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_ABSTRACT .

ampraefd e

, The theory for the non-lincar, turbulent response in a system with intrinsic stbchasticity is considercd. 1t is
argued that perturbative Eulerian theories, such as the Direct Interaction Approximation (IDIA) are inherently
unsuited to describe such a system. “I'he exponentiation [31'()[?01'&)/ that characterizes stochasticity appcar$ in the
_Lagrangian fp,icturc,a,nd cannoteven be defined in the Eulerian representation. A approximation for stochastic. . - . . -
systcms—tl{c Normal Stochastic Approximation—is developed and states that the perturbed orbit functions
(Lagrangian fluctuations) behave as normally distributed random variables. This is independent of the Eulerian
statistics and, in fact, we treat the Bulerian Ructuations as fixed. A simple model problem (appropriate for the
clectron response in the drift wave) is subjected to a serics of computer experiments. o within numerical noise
the results are in agreement with the Normal Stochastic Approximation. The predictions of the DIA ?for this

model show substantial qualitative and quantitative departures from the obscrvations.




J. INTRODUCTION

The phenomenon of intrinsic stochasticity has received considerable attention in recent years [1}. To a
large cxtent this has been motivated by its presumed relevance to anomalous transport in tokamaks [2]. Iideed,

i .
stochasticity for the clectrons is difficult to avoid, since at the fuctuation levels needed to account for the

observed anomalics, the island overlap or Chirikov condition is strongly satisficd. Thus The tokamak transporf

problem suggests a new branch of turbulence theory-namely that of incorporating orbit stochasticity into the
non-lincar wave dynamics in a sclf-consistent way. The stochasticity studics referenced above [I] élo not ad-
dress this problem but concentrate on specific orbit propertics, cxponentiation, Kolmogorov entropy, phase
spacc maps and related phenomenon which have exhibited an incredible varicty of structure and pathological

behavior. In fact, the occurrence of so much structure in the orbits alone has suggested a kind of futility in

' attempting a theory for the self-consistent wave dynamics. To the contrary, the basic result of this paper is that

stochasticity, in spite of its myriad complex and bewildering propettics, actually simplifies that part of the theory
that we need to know to calculate the non-linear clectron response and the drift wave dynamics. This claim has
been made previously [3], in an abbreviated form. Here we detail the theory and validate the assertion with a

S
series of numerical expceriments.

Although the problem we address has quite general implications for turbulence theories of stochastic Sys-
tems, we use a specific system appropriate for the drift wave response. This is chosen both for its practical
applications, and its thcoretical convenience. The relevant phase space is everywhere stochastic, It is not
complicated by division into infcgrablc and stochastic regions which would requ‘irc separate trcatmeﬁt. From
a formal in(cgration of the kinetic equation we will motivmc an approximation based on the propertics of
the stocl1astic orbits. In essence, for the purpose of computing the fluctuations associated with the waves, the
orbit perturbation can be treated as a normally distributed random variable with variance < 6.;62 >= 2Dt.
Hence, we use the term “Normal Stochastic Approximatio.n” to describe this method. We then have the single
parameter, D, (only weakly depeiident on the wave spectrum) as the manifestation of the non-lincar response.
The result is simply a broadened resonance response. We must cmphasize, however, that this is not equivalent
to Dupree’s theory [4] since the underlying arguments differ and the implications of our results go beyond the
basic cffect. Resonance broadening here, is ticd up inextricably with stochasticity. It is not a scparat% cffect
added to the usual panoply of hon-lincar processes, wave-wave coupling, non-lincar Landau damping, etc.
Rather, for flucuations on the scale of thq waves, the entire hicrarchy of non-lincar processcs dissolves into
the single complicated phenomenon of stochasticity. The parameter D is then the cmbodiment of all these

processes which have combined to produce radial diffusion. In short, for the wave response, there is resonance




broadening, nothing clse. T'his is precisely what the computer experiments described below show, To within the

numerical nose in the present experiments, there are no obscrvable discrepancics with the Normal Stochastic

" Approximation.

1. DISCUSSION OF THIS MODEL AND STATISTICAL PROCEDURES

Consider the simple model system with Hamiltonian, £ (J,0,t) = Hy(J) 4+ H(J,0,t), and pegturbing
Hamiltonian in the form
1(J,0,t) = 3 HyulJ) explimd — iwund]. o (1)

m,n
. 2 = o N . :
We assume Flyp is not present, so that fo " dOIT = 0. The cquilibrium frequencies are given by wy(J) =
OHy/8J. Shear, or dependence of the frequency on J, occurs in general and is necessary to produce the

phasc spacc islands associated with individual resonances. For small perturbations, 87, about some equilibrium

' ' 3. N . . .
values, Jy, the frequency can be lincarized, wo(Jy -+ 6J) = wo(J) + %%6‘}, The measure of this approximation

is the ratio of the correlation fength, J, (in units of action) to the global scale Jy = |d Inwy/dJ]| ", which is

~ gencrally small in practice. For J./J; < 1, we can, without toss of gencrality take Hy = %JQ in our model,

since wy can always be absorbed into wyy,,..
The distribution function f(J, 0, t) is described by the cquation

| o OO oMo, @)

ot aJ89 a0 oT

which, according to the interpretation of f is cither the Vlasov or Klimontovich equation. Finally, we have a
condition (such as Poisson’s equation) relating f and £, H(J, 0, t) = [ dJ'de K(J,J;0,0)f(J', 0, t) which
will make Eq. (2) non-lincar ifﬁ] is climinated in favor of f. This gives a closed system evolving f self-
consistently.

In spite of its simplicity there are many practical problems that can be reduced to essentially this model:
electron driftwave turbulence (E X B), stochastic magnetic ficld fluctuations, ion cyclotron resonance, velocity
space Langmuir turbulence, etc. The £ we use below is intended to represent the clectron drift wave reponse.

The approach is to integrate Eq. (2) generally to obtain f as a non-lincar functional of &, Self-consistency
can then be enforced as a final step in determining the non-lincar dynamics. In this paper we consider only the
first step of solving for £, the turbulence response. However, since the results are not dependent on the details
of (in a stochastic rcgirﬁc), the requirement of seff-consistency can be invoked later without difficulty,

Equation (2) can be cast in an integral form which is a convenient starting point for the non-linear theory.

]
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We define an angular average as < I? >= L [/ " d0 I, and decompose £ into average, Jo(J)
fluctuating, }(J, 0,t) = f — /i, parts. The angular average of q. (2) is '

9 & _OH-~

a =ar <!>
and the fluctuating part is
8 OHSO OO~ OHEF 9 aH 7
( +5fao aoaj)f @ar o5 @’

Equation (4) can be formally solved f()r;‘ by the method of characteristics, yiclding,

t -~ ~
. ofef, o _of-
o WA —_
7J,0,t) = /_oo dt(ao 57 a7 < aof>)

J==J--60(J0,L,1)
0=0-J (L—1)+-B0(J 0, t,1%)

where the perturbed orbits or characteristics are given by

sy __om
dtt 9580
460 of
ar = T &e

5)

(6)

with boundary conditions §0 = 6J == 0 at ¢’ = ¢. Equations (3), (5) and (6) (which arc equivalent to the

Eulerian form (2)) together with the sclf-consistency condition, form a closed system. The RHS of Eq. ‘(3) is

a turbulent collision operator, which is zero—dctermining fy—in the steady state. Generally we will consider

Jo to be slowly varying,

& < 9LF > in Eq.(5) may be neglected. Our considerations are then reduced to Egs. (5) and (6).

consistent with J./J; < 1, and ignore Eq. (3). To the same approximation the term

Equation (5) expresses the Eulerian pcrturbation? in terms of the perturbed Hamiltonian, H, also

Eulerian, and the characteristics §.J, 60.

The characteristics arc essentially a Lagrangian representation of the

perturbations, H, determined by integration of (6). Thus Egs. (5) and (6) form a mixed Eulerian-Lagrangian

representation.

In certain applications it is convenient to write Eq. (5) in terms of a propagator C~¥,

(7,0, = / /dJ’do' JotJ'o'y)(‘ﬁ?Ig_i<c9_I{]~,>

o ar oJ

(7

The propagator can be expressed dircctly in terms of the Lagrangian characteristics, é(J 0,407,600 t) =

§(J —J — 6J(J,0,¢, ¢))6(0' —

G(J,0,6J,0,1) = (—/ dk dm explik(J —

0 — J(t—t')—80(J,0,t,1"), which implics the integral form,

J)— k8] 4 im0 — 0) — imJ (t — ) — im80). (8)




~ Alternately, G can be determined from the differential cquation ™

8 OHO OH .. . .
— = = — == )G(,0,45T,008) =0 9).
G T a7 & — a5 a0 67,0, =0, @
with boundary condition G(J,0, ¢; J, 0/, 1) = 6(J — J)8(t — t).

We definc all statistical averages in terms of the Liouville density and, accordingly, regard f as the

Klimontovich distribution. "'his is completely general. Tt encompasses the more restricted statistical averages, -

and can be utilized dircetly in the two-point, two-time theory for the calculation of fluctuations. All functions
now depend parametrically on the particle variables J;, 0;, at time ¢ in addition to the usual independent
variables J, 0. For performing the statistical averages the notation can be abbreviated by writing f =
J(Xt X1, X, -+ XN), where X = (J,0) is the phase space variable and X; = (Ji, 0;) is the parametric
variable corresponding to the particle phasc space position at time ¢. The Liouville density, T, depends on the
- particle variables, I' = I'(X, X, - - - Xjy; £), and gives the joint probability that, at time ¢, particle 1 is at X,

particle 2 at X5, ctc. The statistical average of any function I*'is given by

M =FXt)= / dX|dXy - dXN F(X 0 X, X X)) DXL Xy, - X ). (10)

This is the complete formal statistical average, and does not#rcstrictf in any way. In particular, ' may be -

an arbitrarily complex function of J, 8. Formulated this way there is no distinction, statistically, between the
various scales of ',

When the physics on the various scales differ (or in some cases when the physics is independent of scale
[5]), it is desireable to have a statistical proccdu re which recognizes the different scales. To this end we decom-
pose the perturbation, H, as follows

k,,

A(X)= ] Hye®X 4 B,
_]!‘:zlﬁx

where [y is the fine scale (microscale) fluctuation, corresponding to |k| > |k,,,|. The identity,

k

1] st — / dX ek / dXK(X, X) X f(X, 4 X, Xpor - XN)),

1= / dHy dHy - dHy
k=k,

is then inserted in the integrand of (10) and, upon reversing the integrations, the average becomes

(I} = f dH dH, - dH, / dX, dXy - d Xy FIX 6 X X\)

1=
z

.
XT(Xp - X t) [] 6(He— / dX dX' e HEK(X, X)X G X, - - XN))
k=1 ’ ,

I




“'The integration over the particle coordinates in (11) is now restricted by the constraint that the fluctuations from

ky to k,,, arc all fixed. This is (he microscalé average. Denoting this by [ Jo, Eq. (11) can be written,
{FF} = / AHy dHy, - dH [Flo(X, 6 o Hy )T (Hyy, - Hy i b); (12)

where the remainder of the ensemble is parametrized by the Fourier cocflicients, and IV is their associated
‘probability density. Now, we can repeal The procediire and average over somé subset of the Hy's, fixing the

remainder, and so on. This will definc a hicrarchy of scales and associated averages, so that {F"} can be written
Fy=_[- [[F]U]l' . .]n_ ' ‘ (13)

The complete average is now performed as a sequence over ever increasing scales, where the long scale

. Huctuations are fixed while the average over the fine scale is performed. In the present paper, we will distinguish

only twoscales, so that, {F'} = [[[p]] .

In many cases, this scquential averaging procdure is of very little advantage. For example, suppose there is

only one relevant scale and the fine scale average, [ Jo, has a negligible effect. Then [Fo will depend sensitively

-, on the perturbations [, and the coarse scale average, [ ]1, will be just as difficult as the full average, { }.

The utility of the dccombosition, (13), is evident in problems with disparate scales. Then the fine scale
average, | Jo, can climinate significant information and simplify the long scale dynamics. Thus, in the stochas-
ticity problem of present concern, the avcrugé propagator [é]u depends on the H, only through D, Eq. (22),
which is essentially constant over the realizations of interest, and the averages []o and []; can be done independ-

cntly. This simplifics enormously the calculation of the long scale fluctuations.

The present paper cousiders only the first step, the average [ Jo, for a stochastic regime, and as such does
not require the scquential averaging procedure. The discussion here is intended to show the conncction to the
larger picture, and to demonstrate that since the long scale fluctuations are rigorously fixed, this step in the

calculation can be performed before requiring self-consistency on the long scale.
HI. NORMAL STOCHASTIC APPROXIMATION: HEURISTIC THEQRY

In a typical plasma turbulence problem, the source of the turbulence is instability, localized in k, w space
(m, n in our model). There may be many modes or m and n values present, but the fractional spectra: width
Am/m An/n is generally small, so that there is a single scale characterizing the Fulerian perturbations H.
Bulerian theorics, like the DIA [6,7], arc designed for a single scale and tacitly assume that the Lagrangian

Perturbations have the same scale. However, the defining characteristic of stochasticity is the exponentiation of




~ neighboring trajectorics. In this case, the perturbed orbit function, 60, is both secular with respect to t — £ and

unstable with regard to the initial conditions, 8, J. Not only do the deviations from the unperturbed orbits grow

" in time, but initially neighboring particles suffer radically different large perturbations, In fact, after a time 7,

the correlation time, a very small clemient, A0 € 27, gets mapped to cover the full range 24, This has been

called the mixing property by Zaslavskii and Chirikov [8]. Its implications for the Lagrangian orbit function

60 arc shown-in. Fig.. 1..A-plot like Fig.. 1. for-larger-7 would show larger-excursions-in the-amplitude-of-66-

and more rapid fluctuations as a function of 0. In short, it is a consequence of stochasticity that the Lagrangian
perturbations develop much finer spatial scales than their Lulerian counterparts. We will exploit this disparity

of scales with the microscale average to develop the Norinal Stochastic Approximation.

‘To be more explicit, we use the form (1) for the perturbation and compute the m’th Fouricr component of

Eq. (5). There results

00
f;n’ J t 26-——114),,,,, / dT@i(w’""_mJ)?_- < ei(m—vnle)D—i—im&(J(.f,ﬂ;-r)i,,n}tﬂrm(‘]‘ _}_ 5J) >, ([4)

m,n

We focus on values of m and m/ typical of the normal modes. That is, we assume the spectrum of fluctuations

&

is dominated by the normal modes, and compute here only these Fourier components. Of course, the stochastic

mapping produces much higher m, presumably incoherent fluctuations, but these belong to the microscale
and requirc a scparate treatment. We also assume that all of phasc space (J, 0) is stobhastic, wi.thoﬁt isolated
integrable curves. In this case 60 is secular with respect to time and the exponent cannot be expanded as a
perturbation series. Rather, we cvaluate (14) asymptotically using the propertics of 60 implicd by stochasticity.
Furthermore, for simplicity, we treat the case of constantf-l‘,v,m (the results are readily generalized) so that we

must evaluate
Ay =< exp(t(m — m/)0 ++ tmé0(J, 0, 7)) > . (15)

- Forsmall 7,60 < 1, and Ay =2 6,y . For large 7/ 7, the 0 dependence of 66 is the dominant variation
in the integrand, and Ap,,,» can be computed as a series of integrals over small intervals 2or/M. Thus, letting

0; =275 /M,

2 /M
Am,m/ = Z: '2‘; /0‘ d0 eXp[i('m — m’)(Oj —I" 0) —{— zm50(()J —l—- 0, T)] . (16)
el(m—m)0, 2n/M .
= Z / df eI 4 i(m — m) 4.
0
J=l1 .




“The essential feature of stochasticity is that an "M can be chosen stich that 60 undergoes many oscillations

with respect to 8 in period 2/ M but (m — m’)/M is small. Thus, the integral above will approach an average,

independent of 05, and the sum gives a Kronecker delta, yiclding,

- ims0
Amm’ = Oy < et >, (17)

with an error of order ((m —m/)/M) < e >. For stochastic orbits, M increases with 7, such that

M—> oo, so that (17) is asymptotically exact in the lumL of large 7/7.. The disparity between the wavelength
and the spatial scale of the Lagrangian orbit functions is the key clement here. By restricting m values, however,
a scparate microscale average was not required.

The basic assertion of the Normal Stochastic Approximation can now be stated. The microscale average,

A7,m,~+[/1,mn/]0, is equivalent to averaging with 66 as a normally distributed random variable. With 6J a

-~ diffusion or Wiener process [6J%)g = 2Dr, 60 is the integrated Wicner process or (662 = 3D73, and

thercfore
L2502 12133 '
[Amm’]o == 57)1,7n’[< 61)7150 >]) = 5m m/€ (0% — 6m e 3T br . ([8)
More formally, the relation between the moments, [§6™]y of 80, is normal,
N
2p)! oy
80P 80
5070 = o 190°5.
We now show how the stochastic propertics of the orbits lead to this result. The perturbed orbit function is

P T .
expanded in a series with 7 and J dependent coeflicients

l .
0(J,0;7) = E:%JT”” : : (19)

Since 69 has zero mean, the £ = 0 term is not present. Using (19) yields,

1 | 16,0 10,0
] <A 0) (00 (20)

The 0 integral yields a selection rule for the £ sums, &y + & 4 - - - -+ £, = 0. The cumulant expansion results

n=0

by assuming a hicrarchy where the dominant contribution arises from combining the 4, in pairs, etc. Whether
or not a hicrarchy exists, Eq. (20) can always be expressed in terms of this rearrangement. Thus the pairwise

combinatioins, requiring n = 2p, can be made (2p)!/p!27 ways, and this leads to

<eim60>(2)-_—2( , ,2], zloel () o
: ¢, , .

p=0

1 .
= cxp(—imz < 607 >),




where << 602 >==3_,|0,|". The pairwise combinations are cquivalent (o a normal distribution.

The next order may be computed in a similar manner in terms of the triple moment

<607 >= 0 00,0—g,—g,
c; ,(52

Here, however, as in all the higher cumulants, there is dependence on the phases of the Fourier cocflicients,

‘which implies sensitivity of other variables, like J and 7. The type of behavior indicated in Fig. (1) also occurs

with respect to J in a stochastic situation. This implies rapid oscillatory behavior of the triplet (and higher
cumulants) with respect to J. "Thus integration over J tends to annihilate the higher order cumulants, leaving
only the pairs. It is this phase independence of the pair combinations which makes the normal distribution
dominant. The essential point about stochasticity is that the scalc of oscillations in J decreases rapidly with 7, so
that thc‘miclroscale intcrval goes to zero for 7 3> 7.

The fo!rcgoing is basically a duplication of the central limit thcorem, in a physical context. There is, in
effect, a random phasc principle acting when stochasticity is present. We emphasize that it is the phases of the
Fourier cocfficients of the perturbed orbit functions or the Fagrangian representation, nor the E;(/eriazz wave
- phases, which arc relevant here. -~

It remains to compute the diffusion cocflicient from the orbit cquations (6), by using the microscale

average,
L b _
D= [87%o/2 = / dt, / AT (0 + Tty 80(t1), 1)) - F(0 + Tty + 60(ts), t2)lo.
0 0

Substituting for H, letting &y = ¢; — 7, and, to order 7./t < 1, cxtending the 7 intcgral to infinity this

becomes,

¢ o g
D= l/ dtl/ dr Z HypoHyny(—1)mm/ exp(¢(m + m)0
tJo 0 ,

m,n
m/,n

+ Z((m + m/)J - (wmn + wm’n’)tl + 'i(wm’n' — 'mJ)T)
X [exp(im 60(t;) + im 60(t; — T)))o.

To order 7,/t, we can assume t; > 7, then, provided TC‘"‘ cxceeds the frequency-separation of modes—
which is essentially the Chirikov overlap condition—the ¢; oscillations reduce the double sum to the diagonal
m' = —m/|n' = —n, leaving '

D= [ it [ dr S mlt e —nfoxp(ims ()

m,n




~ where 60'() = §0(4)) — 60(t( — 7). Ihis is the usual characteristic but with fields evaluated at position

J=J46J(t),0 = 0 Jt, -+ 60(t)) for 7= 0. The exponential factor is then the same form as above, and

we get
o [ 1
D= Zm?|f],.,m|l'/ A7 expli(m) — wn)T — =D, (22)
0 , 3 ‘

ny,n .

_or the usual Fokker-Planck form with.a broadened resonance instead of 7(m — @ipn)e. .

To summarize, we have formulated the theory from the mixed Eulerian-lagrangian representation, Egs.

(5) and (6), together with a microscale average. [n a stochastic regime, the Lagrangian orbit functions, 6J, 66,

- tend to become normally distributed under the microscale average, with variances, [672%)g = 2Dr, [6J 80)p =

D72, [60%]p = %DT3. 'The Normal Stochastic Approximation (for this model) can then be succinctly expressed

as the rule | ,
80
CXP(_" ?}Dt-”)

NZEEIE

This can be readily generalized to include 8J variations. Using rule (23), the Eulerian responses in Eq. (5) can

[0+ Jt 800 = [ ds0 H(0 -+ Jt 4 86). (23)

be immediatcely averaged to obtain KHq. (18).

The Normal Stochastic Approximation is the leading ‘order in an cxpansion for the distribution of
Lagrangian orbit perturbations. It does not depend on the smallness of the Eulerian ficld amplitudes, Hyp,
which must be above some threshold to give stochasticity. The small parameter is kurtosis, of the distribu-
tion, measuring nearness to normal. This contrasts the DIA which maximizes normality of the Eulerian field
fluctuations, £, and as shown below, cannot properly account for the sccu]afitics, scale disparity, and distribu-

tion of the Lagrangian fluctuations which characterize stochasticity.

IV. FORMAL THEORY: COMPARISON WITH DIA

We now use a common framework within which both the DIA and the Normal Stochastic Approximation
can be simply expressed and reduced to a few cexplicit assumptions. The object of present concern is the
propagator, G, and the different forms proposed for the cnsemble average of it. Of course the averaging

procedures differ markedly between the two theorics. In the DIA the complete statistical average is performed

at the outset and onc attempts to truncate the chain of statistically averaged equations. In the Normal Stochastic -

Approximation, the statistical averages arc perforemd sequentially, to utilize the disparity of scales, and become
an cssential part of the argument justifying the approximation. For comparing the different results for the
propagator in the present scection, however, the statistical distinctions arc sccondary and will not be emphasized.

~'We consider the DIA first.

10




~The starting point is Iiq.” (9) for the propagator. Tor ] independent of J, and defining .IFJ.(O, t) =

—OH /¥, this becomes,
1G]

57GW,0.6.7,0,t) =\, ¢ (24)

( +7 2+ B0,

with G(J,0,¢; J',0, t) = 86(J — J')8(0 — 0'). The procedure of the DIA, according to Orzag and Kraichman

[6], is as follows. The propagator is developed as a powers serics in the Eulerian fluctuation amplitude I, This is

~ done by using the unpcx turbed plopagatox Gy, obcymg ( |— J()O)G() = 0, to construct the mtcgnl cquatlon

G(J” 0", ¢ 0L, (25)

G0, T 0, ¢) = /t dt” / dJ" do" G’U(J 0,t;J" 0", t”) x E(0", t”)a 7

which is then iterated in the obvious way. ‘I'he average is then performed, retaining only pair correlations*®, and
the reduced serics resumed to give {G} = G"', "Ihis can be done simply with diagrammatic methods and

" lcads to an integral equation for the DIA propagator

Thus, the DIA makes two assumptions. First, the perturbation expansion of G in powers of the Eulerian

amplitude E is assumed to converge. Sccond, a statistical assumption, is that pair correlations of the E
dominate, or in other words, that the Bulérian fluctuations are normally distributed. While the second assump-
tion is plausible, the convcrgcnée assumption is crucial and highly dubious in a stochastic regime. Since the
propagator is just a formal cxbrcssion of the orbit this is cquivalent to assuming convergence of the orbit expan-
sion.in powers of the Bulerian ficlds. But the resonant behavior underlying stochasticity is not analytic, cven
for an isolated resonance. FFor sufficiently small amplitude, well below the stochasticity threshold, the phase
spacce volume occupicd by the resonances is small, and the perturbation expansion converges in the remaining,
dominant, volume of phase space. Here the DIA would presumably be appropriate. For this reason, even
though certain select terms are summed to all orders, the DIA is inherently a perturbative theory. Furthermore,
the physical effect represented by the non-linear (broadening) term in Eq. (26), correspond to the third order,
two wave, one particle, perturbative process of Compton scattering.

Equation (26) can be reduced to a diffusion form, commonly used in applications [9] where the operand
of GP' depends only on 0. In this case, one needs only G- (0, 40/, ¢/; J) = J aJ'GPIN T, 0, f; JL 0.
Noting that G™'* depends rapidly on the difference variable, J — J’, but weakly on the sum, §(J -+ J7),

*Actually certain crossing diagrams arc also neglected in the resummation,

11

¢ ‘ : _
(g +J (%)GDM(J, 0,¢; J/, 0/, t’) — 5% / At dT" do” G'D["\(J, 0,t; J”, 0//] t”){E‘(O, t).[‘jw”, ‘t”}
i
% 5?//(;])[/\(‘]” 0" 4" J7 0 ) = 0. - (26) ‘




integration over J' in Iq. (26) gives

_ to finally give

"This can be transformed in ¢ and 6, assuming a quasistationary fluctuation spectrum and causal propagators

. —=DIA a —=DIA 8 =DIA
_?’(w - mJ)Gm,:.u(‘]) - 5_" Gm/—m’,w—w’(']){IEIZ}W’M'8_1 Gm,;(‘]) = L. (27)

m/,w!

Equation (27) is in the form of a diffusion equation for Gm «» where the diffusion cocfficient,

—=DIA
"7" w Z G‘m—-m’ w—w’{|EI }m’ w'y (28)

m/,w!

depends on the frequency and wave number. Apart from the broadening of the rcsdnancc function G, Eq.
(28) has the form of diffusion resulting from Compton scattering in the standard weak turbulence theory. It
corresponds to diffusion arising from the beat wave resonance, w — w' == (m — m/)J. The resonance width is
not of practical importance for the evaluation of D, ,,. The resonance function is invariably narrow (in m/, w’)

compared to the spectrum, {|E?},,4 ., so that one may take Gm_m, o) =2 16w — ' — (m —m')J] in

- Eq. (28), and pass from the sum over m/ to an integral. Treatment of the sum as an integral is legitimized by the

. —<DIA
resonance width of G

The DIA departs from the standard weak turbulence theory by including D, in the cquation for the
propagator, and accordingly deleting some of the standard terms appearing in the equations for the one particle
distribution function and the spectrum. "This is the familiar renormalization, basically a rearrangement of the

©
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perturbation serics. In a strict sensc it requires that the serics converge, IF the series does not_conyerge, the

procedure may still be valid in an asymptotic sense, but becomes largely an article of faith. Some aspects

of the renormalization are then more reasonable than others. For example, the climination of certain terms

from the standard perturbation theory remains plausible because it does not require infinite summation, ‘T'his

part of the procedure was the main concern in the renormalization of Quantum Ficld Theory, where certain

~~divergent-diagrams had-to be eliminated:-Tn-the-Quantuny theory the deleted diagrams Tiever appear Txplicitly,

but, when summed to all orders, serve to redefine the mass and charge. One can never obscrve, scparately,

the renormalized terms. By.contrast in the DIA, these terms—requiring infinite summation—give an explicit

— — — ————«form-for-the-broadening-of-the-propagator.-This form-is-the-issuc-of the-present-paper-and observable inour — - =~ — —

numerical cxperiments.

The Normal Stochastic Approximation begins with the integral form for the propagator, Eq. (8). This is ‘
averaged over the microscale directly assuming normality of the Lagrangian fluctuations. We use the result that
[exp(1k8J - imé)]o = exp(—4k2[67%g — km[8J §0)g — {m2[86%q) for normal 67 and 60. This is shown
as in Scc. I11, by writing the scrics, avcrziging and resumming. Note, however, that no convergence assumption

is required since the exponential function is analytic. This then gives, from Eq. (8),
.

GNSA(T,0,¢, 0/, 1) = (:;r 7 / dkdm exp(ik(J — J') + im(§ — )
4 z‘mj(t — ) — %/&[(sﬂ]o — km[6J 66]y — %mQ[ae‘z}o). (29)

The variance [672]o, [60%]o and [6J 80] can be computed under the same approximation, as indicated above,

| and are independent of J and 0. Thus, integration over J' gives
G N0, 40 1) = % / dm exp(im(f — 0') — imJ (t — t') — %m2[602]0).
Finally, this can be transformed, and using the expresison for [60%]y from Eqgs. (18) and (22), is cquivalent to

. =NSA %) _NSA : O ~NSA |
—z(w- - m‘])G‘m,w (‘]) - 57 Z Gm’,w’('])“El'lzn’,w’]oa_JGm,w (']) = 1 (30)

/!
Thisis to b ared with Eq. (27) for the DIA, Itis a diffusi tion with D = G DIER, ]
118 is to be compared with Eq. (27) for the It is a diffusion equation with D = Zm,,w, gl /)0
independent of frequency and wave number, corresponding to diffusion arising from the primary wave-particle
resonance w' = m’J. Thus the two approximations differ in physical content on the processes causing diffusion
in the propagator. ’
To summarize the DIA assumes normality of the Eulerian field fluctuations and convergence of the series

<
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expansion for the propagatorin powers of the Fulerian amplitudes. "Uhe latter assumption is untenable in a

stochastic regime. The Normal Stochastic Approximation assumes normality of the Lagrangian Auctuations

and docs not require a convergence assumption. In practical terms the two theories predict different forms
t

for the broadening of the propagator. ‘I'e regimes of expecled validity are also distinet. Thus the IDIA is

basically an amplitude expansion, presumably valid below the stochasticity threshold. The Normal Stdchastic

-Approximationis-essentially-a multiple seale expansion-valid-for amplitudes-above the stochasticity threshold: -

!

V. NUMERICAL EXPERIMENT , | !

From a spectrum of known ﬁclds, chosen to be in a stochastic regime, onc can numerically compute a

family of orbits to gencrate the agrangian fluctuations 60, 6] and cvaluate the expression I,y of Eq (15).

" This is compared to the theoretical predictions of this quantxty from the Normal Stochastic /\pploxumuon and

the DIA.

Parameters arc chosen to replicate the electron response for the drift wave. The m's correspond to poloidal

- mode numbers, typically in the several hundred range. The acilell mode frequency for the drift wave is small,

and wyn, = ng. Resonances then occur at the action focations, J = ng/m. The m spectrum ranges from
M — Am/2 to M + Am/2, whereas the n spectrum is sufficiently large that boundaries are not encountered
in the simulation. To estimate the resonance spacing we take g order unity, consider the region near J =1,
and take the 7 values from M — Am/2 to M + Am/2 which fill this region. There arc then Am?2 msoInances
fromJ =1 — Am/M toJ = 1 4+ Am/M for an average resonance spacing of AJg ~ 1/MAm. The
island width of the individual resonances is AJ; & +/Hpm. A crude ctimate of the island overlap criterion is

then

AJy ! 2,4 4 :
] = Han . C(8l
(AJR) |H, lmAm >1 | (31)

The diffusion cocfficient can be cstimated (sce below) as D o |H,,,,,|2M2Am, so the correlation time is

expressed as

7 o | "M A, | (32)

The value M has been chosen from practical considerations. Parameters H,,,,, and Am are determined from
Egs. (31) and (32) by requiring strong incquality in (31) and 7, > 1 in (32) so that the decay in time of

<< exp(imé0) > is obscrvable on the unit time scale of our model. These two conditions require Am > 1,50

that spectral width is important. !

These considerations can become invalid near low order resonances (& approximating a low ordcri ration

o
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~orinteger) where the resonances are not evenly spaced but cluster together and leave gaps. For example near

I
J = 1and ¢ = 1, the resonances cluster in groups of Am.modes, the groups being spaced by 1/m in J but

~ within the cluster resonance spacing is I/m? Then, if Am/m & 1, there will obviously be large ga'ps. To

avoid this difficulty, we have used an irrational J (Clearly g can be scaled out of the problemso we take q = 1,
without loss of generality). In addition the resonances were tabulated numerically and compared to lh(k: istand

widths to be surce that nosuch gaps occurred. ... - oo 5

Although the integration of Hgs. (6) is straightforward, it can be time consuming numerically bcc|ausc of
the accuracy required to resolve the fine scale structure. Many of the relevant orbit propertics can be :studied
using a simplificd model where Eqs. (6) reduce to a simple mapping. The model is obtained by making the

further simplification of an infinite n spectrum with constant amplitude and phase. Specifically, we take

m

My oo
HJ,0,6)= >, > Hycos|(mJ —n)t 4 mo + Oml.
m=N| n=-—co
The identity, Zn_ et = QWZ ° Ot — Zvre) is used to express the force as a serics of xmpulses
. Egs. (6) arc then integrated to give the mapping - ;
Adpys = 80+ 27 ) miH,, sin[2nlmJ + m(0 + 60;) + Om] | (33)
|

50@.}-1 = 50g —l— 27!'5Jg, .

where the £th step occurs at time 278, The orbits were computed using both the mapping, Egs. (33), and
differential form of Egs. (6). Although the results are virtually indistinguishable and in good agreement
with the Normal Stochastic Approximation, the mapping is somewhat degencrate in that Eqs. (22) al:id (28)
become identical. The differential form (6) is ne(;cssary to resolve the differences with the DIA discusscci in the

f
preceding section.

With the mapbing, orbits for 3000 particles distributed uniformly in § at J = 1 + 12/7 arc con‘iputcd,
For these experiments, the m spectrum extended form 250 to 500, with the amplitudes constant at H,,, = = 10—8

and phascs, ©,,, chosen at random, but, of course, fixed throught the mtcgmtlon

With the differential form, orbits were computed for 8400 particles distributed uniformly in 8 at J = 1.4.
(The same results were obtained with 25600 particles). The m spectrum ranged from 90 to 111, whilc?v the n
spectrum ran from 132 to 153 with amplitudes H,py, = 3 X 1073 and phases, @, also random. Particles
remained within the resonance region for several correlation times. The inevitable computer truncation! Crrors
play a natural coarse-graining role as the orbits become cxcessivel y fine scaled. : |

|
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The results arce displayed in Figs. (2)-(6). For comparison purposes the data are plotted in normalized

form relative to the diffusion coefficient, D, cvaluated from Fq. (22), for cach model. The broadened resonance

~allows the m sum to be done as an integral since it is wide on the scale of the resonance spacing but narrow

compared to the spectral width in n. There is an additional factor of 4 owing to the cosine form used in the

model. Thus

M—2 |
. . R - i e ey e S e
D= § : 'rn‘QfI?n,mJ/q = Ef[?n,m.l/q(]\/fg - A/[}l) (34)
’ m=M4.1 . .

The observed variances, << §J2 > /2D and << §6% > 3/2D, plotted in Figs. (2) and (3) show the expected ¢
and £3 time dependencics rcspcclivcly, for both the mapping and dilferential models. Actually, there is a slight

discrepancy in the short time behavior, ¢ << 7., of << §0% > for the differential model. Tt shows up more

_clearly in a plot of (< §0? > 3/2D)'/? where the initial slope is somewhat larger than one. This may be due

to the relatively small number of modes in the differential model since the short time behavior is dependent

more on the random initial phases than the randomness in the Lagrangian phases when stochasticity develops

fort > Te.

A typical correlation function, Iy, =< exp(imé0) >, where n is the toroidal mode multiplicd, is shown
in Fig. (4). Thesc exhibit the same behavior for both models and all m. Thcy dccay down to noise with roughly

a t3 exponent, while the off diagonal terms Ay, for m £ m!, (not shown), start at zero and build up to noise.

- The noise is produced by the finitc number, N, of particles, and no smoothing has been done to remove it. By

varying N we have verified that the level scales like N2 as consistent with whitc noise.

The characteristic form for the correlation function in both theories is the same, namely,

1
—_n 2D 3
Imn — (*Xp( §”7’ mnT )

The degree to which this describes the observations is indicated in ng. (5), (for the differential model),

The theories differ in the forms claimed for D, The Normal Stochastic Approximation gives D, = D,
or simply the diffusion cocflicient, indcpcndpnt of m and n, whereas the DIA has D,,,, as given by Ea 20)
with w = ng. These prcdfctions are compared by determing the observed Dy, fitting the form (35) to the
numerical data using least squares to compute the stope as indicated in Fig.- (15). The results are shown in Fig.

(6) where D,y,,,/D is plotted as a function of m, using the parameters of the differential equation model. |

The observations show clearly that D,,,.,, is independent of m, consistent with the Normal Stochastic
Approximation. The quantitative agreement is good although there appears to be a slight systematic crrot.

We interpret this as an crror in the variance << 692 > as noted carlicr and not a deviation from normal in
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the distribution of §.7. This interpretation was confirmed by directly measuring the Kurtosis, <<< §J4 >>=

determination 0f D, - - T e

(< 6T > =3 < 6J% >4/3 < 6% >2, which was found to be small, of order .1, independent of time.

" This measurement can be improved by reducing the noise level (increasing the number of particles) so that

the short time behavior contibtites less o the value of the fitted slope. In the present experiments the noise

level was reached after a few correlation times so that discrepancics for 7 << 7, (which are expected) effect the

In contrast, the DIA predictions have some characteristic features that are noticcably absent in the data.
First, there is the dependence of the correlation function on n and the 1‘¢]zltéd resonance function clcpc‘ndcnce '
on the frequency difference wyy,, — wyny. These are natural features of the Fulerian representation; (arising
from the beat wave resonance) but difficult to understand in the Lagrangian picture, where a secular debend-

ence of 60 on ¢, in Eq. (14), would be implicd. This would be a rather obvious feature in the numerics and

nothing of the kind was observed. Second, even for fixed n, there is a strong m dependence of Dy, in the DIA,

and this is not obscrved cither. The magnitude of this cliscrépzmcy is illustrated in Fig. (5) where Dyy,/D has
been plotted versus m for n = 130, It should be-emphasized that D,,,,, is obscrved in an exponent. In fact, the

DIA would predict no observable decay of Ly, during the course of the experiment for most values of m.
F S

To summarize, the diffusion cocflicient determined from the observed variances, < 802 >, << §J% > and
the correlation functions, £,,,,,, was the same in all cases with the value, Eq. (34), as predicted by the Normal
Stochastic Approximation. The discrepancies with the DIA are evident, amounting to orders of magnitudé ina
measured cxponent. These observations strongly support the view that the physical process responsible for the

resonance broadening in a stochastic regime is diffusion, not Compton scattering. ‘

V1. CONCLUSION

The main points of this 'pap‘er follow from an examination of the implications of intrinsic stochasticity
for collisionless turbulence theory. Most of the consequences stem from stochasticity’s most striking property,
namely the pathological,complcx, fine scale, phase space structures that can result from relatively simple, fong
scale, perturbations. The fine scale structures result from integrating the long scale perturbations along a
particle orbit and thus suggest, at least in part, a Lagrangian representation. The fine scale structures cannot
be obtained by a perturbative treatment of the orbit (implicit in any perturbative Eulerian theory). This casts
doubt on the applicability of theories like the DIA, for a stochastic system. 'The basic features that distinguish a

stochastic system are thus the inherent nonanalyticity of the orbits and the incvitable multiplicity of scales.

The theory described in this paper exploits these features by using a Lagrangian representation and a

o
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statistical procedure of averaging sequentially ovcfin'crcasiﬁ.g' scales. The dynamics of the long scale fluctuations
(associated with the waves or insmbiliticsj can be simplified: by averaging over the fine scalcs to give, in effect,
a diffusing orbit response. We have termed this limit the Normal Stochastic Approximation. [t is cssentially
a multiple scale theory, appropriate for amplitudes above the stochasticity threshold. Below the stochasticity

threshold one would expect Eulerian amplitude expansion theorics, like the DIA, to be valid. Not surprisingly,

B - ~the twotheories give different predictions with different underlying physical causes. =~
A qualifying comment is in order here. There is actually a third regime at still higher amplitude when the
individual islands overlap the eatire resonant region. One then gets a slowly modulated single island, no evident

stochasticity [8]. Trapping and dilfusion phenomenon appear together without one being clearly dominant. This

regime was obscrved numerically for a different model but not, as yet, studied egtcnsivcly.

The situation 1s somewhat reminiscent of that in fluid turbulence, where thc DIA has had its most (otablc
success. At moderate Reynold’s numbcn where the relevant phenomenon are limited to a single scalc the

Eulerian DIA works very well. However, as the Reynold’s number gets larger, the scales multiply ?nd dlis-

crepancies appear. The DIA does not give the Kolmogorov, £—%/3 spectrum for intertial range turbulence
. [10]. The difficulty is that the Fulerian DIA treats all scales identically. Any intcracting triplet of fluctuations
irreversibly creates or destroys couc]atmns The theory does not allow for the small scalcs to be couvc{tcd

f ,
i without being destroyed by the large scalcs as required for the Kolmogorov spectrum.

| ' Attempts to remedy these deficiencics have utilized a Lagrangian representation [11], and physical argu-
ments to treat the large scales differently [12]. Flu.id turbulence is, of course, quite different from thé kinetic
theory turbulence problem addressed in this paper. The comparison here is intended simply to \unclcrscf:ore the
limits of the DIA for dealing with problems involving disparate scales. We are echoing Kraichnan’s sc‘vcntccn

year old refrain A[ll] by making a plea for Lagrangian theories.
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Figure Captions -

Fig. 1.

0o

Fig. 4.

Fig. 5.

Fig. 6.

o]

Fig.2&3.

Characteristic orbit functions in stochastic case: For ¢t — ' > 7., where 7, is the correlation time
and approximate Kolmogorov entropy. For large ¢ — ¢, the oscillations have larger amplitude and.

finer scale.

Observed variances for the mapping (o) and differential () models compared to the theoretical

value (solid line).
Typical correlation function I,,,,, versus time showing characteristic decay to noise.

Plot of (In |,,,,,])'/3 to display characteristic time dependence of correlation function. The linear fit
to the initial decay, from which D,,,,, is determined, is also shown. The form of Eq. (35) is seen to
be a reasonable description of the decay until the noisc level is reached.

Comparison of the decay paramcter, D,,,,, in l'.hp correlation function. The predictions of the DIA

arc plotted for fixed n == 130,
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