _vXbo, 1 : 3.
R i [VBH + B oy mv? Ba]‘ mQV&/) xb-V,  (10.3.2)

and where V acts on the guiding center motion, and « is the gyro-angle. En-

semble averaging Eq.(10.3.1), we obtain

["67 dax 8H " B (1039
vxb 8 1 . R
- — 5o +—beV]5f>,

where F' = (f) is the ensemble averaged distribution function; SfI(6f)y = 0]
is the pert.urbed or the fluctuating part. Fr:or_n the point of view of transport, -
the quantity of basjc physical interest is the gyrp;averaged distribution function
(F)a = ({f))a which obevs |

5

(5 = b V)(Fla = 9<’U||b : V<5¢>a5%5fo>

-+ —q'<<v‘5¢')a b x €/5}7'0>,

(10.3.4)

obtained by gyro-averaging Eq.(10.3.3), and where 6k, satisfies the nonlinear

equation

| OF, . 1
+ ’U”b . V)ého = q[a—‘H-ZLLJ -+ E

+ (¢/B)b x Véhy - V(6¢)q.

2

5 bx'@Fo-f/}-éd;

(10.3.5)

Notice that we have not yet specified the nature of ensemble averaging; a
convenient ensemble will be defined later. We shall also show that the second

term on the r.h.s. of Eq.(10.3.4) is the diffusion term ( the first term is clearly
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the power term ). The analysis becomes much more perspicuous in the Fourier

representation in which the aforementioned term takes the form

(V6%)o - b x Vhg = V - [(Vérh)q x bbhy]

=V Y i(ky x b)6thy, Jo(k1,1v1 /Q)6hs,

k11k2

(10.3.6)

The ensemble is now so chosen that the ensemble averaging implies krl +
ky = 0,i.e., one chooses only those modes which have equal and opposite four
momenta. The operator V outside the summation over Fourier component
acts only on the macroscopic quantities contained in the summation ( these
quantities are slowly varying and hence are not Fourier transformed ). Equation
(10.3.6) becomes

<<\75¢)Q b x <75h0> Vo 3T (ks x b)sgh, Jo(ky, 101 /) Rs,. (10.3.7)
k1+k2‘_0

At this stage, we go back and apply the standard renormalizing procedure
to Eq.(10.3.5) and obtain the linear response

dF,
Shi = —qu<§{9w + Qb X VFy - k1> Jo(kivy /Q)6¢x, (10.3.8)

where G}, is the renormalized propagator [ Eq.(10.1.11) ]. The nonlinear power
term ( the first term on the r.h.s of Eq.(10.3.5) ) is associated with transport
in velocity space and will not be investigated here. Substituting Eqs.(10.3.7),

(10.3.8) into Eq.(10.3.5), and inlegrating over v , we obtain

0
‘ +vyb - V) Fy(v V - (¢/B)*Im ki x b)Gy,(kz x b
(o +vib- V) Foley) = V- (¢/B) 2 baxbiOntext)

- VFo(v))To (k3 1 /2)(6%, 6053, ) +
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The set of transport equations can be built up by taking various v moments of
Eq.(10.3.9); the associated transport coefficient can also be readily identified.
In particular, the energy transport coefficient is associated with the term ( from

the second moment )

- c 2 -
V- m zk:(k x b)To(b)(k x b) - m f dov2 G ¥ Fo(oy) (S9px67), (10.3.10)

where Fo(v)) = (ﬁvo)‘le:cp(—_vﬁ/vg) is the one dimensional Maxwellian, and
b = k% p? /2. From Eq.(10.3.9) we see that the turbulent transport coefficient . .

can be written in the familiar form D(T) ~ (v, )?7., where §v, is some per-

turbed perpendicular velocity induced by the fluctuations, and 7. is the shortest»-l_,, :

correlatlon time. Several general properties of the diffusion coeﬂ'ic1ent are easily
gleaned from Eq.(10.3.9):

| (1) >Larmor, radius .eﬁects cause the diffusion coefficient to be suppressed
by the factor I'g(d) -——‘]O(b)emp(—b) ~ (1/v?b) (b = o),

(2) In the expression for the diffusion coefficient there are two competing
times scales ( provided w is small so that w™! > 7, ) (kyvg)™! and T! =
v(k_z,_Dl)_l; their origin is in the renormalized propagator Gy ~ (w — kyoy +
iT'x)™!. Thus 7. will equal the shorter of these times, (kyvo) ™t if ko > k3D,
or (k3D ) 'ifk?D, > kv,

(3) It is possible to obtain the ratio of electron to ion turbulent transport
coeﬁicient, R=T E:) / I“ff) although neither of these can be indivi dually evaluated
without knowing the saturation fluctuation level which, of course, requires the

complete solution of the nonlinear problem. As an example, we work out the
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ratio R for the energy transport caused by kinetic electrostatic drift waves which
are characterized by the inequality kjv; < w < kjve. For the regime k”v; >
l—‘,(:)l,k”vi < FS), it is straightforward to evaluate 7.9 ~ (V7 /Eyve ) (w/kyve)?,
and Y = ]_"O_ll"fj)/(wz + (I‘S:))z) leading to the ratio between the transport

coefficients

VT (@ je (10.3.11)

R=xe/xi = (0 /r0) = .
X /X / Po(b) k”'ve 1-.I(:)

Notice thafo for drift waves ( kips~1land w< kjve ) R < 1. The conclusion
R <1 does not change even if the other limit (kjvy < I‘ie) ) were examined.
This conclusion seems to be in direct conflict with the tokamak experiments
where R = x./x; > 1. It is thus difficult to believe that the electrostatic drift
wave could be responsible for the observed anomalous electron transport in

tokamaks.
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XI. Experimental Evidence of Anomalous Electron Transport

Because of its importance to the scientific feasibility of magnetically con-
fined fusion, the energy confinement and, in particular, the anomalous thermal
transport of electrons is one of the major physics problem posed by tokamaks.
The most frequently used measure of tokamak performance is the global con-
finement time, 7y = W,,,/P;, where W,,; is the total energy stored in the

plasma,

Wiot = / dvn(T. + T}

and P;, is the rate at which energy is being supplied to the plasma, which may
be from Ohmic heating; neutral beam injection or some form of radio frequency
( RF ) heating. The measured global energy confinement time, when compared
to the confinement time calculated with all classical losses included, indicates
whether or not anomalous losses present.

Clea.rd evidence for anomalous e]ectron. transport losses came from ohmi-
-cally heated tokamaks operating in a low density regime. For ohmically heated
tokamaks, the total input power is simply the Ohmic power that goes directly
into the electrons. If one assumes that there is no significant anomalous en-
‘ergy transfer from electrons to ions , the rate of Ohmic heating of the electrons
is much faster than the rate of classical energy transfer from the electrons to
the ions for sufficiently low plasma densities. This allows the energy transport

of ions and electrons to be studied separately, and a large uncertainty in the

ion losses causes only a small uncertainty in the total loss. Many tokamaks
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operating in this regime, including Ormak,21:122 TFR 123124 Alcator A28
PLT,126:127 and ISX-A,128 clearly showed that the electron losses were anoma-
lous,'i;e., the observed energy confinement time was much shorter, typically by
a factor of 10-100, than that expected on the basis of the known neoclassical

processes.

To understand the processes governing the energy confinement, it is essen-
tial to determine first the dominant energy loss channels in the plasma, i.e.,
if the energy loss through the electron channel exceeds the losses from other
channels, especially, the energy loss from the ion channel. The following is
mainly concentrated on the analysis of experiments in comparison of these two
types of losses. This comparison is also important to identify the nature of the

anomalous energy losses.

~ For present generation”of tokamaks operating in a rather highb density
regime, it is generally a rhuch more complicated matter to determine the mag-
- nitude of the ‘anomalous electron losses. However, the power balance can be
: iﬁvestigated from the knowledge of electron density and temperature profiles
and the reasonable assumption on the ion temperature profile. Of course, the
‘contributions to the power losses due to impurity radiation and charge exchange

~have to be determined.

A well-known example is the comparison of energy confinement times at
similar densities between pellet and gas fuelled discharges in Alcator C.129:130 Iy
the gas fuelled discharges only if the ion conduction of four times the Hinton-

Hazeltine neoclassical value!®! is consistent with the temperature data and
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implies the well-known Alcator scaling,'3? the linear dependence of 7g, on 7,
where g, = W, /P, ( W, the electron stored energy and P,, the net power to
electron ), the electron energy confinement time, and, i, the line averaged den-
sity. In .this analysis the ion temperature profile is inferred from the ion power
balance equation using the assumed model for the ion thermal conduction, ;.
It is also found that the anomaly factor four on x; seems to be independent of
current over the range 250 < I, < 720 kA.'?® Another feature in the gas puffing
discharges is the density profile much broader than that in other high density

plasma, such as Alcator A and FT, discharges.!32:133

The assumed anomalous ion conduction is verified by the pellet fuelled dis-
charges in Alcator C. Because of the transient nature of pellet fuelled plasmas,
the. study of energy confinement properties is somewhat complicated with re-
spect to steady stéte discharges with gas puﬁng only. A 1D transport code was
used to solve the following time dependent equations: magnetic diffusion, elec- .
trén energy balance, ion energy balance, pﬁrtic]e balance, and neutral transport.
The outputs of this céde are energy and particle confinement times, thermal
and particle diffusivities and neutron rates, and # and inductance values which
can be compared with the measured values. Alternatively, confinement can be
calculated by using the standard procedure from measured profiles and includ-
ing the inductive correction to the loop voltage. These two methods give similar
results when the temperature before pellet injection has recovered and a quasi-
steady state has been reached, 30 to 50 ms after pellet injection. The pellet

fuelled discharges show a clear improvement in confinement and the apparent
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saturation of g as a function of density can now be explained by the Chang-
Hinton neoclassical ion conduction.’® Thus, for pellet fuelled discharges, the
energy confinement in Alcator C behaves like that observed in Alcator A and
FT tokamak,'3® and the production of very peaked density profiles removes the
anomalous ion transport, which had to be invoked to explain the gas fuelled Al-
cator C results. The typical value of . at the half-radius after pellet injection
is aBout 0.1 - 0.25 m®s™! ( the calculation is subject to uncertainties in the
radiated power term ), while the y; at the half-radius is less than 0.1 m2?.s™%

after pellet injection, a decrease from 0.5 m2-s~! before pellet injection.

Details of the energy ti’ansport processes has also been investigated in.-
~ the ohmically heated Doublet 1II plasma!®® with the. aid of transport code
ONETWO 137 The experimental profiles of Te,ne -and Pmd are inputs to the
code together with the global parameters I,V BT, etc. The calculation of
the ion power balance includes power lost by conduction,convection and charge
exchange and power gained by ionization. Since the observed gross.electron con-
finement time ( Tge = We/Pop ) can not be explained by setting the ion thermal
conduction equal to the neoclassical value, xVC by Hinton—Haze]’ci‘ne131 ( for the
calculation of X}V c oxygen is assumed to be the sole impurity ), the procedure
. used is to vary the magnitude xi/xNC until the code value of T; agrees with the
experimental value. An example of the transport analysis is the H, discharges
with 7ie ~ 2.9 X 10*3cm ™3, By = 20 kG, I = 464 kA,T.(0) = 0.8 keV. Agree-
ment between measured and calculated 7} is obtained for 2< xi/xN€ < 7. The

typical electron conduction is about the twice of the ion conduction ( Fig. 44
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and Fig. 45 % ). For higher densities the energy confinement times saturate
and decrease with A implying that neoclassical ion thermal conductivity is ex-
pected to dominate the energy transport. The constant anomalous factor of jon
conduction, x;/xNC is also reported in ISX-A128 (1-2),in TFR-600'38 ( ~ 5
). Good agreement was reported between measured T and those calculated by
neoclassical theories for TFR3® and PLT,° but it is not T but T, — T; that

determines the power balance and the later is difficult to measure accurately.

The energy balance is studied for XB discharges in beam injected Doublet

ITI. *#! Neutral beam particle deposition is calculated by using a modified ver- -

sion of the NFREYA code.!¥? Fast ion slowing down is modelled by using the
method of Callen et al. 143 The code is used to solve the current diffusion and
" ion energy balance eqﬁations. The ion énergy balance includes energy exchange
* with electrons and neutral beam produ'ced fast ions as well as conduction, con-
‘vection and charge exchange losses. The code adju’stsk Zesy to match the loop

voltage. Assuming that Z.;; is due to oxygen, the code adjusts.the x;/xN¢ to

match the measured neutron rate. lon heat transport is consistent with four

times the Chang-Hinton neoclassical heat transport!3 for Br = 22kG,I, =
520 kA, fi, = 5.8 % 10713em™3, P, = 2.8 MW, minorradius = 40 cm, x = 1.6.
The heat conduction of ¢]ectr6n and ion is almost the same at r = a/2 ( Fig.
46 (a)'! ), however, the electron heat conduction is higher near the edge and
lower at the center than the ion heat conduction and, in terms of the volum¢

integrated power the loss through electron channel is dominate ( Fig. 46 (b)'4!

).
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The energy balance analysis in PDX discharges is carried out!* by the
kinetic transport code TRANSP,!45:146 The data inputs to the code include
electron density and temperature profiles, line averaged electron density, ra-
diated power, central ion temperatures, plasma current and position, surface
voltage, Z, s, neutral beam power, injection voltage, and beam geometry. The
calculations in the code are devided into five major sections: magnetic diffusion,
thermal neutral penetration, beam heating, particle balance, energy balance.
Ion conduction is evxss'umed to be some multiple of the neoclassical value, in order
to match tﬁe fit to the thermal charge exchange spectrum and the magnetically
measured (f7). The fully stripped oxygen is assumed the sole impurity. A fyp- '
ical example of the volume ihtegrated lon and electron power balance profiles
is shown in Fig. 47(a),(b)*** for a ﬂhree beam discharge with 1.5 T and 300
: kA. For this case, T.(0) = 1.25 keV,T; = 1.90 keV and 7, = 3.8 >< 10*3cm 3,
| ~ A neoclassical multiplier of two, using Chang-Hinton?34 value,. vﬁas heeded‘to
bribng the fits to the measured and calculated thermal charge exchange spectra
into agreement. Beyond the rédius of 10-15 cm, the coupling of the ions to the
electrons becomes the dominant loss term for the lons. The dominant loss term’
for the electrons is clearly the anomalous transport loss, which is attributed
to thermal conduction. In contrast to the analysis of Doublet III, the electron

conduction very substantially exceeds the jon transport loss across the plasma.

In summary, the electron energy transport is apparently anomalous in all
tokamak discharges. The ion thermal transport is found to scale as the neo-

classical heat conduction with a constant factor from 2 to 5 for most tokamak
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discharges. It is not yet conclusive whether or not the ion energy transport
must be anomalous whenever x;/x¥° > 1. The important thing, however, is
that the electron energy transport is the dominant energy loss channel for a
variety of important discharge condition , no matter if the ion energy loss is
considered as anomalous or not. The energy loss from electron channel can be
estimated about two to three times of the energy loss from ion channel in the

typical discharges of present day tokamaks.



176

XII. Electromagnetic Turbulence Model for Electron Transport

The subject of anomalous electron transport in tokamaks has been in-
tensively investigated®”"—158 with a view to obtaining scaling laws for energy
confinement and electron temperature. A very important feature of the recent-
tokamak experiments, namely the universal detérioration of energy confinement
in the presence of auxiliary heating ( irrespective of the heating scheme ) has
prompted several authors to propose mechanisms for anomalous transport that
_ are expected to operate for Ohmic as well as auxiliary heating.'%~15° Most of
these machanisms result in transport coefficients of the Ohkawal4? type. These
interesting phenemena indicate that there must exist a strong common feature

to all these turbulence theories.

The analysis of the experimental evidence in XI shows that the energy loss
of a tokamak is mainly through the eleétron channel rather than the ion chan-
nel. The candidate fluctuations responsible for the anomalous transport must
be such that their effect on ions is minimized. The electromagnetic fluctuations
oBvious]y meet this requirement. The kdensity dependence of the energy con-
ﬁnement. time is another reason that favors electromagnetic fluctuations to be- a
candidate responsible for the anomalous transport, since the pure electrostatic
fluctuations can not lead to the observed density dependence of transport in

collisionless plasmas.

At this stage, it must be clearly stated that the anomalous transport may

be a result of a variety of processes. A model based on a limited number of



177

processes is bound to have limitations. waever, if a particular process has the
potential for explaining some salient features of the experimental observations,
it must be taken seriously. It is precisely in this spirit that we are arguing for

the usefulness of a model based on the electromagnetic fluctuations.

We begin by making a comment on the linear stability of the electromag-
netic fluctuation in collisionless tokamak plasmas. It is found that the elec-
tromagnetic fluctuations are strongly damped by the effects of magnetic shear. )
The shear damping is usually measured by k| ve, where k| is the shear-induced
parallel wavenumber, and v, is the electron thermal speed. Obviously electro--
magnetic fluctuations can grow to significant levels only if kv, were to becon;.e. :

sufficiently small. At this stage, we have no clear cut mechanism for driving

the electromagnetic mode unstéb]e, élthough several possibilities are being pur-

- sued. ‘Thus, we shall simply assume that an appropriate unstable mode ( due

to the shear damping suppression by some nonlinear effect, or a forced mode
driven by some other fluctuations ) exsists and proceed and explore its conse-
quences. This exploration has to be of a “ generic ” or a general nature because

the details of the instability are not available.

A general analysis of turbulent diffusion [ f. Eq.(10.3.9) ] shows that

- the known anomalous electron transport scalings due to electromagnetic micro-

turbulence are characterized by one or more of the inverse time scales in the
remormalized propagator: the mode frequency w, kjv. ( k|| is the parallel wave
number, v, is the electron thermal velocity ), and T, = k_zLD(lT) the turbu-

lent collision frequency associated with the turbulent diffusion coefficient D_(LT) .
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Three distinct types of sclaing emerge

(1). Rechester-Rosenbluth type:148 kjve ~ w > T} ( weak turbulence

ve (6B 2
D(f)zk_”<_§> ; (12.1)

scaling ),

(2). Ohkawa type'4” ( strong turbulence scaling ): kjve ~ Tt > w,

ek ) k
R N A ¥

12.2
ki ? B k_L ? ( )

(3)- A new type ( strong turbulence scaling, which we develop here ):
w~T% > kv,
(12.3)

For electromagnetic turbulence k; ~ wpe/c, and kj ~ §/qR in Eqgs.(12.1) and
(12.2).

It is interesting to observe that the saturation level §B /B in the new type
scaling [ Eq.(12.3)] is an expression of the condition that the electron drift
| speed in the fluctuating fields (v.§B/B) équals the perpendicular phase velocity
of the wave. This balance is fundamentally different from the conventional
balance where the nonlinear damping rate is balanced by the linear growt‘h.

rate to yield D) ~ «/k%.'® Clearly the saturation mechanism leading to the

new type scaling has no dependence on +, and results from a balance of the

linear current with the nonlinear current induced by the fluctuations. Since the
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underlying microturbulence is considered to be due to the expansion free energy,
w ~ w*, where w* is the diamagnetic drift frequency, is an obvious choice. The
above argument then leads to a new formula for the anomalous electron energy

transport:

2
DT ~ ( - > w*. (12.4)

Wpe

Notice that k| plays a fundamental role in both the Rechester - Rosenbluth
type weak turbulence as well as the Ohkawa type strong turbulence scaling. .
The basic point for 'seeking.a new typé scaling is that the inequality kjve > w
( which is needed to obtain these two scalings ) is precisely the wrong limit
for the electromégnetic modes to grow in a collisionless plasma. In fact, unless -
‘ghe eflective k; is suppressed by some mechanism, it will be inconsistent to
assume  that the dominént transport process stems from essentially magnetic -
g ﬁUctuaﬂiéns. o |

Scaling implied by Eq.(12.4) can be.rigorously derived frém a theory of
céilision]ess electromagnetic turbulence based on the Vlasov equation and the -
 Ampere’s law, in which the shear damping lsuppression is modelled by setting
kj = 0. One must, of course, stipulates that somehow the fequired modes have

grown to suprathermal levels.

XII.1 Theoretical Model

We now derive the nonlinear wave equation and show how it suggests the

aforementioned [ Eq.(12.4) ] scaling for the diffusion coefficient. The diffusion
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equation is then solved and its predictions are compared with a variety of toka-
mak experiménts.

Our starting point for a low-3 tokamak plasma is the system of two-
dimensional electron drift kinetic equation ( ki = V| = 0 ) and the parallel

component of Ampere’s law:

471'e
V 5A|| dv”v”(Sf, (12.1.2)

where f = fo + 6f with fo = (f) satisfying 8,f, = 0, and (--+) denoting’

ensemble average.
A straightforward iteration procedure in which we retain terms up to (64)3
(in this simple model, the propagator of the drift kinetic equation is simply

w™!) leads to our basic nonlinear wave equation

(w-wi)Ar = Y €@ (kg ko, kg)6 Ay, 61,64y, (12.1.3)
ki+ka+ka=k

with wi = w*(1 4+ k?¢?/w?2,)7? where w* = (cTe/eB)k,L7" is the diamagnetic

drift frequency, L' = T, *(dT./ dz) is the temperature gradient scale length,

= (w, k) and k = k is the perpendicular wave number, wpe = (4mne? /m)1/?

is the plasma frequency, and

_ eVe (kl X k) b(kz X ks) b
Re€(3)(k1,k2,k3) = ( ZB > (w2+w3)(k2+w2 /CQ)

3
4
(wz—w N 3—w(k3)>,

]

(12.1.4)




181

wce

B?(w, + w3) (k2 + w3, /c?)

Ime(s)(kl, kz, k3) = - [(w2k§ + w3k§)'

(12.1.5)
(kl X k) . b+ %wl(kg X ka) b(k§ — kg)J.

Notice that Eq.(12.1.3) does not contain a linear growth rate term. In
fact, our model is quite independent of the linear instability responsible for
turbulence as long as it is assumed that some instability with a characteristic

frequency w* exists. Consequently, the turbulent spectrum cannot be derived

by the conventional balancing of the linear growth rate with nonlinear damping.

Instead, we derive our spectrum by the condition that the nonlinear dispersion -

arising from the mode-coupling term balances the linear terms.
We now follow the standard methodology of renormalized strong turbu-
lence theories; we divide the nonlinear [((6A4)° term] term into coherent and

| ‘intrinsically incoherent parts, group the nonlinear coherent term with the lin-

ear term ( renormalization of the wave propagator ), and finally obtain the .

spectrum equation bw multiplying both sides of the renormalized equation by

their complex conjuga.tes and using quasi- Gaussian approximation to evaluate

the correlations

20 ) elhr ke, kg)e® (ky, ks, ka) Iy, L, I,
ki+ko+ks=k

2
<w—wk—QZRec(3)k1,k —ky) Ik) (Zlme (ky, &, k1)1k>

: (12.1.6)

I =

where I, = (§4;64%), and

B (ky, by, ks) = €3 (ky, by, ks) + e®) ko, ks, ky) + e (ka, ki1, ky).
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Since Ime® is much smaller that Ree® and can be neglected, Eq.(12.1.6)
becomes a simple numerical integral equation in the dimensionless quantities

&, 1 %, k1 which have the following normalizations:

ki =k (wpe/c) | (12.1.7)
I = I (c/wpe)(Bwi Jv. ) (12.1.8)
w = Qw (12.1.9)

with wg = (dT, /dr)(wpe /eB), i.e., the value of w, for ky = wpe/c. Remenbering
that I = (64,6A%) = k7?(8B)?, we readily deduce from Eq.(12.1.8) that the

perturbed magnetic field must follow the scaling

6B w* w*c
<B> ~ e S (12.1.10)
e eWpe

which is just the scaling obtained by Drake et al. in a similar mode]. 149 Eq. (
12.1.10 ) allows a very simple physical interpretation; the saturation is achieved
when the electron drift velocity in the ﬁuctuaﬁing ﬁeld ( bvg ~ v 6B/B ~
ve6B/B) resonates with the perpendicular phase velocity of the wave. This
‘scaling is crucially dependent on the assumption of a small k; electromagnetic
turbulence, therefore, it is not surprising to find its consistency \%’ith diffusion
of the “ strong turbulence ” type, Where ky is small. .

Whithin the framework of the renormalized strong turbulence theories, it is
known that the electron turbulent diffusion coefficient in a fluctuating magnetic
field 6B obeys

D" ~ :—iéB/B (12.1.11)
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which, when combined with Eq.(12.1.10), yields

DM~ 2
K
or explicitly,
dT. c?

D =¢(1 + a/q.) (12.1.13)

b
dr eBuwp,

where @ ~ 1,7, = dInT, /din n, and £ is a number to be determined.
XII1.2 Comparison with Tokamak Experiments

Substitution of Eq.(12.1.13) into the energy transport equation ( in a cylin-

drical model )

%—;;TDS_T)%‘;?.TE:P&(T) o (12.2a0)

leads to the dimensionless system ( where, for Simp]icity Me > 1 has been -

: aséumed-')

1d =z dfd_ . _ |
1d =z dI. d. — kB.(z) 12.2.2
r dx \/m dr dmn’(w)Te(m) kP, ((B) ‘ ( )
? 5 2 2
K= 56T = eBwpe(0)P. /26c*n(0)T72, (12.2.3)
where z = r/a’is the normalized radial variable, 7i(z) = n(r)/n(0),n(0) is

the central electron density, Te(a:) = Te(r)/T., T, is some arbitrary nomalizing

- temperature, and Jse(m) = P.(r)/P,, where B, is scaled to the average net

electron power. density in the tokamak. The structure of Eq.(12.2.2) leads us

to conclude that the central electron temperature must be of the form

- 2 eBw,.(0)a®P, 12 G b, '
T.(0) =-T*Te(0)=T*F<2?W,b,p,> :[ ;75(3) } i%, (12.2.4)
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where ﬁ’(b, p) is a form factor depending on the parameter b and p which are
respectively the characteristics of the electron power, and number density pro-
files. Notice that the last step in Eq.(12.2.4) is merely a statement of the fact

that the central temperature must not depend on our normalization choice.

Numerical solutions of Eq.(12.2.2) confirm Eq.(12.2.4), and in addition,

reveal the following interesting properties:

(1). The normalized temperature profile Te(a:) remains essentially unal-
tered for physically reasonable density profiles. This is in agreement with the
experimental observation commonly referred to as the decoupling between en-

ergy transport and particle transport.1%°

(2). For a large variety of power density profiles ]36(:3), the variation in -

To(z) is comparatively small. Even for the “ edge heaﬁng ” case, a small
amount of ohmic heating power in the central region is sufficient to provide

a reasonable Te(m) profile, thus supporting the so-called “ principle of profile

consistency ”.2%% The curve 1 and 2 in Fig. 48 compare the results .of the

experiments in edge heating?®! in TFTR, and of the results in normal heating.
There are exceptions, however: (i) if P,(z) vanishes completely in the central
region ( like some stellerator exp.eriment's162 ), the temperature profile developes
a “flat top ” in the central region; (ii) if the net electron power density is very

small or negative in the edge region, or it is highly concentrated in the central

region, a substantial deviation of Te(m) from its normal shape may and does

occur ( Curve 3 in Fig. 48 ).

(8). The form factor F(b,p) is generallly an insensitive function of b and
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Fig.48 (a) T.(z) versus ¢ = r/a. Solid curves 1, 2, 3 in Fig.48 (a)
are the electron temperature proﬁles:corresponding to‘the‘ electron
power density profiles represented, respectively, by solid curves 1, 2,
'3 in Fig.48 (b). The dots with error bars represent the experimental
results in TFTR “ edge heating ”16? corresponding to power density

_profile given by dashed lines in Fig.48 (b).
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p; it ranges between 0.9 - 1.1 for the values b and p which characterize normal

discharges. For some unusual discharges, e.g., those with power density highly

concentrated in the center, ﬁ’(b,p) may be well above 1.4. However, the nar-
rower temperature profile does not mean a substantial gain in electron stored
energy.

‘ . Before presenting a detailed comparison of the theoretically predicted elec-
tron temperature 7. (r) with experiments, we point out several limitations of
the present appraoch: .

(a) The present theory can only cope with the situations where the MHD
activity is either absent or has a minor effect on the elecﬂrog dynamics. For
example, in some cases the sawtooth activity does construct a flat-top in the
temperature profile within the inversion surface. In such cases, the present
theory is valid only in the region outside the inversion surface, i.e., the “ con-
ﬁnernlent region 7.

(b) Since the detailed knowledge of P.(z) is generally not available, A is
taken to be a measure of 7,(0) to be compared with the experiment ( the

parameter ¢ is supposed to be machine independent ).

A [keV] (12.2.5)

[eBwpe(O)a‘_”Pe} v 0,44 [B{T](a/R)pe[MW] 12
CzTL(O) TL[14](0)

where By} is the magnetic field B in Tesla, n(14) is the density in 10'* cm™3,
Perrwy is the bulk electron power in MW, R is the major radius. For those
experiments with sawtooth activity the A should be reinterpreted as the value

of Eq.(12.2.5) multiplied by a factor. This factor is characterized by the ratio
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of normalized temperature at the inversion surface to that at the center. To
determine the ratio use is made of typical theoretical profile [ for instance, the

curve 2 in Fig.48.a | and the experimental value of the inversion surface.

(c) The present theory | Eq.(12.1.1), and thereafter ] is not likely to be
valid for discharges where the electron distribution function departs substan-
tially from a Maxwellian, for example, in discharges dominated by lower hybrid

current drive at low density.

Guided by the aforementioned consideration, we display in Fig. 49 a com-
parison between the theoretical preticted ( characterized by A ) and experi- -
mentally observed [ T, (0) ] central electron temperature. The data is primarily
collected from published literature. We have considered dlscharges ranging from
0.3t07 keV in temperature with a variety of hea,tmg schemes such as Ohmlc (
OH ), ion cyclotron resonance (ICRH ), electron cyclotron resonance ( ECRH.
), and neutral injection ( NI ) heating. : ‘It_‘is.clear that most of the points (
A —T,(0) plot ) fall in a straight narrow band parallel to the A = T,(0) line.
This allows us to estimate £~ 0.8, although some points are located on the
upper side of the narrow band. These latter points are known to correspond to
the L-mode, and are believed to be plagued by strong MHD activity. However,
even these data points are not far from our predictions. The principal message
of the plot is strikingly obvious: all these machines with a large variation in
parameters and heating schemes are characterized by a region ( the confinement

region ) where electron dynamics is anomalous and dominant.

In addition to comparing the specific values of A and T.(0), we must also
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compare the predicted and observed parametric dependence of the central elec-
tron temperature, in particular the scaling with the external magnetic field B ,
the density n, and the total electron power F.. Before displaying our data,
we would like to mention that several empi'rical and semi-emperical scaling of
T.(0) have been suggested for tokamaks with Ohmicl63-166 o well as neutral
beam heating.!” Most of these scalings are similar to the séaling contained in
A. Tt indicates that the 7, (0) scaling alone is not a strong criterion to prove or
disprove a model, on which basis the corresponding scaling is inferred.

| For ohmically heated tokamaks with Spitzer-Harm resistivity, the local

electron energy confinement is derived to be

75, (0) ~ Z;é/?ng/mB1/7a5/7R4/7q4/7(a) (12.2.6)

The predicted density dependence of g, (0) ~ n®/14 i compared with the-

- Alcator A ciatalfas in Fig.SO. The agreement is very good up to n ~ 8 x 1014
‘Acm"3 beyond which the energy loss through the ion channel probably accounts
f:o'r‘ the deviation.

| Because of difficulties involved in a direct measurement of P. we show
only one experiment on Doublet III with auxiliaryv heating'¥! to compare our
Té(O) ~ P2 scaling. It is easy to see from Fig. 51 that the theoretical scaling
is an excellent fit to the experimental data, where Py, ~ P, is assumed. From
the temperature scaling, the electron energy confinement time is then inferred

to be 75, ~ P2,
- We have analyzed the anomalous electron transport on the model based

on a model ( kj ~ 0 ) electormagnetic microturbulence driven by electron
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temperature gradients. We find that the predictions of this simple theory are

in good agrrement with tokamak experiments.
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XIII. 7. - Mode and the Induced Electron Transport

The electromagnetic wave is not the unique choice for fluctuations that
have small effect on the ions. If the fluctuation wavelength is much smaller
than the ion Larmor radius, the jon response to such a wave is essentially
adiabatic, and the convective noﬂlinearity goes to zero. This finite Larmor
radius effect suppresses the ion diffusive term in the transpért equation by the
factor T'p(b) <« 1 [ Eq.(10.3.10) ].

In collisionless plaéma, the 7. - mode is essentially an electrostatic wave
with perpendicular wavelength so short ( kjp; > 1 ) that the ions respond
adiabatically. This mode is destabilized by the finite electron témperature gra-
dient. Since the ion transport due to this mode is negligible, we examine its
consequences for the electron transport.

In a shearless slab model] the linear gyrokinetic equation”® is solved for
Maxwellian equilibrium distribution. The perturbed distribution is found to be

( j is the species index )

g; g; 1 .
§ . I RN B R .
fk(’U”) | T}, fOJ (v”)6¢k T? w — k”v” {ananJrl(bJ)
2
. m;vi 1 v
Fle et 777'( oT, 2~ bj>])F0(bj)}f0j(vrl)(5¢k ~ —64%),

(13.1)
© where gj,m;,T; are respectively the charge, mass and te;ni)erature, w;, is
the diamagnetic frequency due to density gradients, n; = (Ln/Lz;), b; =
(1/2)p3k%, p; is the Larmor radius, (b)) = In(bj)eccp(}——bj) with I, - the

modified Bessel function of nth order, fo;(v) = (l/vth,j\/E)emp(—vﬁ/vfh,j),
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with v, ; the thermal velocity, T; = (1/2)m;v3, jrand k= (w, k), ky).

The perturbed density and current result from the appropriate v moments:

*

by = — ‘3]{1—( %2 ) roy) + 4, 0y - To(t;)] o

o (13.2)
J
+ T]ay(k)(&ﬁk - chfsAk)
and
gn w w
Sk = == 120 (R)(Z 6 Ak — kysgn) (13.3)
!
with
o;(k) = SIn " wTO(bj){l +GZ(G)] + w:)T {[1 + G Z(¢)]b;[T1(b;) — To(b;)]

+165+ G2(G) - 1/22(6))GTo(b )}
‘ (13.4)

| ~ where (; = w/|ky ‘vth,j' andiZ - the dispersion function. For adiabatic ions,
T (b:) — 0. | |

Substituting Egs.(13.2) to (13.4) into the quasi-neutrality-equation and
Ampere’s law yields the dispersion relation for the Ne - mode.

*

2
w;n> To(b)+ klae(k)

T+1— <1— L. [Ty (be) —To(be)] = , (13.5)

kL +20C 5 “re oe (k)

where 7 = T, /T;. The term proportional to (wpe/ c)2 in the denominator of the
last term of Eq.(13.5) arises from electromagnetic part of the perturbation. The
quantity QCfae(k)(wge /c?k3 ) then measures the ratio of the electromagnetic to

electrostatic component.
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Marginal stability ( Imw = 0 ) condition is determined by solving the

following two equations,

MednTo(be)(C = (7e /2 — 1)dnTo(be ) — Mednbe[T1(be ) — To(be )] + CeTo(be) (13.6)

and
dre
FO(be)
d,To(b.) d, 5.
T+1—ro(be)+%Jrc—nebe[rl(be)—ro(be)]: ——, (13)
€ € 1+F0(be)];_2Ce

L
where I;:_‘?LE kicz/wge, dn = wg, /|kyj|ve.
The conductivity [ defined by Eq.(13.4) ] at the rﬁarginal stability is found to
be

ou(k) = %“’37’ To(be) (13.8)

w

After some algebric manipulations on the Egs.(13.6) and (13.7), we obtain

[+

)(ne/2)To(be) — T'(b.)] <’
(13.9)

dn (1 +

b bl
|

Ce = - (b ) R )
A+ =) + XTo(be)D(Be)
B

and a quadratic equation for X = dflne/ici,

~

T2(be)12(be) X2 + {Po(be)f‘(be)(zi— + To(be) + FO(be)l}%)
’ AL
: 7 2/ 7e = ) -
—(1- %) (51“0(53) — F(be))klfo(be)}k (13.10)
I‘O(be)> _ 0

7,2
1

+ 77+ fo(be)] <1 +




195

where
F=1+414To(b.), I'(be) = Lo(be) + Mebe[T'1 (be) — To(be )]

Only two positive roots of Eq.(13.10) are meaningful. The critical point occurs
when the two positive roots merge. The necessary condition for instbility turns

out to be

K,
e> elcr. = T 13.11
Ne 2 [7e] X, (13.11)

~with

L

AN\ 2 .
_ T\ g . T . Ty
Ka—<l—7é?> k_L+2T+F0<1+E>+2\/T(T+F0)<1+E>

and

» R 2 ’ .
) T ~ 1 Fl
Ka= (1= —) k% |- +b (12

d.'< ki) l[2+ ( FO_:[.'

+be<1—ﬂ> [27“'4—}—1’0(1-{-;) +2 /7“-(7"+1"o)<1+&)},
To A R

- where the argument of T, (be) is suppressed.

In the electrostatic limit ( I;:_ZL — 00 ), Eq.(13.11) reduces to

1
[eler. = 5 T (13.12)
o1 - 0]

The critical Te([e)er.), given by Eq.(13.11), is plotted versus be in Fig. 52
for given T a.nd.l‘c_zL (or Be ). It shows that the electromagnetic part has a
strong stabilizing effect on the mode at longer wavelength. For example, when

T=1, l::f_ = 10.0 and B, = 0.005, the 7. - mode can not be destabilized unless
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Fig.52 Minimum marginal stability of 7 mode for parameters b, = p2k? /2 =
(1/2)Be(kic/wye)?. Curve a: T = 2.0, (k1c/wpe)® = 10.0; Curve b:
T = 1.0,(kLc/wpe)? = 10.0; Curve c: 7 = 0.5, (kLc/wpe)? = 10.0;
Curved: 7 = 1.0, (k1c/wpe)? = 10%, Curvee: T = I.O,ﬂe =1.0x1073,
Curve f: 7 = 1.0,4. = 1.0 x 10~2 respectively. Stable regions are

below the corresponding curves.




197

Me > 3.4 ( Fig.52 curve b ). However, when the electromagnetic part is ignored

[ Eq.(13.12) ], the stability threshold is reduced to Ne > 2.0 .

In Fig. 53 the threshold of 7, versus | %) [ve /w?,, is shown for fixed T, b, and
Be. The two edges of 7, — |kj|[ve /w}, curves in Fig. 53 are two positive roots of

Eq.(13.10), while the minimum is determined by Eq.(13.11).

Substituting the solution of Eq.(13.10), X or d,(> 0), into Eq.(13.9) results
in the frequency of the 7, - mode at marginal stability [ Fig. 54 ]. We illustrate
in Fig. 55 the threshold ];i versus |k |v /w}, for fixed 7,7, and B,. It is found
- that the minimum l;i = kﬁ_c2/w§e for instability is quite sensitive to 1,. When

Me < 2.0, the mode can only be destabilized for kic/wpe > 1.

-In contrast with the n; - mode of collision]ess plasmas,!?® there is enhance- -
 ment of stability threshold for the 7Ne - mode at small |k |ve /w, [F]g 53]. This.
s caused by the stab1hzmg effect of the electromagnetlc part . The stabilizing

effect of the electromagnetlc part on the 7; - mode can be ignored, however.

The dispersion relation Eq.(13.5) is solved numerically for both the growth-
rate and the condition for marginal stability. The latter results are in agreement
with analetica] ones given by Egs.(13.9) and (13.10). In Fig.56 the growth.
rate of Eq.(13.5) is compared with the corresponding results in a sheared slab
model,lstgu whereupon ky of the shearless slab model is identified as L;1, the
inverse shear length of the sheared slab model. The qualitative resemblance
between the two implies the soundness for the resglts of the simple shearless

model.

The phase space (w — kjve) properties of the 1. mode are shown in Fig.
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Fig.53 (b) Marginal stability for same parameters as Fig.53 (a)
d
except B = 2.0 x 1073

Marginal stability of 7. - mode for 7 = 1.0,8e = 1.0 X 1073, b =
0.1, 0.5, 1.0 for curves a, b, c respectively. Stable regions are below

corresponding curves.
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Fig.54 (a) Marginal stability of n, - mode for same parameters

as Fig.53 (a).
e
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Fig.54 (b) Marginal stability of 7. - mode for same parameters
as Fig.53 (b).

Fig.54 Marginal stability of 7, - mode for T = 1.0, 8. = 2.0 x 10~2. Curves

a, b, ¢ correspond to 7, = 1.5, 2.0 and 3.0 respectively. Stable regions

are below corresponding curves.
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Fig.55 Marginal stability of 5. - mode for 7 = 1.0, 3. = 2.0 x 1073, Curves
a, b, ¢ correspond to 7, = 1.5, 2.0 and 3.0 respectively. Stable regions

are below corresponding curves.
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Fig.56 A comparison of growth rate in shearless slab model with those in
shered‘s]a,blsg'. k| in the shearless slab is identified as 1/L,. Curves
I, 11, 1II are results in Fig.10 of Ref.159 . Curve a and b are results
in shearless slab model for 8, = 1 x 10~5,2 x 10~® respectively, with

other parameters same as Fig.10 in Ref.159.
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57. The solid curve is the marginal stability for 7 = 1.0,8=2x10"3, 5. = 2.0.
The asterisk ( * ) on the curve is the minimum (k1c/wpe)? = 53.9. The arrows
indicate the direction of increasing (kic/wpe)?, whilé the numbers by dots on
the curve indicate the (kLc/wpe)? - value. There are two lines encircled by the
curve in the plot. The line a and b represent the locus of unstable modes with
(k1c/wpe)? = 400.0 and 300.0 respectively, whereupon the growth rates, v/w?,,
at points (1), (2), (3) are 0.0657, 0.0771, 0.034 respectively ( for line @ ) and
0.0516,.0.0656,. 0.0291 respectively ( for line b ). The growth rates at point 2
are the maximum ones for given (ki c/wp.)?.

The electron transport coefficient due to the Ne - modve is estimated by two
methods: the mixing length theory and the solution of the nonlinear dispérsion
relation.

The norrnaiized growth rate 4 = v/w?_+/b., maximized with respect to
kj,be(k1) are shown in Fig.58 as a function of 7, for fixed 7 = 1.0, B, =
2x107%[Be = (wpepe/c)?]. The electron transport coefficient implied by mixing

length theory is thus found to be

Y Tecpe
D ~ 4 ~_L e 13.13
* 7k T JaeBL, (13.13)

A nonlinear dispersion relation is constructed and solved to estimate the
electron transport due to 7, - mode also. In the construction of the nonlinear
dispersion relation we replace the bare propagator of the Vlasov equation, w —
kyvyj, by the renormalized propagator, w —kjvy +4iI', with ' ~ k2 D, . The T is
determined by the marginal stability of the nonlinear dispersion relation. We

found that the transport coefficient given by this approach is quite close to the
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4 x 102

3x 102

k“v,

wen|

-'Fig-57 Phase space plot of 7, - mode for 7 = 1.0,8, = 2 x 1073,n, = 2.0.
Solid curve is the marginal stability, which encircles unstable region.
The numbers by the dots on the curve denotes the value of (k.. ¢/wen)?.
* is the minimum value of (k) ¢/w,.)? = 53.9 on the curve. Lines a
and b represnet the locus of unstable modes with (kLc/wpe)? = 400.0,
300.0 respectively, whereupon the growth rates v/w?, at point (1),
(2), (3) are 0.0657, 0.0771, 0.034 respectively for line a; and 0.0516,
0.0656, 0.0291 respectively for line b.
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~3>

Te

Fig.58 The transport coefficient due to 7, turbulence maximized with respect
to ki and kj for parameter 7 = 1.0. Curve a, b, c correspond to

Be=1x10"3,2 x 10_3 and 1 x 1072 respectively.
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result from the mixing length theory. Both the approaches indicate that the
electron transport coefficient due to the e - mode turbulence is more than one
order smaller than that typically observed in tokamak experiments. We also

note that the fluctuation level of the 7, - mode can be approximated by the

following estimate:

w
’

C
—8d ~ 13.14
le&b z (13.14)

L
which combined with the « strong turbulence ” type of diffusion D, ~ w /K3,
and k_]"_l ~ pe ( the step size of random walk ) gives a result resembling to

Eq.(13.13).
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XIV. Electromagnetic Fluctuations Induced by 7. - Mode

{

Since the observed anomalous electron energy transport in tokamaks is not
explainable as a direct consequence of the very short wavelength 7. - mode (
as observed in XIII ) one may attempt to examine if the 7, - mode plays an
indjre.ct role towards the understanding of the anomalous transport, particu-

larly, through the agency of the electromagnetic mode ( henceforth, to be called
the A - mode ) suggested in XII. In a sheared syste'm like a tokamak, the A -
mode suffers strong shear damping and can not naturally grow. In the presence
of externally caused turbulence ( for inst;nce, by the naturally unstable 7, -
mode ), the effective dielectric properties of the plasma can undefgo sufficient
change that the A - mode could grow in this altered medium. The mechanism
is similar to ( though not identical with ) the effect of classical collisions on the
. mode characteristics. In fact, Drake et al.'*® have shown that unrealistically
high classical collision frequency can, in priﬁciple, destabilize a microtearing
mode ( obtained by retaining the electrostatic component associated with the

A - mode as well ). We shall investigate this mechanism in XIV.1.

The annihilation of 7 modes is another mechanism for generation of the A
- mode. The amplitude of the forced A - mode obtained from the annihilation
of known 7. modes is estimated in XIV.2. Simplifying assumptions needed to

carry out the calculation will be discussed along with the results.

XIV.1 Nonlinear Destabilization of A - Mode by 7. - Mode
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The exsistence of 7, turbulence modifies the Ampere’s law through the
addition of an induced nonlinear ( in the amplitude of 7, mode ) current
whose strength can be measured by an effective turbulent collision frequency
vy Clearly vy must exceed some critical value ( due to shear damping ) before
the 7. turbulence could drive the mode unstable. We shall presently calculate
the threshold condition and examine if it can be satisfied for typical tokamak

 plasmas. Notice that the free energy for the eventual growth of the A - mode is

still the expansion free energy ( contained in the temperature gradients ) which

is first harnessed by the 7, mode, and then transferred to the A - mode.
In a collisionless plasma, the purely electromagnetic linear A - mode is

described by the parallel compbnent of the Ampere’s law ( in a sheared slab )

59, (14.1.1)

where >5J|?l) is the linear current, §¥ = (w/ck')6 Ay, is proportional to the

péfturbed vector potential, ky = k'z = (k,/L,)z,L, is the shear length,

k = (kyc/wpe) is the normalized wave vector along y, = is the direction of
imhbmogeneity. In Eq.(14.1.1) all length are normalized to §, = ¢/wpe, the

collisionless skin depth, and the normalized conductivity is given by .

o(z) = 2ggo{<1 - C%) [1 + T:%Z(I?CI)J
vl () -2

where Z is the plasma dispersion function,{ = w/|k'|6.ve, (o = (Wi, /K| 6eve),

(14.1.2)

"where w?,, is the electron diamagnetic drift frequency ( due to density gradient
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alone ) and 77 = Ly /Lt is the ratio of the temperature to the density gradients.

We shall see later that the mode described by Eq.(14.1.1) is shear damped.

It was pointed out earlier that the presence of the 7, turbulence will affect
' the dynamics of the A - mode. The principal effect is the addition of the
turbulence induced nonlinear current to the r.h.s. of Eq.(14.1.1). The nonlinear
current has two distinct terms, i.e., §J(*) = 5.71(") + 5J?En), where 5J1(n) comes
from the modification of the wave-particle iteration due to the influence of
short wavelength turbulence, and 5J2(n) is due to turbulence induced electron
self-energy effects ( or Compton scattering of electrons by the 7, waves ). For
the problem under consideration, the former is found to be always destabilizing
while the latter becomes destabilizing for Me > 1, which is typically ;che case in

tokamaks.

General expressions for §J(™) can be quite complicated. Considerable sim-
plification results by making a set of very reasonable ( to be stated at the

appropriate juncture ) assumptions; some of these are:

(1). The 7, - mode is essentially electrostatic and will be represented by the

electrostatic potential 6¢ alone, while the A - mode is primarily electromagnetic.

(2). The calculation for the nonlinear current is carried out in a shearless

slab model using weak turbulence formalism.

(3). The para,lleliphase velocity of the A - mode is assumed to be faster
than that for the n. - mode, for which v, ~ ve, the electron thermal velocity.
The condition wy > (kjve)4 will eventually imply a bound on the strength of

the magnetic shear.
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Within the framework of the preceeding discussion, and making use of the

scheme developed in X.1, we obtain

5‘]1(11) = -E Z /d'v”’vﬁsz(kl,k — kl)Gk—hz(k’ _kl)G—kl
Ky

(14.1.3)
B (ky ~k1) fo(vi}) (6, 68}, Y6 Ay,
and
n e - -
5‘725 '=- Z/dv”vﬁGkL(kl’k = k1)Gr—k, L(—k1, k)G,
ok | (14.1.4)

L8 (s, —s, ) o) (68,565, 54,
where ﬁ(kl,kz),iéz)(kl,kz,ks), are defined by Eqs. (10.1.3) and (10.1.10) re-
spectively. .

Notice that we have used k;(k) to denote the wavevector associated with -
the n, - inode'( A - mode ). The v, integration in f/((,2) is readily carried out
by remembering that for the A -mode k1 p. < 1 allowing us to replace the
Jo’é ( with the argument lc.J_pAe ) by unity. We should, of course, keep the Jy's

associated with the 7, - mode because k1,1 pe ~ 1. The nonlinear current takes .

the form
(n) e? [ c)? 2 2
6™ = -7 <§> | %:[(kl x k) - b] /dv”v”G'ka—k1 Gk, (14.1.5)
w1To(be) fo(v][)611, 6 Ax,
and |
sJ5M = _i (é) 2 D Mk x k) b]2/dv”vﬁGka—-k1 Gk{("-’ ~ Wen)To(be)

k1

'1)2 ’
— mew” < v_g - %) To(be) + be[T's (be) — To (b, )]} fa(w})8I5 Ay,

(14.1.6)



210

where I'y(be) = In(be)ezp(—be),be = p2k? /2 and 61, = (6¢x6¢}). Highly sim-
plified forms of Eqs.(14.1.5) and (14.1.6) result assuming that the 7. spectrum
has perpendicular reflection symmetry, i.e., &1, k, 1s invariant under the trans-

formation k;, i — —k;j,1. Making use of the symmetries and doing the v

integration, we can write the leading part of §J(*) in the following form

4 o * .
St = (55 46y = 2. M1 [3 —Zen() _n.8)|64;, (14.1.7)
& C w w
where
) 2
' c [k; x k- b]? w?
v :2\/7?<-—) B 61, To(be 14.1.8
t B %" Rpz " o) ey o (1418)

can be interpreted as an eflective turbulent collision frequency, and § ~ 1 for

the regime of interest.

\

The A - mode equation (14.1.1) is now modified as

{E —k* - m—z—i—N}é\I’—O, (14.1.9)
where
RZ = Co
N=:1—1|34+(n.6—-1)=
Zc[ m )c}

with ¥; = 1, /|k'|éeve, and must be solved as an eigenvalue problem. We do
this by setting up a variational principle.’®®7® The appropriate variatioral

functional for Eq.(14.1.9) is

S = /dw(;%&\ll)z—/dm{kz—l— 5 —N}(zs\p)z, (14.1.10)

" which can be evaluatedvusing the trial function

6V = ezp(—az?/2). Re a > 0, (14.1.11)
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where « is a variational parameter. The eigenvalue ( and a are obtained by a

simutaneous solution of the equation

§=0 and S =0.
Oa

Inserting Eq.(14.1.11) into Eq.(14.1.10) and carrying out the z integration, we

find172
5— . [%g_ _% .2 Yoel (S0 )08 _me( 201 3_5£>J
S~\/_7:S_ 2 k+N+\/;2C{<C 1>a8a C(a 5a2+25a .

(14.1.12)
with

1 5.22'\/7?[1(0(2(\/&) + %FJO(%C\/E) - gHo(zic\/a)], (14.1.13)

Where (Ko)Jo is the ( modified ) Bessel function and Hj is a struve function.
To make further analytical progress, we need to make simplifying assumptions. -
 For the weak shear case we assume [2¢ va| > 1, and expand the transcendental

function to obtain an algebric approximation for I,

\/§1~—%—4f<1:2—a. _ o (14.1.14) |

We must, of course, check the constraint imposed by the above assumption a
posteriori, i.e., once we have evaluated a. Making use of Egs. (14.1.12) and

(14.1.14) we obtain by solving the variational problem § = 0,05/8a = 0

_ i /3 So _
a= C\/Q [(1 + 27 ) c l], (14.1.15)

and the dispersion relation

o _ 2 VO PR - B <
(1 +77€)? =3 + 14k - N+ e [1 : J, (14.1.16)
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which yields the mode frequency

~ 1+ne
14 k2

¢

il;t T]eg—']. 2
3 14k
C°+1+1c2[+1+ne(+ )J

1 3|14 27
- 2 1+k2)—1
‘ 1+k2\/2[1+7)e( +F) } A

The eigenvalue problem of Eq.(14.1.9) can also be solved by the WKB

(14.1.17)

approximation, when the condition |(/z| > 1 is assumed. For the absence of 7,

turbulence, the eigenmode equation then reduces to the Weber equation:

d2 2 CO 3 CO 2 — ‘
{d_mz_k - (1‘(1+"e)f+2_@[1_(1+2’7e)f]“’ )}5\?(@ =0, (14.1.1'8)

For large z ( bul not too large to suffer Landau damping ) we balance d2/dz?

and 2?2 term to get

2, 3 ¢
—k2 + 2 [(1+2ne)z° —1] z? =0

The WKB mode behavior is found to be

,:1:2 3 Co '
8% (z) ~ emp{:{:z—2— 502 [(1+ 2773)z - 1]}

The sign in front of the argument of the exponential should be determined by

the outgoing wave boundary condition:

0
Bk, wSgn(z) > 0.

For the A - mode, of which the lowest order solution is

147
¢

~ l—m&) ‘ (14.1.18),
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we must chose minus sign to fit the outgoing wave boundary condition. It
yields a damping wave with the same damping rate as given by the last term of
Eq.(14.1.17). The WKB mehtod can also be api)lied to the eigenvah‘le problem
in the presence of . turbulence. For the A - mode [ the lowest order solution
is given by Eq.(14.1.18) ], we obtain the same result as Eq.(14.1.17), given by
the variational approach.

The threshold condition for growth

3(1+2n, ,
— 1+k2)-1
\/2[1+77e( N ) J
S K
“ Meb — 1
+7

@4Lw)A

?

3+ (1+&%)

and the requ1rement 12¢v/a] > 1

Pe o
1/ 2‘/5 -Ln (14.1.20)

define the parameter space for which this analysis is meaningful. For typical

. tokamak parameters, (pe/be)(Ls/Ly) ~ 1, and Eq.(14.1.20) is expected to be
maréinally satisfied. The weaker the shear, the easier it is to satisfy the above
condition.

To examine Eq.(l4.1.19) we must estimate the magnitude ;. Use is made

of Eq.(13.14) to give

%~ 2/mlo(b) (k l>2<kﬁ.>slk‘ﬁs £14'1‘?1)

where subscript 1 is the denotation for the ne - mode, while k; ~ 1/§, is typical

wave number of the A - mode. Estimating (w1/ky ve) ~ O(1),w; ~ 0.3w?, (
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Fig.57 ) k1 /k1,1 ~ pe/be, 2/7T0(be)

N pe\>( L,
7~03(5) (1), (14.1.22)

typically one order smaller than that required for destabilization of the A -

mode in tokamak discharges.
XIV.2 Electromagnetic Fluctuation Forced by 7, - Mode

The exsistence of 7, turbulence not only provides a noniinear coherent
current that modifies the dielectric properties of plasma ( this effect has been
evaluated in XIV.1 as a possible mechanism for destalizing A - mode ), but also
provides a nonlinear incoherent current as an external sources for the A - wave.
To the lowest order of perturbation theqry this process is equivalent to the three
wave interaction, or the annihilation of two 7, - waves to generate one A - wave.
Since both the frequency and growth rate of the 7, - mode is higher than the
mode frequency of the A - mode. the correlation broadening [ c¢f. VIIL.4 | of
the 7, - mode is sufficiently large to allow the annihilation process.

The wave equation describing the externally driven A - mode is given by

(a% - kj) §A(z) + flcfaJﬁf;(m) = _il;wﬁf:)(m), (14.2.1)
where ‘5J ﬁl) is the linear current of the A - mode, §J l(lf;:) is the nonlinear incoher-
ent current due to two 7, - waves ( specified as 6¢y, and 6¢;, ). In Eq.(14.2.1)

we have ignored the contribution from the nonlinear coherent current ( associ-

ated with 7, - mode ) whose effects were investigated in XIV.1.
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To solve this forced wave equation, we must calculate the incoherent current
in terms of the nonlinear 7, - waves. A basic anzatz in doing this is that the
Me turbulence is stationary, i.e., the lifetime of mMe vortices is much longer than
its growing time, the inverse of the growth rate of the mode. Use is made of
gyro-kinetics [ cf. X.1 ] to calculate the incoherent current §J ,fin) in a sheared
model. We have

5J”(i,7:)(:c) = ie—2<£> /dv”'u”G’;c E
’ T.\ B
ky+ki=k

=1y Gey Lalka)8n, (o) - 661, 2) b o),

{2 61 Lo(b2)s81 (21561, ()

(14.2.2)

2

- : . 'U” 1
Lo(k’)E w‘—wen[l—{—ne v—2_§_

4

be>] }I‘O(be) ~ NewinbeT'1(be) (14.2.3)

and
Gp= ——, Gy = ——— (14.2.4)
| w — kv w2 = kv ,
with
k
ky = L—z(m — zo), ko = Lzy (z — z5), (14.2.5)

in which z¢ and z, are respectively the positions of rational surfaces defined by

g(zo) = m/n,q(zy) = my/ny, where q is the safety factor, and m(msy),n(ny)

- are poloidal and longitudinal wave numbers respectively.

The integration over v yields:

[ 161G Lollkn) foo) = (2

Q(2)
— = 14.2.6
ko jw — kjws ( )
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with .
Q(2) = [To(be) + Mebe(T1 — To)] - [G22(¢2) = ¢Z(¢)]

+ nelo(be) [Wa(C2) — Wa(C)],

where { = w/|kj||ve, (2 = wa/|ka,||ve, Z - the plasma dispersion function and

(14.2.7)

Wa(¢) = ¢{¢[1+¢Z(0)] - 2(¢)/2}-

It is important to note that the two 7, - waves, 6@, (z) and 8¢y, (z), can provide
an incoherent source as wide as the A - mode width in the z - direction, since
the rational surfaces of the two modes are not necessarily at exactly the same

position. We may model the 7.- mode structure by the Gaussian type:

8 (a) ~ bk, (2:)eap[—(z — 2:)*/0?]
(14.2.8)

where z; is the position of the rational surface associated with é¢y,(z), and
o measures the 7, - mode width [ typically, the electron Larmor radius pe .
Noting that the conservation law k; + ky =k demands

k

y
—_— — 2.
pa—— (zo — z2), (14.2.9)

zy =22 +

we then carry out the longitudinal wave number summation that is approxi-

mately replaced by an integration, and obtain

2

6k, (z)6¢x,(z) — ]5({5[2emp{- 5y (z - mo)z}. (14.2.10)

2k3 02

In this manipulation we have assumed that 5q3k1 (z,) and 5&%2 (z3) are approx-

imately in phase and weakly depend on the position of rational surface.
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The results obtained in XIII a:llow us to estimate the important linear

parameters of the mode:

. c w,
Wi ~ k Ve, —k 6 .~ —
1~k 5 1,.L. P Pl
kl,_J_ ~ kg’J_ ~ 1/Pe, wq ~ 03w:n(1)

For the electromagnetic wave ( A - mode ), the solution of the linear dispersion

relation in a sheared slab is

3[1+277€
147,

w 1+ 7 wh  —ikyv >
14 k282 en — Ve 1+ k2 82

(1+K262) = 1J

with the consistency condition: w > kyjve. The linear dispersion relation yields
the estimate: w ~ wra, ki ~1/6, [ of. XIV.1 ]. Since the linear A - mode is a
damped mode, with the damping rate v ~ w}, , it is impossile to generate the
A - mode resonantly by the exiernal incoherent current.

- Substituting the calculated nonlinear cuirrent 5Jﬁf:) into the Ampere’s law

and using the above estimates, we estimate the level of the magnetic fluctuations

forced by the annihilation of two 7, - waves to be

6B w 2 ) wy, (k2)
— ~ 030 ) Eef _eni72) ) 14.2.11
B 3 (C]{'Q,_L) L, <w;‘n(k) + 2% ( )

The numerical factor A on the r.h.s. of Eq.(14.2.11) is O(1). However, the
above estimate is flawed, since the perturbation theory used in the estimate
breaks down, i.e., the “ perturbation parameter ” (c/B)kg,lez&ﬁkz ~ 0(1),

so that the contributions from higher orders is expected to be as important as
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the contribution from the lowest order. In a sense, Eq.(14.2.11)is reasonable
only for scaling, and not for the magnitude.

For A ~ 1.0, < w?, makes Eq.(14.2.11) [ ky = p 1,k = 8.1 ]

6B Pe Pe
5~ 035 (14.2.12)

For typ1ca1 tokamak parameters Eq.(14.2.12) implies that the fluctuation
of the forced mode lies in the weak turbulence regime ( 'y <« w ). Substitut-
ing Eq.(14.2.12) into the Rechester-Rosenbluth formula [ Eq.(12.1) ] yields the
transport coefficient

R Tecpe e 2 :
D, ~ (0.3)2%—53-5-<§—> , (14.2.13)

which is much smaller than the traﬁsport observed in tokamak experiments.

The above analysis is based on two fundamental assumptions concerning
" the nature of the 7, turbulence: the stationerity of the turbulence, and com-
plete correlation between two closely located modes. Departures from these
assumptions will lead to a reduction in the fluctuation level.

In summary, we have investigated two mechanisms for generating electro-
magnetic fluctuations by the presence of 7, turbulence. The calculations are
carried (;;Jt on the basis of perturbation theory and restricted to the lowest
order in both the coherent and incoherent currents. These calculations have
shown that neither the coherent, nor the incoherent current driven by 7. tur-
bulence is sufficiently high to generate magnetic fluctuations required for the

electron transport in tokamaks. However, we can not completely rule out the
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role played by the 7, turbulence in the generation of electromagnetic fluctua-
tions. One reason is the breaks down ( at the saturation level of the the Ne
turbulence ) of the perturbation theory, and the other reason is t}_lat in the
above calculation we did not take into account the entire inverted cascading
process. This process may drive the original 7. - spectrum contineously down
to longer wavelength regions, so that the ordering k1,1 ~ ko1 ~ p;! may be
greatly altered. However, the calculation for the inverted cascading process is

much more complicated, and will be attempted later.
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Appendix A Quadratic Forms

Here we compare different quadratic forms in MHD theory and the form
derived from kinetic theory.

The gradratic form of the MHD energy principle is formulated from the
ideal MHD equations [ continuity equation, force balance, ideal Ohm’s law and
adiaba,tié evolution equation ]. It yields the Bernstein - Frieman - Kruskal -

'Kulsrud form:172

oW, = % /dr{&B2 +J-Ex B+ (V- €)(E-VP)+~P(V- f)z}, (A.1)
where ¢ is defined by 6B = V x (¢ x B), J - the plésma current, P - the plasma

pressure. 7 - the gas constant.

Making use the following equations

1
6B =—§{£_L‘V(P+Bz)+BZV'€J_} (A.2)
1
JL-&x6B:ﬁ(fl-vp){fl-V(P+B2)+B2V-§l} (A.3)
and equilibrium equation |
. B2
V. (P + 7) = Bzh‘,, : (A.4)
where & is the curvature, we obtain the Furth - Killen - Rosenbluth - Coppi’
form:17®
1
oW, = 3 /dr{SB_L —Jy(€ xb) 6B —2(£-VP)(€-K) +vP(V - £)?

+ [6By — €. - VP/B] }+/ds (&b)(E - VP).
(4.5)
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The Johnson - Green form!™ can be obtained by minimizing Eq.(A.5):

W, = -;-/dr{EBi —Jj(§ xb)-6B, —2(¢-VP)(¢- n)} (A.6)
with
V-f&=0 and V5 -.-£ =0. (A7)
Defining )
QLE5B||+€'VB—B§-I‘&
(A.8)
= —B[V-f—f-n+b-(b-V)5J
and chosing.b £ =0, so that
Qr=-B[V-£-2-x], (4.9)
. we can rewrite Eq.(A.5) as
W, = 5 /dr{&B_L = Jy(é xb)- By —2(¢- VP)( - k)
' : (A.10)

1P 4ap(v g7
In the isotropic and low 3 approximation the Antonson - Lee form”® (as
 a kinetic form with £ - b = 0 ) is

s, =5 [[ar{em2 - e x )-8, 206 VPYE )+ @}

+ %/erf‘&fL{/.t(Qz + B¢ k) + mvﬁf* . n}.

The last term of Eq.(A.11) is named as §W}, while the other terms are named

as SWumup.

(A.11).
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Appendix B Diagramatic Rules

Because of the importance of the diagramatic scheme introduced in the
developing the renormalized perturbation theory, a detailed account of the di-

agramatic rules is given in this appendix.

In each diagram the solid line represens the propagator G, with k denoting
the four - momentum of the particles carried by the propagator. The one
exception to this representation is when the solid line is at the lowest part of

the diagram which then represents the fluctuating distribution function &f:.

There is always an arrow to denote the direction of its k. The solid line
deflects whenever it meets a wiggly line which represents‘ wave 8¢, . The redi-
rection indicates that there is a vertex I which is called wave - particle interac-
tion vertex implying their interaction. At the vertex there must be conservation
of momentum. When the Wiggly line of momentum k; is an external line, of
which one end connecting with the solid line of momentum k at the vertex,
while the other end being free, the momentum connected with it is taken up
by the solid line below the vertex has a momentum k — k;. The vertex at the
intersection between solid line and wiggly line is an operator, which generally
does not‘r;:ommute with the propagator (G. At the end of the lowest solid line it
may be connected to a shaded bubble @ = fzo(k) fo or it may be open ended.
In the latter case this lowest solid line means §fi. A hollow circle O is intro-
duced here to denote iI'y. The wiggly line which connects two vertices is called

an internal line and it denotes |6¢%|?>. Sometimes several willgly lines meet
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at one }Soint. The point is called multiwave vertex. There is no interaction
at a multiwave vertex akin to the interaction I, at the wave - particle vertex.
However, the multiwave vertex provids the conservation of four - momentum of
waves ky + kz + ++- + k,, = 0, where k1, k2, -, ky, are the four - momentum of
waves connectd to the multiwave vertex. Both the internal line and the multi-
wave connecting wiggly lines imply a non - fluctuating closed structure for the
correlation of corresponding waves.

A summation index with parenthesis, (k;), means k; # k ( k is the coherent
momentum ) and the designated wiggly line by ( k; ) is uncorrelated with other
wiggly lines designated by momentum with parenthesis in the same diagram. A .
typical example of this diagramatical rule can be seen from the last two terms of

Eq.(8.1.25). They correspond the following analytical expressions respectively:
2 CiL(k1)I868,PCror, L(k2)o0k, Gymny o, Lk — k2)6¢k—k, Gy L(— k1) fo,
k1 k2

and -

> GrLik1)8h, Grr, L(k2)54, Caiy 1y L(k3) Gty 1y s,
(k1)y(kz2),(k3)

. f:(ks)fo5¢k—k1—,kz—k3-
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Appendix C Correlation Expansion

In the perturbation a systematic procedure, named correlation expansion,
is adopted based on the definition of the correlation function to all orders.
The stochastic quantities for any stochastic process, A4, B,C --- might be

correlated with each other, so that we have
(4) = (4) . (C.1)

(AB) = (A)(B) + ((4B)) (C.2)

(ABC) = (A)(B)(C) + (A)((BC)) + (B){({AC)) (©.3)
+ (C){(AB)) + ((ABC)), |

where (- -.) is the ensemble average,((AB)), ((ABC))--- are called the correla-
tion functions of stochastic quantities A, B, C ---. They simplify the dependent
probability of multiple stochastic quantities and defined as the difference of the
" ensemble average from the lower oxlder ones. Having the definition of corre-
lation functions in rnindl, we can expand the product of stochastic quantities

A,B,C--- in terms of correlation functions. For example,
AB = (A)(B) + ((4B)) (C.4)

The quantities in parenthesis are not correlated with each other. When the
ensemble average is taken over them, the average is split into that acting on
each single quantity, because the correlated part has been extracted from them,
((A)(B)) = (A){B). We readily find the consistency of Eq.(C.4) with Eq.(C.2).

For three quantities we have

ABC = (A4)(B)(C) + (A)((BC)) + (B)((AC)) + (C){((AB)) + ((ABC)) (C.5)
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A quantity in parenthesis may be correlated with the quantities not in the
parenthesis, however, no quantity in ((-++)) could be correlated with quantities
outside. In fact, the correlation expansion can be done only for part of the

product. Thus we may write, for example,
ABC = (A)(B)C + ((AB))C | (C.6)
Further expansion of Eq.(C.6), according to the above rule, reads

(A)(B)C = (A)(B)(C) + (B)({AC)) + (A)((BC)) + ((ABC)).  (C.7)

When combining Eq.(C.6) and Eq.(C.7), we readily see the consistency

with the result of Eq.(C.5).

- The correlation expansion is equivalent to the cluster expansbn used in the v
BBGKY hlerarchx 17 and functional for both the distribution funct,lon 6f and
the electric ﬁe]ds SE by virtue of thelr linear relationship given by the Poisson

equation.
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Appendix D Perturbative Expansion of éf;
In this representation the wiggly lines above the shaded bubble are uncorre-
lated with each other, while the wiggly line connected to the sﬁaded bubble may

or may not be correlated with the other open wiggly lines in a given diagram

as discussed in VIII.1.
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Appendix E Construction Rule of § I ) and § fr

We introduce some useful definitions first.
Definition E1. Primitive Frame Diagram

It consists of a solid line with ni wave - particle vertices, each of which
connects with an open wiggly line, a shaded bubble with a wiggly line connected
to the lowest end of the solid line. The four - momentum conservation holds
for lines. We illustrate the fourth order primitive frame diagram as the left
diagram in Fig. 35. |
Definition E2. Fundamental Constructive Diagram

‘Starting with the given order primitive frame diagram, we combine the
wiggly lines in all possible way to form 1nternal line and/or closed structure
: contaxmng multi - wave vertex with the exception that it will cause any type of
self - energy sub - structure and zero - momentum propagator in the diagram.
The set of the resultant diagrams is called the fundamental constructive diagram

for the given order.
The construction rule of 6f, (<)

All fundamental constructive diagrams with only single open wiggly line
comprise the contribution to § fe © for any given order. The diagramatic ex-

pression of § f kc) to the fifth order order is illustrated as follows:

we o U@
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The construction rule of §fj
All fundamental constructive diagrams with more than one open wiggly
line comprise to §f; for any given order. The diagramatic expression of 6 fx to

the fifth order is illustrated as follows:
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Appendix F Adjoint Diagrams in Fourth Order

The non - zero diagrams in fourth order are given below. They are cancelled

with each other according to Lemma II, while the zero diagrams, to be zero by

Lemma I, are not illustrated.

The sources composed the diagrams are given on the left of each diagram.

They can be found in Appendix D.

A (6¢1Gy ' Adgr)

(F.1)

(F2)

(F.4)

5 % °
% R R %
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(F.11)

(F.12)

(F.13)

(F.14)

(F.15)

(F16)
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The adjoint pairs are: (4) 4 (8) = 0, (5) + (7) = 0, (6) + (9) = 0 [ the
pairs within the coherent part J; (13) + (16) = 0, (14) + ( 17) = 0, (18) + (20)
= 0 [ the pairs within the incoherent part J; (1) + (19) = 0, (2) + (11) = 0, (3)
-+ (12) = 0, (10) + (15) = 0 [ the pairs between the coherent and incoherent

part ].
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