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. We show that ion temperature gradient driven turbulence supports fluctuations with broader
‘radial scales than those inferred previously on the basis of the eigenfunction with lowest

radial eigenmode number. These fluctuations of greater radial extent are more strongly
excited and are shown to result in fluctuation levels and transport coefficients which can be
considerably larger than those previously predicted. It is expected that transport of this
nature would force ion temperature and density profiles to near-marginal stability in neutral
beam and ICRF heated plasmas.
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I. Introduction

Evidence that anomalous ion transport is an important aspect of confinement
in both ohmic and auxiliary heated tokamaks has been accumulatingl-4. In D-III, for
example, departures from neoclassical ion thermal conductivity, both with regard to its
radial dependence and magnitude, have been observedl. In Alcator C, such anomalous
ion energy losses have been linked to confinement saturation in ohmic discharges, with the
additional observation that in pellet injection where the density gradient steepens, ion heat
conduction decreases?. Ion losses at confinement saturation have also been linked to
fluctuations propagating in the ion diamagnetic direction and these too have been shown to
decrease with density gradient steepening due to pellet injection3. Ion temperature gradient

driven turbulence®5 has been quite sucessful in explaining these features. Notably, ion
thermal conductivity has strong ion density gradient scaling [ %3 o @,ps2 (In (1 +mp))2

(1 +m;)2Lp/Lgt?2 where Mj = dln T/ dlnnj ]. This strong dependence on mjis

-responsible for the sensitivity of confinement to the density profile and enforces proximity -
.to marginal values of Mj as well. The fluctuations of ion temperature gradient driven

turbulence also propagate in the ion diamagnetic direction. Moreover, theoretical

‘conductivities have performed well in transport codes, such as those modeling discharges

with auxilary heating®.

The tendency of ion temperature gradient driven turbulence to enforce
marginal profiles does not obviate the need for nonlinear theory. On the contrary, the
scalings and magnitudes of the transport coefficients which ultimately determine the
confinement and profiles must be found from nonlinear theory. Previous theory has
assumed that the radial correlation length of turbulence is given approximately by the width
of the lowest order (1=0) radial eigenmode (L is the radial eigenmode number). This
assumption naturally affects the magnitude of diffusivities since the linear driving is a
function of radial mode structure. Moreover, this approximation fixes the radial width over
which fluctuations mix the ion pressure, and thus determines the fluctuation level consistent
with a given growth rate. More subtly, restricting the characterization of turbulence to a
single radial eigenmode implies that turbulent fluctuations are modeled by a single radial
wavenumber for each polodial wavenumber.



From linearized fluid equations, it is easily shown that higher order radial
eigenmodes are both less localized and more strongly excited than the lowest order
eigenmode. Both these features tend to increase predicted fluctuation levels and transport
coefficients. The larger growth rate suggests that fluctuations with broader mode widths
should predominate in determining the radial fluctuation scale. In fact, this is observed in
simulations of ion temperature gradient driven turbulence where broader fluctuation scales
characterize the turbulence in both growing and saturated phases’. It should be pointed

out that the simulations, which include kinetic effects (ion Landau damping) not accounted

for in the fluid equations, restrict the range in eigenmode number 2 for which there is
instability. Nevertheless, numerical solution of kinetic equations shows that fluctuations
~with eigenmode numbers in the range 1 £ 0 < ~10 remain both more extended and more
1istrongly driven than the & = O fluctuation. In this paper, we discuss the inclusion of
‘broader radial fluctuation scales in the theoretical analysis of ion temperature gradient
‘driven turbulence and present evidence from particle simulation which corroborates the
theoretical assertions.

The simplest estimates of the effect of broader mode structure on fluctuation
levels and diffusivities incorporate the growth rates and radial fluctuation scales of linear
theory in mixing length analyses. However, there is no reason, a priori, to assume that
linear eigenmode structure and growth rates typify the fluctuations and relaxation times
associated with finite amplitude turbulence. To this end, an analysis of the renormalized

equations of ion temperature gradient driven turbulence is presented. The natural radial -

fluctuation scales and turbulent diffusivities consistent with a steady state are determined by
an eigenmode calculation with D, the turbulent diffusivity, as the eigenvalue8. Itis shown
that the more strongly driven, broader radial fluctuations anticipated from linear theory give
rise, in the nonlinear regime, to transport coefficients which are considerably higher than
those of previous theory, typically by an order of magnitude. The results of the nonlinear
eigenmode analysis indicate that the scales characteristic of turbulent fluctuations do not
strongly differ from those inferred from linear theory for higher order eigenmodes. The
evidence from particle simulations supports the conclusions of theory: higher order
eigenmodes dominate the radial fluctuation spectrum in the linear phase and these broader
structures persist in the nonlinear phase. The scalings of linear growth rate and modewidth
with respect to shear, gradient drive and mode number carry over directly into the scalings



typical of the saturated state, further supporting the notion that the presence of broader
-radial mode structure strongly affects fluctuation levels and transport.

‘ Both fluid and kinetic theories are utilized in this paper. Because fluid
theory is simpler and more transparent, the basic theoretical analysis will be presented
using fluid equations valid for n; > Mj ¢r. Kinetic theory is necessary in order to determine
the stability threshold for higher order radial eigenmodes which, because of greater radial

extent are more sensitive to ion Landau damping. As noted above, kinetic effects’are found
to restrict the range of unstable eignemodes to 0 < L < ~10; the trend of enhancement of

transport for fluctuations with 1 < 2 <~10 over those with & = 0 persists. The validity of
fluid theory is checked by comparing mixing length diffusivities generated from fluid and
kinetic theories. The two theories show close agreement for 1 < 4 with the kinetic
diffusivity peaking at slightly higher values (1 ~ 7) while the fluid diffusivity continues to
increase.

The results of this paper are summarized by writing X; =
C-T3/2B1-2(1+m;)2, where the constant multiplier C is an order of magnitude greater when
proper account of more extended radial fluctuations is taken. As already noted, ion
temperature gradient driven turbulence tends to enforce marginal stability. This follows
more from the strong dependence of y; on M; than from the magnitude of C. However, the
larger multiplier is significant because with it, the regime of marginal stability is extended
toward the edge, where the tendency of cooler temperatures to lower X; is offset by the
increased multiplier. The scaling of the multiplier with respect to Lg is also affected by
more extended fluctuation structure. Assuming fluctuations with & = 0 only, C ~ LgL.
With the inclusion of higher order eigenmodes, C tends to increase with Lg. The
organization of this paper is as follows: In Sec. II, simulation results are presented which
show exfended mode structure for both linearly unstable and saturated cases. Next, the
basic fluid model is introduced in Sec. III, along with the linear characteristics of higher
order eigenmodes. Renormalized fluid theory is then presented in Sec. IV, and the results
of the numerical solution of the eigenvalue problem are given. Section IV includes mixing
length estimates for the diffusivity which are calculated from both kinetic and fluid theory
and compared to the results of the nonlinear calculation



11. Simulations

\

Particle simulations have the virtue that the type of fluctuation structure which
characterizes the turbulence as determined by balances of driving, dissipation, and
nonlinear transfer, is naturally selected by the physics incorporated into the simulation.
Simulations thus indicate if the linear tendency to greater excitation with higher eigenmode
number actually results in more extended fluctuations and increased excitation. Particle
simulations of ion temperature gradient driven turbulence have been performed using a 2%—
D particle code with full ion dynamics and adiabatic electrons in a sheared slab. In these
simulations, unstable M;-mode fluctuations were allowed to grow out of noise to finite
amplitudes and saturate by nonlinear transfer to ion Landau damping. Two types of
simulations were performed: those in which unstable fluctuations were characterized by a
single poloidal wavenumber ky, and those with multiple ky's unstable. In both types of .
simulation, careful filtering in wavenumber space was used to limit the fluctuations to either
even parity or odd parity with respect to the rational surface’. In the first case, the single
mode grew linearly and saturated. Saturation was typically accompanied by strong ion
temperature profile flattening (the density profile was relatively unchanged) suggesting a
quasilinear relaxation process. Some cascading occured as well however, since other
wavenumbers were excited nonlinearly. The radial structure of fluctuations corresponding
to the unstable wavenumber was observed both before and after saturation. It was noted
that radial structure in the saturated state was essentially unaltered from the linear phase.
The radial fluctuation structure was noticeably broader than that predicted for the L =0
eigenmode from linear theory. Figure 1 shows the radial structure at saturation of the even
mode corresponding to kyps = 0.3, M; = 4, Ly/Ln= 28, and Te/T; = 1 and compares it with
QL =0and =2 linear eigenmode structures. It is clear that the =2 mode is strongly
excited. It is also observed that prior to saturation, this mode grows at a rate consistent
with the & =2 growth rate and oscillates at the L = 2 frequency. Figure 2 shows the
radial structure of an odd mode corresponding to kyps = 0.3, n; = 10, Ly/Ly = 11.2, and

Te/Ti = 1. Here it is apparent from the comparisons with linear eigenmodes that modes
corresponding to £ =1, & =3, and & = 5 are simultaneously excited. The measured



potential fluctuation levels at saturation yield the following scalings: e¢/Te o< Lg/L and
ed/Te o< (14M;)1/2. Trrespective of mode parity, the fluctuation level increases with
decreasing shear strength and has a weaker dependence on m; than expected. However,
saturation in the simulations occurs by temperature profile flattening over the width of the
highest radial eigenmode excited. This quasilinear mechanism likely has a strong effect on
the scalings. .

~Simulation runs with unstable fluctuations corresponding to multiple poloidal
wavenumbers were studied in order to verify that negative interference between fluctuations
of different wavenumber could not in some way suppress higher order radial structures.
Again it was found that broader structure persisted both in linear phases and nonlinear
phases. It was observed in a run with mj = 10, Ly/Ly = 10, and Te/Tj = 1 that fluctuations
of a given wavenumber were dominated by radial structure associated with a particular
eigenmode number Q. Thus, fluctuations in the spectrum at kyps = 0.1 had a radial
structure characterized by L =5, whereas at kyps= 0.5, L = 1 typified the radial
structure. This observation suggests that some nonlinear coupling of radial mode
structures occurs. The nonlinear coupling of radial mode structure will be considered
analytically in the future.

It is clear from the simulation of cases involving both a single unstable
wavenumber fluctuation and those of multiple wavenumbers that broader radial fluctuation
structure than that associated with the lowest order radial eigenmode characterized m;
turbulence. This fact, which is independent of the way in which saturation occurs,
establishes the need for inclusion of higher order radial wavenumbers in the theory of ion
temperature gradient driven turbulence.

1. Basic Equations and Linear Theory

A fluid description of ion temperature gradient driven turbulence is contained in
. . . ] LA A .
equations for vorticity V J_2$ . parallel (ion) velocity v, and pressure p . Assuming a

sheared slab geometry, these equations are
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where vp = —(cTe/eB) d/nn/dx is the diamagnetic velocity, T =Te/Ti, U = Ly Oci/CsZ

is the ion viscosity, and Y = I'/t where I' is the ratio of specific heats. The adiabatic
compression term in the pressure equation YV||/\>1| serves to exchange energy between the
driven pressure fluctuations and fluctuations in the parallel velocity which experience
viscous dissipation at high k through the viscosity term LLV|[2/\>| | 4. This term effectively
plays the role of Landau damping in the fluid theory by providing dissipation at large ki
where ions resonate with the wave. Near the critical 11; where modes are marginally stable,
kinetic effects play an important role10:11, Thus, the fluid model is valid only forn > m;
cr - It is also assumed that Ly2 < LtLg where Ly, Lt, and Lg are the scale lengths of
density gradient, temperature gradient, and magnetic shear. The case where L2 > L1l is
the 'flat density' case which, while also amenable to fluid theory, will be considered
elsewhere.

From the linear growth rate and radial eigenmode width it is possible to make some
inferences concerning the fluctuation level in the steady state. The linear growth rate and
mode width are obtained from solution of the linear eigenmode equation, which is derived
by linearizing and combining the three fluid equations, Egs. (1):

: \
1-Q  UpH A2/l
[Q + (1 -/l 2

d2
Pszag&c + (-szz + jﬁ\k =0 (2

where Fourier transformation in time and the periodic y variable has been performed, Q =
/Wy , and the adiabatic coupling term has been neglected in the linear theory. The

solution of Eq. (2) is given in terms of Hermite polynomials, $k = exp( -x2/ps2xs)



H , [(ix%/ps?xs) /2] where L, the radial eigenmode number, is an integer and xg= QLg/Lp,

The mode width is Ax = psxs!/2 and the eigenmode frequency Q is given by solution of
the linear dispersion relation

Ln

Q2(Kk2ps2 + 1)+Q(k2p32£-1-+—m)- 1+i@20+ 1)%]+i(211+ (1 +M)= = 0.
T

sT
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- The two roots of this dispersion relation correspond to shear damped Pearlstein-Berk drift
waves and the unstable 1; mode. The exact root of the n);-mode is

A 4+ L+1)(1+ni)Ly
Q=7z-5+—1)£1-\/ 1- T2 J 4)

where A =1 - b(1+1;)/ T -i(22+ 1)Ly/Lg and b =k2pg2. An approximate idea of how
Im varies with { can be obtained by Taylor-expanding the radical for small 1. Since b

and Lp/Lg are small, the two lowest orders in the expansion yield

@+
= | )

o Lp?
L52

ImQ =

1+ (Q20+1)

where b(1+1;)/T has been neglected compared with unity. For small -Jl, Eq. (5) gives ImQ
= 24+ 1)(1+n;)Lp/Ls T , which is the formula typically cited. For & >0, Im Q
increases linearly for small 0 and turns over for higher  (at20+1 =Lg/Lp). This is
consistent with the behavior of the exact root, whose variation as a function of £ is

illustrated in Fig. 3. From Eq. (5), the mode width is
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which for small { increases with & as 21/2. The fact that both growth rate and mode
width increase with { implies that turbulent diffusion is a strongly increasing function of
Q. This situation differs from that encountered with drift waves where higher order
eigenmodes are less localized but are also less strongly driven. In the drift wave case,
turbulent diffusivities actually decrease with increasing eigenmode number. For the 7);
mode, the increase of growth rate with increasing radial eigenmode number can be
attributed to its sonic character. The growth rate is given approximately by Im Q =
kyCs(1+np1/2 where ky = Agky/Lg. Thus, larger modewidth corresponds to larger parallel
wavenumber and stronger growth. In drift waves, by contrast, sound waves mediate the
coupling to the dissipation (ion Landau damping) so that broader radial modes experience

stronger dissipation. It is worth noting that e modes!2 are similar to n; modes in regards.

to higher order eigenmode properties. Because the mathematical structure of M modes is
equivalent to that of ; modes with the roles of electrons and ions reversed, N modes with
larger eigenmode number will also be more strongly driven. However, 1 modes, like n;
modes, are subject to Landau damping (electron Landau damping in the case of 1, modes).
This restricts the number of unstable higher order eigenmodes and bounds the radial
fluctuation scale. _
 Numerical solution of linearized kinetic equations for the m; instability
indicates that the role and effect of higher order radial eigenmodes is essentially the same in
kinetic theory as in fluid theory with the range in £ of unstable modes restricted. The

kinetic eigenvalue equation is

d2 A(x,Q) 3
(dx2 " D(X,Q)j b =0 @
where
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and Q = O/W«T, W+T = (cTe/eB)ky/LT, /w4 = (®/0sTINi/T = QNi/T, Iy =Tj(0) =
Li(b)exp(=b) [L;(b) is the modified Bessel function], b = (kypi)2, pi = Vii/ki , ps? = Tpi2,
(i= m/(kuVﬁ\/Z), and x is in units of pg (x/ps — x). Kinetic solutions show that the mode
width is a function of the eigenmode number & with only weak dependence on other
parameters such as Ly/LT and n;. As in the fluid case, the kinetic growth rate increases for
small £, peaks and then decreases until it becomes negative at higher values of . The
values of 0 at which the growth rate peaks and becomes negative are lower in kinetic
theory than in fluid theory. Numerical solutions show that for Lg/Ly = 11.2 and m; = 10,
the growth rate for 1 < £ < 8 remains above that of the £ = 0 mode with the growth rate
peaking at 0 = 3. Similarly, for L¢/Ly = 28 and m; = 4, the growth rate for 1 < £ <9
remains above the 2 =0 growth rate with a peak at L = 3. In general, for weaker shear, a
larger number of eigenmodes are unstable. |

The scaling of the growth rate with respect to shear changes markedly for
higher eigenmode numbers. For { = 0, the growth rate decreases for decreasing shear

strength while for higher {, the opposite is holds. The % value at which the shear scaling
changes is found to increase for decreasing 1;. This behavior is summarized in Fig. 4
which shows the growth rate as a function of L for various values of Lg/Ly,. From the
numerical solutions of the kinetic equations, it can be concluded that for values of n;
consistent with experiment and for realistic shear, consideration of the first few nonzero
radial eigenmodes is sufficient to determine the effect of extended fluctuations on transport.
Conclusions drawn from fluid theory should also be valid for these low mode numbers.
The results of linear theory showing larger growth rates and broader mode
widths provide strong indication that fluctuation levels and transport coefficients increase

10



when proper account is taken of extended fluctuation structure. In the next section, a
nonlinear analysis is presented in order to establish this assertion.

IVU. Nonlinear Eigenmode analysis

Mixing length theory has been shown to give Qualitatively correct
fluctuation levels and transport coefficients for M; turbulence. However, it is important to
verify that estimates obtained from mixing length analysis are consistent with more
rigorous nonlinear treatments which introduce no a priori scale assumptions. To this end
we consider a nonlinear analysis$:13 of the renormalized equations for ion temperature
gradient driven turbulence. The full equations are derived in Ref. 13. These equations are

3 . 141; . 3 2 FIE
Z(1-V12) G + ioge(l + 2V, 2) O +ikyV = = —pe— V20 + —Pr—0
ot T ox ox ox = ox

0 ) ) 0 0

Z0ik + nki2vi + ik O + ikipk = —Dyg—Wiik

ot 0x  odx

op 141 9. 9

L iw*-—&&: +iTkiVix = —Dk—ﬁk (8)

ot T 0x 0x

where V2= 0%/0x2 - k2, i = 3. [ky2/(ky + ky)21 ky2| G| 2/ Aoy is the eddy
diffusivity, Bx = Zk, [ky2/(ky + ky")?] ky'zl Vi (’Bk, [2 / Awgyx is the turbulent back-
reaction to eddy diffusivity, Dx = X k2 l@ktl2 / Ay is the turbulent diffusivity of
pressure and velocity, and Awk4x' is the nonlinear eddy decay rate4. In this
renormalization, both driven vorticity and driven potential are retained, with the effects of
the later being expressed in terms of the former. Consequently, the eddy diffusivity

11



contains a diffusivity of vorticity which is equal to Dx and a contribution from the driven
potential. These two contributions combine to produce the form of pyx given above.
Approximately, g = (ky2 / <ky2>rms)Dk , SO that [y is less than Dy for fluctuations which
are driven at low k (and cascade to higher wavenumbers where dissipation damps the
fluctuation energy). In addition to the nonlinear effects represented in Dy, [, and By, Egs.
(8) contain the physics of the pressure gradient source and saturation by parallel viscosity
which models Landau damping.

A nonlinear eigenmode equation is obtained be combining Eqgs. (8). The
diffusivities are treated as eigenvalues to be determined by solution of the eigenmode
equation. The mode width of the eigenfunction obtained from the solution is the nonlinear
radial fluctuation scale. At saturation (y = 0), the eigenmode equation is

az\/i\fk _ N2(1-12]23 + iBSIzI2/3 - iMSIzI4/3) A 9
o2 9 1 + iSNIzl2/3 Vk ©

where W = [1-ilz2B/NS18, z = kdpd632, k= (14m)/t, S =Lo/Ls,

N = D/ (K20,ps2S), M = g/ (K20,ps2S), B = Bylzl2/3 / (kw,ps2S), and ky is the
Fourier transform variable conjugate to x, ie., d/0x — iky, x — i9/dkyx . The
normalizations of the eigenvalues N, M, and B are obtained from the £ = 0 mixing length
scaling of turbulent diffision with respect to the parameters K and S (Ref.4). The mode
width Az is normalized so that Az = 1 is the linear eigenmode width. The back-reaction B
has an additional scaling with the square of the normalized mode width Az due to its
| V1612 dependence.

The eigenmode equation, Eq. (9), is solved numerically for a single
eigenvalue N where B/N and M/N are taken as constants of order unity or smaller.
Although the back-reaction is frequently neglected in theoretical calculations, the relations
following Egs. (7) clearly show that it is of the order of ux/Az2. As stated previously, Hx
is a significant fraction of Dx. Accordingly B is retained in the numerical solution of Eq.
(9). In choosing the ratio B/N, the normalized mode width present in By is assumed to be
of order unity for L = 0. This assumption is verified a posteriori from the numerical

12



solution. It is found that above some critical eigenmode number, the turning point is
dominated by the balance of the B and M terms in the potential, and does not involve the
term 1-1z12/3. Since the latter term is essential to the 1; branch of the dispersion relation,
fluctuations in which the B and M terms dominate are not nonlinear M; modes. Hence, the
results of the nonlinear eigenmode calculation are not relevant above this critical eigenmode
number. The critical eigenmode number increases with incréasing shear. For Ly, =25,
itis found to be L=4. Since kinetic effects restrict the range of eigenmode numbers in any
case, the numerical results are given only for these lower eigenmode numbers.

The results of the numerical solution are summarized in Fig. 5. The
nonlinear mode width for £ = 0 is found to be comparable to the linear eigenmode width.

‘The diffusivities are expressed as the mixing length' diffusivity for L =0 [Dx =
04 Ps2(14M1)2Ln/Lgt2, (Ref. 4) ] times a multiplicative factor. For = 0, the factor is

3.26. For & =1, the factor increases to 20; for & =2, it is 40. The mode width Az is
seen to decrease as L increases. Since Az e< ky3 and ky is the Fourier transform variable
conjugate to x, a decrease in Az signifies an increase in the mode width Ax as  increases.

Nonlinear eigenmode analysis clearly demonstrates that a marked increase in fluctuation
level and transport occurs for the less localized fluctuations corresponding to higher order
nonlinear eigenmodes.

The solution of the nonlinear eigenmode equation shows that the nonlinear
mode width is in good agreement the linear mode width. Moreover, the nonlinear
diffusivity for £ = 0 is well approximated by the mixing length diffusivity. It is therefore

useful and desirable to calculate mixing length estimates of fluctuation amplitudes and
diffusivities for £ >0. Mixing length estimates of fluctuation amplitudes at saturation are
based on the notion that the cascade can be approximated by a nonlinear mixing of pressure
inputed by the gradient source over a characteristic fluctuation scale in the gradient
direction. In its simplest form, mixing length theory balances the linear growth rate with
turbulent diffusion over the linear mode width. In the simplest renormalized treatment of
the nonlinear equations, the convective nonlinearity is everywheré replaced by a radial
diffusion: [ dy (bx V§-V ) exp(iky) — 9/x Dy 3/dx where the diffusion coefficient Dy
is the same given immediately following Eqs (8). The mixing length balance then implies
that Im Qg = Dy/Ax2. From the linear growth rate and mode width, we infer that

13



0,22 L+ L2l
Lyt

1.2
[1+ (29.+1)2ﬁ]2

Dy = (10)

Setting & = 0, recovers previous results?. Note, however, that in going from £ =0to L

= 1 there is nearly an order of magnitude increase in the diffusion coefficient with further
increases for higher values of the radial eigenmode number.

It is also possible to obtain a mixing length diffusivity from kinetic theory
by using the growth rates and mode widths obtained from shooting code solutions. For
comparison, Fig. 6 shows the diffusivities of kinetic theory, fluid theory [using the more
exact Im{ obtained from Eq. (4) rather than the approximate one given by Eq. (5)], and the
nonlinear theory as a function of { for Lg/L = 28 and 1;=4. It is seen that all theories
agree very well for the low values of 0 considered. For higher values of the eigenmode

number, the agreement becomes worse, for the reasons which have already been discussed

at some length.
The large anomalous ion thermal conductivity resulting from excitation of
even the lowest (L # 0 ) radial eigenmodes strongly enforces proximity to marginal

stability through rapid relaxation of unstable temperature profiles. Note that the strong
dependence effectively allows %; to remain large, even in regions where the ion temperature
is lower. Itis also interesting to speculate on scaling of the diffusion coefficient implied in
Eq. (10). For & =0, Dy e Lp/Lg; however for higher values of £, the denominator of
Eq. (10) becomes important and can alter the simple scaling inferred from the numerator.
This is underscored by evaluating Dy at the mode number giving maximum diffusion, i.e.,
(22+1) = Lg/Ly. Inthatcase Dg = 0.250,ps2(1+M;j)Ls/Lyt? Note that the Ly/Lg scaling
of the L = 0 theory is altered to become an Lg/L; scaling. While the value of 2 which
yields this scaling is probably too high for instability (determined from kinetic theory)
when the shear is strong, this exercize nevertheless indicates that scalings in the weak shear
limit are altered. A scaling of Dy with Lg to some positive power is consistent with the
kinetic growth rate [Fig. (4)], which shows stronger excitation for decreasing shear
strength and a larger range of unstable eigenmodes . '

14



The fluctuation level consistent with mixing length diffusion, Eq. (10), is
readily found from the formula for Di, assuming that the eddy decay rate A®gyx is
approximately the diffusion time D/Ag2. This yields

a led| _ ps( QLD(I+M)/A /2
ng T 1Tl % I ™) : (11)
[1+@2+1)2 55

]

once again showing that a strong increase occurs in going from L =0to & = 1. This

result is consistent with the conclusions of the nonlinear eigenmode calculation, particularly
in showing significant increases in the diffusivities for higher order radial mode structure.

U. Conclusions

Higher order radial eigenmodes are more strongly dnven than the L =0

elgenmode typically used to characterize the radial mode structure of ion temperature
gradient driven turbulence. The results ‘of particle simulations show that these more
extended fluctuations characterize the potential in the saturated state. From nonlinear
eigenmode analysis of the renormalized equations, it is shown that consideration of these
eigenmodes leads to diffusivities and fluctuation levels which are typically much larger than
those obtained with the lowest eigenmode number structure. Mixing length estimates of the
diffusivity based on both kinetic and fluid theories are also calculated and shown to be in
good agreement with the diffusivity of the renormalized nonlinear eigenmode equation.
The scaling of the diffusivity with respect to shear is also considered. For weak shear,
qualitatively consistent scalings from linear theory and mixing length estimates suggest that
D increases with Lg. The large value of thermal conductivity inferred from these
considerations suggests that in practice, Mj could not greatly exceed the instability threshold
and that the system would be tied dynamically to marginally stable 1}; profiles in NBI and
ICRF heated plasmas. Moreover, the enhancement of y; allows the domain of quasi-
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marginality to extend to regions of colder plasma. Finally, we speculate that ni-mode
turbulence may constitute a ‘marginal stability' link between the hot core and cooler edge
plasma. Such links are thought to be the dynamical underpinning of profile consistencyl4
phenomena. Given these conclusions, a nonlinear kinetic calculation of ion temperature
gradient driven turbulence is desirable. '

Acknowledgments
We acknowledge useful discussions with J.F. Drake. We also
acknowledge stimulating discussions with R.J. Goldston and Y. Takase on the subject of

dynamical marginal stability and the links between the edge and core plasma. This work
was supported by the U.S. Department of Energy contract #DE-FG05-80ET-53088.

16



References

1. R.J. Groebner, W.W. Pfeiffer, F.P. Blau, and K.H. Burrell, Nucl. Fusion 26, 543
(1986).

2. S.M. Wolfe and M. Greenwald, Nucl Fusion 26, 329 (1986).

3. D.L Brower, W.A. Peebles, S.K. Kim, N.C. Luhmann, Jr., W.M Tang, and P.E.
Phillips, Phys.Rev. Lett. 59, 49 (1987). '

4. G.S. Lee and P.H. Diamond, Phys. Fluids 29, 3291 (1987).

5. B. Coppi, M.N. Rosenbluth, and R.Z. Sagdeev, Phys. Fluids 10, 582 (1967).

6. R.J. Goldston, et al., in Controlled Fusion and Plasma Physics., S. Methfessel, ed.,
(European Physical Society, Madrid, 1987) p. 140.

7. J.N. Leboeuf, D.R. Thayer, and P.H. Diamond, Bull. Am. Phys. Soc. 31, 1404
(1986).

8. L. Garcia, B.A. Carreras, and P.H. Diamond, Phys. Fluids.30, 1388 (1987).

9. W.W. Lee, WM. Tang, and H. Okuda, Phys. Fluids 23, 2007 (1980); H. Okuda,
J.M. Dawson, A.T. Lin, and C.C. Lin, Phys. Fluids 21, 478 (1978).

10. P.N. Guzdar, Liu Chen, W.M. Tang, and P.H. Rutherford, Phys. Fluids 26, 673
(1983).

11. P.W. Terry, W. Anderson, and W. Horton, Nucl. Fusion 22, 487 (1982).

12. P.N. Guzdar, C.S. Liu, J.Q. Dong, and Y.C. Lee, Phys. Rev. Lett. 57, 2818 (1987).
13. N. Mattor and P.H. Diamond, Phys. Fluids (in press).

14. B. Coppi, Comments Plasma Phys. Controlled Fusion 5, 261 (1980).




Figure Captions

Fig. 1. Particle simulation results for one single even parity mode unstable with k| pg =
0.3,Mj =4, Ly/Ly = 28, and T, = T; showing the real and imaginary parts of the potential
fluctuation [solid and broken lines respectively]; a.) Snapshot of the spatial structure of

the potential fluctuation in the simulation at saturation; b.) Fundamental even eigenmode
from linear theory (radial mode number 0 =0); c.) Eigenmode from linear theory with

radial mode number L =2.
Fig. 2. Particle simulation results for one single odd parity mode unstable with k| pg =
0.3, mi = 10, Ly/Ly = 11.2, and Te = T; showing the real and imaginary parts of the

potential fluctuation [solid and broken lines respectively]; a.) Snapshot of the spatial
structure of the potential fluctuation at saturation (w«t =9.0); b.) Spatial structure of the

fluctuation with @ =—1.42w« obtained by interferometry from the simulation data; c.)
Spatial structure of the fluctuation with © =—1.94wx by interferometry; d.) Eigenmode
from linear theory with £ = 1 and ® =—0.995w«; e.) Eigenmode from linear theory with
2 =3 and ® =-1.61wx; f.) Eigenmode from linear theory with £ =5 and © = —2.1wx.
Fig. 3. Growthrate as a function of & from solution of the fluid equations [Eq. (4)] with
Ls/Ln =15, k1 pg = 0.07, and Te/T; = 2.

Fig. 4. Growth rate from numerical solution of the kinetic equations as a function of £
for three values of the shear, Lg/Ly = 10, 25, and 50, and 1; = 4.0. Growth rate decreases
with decreasing shear strength for & =0 while for £ > 0 it increases for decreasing shear
strengfh. | :

Fig. 5. Nonlinear diffusivity Dk normalized by wu«pg2(1+1;)2Lp/LsT2 as a function of L
obtained from numerical solution of the renormalized eigenmode equation for Ly/Ly, = 15.
Fig. 6. Comparison of mixing length diffusivities obtained from the growth rates and
mode widths of kinetic and fluid theories with the diffusivity obtained from numerical
solution of the renormalized eigenmode equation for Lg/Ly = 28, M =4, and Te = T}
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