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Exact time dependent solutions of a system of charged particles with their self-
consistent electromagnetic fields are obtained by solving the fully nonlinear Vlasov-
Maxwell set of equations. :

Exact nonlinear solutions to coupled field theories are generally rare. For the Vlasov-

Maxwell system, two kinds of time-independent solutions have been reported; 1) the electro-
static solutions of the Bernstein-Green-Kruskal (BGK) type,* and 2) the magnetic solution
of the type obtained by Pfirsch,? Laval-Pellat and Vuillemin,® and Marx.? In this letter, we

present a time-dependent fully electromagnetic solution to the Vlasov-Maxwell equations

which describes a system of charged particles interacting with their self-consistent fields.

We consider an electron-ion plasma embedded in a constant external magnetic field Bext =

€. Bo. Assuming the field quantities to vary only in the z-direction (8/9y = 0 = 8/8z), the

relevant equations describing the system can be written as
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where Egs. (1a) and (1b) are the Vlasov equations for the evolution of the electron and
ion distribution functions f. and f; in the presence of the external field B, and the self-
~ consistently generated fields E and B which obey Maxwell’s equations (2-5). In Egs. (1-5),
—e is the charge of the electron, m. and m; are the electron and ion masses, and p and J
are the plasma charge and current densities.

The search for the solution begins by proposing displaced Maxwellian distributions for

the particles
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where ng is a measure of the ambient density, v,; and u.; are respectively the thermal speeds
and the drift velocities, and the entire space-time dependence is contained in the factor g,
which depends only on the variables n = z —Ut. Making use of Eq. (6), one obtains (explicit

arguments will be dropped) the expression for the charge and current densities,

p = —Cno(ge —gi) ’ (7)
J = _eno(uegé - uigl) ) v 7 (8)
which implies that the choice

ge=9i=9 , E,=0=58, (9)

trivially satisfies Eqs. (2) and (3). Using Eqgs. (6-9) and remembering that 8/t = —Ud/dn,

0/0z = d/dn, the remairing nontrivial components of Maxwell’s equations take the form
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Equations (10) and (11) immediately yield
U U
Ey = —C_Bz -+ Eo = '—C-[Bz + Bo] (14)
and
E. = —%By (15)

which guides us to the interpretation that U must be a drift in the z-direction, and in the

moving frame, the effective electric field remains zero. Making use of Egs. (6), (14) and (15),

Ui = &ul’ + & us +&,U (16)
and some straightforward algebra, the Vlasov equations reduce to [T.; = 0.5 Me;v2; is the
temperature]
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which can satisfy the constraint g, = g; = ¢ only if
ui_ % Y Y (19)
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leading to the single Vlasov Equation [—Ey(z') = (eug,/ cTe)By(z)]
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to be solved in conjunction with \
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which are Eqgs. (12) and (13) rewritten in the context of Egs. (14), (15) and (19) where
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with w? = (47nge?/m,), u®* = u¢’ —l—ul‘j2 and 7 = T;/T. as the ion-electron temperature ratio.

The set of Egs. (20-22) allows the following self-consistent solutions
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which are travelling pulses of width §. The width of the pulse (or the shock front if § is
very small) is a strong function of the pldsma properties (density, temperature and the drift
speéds) and can vary over a large range. For By = 0, the electromagnetic fields are purely
transverse (£ - B = 0) and become ‘more and more light-like as U — ¢. However, in this

relativistic limit, we must use the relativistic correct form for the Vlasov equation (p is the

momentum),
9f(x,p,1) | 9f(x,p,?) B4 222 of
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with the velocity-momentum relation
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which introduces some complication in the calculation of the plasma current. This difficulty

can be readily overcome by assuming that the flow speed U can be relativistic while the
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temperature of the plasma remains nonrelativistic. In that case v can be simply replaced by
% = (1=%)"1/2 = (14p¥ /m?c?)}/? (where py = yomU) and the entire analysis remains valid
provided the plasma frequency w, is replaced by the relativistic form we, = (4rnge?/yom)*/2.
It is also convenient to rewrite Eq. (23) as
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In this paper, we have presented exact travelling pulse-like solutions of the fully nonlinear
Vlasov-Maxwell system. Expressions for the self-consistent fields and the particle distribution
function are explicitly dispiayed in Egs. (24-28). Those solutions should find widespread
applications in understanding the phenomena taking place in the laboratory as well as in the
astrophysical plasmas; they should also serve as reference solutions for nonlinear numerical

calculations.
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