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Abstract

Wave energy flow conservation is demonstrated for Hermitian differential op-
erators that arise in the Vlasov-Maxwell theory for propagation perpendicular to a
magnetic field. The energy flow can be related to the bilinear concomitant, for a
solution and its complex conjugate, by using the Lagrange identity of the operator.
This bilinear form obeys a conservation law and is shown to describe the usual WKB
energy flow for asymptotically homogeneous regions. The additivity and uniqueness
of the energy flow expression is discussed for a general superposition of waves with
real and complex wave numbers. Furthermore, a global energy conservation theorem
is demonstrated for an inhomogeneity in one-dimension and generalized reflection and
transmission coefficients are thereby obtained.



I. Introduction

In the Vlasov-Maxwell theory wave energy conservation is commonly associated with
Hermitian wave operators. Such operators arise, when particle resonances are not present
or neglected, e.g., for wave propagation perpendicular to the magnetic field. In the present
paper we wish to examine the conservation of wave energy flow for Hermitian operators.
Such operators satisfy relations known as Lagrange identities. The purpose is to show
how the general structure of these identities determines both the conservation law and the
asymptotic properties of the energy flow.

Lagrange identities are well known from the theory of ordinary differential equations®
and in an integrated form are familiar as Green’s formula in potential theory.? They estab-
lish a relation between an operator, its adjoint and a boundary form, which is commonly
called the bilinear concomitant. More generally, Lagrange identities can be derived for.vec-
tor systems of differential equations of arbitrary order, such as those that occur frequently
in the Vlasov-Maxwell theory.>~* For these vector systems explicit Lagrange identities
can be obtained, where the concomitant is in general, only uniquely determined up to the
curl of a bilinear vector field. We note in comparison that in general, the electromagnetic
energy flow in a vacuum can only be identified as the Poynting vector up to a curl, but
- this is sufficient to identify the total energy flow out of a closed surface.

The concomitant of a Hermitian operator is related to a conserved current of the
system, which has previously been used to express energy flow conservation for simple
systems.>~® Here we wish to emphasize the general structure of these relations and present
a discussion independent of the actual form of the operator. An important issue in this
context is the identification of the concomitant expression with the physical wave energy
flow. We find that this can be achieved asymptotically (i.e., in the boundary regions
where the system is spatially homogeneous), and for general vector systems one obtains a
straightforward derivation of the WKB energy flow expression from the Lagrange identity.
With the relationship between the concomitant and the energy flow one can demonstrate a
global energy conservation theorem for these Hermitian systems. For solutions correspond-

| ing to general radiative boundary conditions we discuss the uniqueness and the additivity
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(i.e., sum over normal mode energies) of the asymptotic energy flow and obtain general-
ized reflection and transmission coefficients that satisfy global energy conservation in one
dimension.

While the concomitant conservation follows most immediately from the Lagrange iden-
tity, it may be instructive to discuss an alternative derivation from a version of Noether’s
theorem.” For Hermitian operators one can find variational forms which play a role anal-
ogous to the action integral in field theories. However, while the most common action
integrals depend only on the fields and their first derivatives, the present functionals in-
clude derivatives up to an arbitrarily high order. It is this generalization that leads to
the concomitant expression. From the symmetries of the variational form one obtains
ina straightforward way conservation laws. These are well known for certain wave La-
grangians describing wave propagation for weakly inhomogeneous media.® Using the La-
grange identity one can show that energy flow conservation follows generally for arbitrary
inhomogeneities from a gauge invariance. Furthermore, translational invariance for. time
independent and homogeneous media yields energy and momentum-like conserved quanti-

ties that can be related to the concomitant expression.

II. Exact Conservation Relations

In the Vlasov-Maxwell theory the propagation of waves with frequency w and electric

field E(x)e~* is governed by vector systems,
L-E=0, (1)

where the operator L in general represents an integral operator, and under not very re-
strictive approximations can be approximated by differential operators of arbitrarily high
order. In the following we will assume that the operator L satisfies a Lagrange identity and
from this structure discuss some consequences for the wave energy flow in inhomogeneous

media. The Lagrange identity for L and its adjoint L* is a relation of the form,
$*-(L-9)— (L1 0)* =iV - J(@* ) (2)

that holds for arbitrary vector fields ¢ and . The vector :J (d)*, 1)) is bilinear with

respect to the arguments and is known as the concomitant. The star denotes the complex




conjugate and the factor ¢ has been inserted for convenience. In the Appendix we derive
Lagrange identities for vector systems of differential equations of arbitrary order. The
concomitant here is in general only determined up to the curl of a bilinear vector field,
V x b(qb*, ). This ambiguity however is unimportant for one-dimensional problems and
for global conservation relations as discussed in Sec. III.

From the Lagrange identity (2) there follows by Gauss’ theorem the Green’s formula,

[ ex]et-@-w) - @t u| == [ da-3%v), ©

for any volume V with surface OV. If the whole plasma is contained in V and ¢, are
subject to boundary conditions where the surface term vanishes, Eq. (3) expresses the
general definition of the adjoint operator LT.

Let us now choose 9 to be a solution of Eq. (1) and ¢ to satisfy the adjoint equation,

i =0 (4)

Then, according to Eq. (2), J (¢*,¢) represents a conserved current, whose divergence is
zero. This relation becomes especially useful for Hermitian operators, where L = LT, and

¢ = 1) is a solution of the same physical system. The relation

becomes a conservation law for any solution and its complex conjugate. We will see that
J ('(,b*,'tﬁ) can be identified asymptotically with the energy flux of the system. For non-
Hermitian operators we define the energy flux by an expression of the same form, however,

with L replaced by its Hermitian part Ly,
V- Iu(*,¢) = —i [§* - (Lg - ) — (Lg - )* -] - (6)

Writing L = Ly +1L4 with an anti-Hermitian part L4 and choosing 1 again as a solution

of Eq. (1), one obtains from Eq. (6),
V- Iu(* ) = — [* - La- b+ (La-)* - ] (7

The right-hand side no longer vanishes, and thus describes the dissipation of energy asso-

ciated with L.




ITI. Global Energy Conservation

‘We now evaluate the concomitant expression for Hermitian operators asymptotically as
the system approaches infinity, where spatial homogeneity is assumed. In such a region
the well-known expression for the WKB wave energy flow is obtained.® More generally,
the uniqueness and the additivity of the asymptotic energy flow for a general superposition
of waves, including propagating and evanescent waves, is discussed. For an inhomogene-
ity in one spatial dimension, a global energy conservation theorem is demonstrated and
generalized reflection and transmission coeflicients are obtained.

Let us consider an arbitrary inhomogeneous medium in a finite volume that is sur-
rounded by spatially homogeneous regions. Integrating Eq. (5) over a volume whose sur-
face OV lies entirely in the homogeneous medium, one obtains by Gauss’ theorem a global

conservation law for the asymptotic flux,

[ da-3@* ¥) =0. (8)

We now show that J(1*, ¢) represents asymptotically the wave energy flow, so that Eq. (8)
becomes a statement of global energy conservation.

Asymptotically, the solutions of Eq. (1) can be taken as a superposition of plane waves,
b= =¥ ©)

For a homogeneous medium, the form of Eq. (9) is an exact solution and the operator

equation (1) becomes an algebraic system,
D(k) -+ =0. (10)
Nontrivial solutions of (10) require
A(k) = det | Di;(k)| =0,

a solubility condition that determines the possible values of one component of k in terms
of the remaining components and the frequency w. We also have to consider the adjoint

system (4). In the Appendix it is shown that its corresponding algebraic form is given by,

¢ — q'i/) eik~x



DI*). ¢ =0
A¥(k*) = det [ D}, (*)] =0, (11)

where the adjoint matrix is defined as D,]Lj(k) = DY (k). For Hermitian operators Eqgs. (10)

and (11) are identical which implies
D(k) = DI (k*). - (12)

With this relation one has A*(k*) = A(k) and consequently the possible wavevectors for
Hermitian systems occur as complex-conjugate pairs, k and k*.

Let us now assume a general asymptotic solution,

Y=> Cut, (13)

with complex coefficients C,, and plane waves ),, with corresponding wavnumbers k,,. The

asymptotic expression for the bilinear concomitant then takes the form

I(*, ) = CxXCrnIum (14)

n,m

with I = J (1,&:, 1,,). In the double sum (14) there occur spatially constant terms when
k, = k¥ and spatially periodi¢c terms when k,, # k*. We denote the solution (9) that
depends on k: by 1b_s and the constant terms in the expansion (14) that occur for complex
conjugate wave vectors by J,, = J ('(,b:*, ¥,,). The Lagrange identity determines the form
of the vectors J,, in the following way. Setting in Eq. (2) ¢ = v, and ¥ = ¢,,, and using
Egs. (10)-(12) yields

*
¥ D(kn) - % — [ DI 5] - 9 =
¥E - [D(km) — D(KY)] -, = (K% — ki) + T, (15)
In the limit where k* — k,, one obtains from Eq. (15),
Tn=—(0)* | D(kn)| -9 (16)
m —. m* ak m m?
where the dots denote the contraction of the fields with the matrix D.
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Some basic properties of the asymptotic wave energy flow follow immediately from
Egs. (13)-(16). First we note, that the concomitant (14) can actually be identified asymp-
totically with the wave energy flow. For a single plane wave with a real wave vector the
solution (13) conmsists of only one term and the concomitant assumes the form given by
Eq. (16), in agreement with previous expressions for the wave energy flow in homogeneous
media.®® More generally, Eq. (16) applies also to complex wave vectors k,,. In this case a
contribution to the energy flow requires the presence of both 1), and 9_« in the asymptotic
solution (13). For usual boundary conditions only evanescent waves are allowed, which cor-
respond either to %, or to 9_x. Thus there is no contribution from these waves. We note
however that solutions with complex conjugate wave vectors can occur in tunneling regions
of inhomogeneous media.

For a general superposition of waves the sum in Eq. (14) contains also spatially oscillating
interference terms J,,, with k,, # k*. According to Eq. (15) these terms are restricted by
an orthogonality constraint, (k: — k) - Jpm = 0, but are otherwise not determined by the
Lagrange identity. As previously mentioned, the concomitant expression is in general only
uniquely defined up to the curl of an arbitrary bilinear vector field b(¢*, ). This quantity
has the asymptotic form, '

V x b(¢*7 ¢) == z(k: - km) X bpm (17)

n,m

where by, is defined as J,,,. This expression is zero for k,,, = k,’f and otherwise spatially
oscillating. In general, the ambiguity of the asymptotic concomitant expression can be
removed by taking the spatial average in Eq. (14).

We now consider the case of complex conjugate wave vectors, k,, = k¥ and k,,, Eq. (17)
represents the common expression for the wave energy flow. For complex wave vectors k,,,

To be more specific we now discuss the global energy conservation theorem for an inho-
mogeneity in one dimension. For simplicity of notation we denote by k and J the vector
components along the inhomogeneity direction and assume the same transverse wave vector
for all waves. The possible values k, of k are given by the roots of the local dispersion

relation. In this case the oscillating terms in Eq. (14) yield (k¥ — k) Jpm = 0 and therefore




the form

J@* )= 3 |Cal*a (18)
kn;eal

and is additive with respect to the propagating waves with real wavenumbers. This ad-
ditivity can be used to define reflection and transmission coefficients for the individual
waves. For this purpose we write the energy flow of the wave with wavenumbers %, in the

common form,

Jp =v, W,

vn=_A7k/A)w

Wo=ot-2D.y, (19)
T dw "

where v,, is the corresponding group velocity and W,, the wave energy. At z — —oco we
assume an incident wave (i) with group velocity v; > 0 and reflected waves (r) with vy, < 0.
The waves at £ — +oco are taken as transmitted waves () with group velocities v,z > 0.

Then the global conservation relation (8) can be written in the form
T+ Y Jur =D I (20)

Dividing by the incident flow J; and defining reflection coefficients R, = |Jn./J;| and

transmission coeflicients 1), = |Ju:/J;| one obtains
> 0nRy+ Y onTy =1. (21)
n m .

Here o, is the sign of the ratio of the corresponding wave energies. It can therefore be

negative if the system supports negative energy waves.

IV. Wave Action, Enérgy and Momentum Conserva-
tion |

We now discuss a version of Noether’s theorem and relations for wave action, energy
and momentum in space and time-dependent media. For Hermitian operators the wave

fields can be derived from a variational principle and Noether’s theorem provides a general




method to obtain field invariants corresponding to the symmetries of the action function.
Since this functional depends on derivatives of the field up to an arbitrarily high order, the
conserved quantities can be expressed in compact form by the concomitant. The Lagrangian
formalism for wave propagation in slowly varying media is thereby generalized to arbitrary
inhomogeneities.

In the following we consider wave propagation in a medium with an arbitrary space and
time dependence. We assume that the system can be described by a Hermitian operator L,

which satisfies a Lagrange identity in 4-dimensional space-time z*,

L 40,) = £(* 16, 09)* = i T, ), (22)

with [ﬁ(v,b*, P, zt) = ¢* -L-1p. We choose the notation A* for a four-dimensional vector with

time component A° and use the repeated index sum notation. The number of components
of the fields v is unconstrained, but £ is assumed to be a scalar quantity. We define the

variational form

S = [ dtaL(y*,v,2*) (23)

and note that the wave equation (1) follows from the variational principle §S = 0 with

respect to variations of 1. Let us now assume an infinitesimal point transformation,

P = z¥ 4 bzt (zt)
P(@) = (e)+ 692" | (24)
The Jacobian of the transformation of z* is
1+ %&c” (25)
and the change of ¢ at z* is defined as
5 = D(e*) - bla¥) = up(a) - 65 (0", (26)

With Eqgs. (25) and (26) the variation of S(4)) corresponding to the transformation (24)

assumes the form,
65 = [asL@* 5~ [doL* b,0")
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0
— 4 Ay W7’
= [d% (5z+£,0w#5a: )
4. | o ¥ * = 0
We now use the Lagrange identity (22) to obtain
[tz [W(L )+ TF (L)

+ / oo [iJ* (4*,5F) + L62¥] . (28)

If ¢ is an extremal of the variational form (23) and S is invariant with respect to the

transformation for an arbitrary volume, then Noether’s theorem follows in the form,

5o [i7# (4*,8¢) + L8z*] =0. (29)

Let us now consider the particular transformation 9 — e¥%, corresponding to a uniform
phase shift of the fields. The infinitesimal changes here are §z* = 0 and §v = 81 = 1664p.
Under this transformation the variational form (23) remains invariant, which is called a
gauge invariance of the first kind (or sometimes called global gauge invariance). According

to Noether’s theorem (29) this symmetry leads to the conservation law,
2 ¥ ) =0, (30)
Ozt ’
Integrating Eq. (30) over a volume V' that encloses the whole system yields a field invariant,
A= [ Eaw* ). (31)

The asymptotic expression for J °(¢*, 1) can be found from Eq. (22) in analogy with the

treatment in Sec. III. For a single wave « e~** one obtains
0/, * x [0
Pt 9y =9t (D) (32)

The expression (32) is commonly called the wave action, which is generalized by Eq. (31)

to arbitrary inhomogeneities.
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For time-independent homogeneous media Eq. (23) is also invariant with respect to

infinitesimal translations éz*. Using Eq. (26) with §(z*) = 0 one finds from Eq. (29),

9 B % i —
oy [J <¢ ’Zaw"¢)] = 0. (33)

The corresponding field invariants are an energy-like quantity,
W = /V P JO(g*, i0,p) (34)
and a momentum-like quantity,
Pi= / #270 (v*,i 2y (35)
v T Ozi T )’

for linear waves. For inhomogeneous, time-dependent media the change of these quantities

follows from

6 * wy '
S L(4*,9,2) = 0 (36)
and Eq. (22) in the form,
0 .. % .0 _ % [0 .
&cﬂj (¢ ’Zax“¢) =¥ (5$”L> v G0

V. Discussion.

In the preceding sections we have shown that Lagrange identities for Hermitian op-
erators determine conservation laws that are related to action, energy and momentum
conservation. We are mainly concerned with the Vlasov-Maxwell theory of wave propaga-
tion in an inhomogeneous time-independent plasma equilibrium. Here Hermitian operators
arise for wave propagation perpendicular to the magnetic field and the Lagrange identities
can be expected to be valid.®>~* In general, the plasma response can be written as a dif-
ferential operator of infinite order. If this operator is applied to plane waves the resulting
series often have an infinite radius of convergence and accurate approximations can often
be obtained for truncations of finite orders. It is assumed that a corresponding truncation
of the differential operator can be justified, leading to differential equations of an arbitrary
high order. An example can be found in Refs. 3,4 and 6 if wave propagation in a thermal

plasma perpendicular to a uniform magnetic field is considered. (We know that it is only

11




for perpendicular propagation that Hermiticity is satisfied, otherwise Landau damping
introduces an anti-Hermitian component to the wave operators.) For waves with a given
frequency the action (31) and the energy (34) as well as the corresponding flows are related
by a constant factor. The demonstration of global energy conservation for these Hermitian
systems is the main result of this work.

For time-dependent Hermitian operators one can readily generalize the 3-dimensional
spatial conservation law to a continuity equation for the wave action. The energy then
becomes an independent quantity, which in general is no longer conserved. One should
however, notice that the Hermitian form of the time dependent Vlasov-Maxwell operator
is less obvious and this structure may apply to special cases with an adiabatically slow
time variation only.

To illustrate the general procedure we now discuss a specific example describing wave
propagation in a cold plasma with no external fields. The wave equation for the electric

field E is written in the form
. 1 w2
AE — 0—26§E —V(V-E) - c—gE =0 (38)

with the plasma frequency w, and speed of light ¢. The operator in Eq. (38) is Hermitian
and we can therefore obtain conserved quantities from the concomitant expression. For

any second order derivative the Lagrange identity assumes the form

o? 0? s, 0 0
¥ 0" o o ok O fox o o 0ok
E Oz? E-E asz Oz (E 83:E E 6:1;E ) ’ (39)

which defines the concomitants of the Laplacian and of the time derivative in Eq. (38).
For the operator VV- one can derive two alternative identities. If the divergence is first

transferred to the adjoint field one obtains
E*.(VV-E)-E.(VV-E*=V.[E*.VE - E.VE*], (40)
Conversely, if the gradient is first transferred, the identity assumes the form
E*.(VV.E)-E.(VV.-E¥) =V.[E¥V.E)-E(V.-E¥)]. (41)

In both identities the adjoint operators are the same, but the concomitants differ by the

expression,

(B*.V)E + E(V-EY)—[(E-V)E*+E*(V.E)] =
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V.(E*E) — V.(EE*)=V x (E x E*), (42)

which is the curl of a bilinear vector field. This is an example of the ambiguity in the
concomitant as discussed in Sec. III. We now combine Eqgs. (39) and (40) to obtain the

conservation law for the operator (38),
&J(B*,E)+ V- J(E*,E)=0 (43)
with
J(E*,E) = —-013 [E*0.E — E6,E¥|
J(E*,E)=E* x (VX E)-E x V x E¥,

If in this model the plasma frequeﬁcy is taken both space and time dependent, Eq. (43)
describes the conservation of the wave action. If the medium is time independent, action
conservation becomes simply related to energy conservation. In this case G;E can be taken
as a solution of Eq. (38) and the energy current J*(E*,5,E) as defined by Eq. (33) will
then also satisfy Eq. (43). To compare this expression with the physical wave energy we

use Maxwell’s equations for a cold plasma without external fields in the form

VXBtB

1., 1,
- - 44
catE + cwa (44)
1
VxE = —=§B.
c
The energy J O(E*, 6:E) can then be rewritten as
JO(E* 8,E) = _LlE*. vxaB — W2|E? — |3,E[]

2 P
- 61—2 |B.EP +wW2[E[* + |8,B]* — ¢V - (3B x E¥)| . (45)
Similarly, the energy current assumes the form,
I(E*OE) = 8 [E*x (V xE)| - 0E* x (VxE*) - 4E x (V x B¥)
= _%at(E* x 8;B) + % (@E* x 9B + ,E x 8tB*) : (46)

13



Inserting Eqs. (45) and (46) into Eq. (43) one obtains the energy conservation law,
0(|B:E + w[El” + |0B]*) + V - [cB,E* x 8,B + cE x 8B*| = 0. (47)

This is in accordance with Poynting’s theorem for the cold plasma model (44). We
note, however, that the energy and the corresponding flow cannot be uniquely defined by

the conservation relation (43) for arbitrary inhomogeneities. Actually any transformation
W' = W+V-a
J = J-8a+Vxb (48)

with bilinear vector fields a and b leaves Eq. (43) form invariant. This ambiguity arises in
the derivation of Eq. (47) with a = %E* x ,B and b = E* x E. Asymptotically, however,
for plane waves with given frequencies and wave vectors the ambiguous terms vanish and

then unique expressions are obtained.
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Appendix — Operator Identities

In this appendix we consider vector systems of differential equations of arbitrary order n
and derive explicit expressions for the adjoint operator and the concomitant. The operator

has the general form
n 3

L’ij = Z Z a%l"-am ey PPN azam (Al)

m=0 o1 cm=1

and for simplicity of notation is written in the symbolic form

L-3 1" (A2)

m=0

where
L™ = a™v™

a® = goivem : Vm:\V®V®'VJ

v

m times
Here summation over the indices of the gradients is always implicitly assumed. We start
with the derivative of m-th order, L™. Using repeatedly the product rule one obtains for

arbitrary fields ¢ and % the identity,

¢-L" - = V[p-a"V" | +[(—V)gp-a™| V"¢

=V {fj (-Vy~'p-am| Ve ¢}

p=1
+ [(=V)"¢-a™] 3. (A3)
Comparison with Eq. (2) shows that

™t = (—-v)mart

i3(e) = 3 [(—Vpig-am] vmry, (44)

p=1

*
with (af‘;'"“m)T = (a;‘il'"“m> . If the matrix af}"*™ is not completely symmetric with

respect to the indices @ + - - @, the expression (A4) is not uniquely defined and depends
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on the ordering in which the product rule in (A3) is applied to different gradients. On
the other hand L™ and Lm]L are unique since a™ and a™ are here contracted with the
completely symmetric tensor V™. As a consequence two different representations for the
concomitant can only differ by the curl of a bilinear vector field, V x b(¢, ). An example
of this ambiguity is discussed in Sec. V.

For the general operator (A2) the identity (A3) holds for each term from m =1 up to
m = n, while the term m = 0 produces no boundary term. Summation over m then yields

it = Yyt
m=0

n m

i3, %) = > D [(-Vrig-am| VT, (A5)

m=1 p=1

For Hermitian operators Eq. (A5) does not express explicitly the Hermitian form.
A general form for Hermitian operators is

Ly= zNj (=V)m@mryn (A6)

m,n=0

where the matrix G™" satisfies the condition,
a7 = (GM*. (AT)
Defining

T() = S(-1G™vry

n=0

N

Qe ¥) = Y |[(-V)"¢*| - T(¥)

m=0

N m

>3 [(=V)yiet| vrr . T(y), (A8)

m=1 p=1

I(¢*, %)

we obtain by the same procedure as in Eq. (A3) the identity,

17




The expression Q(¢, 1)) is a Hermitian form satisfying

Il

S [(vre*)- @ (v

m,n

= Y (V™). G™F . (Vi)

Q*(%,9)

= Y(V"e*)-G™ - (V™) = Q(, ). (A10)
Interchanging ¢ and % in Eq. (A9) and taking the complex conjugate yields,
% (Lu - )" = Q*(¢,6) + V- T*(¢*, ¢). - (ALD)

Subtracting Eq. (A11) from BEq. (A9) and observing Eq. (A10) one obtains the Lagrange

identity for Ly with the concomitant

i3(¢*,¥) = Ho",¥) - T*(¥*, ). (A12)

We finally give the form of the algebraic operators, that correspond to L and L7L in
the asymptotic limit. These are obtained by substituting V — ik in Eqs. (A2) and (A5)
yielding,

L— Y a™(ik)™ = D(x,k)

m=0

Lt - 3= e (ix*)™* = Di(x, k). (A13)
m=0
Let L be Hermitian then D is Hermitian for real k. This symmetry, however, no longer

holds for complex k.
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