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Abstract

A general theory of wave tunneling in one dimension for Hermitian vector systems

of integral equations is presented. It describes mode conversion in terms of the

general dielectric tensor of the medium, and without regard to specific models gives

a proper account to the forward and backward nature of the waves. Energy conservation
in the WKB épproximat.ion can be obtained for general linear systems by a consistent
treatment of the vector polarization and by the use of modified Furry rules, w hich
are similar to those used by Heading for second order differential equations. Operational
graphical rules are developed to construct global wave solutions and to determine
the direction of energy flow for spatially disconnected roots. In principle these ruleé
could be applied to systems with arbitrary mode complexity. Coupling coefficients

for wave tunneling problems with up to four interacting modes are calculated explicitly.
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1 Introduction

Wave tunneling is a well-known phenomenon, which allows waves to penetrate
into regions which would not be accessable along their ray trajectories. This effect
has been particularly well studied for second order equations in the quantum mechanical
context.1 More generally tunneling can occur for higher order equations, a problem,
that is of particular importance for mode conversion in magnetized plasmas.2 In this
paper we wish to examine the general tunneling problem for Hermitian vector systems
of integral equations in the WKB approximation. As a special case this formulation
includes Hermitian differential operators of arbitrary high order. The primary motivation
for this study comes from the linear Vlasov-Maxwell theory, which leads to Hermitian
operators when particle resonances are not present or neglected, e.g. for wave
propagation perpendicular to the magnetic field.3~4’ As a consequence of Hermiticity
the total wave energy flow is exactly c::,onserved.s—6 It is therefore a basic goal of
the present treatment to obtain consistency with wave energy conservation.

In the geometrical optics approximation waves propagate along rays, which are
determined by spatially varying wave numbers k(x) along the inhomogeneity direction
x. Tunneling occurs across narrow spatial regions , which separate two or more
branches for the wave numbers. Across these regions the usual geometrical optics
approximation fails and couplings occur between the individual waves. The mode
conversion tunneling problem consists in the determination of the various coupling
coefficients that arise between the in- and outgoing waves at the boundaries of the
medium.

Previous work has been mostly based on specific model equations for tunneling
regions. Mode conversion in thermal plasmas has been studied particularly well by
certain fourth-order equations with linearly varying coefficients.2'7-9 Attempts to
formulate unified descriptions of pairwise coupling have led to further model repres-
entations by second- order differential equationslo-11 and systems of coupled first-order

equations.lz_m‘ In the present treatment we consider general linear systems and

carefully discuss the aspect of wave energy conservation. For this purpose we apply




and extend WKB techniques developed for higher order equations.ls_l? This approach
is advantageous, since the tunneling problem can be discussed in terms of the general
dielectric tensor of the homogeneous medium, which is regarded as a known quantity.
Furthermore it allows in principle to deal with arbitrary tunneling structures and
mode complexity in slowly varying media. |

The WKB formulation provides a general way of determining the energy flow
direction of the outgoing waves relative to the incident flow. It is found, that in
general the vector representation is important to obtain the proper orientation of
the energy flow, and we show, how the vector polarization determines the forward
and backward nature of the waves.

We also develop a graphical operational procedure based on modified Furry
rules, that enables one to describe the coupling between the waves in the mode
conversion tunneling problem. The wave amplitudes are represented by isomorphic
diagrams for the complex wave numbers and a multiplication is defined, that allows
to propagate waves by observing some basic operational rules.

Energy conservation in the WKB theory is achieved by a modified Furry rule for
the wave representation inside a tunneling region. This rule has been discussed by
Heading for second-order differential equations.18 Previously phase integral methods
have been applied for determining generalized Furry rules for higher order equations.
Following these methods the modified Furry rule can be explained by a bifurcation
of the steepest descent path on Stokes' lines. In addition, this rule is shown to
conserve wave energy for general tunneling structures. The general formulation of
the mode coupling rules by graphical methods and its resulting energy conservation
is the principal result of this work.

The paper is organized as follows. In Sec.2 the present WKB techniques are
introduced. The wave diagrams and Furry rules are explained and subsequently used
to demonstrate consistency with wave energy conservation. In Sec.3 we use this
formalism to analyse conventional tunneling through a potential barrier and make
comparison with an exact solution. In Sec.4 we treat mode conversion between

waves, which tunnel with a non-zero real part of the wave numbers. Finally, in Sec.5
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representative cases of the four wave tunneling problem are considered, that describes

. . . 9
mode-conversion near ion-cyclotron frequen01es.5’9’1

2 WKB Method

In this section we define the general rules to construct global solutions to the
tunneling problem. These rules generalize usual Furry rules and are expressed by
wave diagrams, that allow one to determine graphically the change of wave amplitudes.
By observing these rules conéistency with wave energy conservation is obtained in

the WKB theory.

A Local dispersion relation
We consider the propagation of waves with a frequency w in a Vlasov-Maxwell
system with spatial variations along the x direction. The electric field E (x) is governed

by avector system of integral equations of the general form,
Jax Kixx)Ex) = 0 . (1)

Here and in the following the dependence on the constant frequency and a
constant wave vector perpendicular to the x direction is suppressed in the notation.
We will neglect dissipation by assuming that the matrix elements of the kernel have
the Hermiticity property that K ij(x,x’) = K ;(x',x).

For systems with weak inhomogeneities the WKB method determines asymptotic
solutions of Eq.(1). The dielectric tensor of the medium can be introduced as the
Fourier transform of the integral kernel with respect to the difference of its argu-

ments,lS—17




. (2
D(xk = [dg K(x+ L, x -3y gka )

4

The wave solutions are characterized by local wave numbers k = k(x), which are

roots of the local dispersion relation,
AGK) = detD(x k) [ =0 . (3)

This is generally a transcendental equation and we assume, that A(z,k} is an entire
function of complex variables z and k. According to complex analysis it can then be

represented by its zeros in the product form,zo

K
Az = eEF ™ Tl e P ~ (4)
n n .

. Here z is considered fixed, g(k) represents an entire f;mction, pn(k) are convergence
producing polynomials, m is the multiplicity of the zero k = 0 and n labels all zeros
kn + 0. The number of zeros can be zero, finite or infinite. In the following we
assﬁme, that all zeros are distinct in the asymptotic regions |x| — = and coalesce
only pairwise elsewhere. From Eq.(4 ) the condition for pairwise coalescence is

found to be,
A(Z,k) = A Y k(z,k) = O H Alk'k(zyk) # O 5. ! ( 5 )

where A, K denotes the partial derivative with respect to k.

If z varies in the complex plane a branch k = kn(z) of the dispersion relation (3)
becomes in general a multi-valued function of z. To determine the analytic continuation
of a given branch it is convenient to consider a parameter representation z(1), k(1)
of the zeros with a complex variable 1. In analogy with the real Hamiltonian ray

equations the functions z(t) and k(1) are determined by the sysﬁem,




dz _ & _
& = Ay , = - A, . (6)

Since Alz,k) is assumed analytic, there exists a unique analytic solution to initial

conditions Z(To )=z kit )= ko at T =T . We now choose A(zO ,kO ) =0 and a

0O 0]

path in the 1-plane such, that z(1) maps on a given path in the z-plane. The branch
k = k(z) then is uniquely defined by the corresponding values of k(1). The continuation
of a given branch can therefore be reduced to the solution of an initial value problem.
The WKB solutions in the complex plane depend on these trajectories and their
behavior around branch points.

A branch point Zg kB of k = k(z) occurs when A, k= 0. Expanding about Zg k

B
the solution of Eq.( 6 ) is obtained locally in the form,
Al ’
sk = 5s sz= -4 KK 2 (7)
2 /\,z
with 8k = k - kB, oz = z - Zg and 8s = —A,Z(T-TB). If we propagate &z around the

branch point a phase change 8¢ of $z is accompanied by a phase change 8§/2 of dk.
This rule is useful to gain a qualitative picture of the behavior of wave trajectories.
Analogously a branch point of the inverse function z = z(k) occurs when A, y = 0

and here the phase change of &k is found to be 2&j.

B Local asymptotic solutions

The local asymtotic solutions of Eq.(1) assume the well-known fox'm,15
Ez) = a(z) 5@ | (8)
The exponent S(z) represents the rapidly varying function,
z
Sz) = Slz) + [dz' kiz) . (9)
o}
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For Hermitian operators the solution for the components of the vector amplitude

can be represented in the form,

Cir (D,k(po)>1/2
ai(p) = o af(p) , af(p) = \ D, (pJ af(po) , (10)
ff k
with the definitions,
D-C = Al , D=A/Cff, p = (z,k(z)) . (11)

Here I denotes the unit tensor, C the transposed matrix of the cofactors of D and
for simplicity the dependence on z and k(z) is expressed by a single variable p. For
A = 0 one of the columns of C with an arbitrary but fixed index f has been used to
express the components of the solution vector in Eq.(10). It is then sufficient to
describe the variation of the single scalar quantity ag . We remark, that the main
difference between a scalar equation and a vector system lies in the appearence of
the cofactor Cff in the expression for D. For scalar equations one can set Cff =1

and therefore D = A in Eq.(10).

C Diagram representation

We now develop a graphical procedure to construct WKB solutions of the mode
coupling problem. For this purpose a diagram representation of WKB waves is intro-
duced and basic operational rules are defined, that allow to determine mode coupling
coefficients graphically.

We propagate the vector component Ef(z) as defined by Egs.(8)-(11) along a
complex path from p, to p, thereby avoiding branch-points. The ratio Ef(p:2 )/Ef( pl)
then is written in the form,

i&%ﬁ&mm+s&mm]

{kl1,2) = alkl1,2) e (12)




with

D, (py) 1/2
a(k[1,2) |(-Lpl—> ‘ ,
Po Py
5kl1,2) = arg ( D, () ) . SKkI12) = S(p)
Py Py

This expression is uniquely determined by the path of k = k{z) in the complex k-plane
and by the end-points Py We therefore representthe WKB wave < kl1,2" by an

isomorphic diagram,

(kll,2) =

)

| > ; (13)

It indicates schematically the path in the k-plane, the direction of propagation
(arrow) and the end-points (indicees). Horizontal and vertical dashed lines represent
the real and imaginary k axis, respectively. We now introduce a product of diagrams

by defining,

(k] 1,2)<K'13,4) = If*\ © m

(14)



Without ambiguity we can often suppress the coordinate lines, the indicees and the
multiplication symbol o for simplicity of notation.

We now discuss some basic graphical operations for wave diagrams. If the wave
amplitude (12) is propagated from point 1 to point 3 across an intermediate point 2 ,
thére holds the multiplication rule, (k1,27 {k|2,3) = {k|1,3). This property is expressed

graphically in the form,

/ 0 \\ - e

The inverse of a diagram is obtained by reversing the direction of propagation,

aals .

or

)
)

(17)




Branch-points where A, k= 0 are symbolized by a dot. Propagating &k around a
branch- point we obtain from Eq.(12) for a complete circle that §(k|1,2) = + 2n. The
plus sign corresponds to counterclockwise and the minus sign to clockwise rotation.
A branch-point, where A, , = 0 is symbolized by a cross, and here the amplitude (12)

is analytic. The phase rules for encircling branch-points are expressed by the diagrams,
= e = | (18)

To define further graphical rules we will now assume the common relations
D(z,-k) = D(z,k) and D*(z,k) = D(z* k™ for D(z,k) as defined in Eq.(11). The first
relation is satisfied, if the determinant A and the diagonal elements of the dielectric
tensor are even functions of k. We are therefore dealing with media, where waves |

with opposite signs of k propagate with opposite group velocities Var © A, = The
2

“

second relation is a consequence of the reflection principle for analytic functions™",
if D(z,k) is assumed real for real arguments.
Let us now consider a product of two diagrams, which are symmetric with respect

to the origin,

(19)

The two diagrams represent waves with wave numbers k and -k and with end-points
1= (k1’21)’ 2= (kz,zz), -1 = (—kl,zl), -2 = (—kz,zz). According to Eq.(12) they are related
by al-k|-1,-2) = a(kl1,2), 8(-k|-1,-2) = §(k[1,2), S(-k|-1,-2) = -S(k{1,2). The product diagram

(19) therefore has the value,




D, (1)

~ D, @ (20)

{kl1,2) {-k|]-1,-2)

Another diagram, that occurs frequently, is given by a closed loop around two

branch- points on the real axis,

(21)

Alternatively, using Eq.(17), this diagram can be represented by the product,

- —_— - (o) e - —

One has then to take the ratio between two diagrams, which are symmetric to the
real axis. Reflection at the real axis is obtained by substituting k — k* and z— z".
From Eq.(12) one finds the corresponding relations, a(k*ll,Z) = a(k|1,2), S(k*ll,Z) =
-5(kl1,2), S(k*ll,Z) = —S*(k|1,2). The loop diagram then can be evaluated as,.

(k]1,2) — ypifkdz — o—i6(k1,2) D (1) 29
(k*|1,2)—06 ) c=e€ = sgn D:2))’ (22)

where sgn(x) = + 1 corresponding to the sign of x and the integration path is taken
along the loop. We finally discuss the product of two diagrams, which are symmetric

with respect to the imaginary axis,

_10_
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Reflection at the imaginary axis k— -k* combines the symmetries k—> -k and k—
K", yielding a(-k"|-1,-2) = a(k[1,2), 8(-k"|-1,-2) = -5(k1,2), S(-k"|-1,-2) = S*(k[,2),
Accordingly, the waves {k|1,2) and \/—k*l-l,-z\/ represent complex conjugate solutions.
Their product gives the squared magnitude of each diagram and can be expressed by

a diagram of the form (19) times a loop diagram (21),

! ! |

' I ! I
_m+cx_=m; T 00 WP
1 ' I
|

N

- This representation is particularly useful to evaluate energy expressions of wave
solutions. We now have summarized the basic graphical identities, that will be used

in the subsequent sections.

D Construction of Tunneling Solutions

In this section phase integral methods are used to obtain an asymptotic represent-
ation of the solution inside wave tunneling regions. The result is expressed as a
modified Furry rule , that allows to construct global tunneling solutions. We shall
first present the rules and then justify them using a phase integral steepest descent
method.

_11_




Asymptotically as |x|— ® we assume homogeneous regions, where the solution
is represented by propagating and evanescent plane waves. The aim is to relate the
wave amplitudes at x—> +o to those at x—) ~o if these regions are separated by an
inhomogeneous tunneling structure. The tunnel region is assumed to consist of two

or more separated branch-points x_, where the mode coupling condition A(xB,kB) =

B7
A, k(XB’kB) = 0 is satisfied. At each point Xp kB two roots k1’2 coalesce and the
corresponding WKB solutions (8) fail. Passing around these points in the complex
z-plane a change in the asymptotic representation can take place across Stokes’

15-18
lines, which are defined by the condition,

z
Im( if (- kz)dz'> = 0 (24)

and form locally a star with three rays intersecting at x_, under an angle 2n/3

B
(Fig.1). On a Stokes' liné the ratio between the two solutions acquires a purely real
exponential factor. The exponentially large solution is called dominant and the
exponentially small solution subdominant. In the tunneling problems we consider,
one of the Stokes' lines is directed along the real axis. In general this requires,
according to Eqs.(7) and (24), that Xg and k]z3 are taken real. As shown in Fig.l we
indicate the dominant wave on each Stokes' line by the corresponding sign of Im(ék).

The change of the asymptotic representation across a Stokes' line is expressed
by the following Furry rule: If a dominant wave is propagated across a Stokes' line,
one has to add a subdominant solution, which is the analytic continuation of the
dominant wave around the branch-point in the opposite sense of propagation. This
rule can be readily represented by diagrams. In Fig.l we propagate the dominant
wave with Im(8k){ O across S, According to Eq.(7) 8k rotates in the same sense as

6z but only by half the angle. This gives rise to the graphical connection formula,

_12_.



(25)

The l.h.s. represents thé wave before and the r.h.s. after the crossing of the Stokes'
line, which occurs in the k-plane at an angle n/ 6 with the real axis. The subdominant
wave is obtained by backward propagation at the Stokes' line.

To deal with wave propagation along the Stokes' line on the real axis, we now
formulate a second modified Furry rule, which has been discussed by Heading for
second-order equatiom‘,.18 If a dominant wave is propagated on or off a Stokes' line,
without actually crossing it, only one half of the subdominant wave as determined
by the usual Furry rule has to be added. In terms of diagrams this rule assumes the

form,

The Stokes' phenomenon described so far can be examined for higher order
equations by phase integral methods..ls_16 The starting point here is a contour integral

representation of the solution,

E(z) = ,fch Emo k2| (27)

8-

where the contour C connects two remote regions in the k-plane where the integrand

vanishes. Usually there exist as many independent contours as independent solutions.

_13_



[a)
For the dual vector field E (k) asymptotic solutions have been derived, which assume

the fox'rn,15

A Cf 1 -iS (k)
E(k) = (-‘— ————) e’ ,

1 Cer D, z=2.(k)

z ( 28 )
A A k
Sk) = Sk) o+ [dkz(k)
° k

[o}

The dual representation (28) fails near the branch-points of z = z(k), however, it is
accurate near those of k = k(z). One can therefore use this representation to obtain
ésymptotic expansions near the mode-coupling points in x-space. According to the
method of steepest descent the contour C is deformed into a steepest descent path
across saddle points. ’The saddlie points follow from the condition,

d

k
E(\kz—{dk'z(k')) = z - z(k) = 0 (29)

o]

and are coincident with the roots of the local dispersion relation at the point z.
Performing the integration across the saddle at k=k(z) along the direction e of

the steepest descent path, the contribution to the contour integral is found to be,

Cif

ol
Cer /Dy

eiS(z) . (30 )
k=k(z)

Ei(z) = (

with the branch of the square root defined by,

1/2
( s ) ei(cp—vr/4~) Y 0
A,

In this way there follows for each saddle crossed by the contour C the corresponding

WKB solution in x-space.

In the Appendix we shall show how the Furry rule given by Eq. (26) is derived.
- 14 -



E Energy conservation

We now address some issues of wave energy conservation in the wave tunneling
context. First generalized mode coupling coefficients are defined, that express global
energy conservation, then the direction of energy flow for spatially disconnected
roots is specified, and finally consistency of the modified Furry rules with wave

energy conservation is demonstrated.

At the boundaries |x| =) o the solution is taken as a superposition of WKB

waves and in accordance with our symmetry assumptions in the local dispersion

relation the wave numbers occur in pairs of k, —k and k, k*. Outgoing wave conditions
prescribe one solution of each k, —k pair if k is real, and boundedness determines one of

the k, k* pair if k is complex. The number of constraints from both boundaries then equals

the number of independent wave solutions.

For complex wave numbers we allow only convergent solutions satisfying 2 Im(k) > 0.
In the Hermitian case these convergent waves do not transport wave energy at infinity. For

real wave numbers we define the group velocity vy, the wave energy W and the energy

flow J by the expressions,

Yer T 9k T A,
(31)
¥ ¥
W = E.D,, E , J = -E“Dy-E

Asymptotically J is conserved for each wave and obeys the familiar relation J = vng
as follows also from Egs. (10) and (11 ). Boundary conditions are assumed for incoming
waves, which have group velocities satisfying XV, { 0. The group velocity and the

phase velocity v = w/k are related by ,

ph

_15..



A, Ay 2
k k (32)

vV Vv =
gr ph

e
-

e

=

N

where A is a function of k? and w?. The waves with opposite wave numbers always
have opposite group velocities , but can in general be forward waves, if the r.h.s. is
positive, or backward waves, if the r.h.s. is negative.

Let us now assume, that thé region x — - supports one incoming wave (vg'r Y 0)

and N outgoing waves (vgl; { 0) and the region x — © M outgoing waves (vgr > 0).

Global energy conservation requires that

N M '
oI, = Xl o (33)
n=1 m=1

where the indicees i,r,t denote incident, reflected and transmitted waves, respectively.
Defining mode coupling coefficients Rn = IJ’m/Ji | for the reflected waves and Tm=\

J

tm/] 1l for the transmitted waves, one can rewrite Eq.(33) in the form,

N | M
Z onRn + Z onIm =1, (34)
n=1

m=1 '

The sign of each term oy = sgn (W /I/V,)ls defined by the sign of the ratio of the wave

energies W}, and W;. Some of the o) can be negative, if negative energy waves
occur. We also remark, that the coupling coefficients Rr; and Tm depend in general
both on the wave amplitudes and the group velocities.

We now wish to specify the direction of wave energy flow along spatiélly dis-
connected branches. For this purpose we insert the wave representation (10),(11) into

the energy flow expression (31) and after using 3; Di;Cis = Abiy, obtain

o 2
J = -Dy lEfl . (35)

-16 -



In Eq. (35) the energy flow is expressed by the amplitude of the single component E; and by
the function D(z, k) = A(z, k)/Cys(z, k). This function is well defined for real z and k£ and
is zero along a branch k = k(z). If, as shown in Fig. 2 (where the solid curves plot k(z) for
real z), D > 0 in the shaded region below one particular curve and D < 0 in the unshaded
region above that curve then the wave propagation is positive and in the opposite case
negative. To determine the sign of J relative to the incident branch, it suffices to draw the
contour lines A(z, k) = 0 and Cys(z, k) = 0 in the (z, k)-plane, and to observe a sign change
of D(z,k) for each crossing of these contour lines. This graphical procedure is illustrated in
Fig. 2 by two examples. The solid curves are where A(z, k) = 0, and therefore is the function
of k(z). The dashed curve corresponds to where Cy¢(z, k) = 0. These examples show how
a sign change of the cofactor Cyy inside a tunneling region modifies how one determines the
direction of wave propagation on the disconnected branches. Note that Cy; is nonzero for
scalar wave equations but a sign change can occur for vector systems.

To see how to determine the relative direction of waves when D(z,%) > 0 in the shaded
regions let us consider Figs. 2a and 2b in more detail. In Fig. 2a let k. and k4 correspond
to waves that propagate to the right and left, respectively as D,;; < 0 on the “¢” branch and
greater than zero on the “d” branch. From the topology it is then clear that D < 0 on the
“a” branch and D > 0 on the “b” branch, hence k, and &, correspond to waves propagating
to the right and left, respectively. On the other hand in Fig. 2b, if k. is a right-going wave,
and kg is a left-going wave, then k, would be a left-going wave and k; a right-going wave. It
is the presence of a zero in Cys that allows for this change of propagation ordering. Note,
that in scalar wave equations, where Cts = 1, k, and k; would have to correspond to right
and left-going waves, respectively. Thus, the understanding of the structure of the cofactor is
crucial to interpreting the relative propagation directions in regions separated by a tunneling

structure.

17




We now return attention to energy conservation in the WKB framework. For this
purpose we propagate a general solution around a branch-point and compare thé
asymptotic energy flow on both sides. Inside the tunneling region pairs of wave
solutions E;, E; with complex conjugate wave numbers k+, k give rise to an energy

flovv,6

J = -[Dyw EE + ce] ( 36)

where c.c. denotes the complex conjugate expréssion. Equation (36) generalizes the
expression (35) for real wave numbers to the complex case. It should however be
noticed, that both asymptotic results are valid in disconnected regions separated by

the branch points where k¥ and k™ coalesce. Since the energy flow (36) couples only

complex conjugate branches, we consider first a single real branch-point kg as in Fig. 3a

and then a pair of complex conjugate branch-points kg and k% on the imaginary axis

corresponding to a point zp (as in Fig. 3b).
For real branch-points kB two propagating waves undergo tunneling. We denote

by a® the real branches with Re(5k) ¢ 0 for x ¥ x_, and by b* the complex branches

B!
with Im(8k) >{ 0 for x ¢ Xg respectively. The corresponding wave solutions for the
component Ef are analogously written as A% and B Using Eqs.(35) and (36) the

energy flows on both sides of x_ can be expressed in the form,

B
.\ - _ +2 » -2
Jxvxy) = -[ D, AP+ D, 1A ]
(37)
o=\
Jxy) = - [ D BB+ ce.
We now propagate the waves A® to the region x { x _ on the path shown in Fig.1

B
and obtain for the subsequent Stokes' lines 81 and 52 the connection formulaes,

_18_



The solutions B* in the tunneling region are given by the transformation

- (o .

Noting, that the complex coﬁjugate diagrams are obtained by reflection about the imagi-
nary axis (Eq. (23)), one finds with Eq. (39),

_19_



We now use Eq.(20) to obtain,

(41)

o
o
!

From Egs.(37),(40) and (41) it follows, that J(x > xB) = Jix < xB). We have thus
obtained energy conservation for branch-points on the real axis.

Next, we consider a pair of complex conjugate branch-points on the imaginafy
axis and choose an analogous notation (Fig. 3b). In this case the waves are tunneling

on both sides of x_ and the corresponding energy flows are,

B
J(@>a5) = —[DarA* (C*) + D t™ (C7)" +ccc]
J(z<zp) = —[DpB* (D7) +Dy-B~ (D*) +cel. (42)

‘The waves BT are related to the waves A* by Eq.(39) with the branch-point taken in
the upper half-plane. Similarly the waves D* are related to the waves C* by choosing
the branch-point in the lower half-plane. Evaluating the products in Eq.(42) one -

finds,

_20_



og*tp~*:= * atct*+ 7" AcTY+

V,<.f.'

+

>
+

O

(43)

28-D* =

R
NPV NG

+
7N
>

+
o
)
-+

The diagrams in the last line can be written as,

P UL N
oGy 4Gy

which leads to cancelation of the corresponding terms in the first product. The

remaining diagrams can be combined to the expression for J{x > xB) by using the

f\_ D,q* _ft D,q-
—\o D,p+ ' ;j— D,p*

V_ _ o —\; - D,o— : (435)
A

identities,
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These results demonstrate energy conservation of the modified Furry rules for any
combination of branch-points on the real and imaginary k axis and thereby generalize

the discussion of Heading for branch-points at the or;g\in (kB = O).18

3 Tunneling with k= 0

We now apply the WKB method to the most common tunneling problem, which consists
of two cut-off points (kB= 0) and a negative branch of k2 inside the tunneling region.

Tunneling in this casé is analogous to the quantum-mechanical penetration of a potential
barrier. We derive the general connection formula graphically and make comparison with

an exact solution for second order equations with a parabolic profile.

A Graphical solution
We consider the tunneling region of Fig.4 with branch-points of k=k(x) at k=0,

X and of x=x{k) at X=X, k= % iko. For definiteness we will assume, that the k2

1.2
branch describes forward waves with positive wave energy. We propagate the transmitted
wave (k>0, x>x2) back to the region x < x, along the path indicated in Fig.4(c). The
asymptotic representation is changed, whenever a dominant wave crosses, follows or

leaves a Stokes' line. The transmitted wave becomes subdominant on S1 and on the

subsequent lines Sz’ Ss’ 54 the following waves are induced,
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° - |-—S—-2-> t\_+L2;J-
X

Sz

s peen®
~ X

29 (edq) Sy (1oLg) < |
4 49

i$kdz
e

where

3

the inner arc corresponding to x, and the outer one to X, The last line ‘of Eq.(46)

2
shows the diagrams for the incident and reflected waves in the region x < X, Dividing

by the incident wave one obtains the connection formula,

N
»la

|+——<’r'\-'r> ‘q (47 )

T
pla
+
|

We now use Eq.(23) to obtain,

|l ? -

OO
{48)
| 2. S £ ald
g




The reflection and transmission coefficients as defined by Eq.(34) can then be written

in the form,

-9 )2
_(__1___4__2_ ; __ﬂ___” . ( 49)
() 57

In the expression for T we have taken the magnitude of q to allow for later general-
izations, where q may become negative. It is readily seen, that this result obeys
energy conservation in the form R+ T = 1.

We finally note, that the cofactor Cff cannot change sign in the present case,
where k? is taken real. Here D is Hermitian and has real eigenvalues )\n and orthonormal

eigenvectors e . satisfying the relation,
De. = ) e (50 )

locally. Along the chosen branch we may set )\1 =0, E= ae ',\2 £ 0, >\3 $#0 to

obtain,
* A N2 2
E 'D'E = —C IEfl = )\1 Ial . . (51 )
ff

With A = )xl)\z)\a the cofactor Cff can be expressed as,

C = [E?2/la? . (52)
ff 2 3 f

It follows, that Cff is non-zero under the assumptions made. If k? becomes complex

D is generally no longer Hermitian and then this argument fails.

B Model equation
As an example for wave tunneling with k2 < 0 we consider a second order equation

with a parabolic profile,
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¥rx) + (= x2 - a)¥(x) = 0 (53)

R
4

with a constant a > 0. We specialize the general solution to the present case by

setting,

E.=¥ , C.=1, A=-k%+ "z-a _ (54)

To evaluate the diagrams for the wave amplitudes it is convenient to define the

branches of A(z,k} = 0 in the form,
z = 24/a cosh(t) , k = - Ya sinh(n) . (55)

This is a particular solution of Eq.(6}, that corresponds to the initial conditions
z~(0)=2w/§, k(0) = 0 at 1 = 0. The mapping (55) is 2n-periodic along the imaginary 1
axis, and one can therefore restrict attention to the strip -im < Imf(+) S< im. Some
values of (z,k) assumed at representative points are shown in Fig.5

The T representation of the path becomes especially convenient for the loop
diagram q. Here the integration path, connecting the points (-2vYa,0). (0.iva), (2/a.0),

(0,-iv¥a), is mapped in the t-plane on the imaginary axis from -im to in. Noting that,

[kdz = [k 204 = o t-fsimnzo ] (56)
fkdz = 2mia,

one finds,
q = eifkdz - e—27ra ) (57)

Using for the reflected wave the relations a(k|1,2) = 1, 6(k{1,2) = = and for the transmitted

waves the relations a(kl1,2) = ¥ kl/kz , 8(kl1.2) = 0, one obtains the expressions,
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(.\ = "'i eZiS|

2 l (58)
|- R -ma Li(8148y)
. k2
2 .
where,
X1, 2 1/2 2,2 172
X X
Sl=—f(—1——a> dx S, = f(T-a) X
-2va 2/a
The WKB connection formula (47) then assumes the form,
1 -2ma -
1 - Fe ma —_—
Lo 4 218y _y _ °© 1/k_1 S(Sg + S3) (59 )
- - k
1 4 %L_e 2ma 1+ }4_‘e 2ma 2

The exact solution of the present boundary value problem is given by the parabolic
cylinder function E(a,x).21 Using Darwin's expansion, the exact connection formula

follows to be,

, -ma SR
{1 o2i81 |y e y/ _}{% eifS1 + S3) , ( 60 )

Both results conserve wave energy, predict the same phases and are in agreement up

-27a

to the order e . This accuracy could not have been obtained by using the usual

Furry rules.
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4 Tunneling with kg > 0

We now treat tunneling with a non-zero real part of k and branch-points kB> 0.

In contrast to the previous case the orientation of the energy flow now depends on

the special form of the cofactors.

A Graphical solution
Let us construct the global solution for the tunneling structure of Fig.6. Here
couplings occur between branches of the same sign, which we take to be positive.

The branch-points are denoted as X k1 and x k2 . We identify the incoming

2 ?

wave with the upper k-branch in the region x<x_ and assume first, that the transmitted

1

 wave is given by the lower k-branch in the region X>X, . Analogously to the procedure

in Sec.3 we propagate the transmitted wave back to the region X <X, and obtain there

the asymptotic representation,

L2 o d 2ota

with

It has the same form as in Eq. (46), and therefore the mode coupling coefficients are still

given by the expressions (49), however with ¢ as defined in Eq. (61). The conservation
relation now assumes the general form R+ T = 1. If ¢ is negative, the reflection coefficient

becomes larger than 1.
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In the éase, where the transmitted wave is given by the upper k-branch, energy
conservation is obtained in exactly the same manner. It follows from Eq.(39), that
all diagrams are only changed at the arcs around kz . Accordingly, the contour in
the q diagram passes around k2 on the opposite side, leading to the same expression

for o.

B Model system

The coupling between crossing branches can often be described by a matrix,12

alx,k) ic

D. - (62)
ij -ic” b(x,k) ’

where c denotes a small coupling constant and the functions a(x,k), b(x,k) have a
common zero at x_, ko. Expanding about the crossing point X, ko up to linear

terms and setting A{x,k) = 0, one obtains,

N -B :“(4 + (B_Z ;{"2 _ 4A|CI2>1/2
-+
k12 = , {63)
; 2A

withf<’=k-ko,;f=x—xo,A=a,kb,kandB:=a,xb,k=ta,kb,x.Tunne]ing

occurs if A ) 0, yielding for the branch-points X, and the maximum imaginary part

B

of the wave number km, the expressions,

~

Xg = * 2c| YA 7/ |B_| , k = lc] 7/ YA . ( 64 )
: m

The integral around the branch-points, that determines the transmission coefficient

then follows to be, "

lcl?

fkdz = nkmleI = 2nm

(65)



This expression agrees with previous results for coupled differential equations.12

We now discuss the role of the cofactors in this model. From Eqgs.(11) and (62)

the matrix of the cofactors follows to be,

b(x,k) -ic

0

L= ( 66 )
Y ic* alx,k)

According to the discussion of Eq.(35) the energy flow direction is determined by
the zeros of one of the cofactors C11 or sz. The equations C11 = 0, C22 = 0 describe
two straight lines , forming asymptotes to the branches for | )N(B | = = and intersecting
inside the tunneling region at the crossing point. The corresponding energy flow
direction is given by Fig.2(b).

Outside the tunneling region the asymptotic solution can be written in the form,

1 C12
E ©
1 - C .
[E2J = C21 ‘Pl + 22 ‘1’2 , ( 67)
C11 a=0 1 b=0

where the waves ‘Y1 and ¥, correspond to the branches a=0 and b=0, respectively.

The polarization ratios, entering this expression, are given by

Cy, ) -icby C,, ) -ic*a,p (68 )
C - B_X ’ C _ B_X '
22 b=0 - 11 [a=0

They have apparently first been noted in Ref.12, by iteratively solving a system of
coupled wave equations. Our treatment shows, that these factors arise naturally

from the WKB theory of vector systems.
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5 Four—-wave tunneling problems

In the presence of additional branch-points, more than two waves can be coupled
in a tunneling process. We now discuss two examples, which are commonly encountered

in four-wave interactions.

A Exterior cut-off

- Suppose we have the configuration of Fig. 7 with branch-points at (zo,0), (z1,£k;)
and (x.2 , ¥k 5 ) The positive and negative branches are connected by the cut—qff at x .
In the region x< x , We assume an incoming wave with k>0 and demand, that no
growing waves exist with Im(k)>0. In the region x>x , the transmitted waves are
- taken on the lower k-branches.

Let us first construct the particular solution , where only one transmitted wave
(k>0) is present. For this wave the asymﬁtotio representation in the region x_ < x <x,
is given by Eq.(61). Propagating this solution further into the region x < X only the
outgoing wave proceeds to the cut»off and induces another wave on S6. For x < X

the asymptotic solution then follows to be,

(69)

where q is given by Eq.(61) and the + sign indicates, that the branch-points are
taken on the positive k axis. The transmitted wave with k < 0 for x > X, leads analog-
ously to the representation,

-2 —-/:>-+ |+ﬂ. —f-/:\.—A+

!
4 4 2

(70)
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with the branch-points taken on the negative k axis. We also have used Eq.(20) to

obtain the identity,

5 BI6-G

\

We now combine both particular solutions such, that the growing waves with Im(k) > 0

cancel. This can be achieved, by adding to the first solution the second one mult"iplied

by the factor,

-4
Yy « r= 4 {72)
H | + -q-
4
Dividing the result by the incident wave yields the connection formula,
- + +
: {73)

q
|+ |+-4"‘

The transmission coefficients T1 and T2 for the waves with k > 0 and k < 0, respectively

and the reflection- coefficient R then are found to be,
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T = lq!

! (1+qs4)%"
= 2 - -
T, = T, = T,(1-T) , (74)
R = r* = (1-1)?

Energy conservation holds again in the form, R + ¢ (Ty +T3) = 1. This result is consistent
with the physical consideration, that from the incident power a fraction T1 is transmitted
to the first wave and a fraction 1 - T1 reflected to the cut-off. The latter energy
flux can transmit a fraction T1(1 - T1 ) to the secoﬁd wave , while a fraction (1 - T1 )2

remains for the reflected wave.

B Interior complex branch-point

We now analyse the case, where the incident wave reaches first the cut-off and then
tunnels to an additional complex branch-point (Fig.8). We assume the same boundary
and outgoing wave conditions as before and first derive the solution corresponding to
a single transmitted wave. The transmitted wave with k > 0 induces up to S4 the foliowing
waves,

o —>s f-i —\: <+ --fok liz* —). + -é_ —g

| e . | (75)
[-i» ° o 4 .'_Q + > |
2 + 'Z. [ ]

S

It is noted, that on Ss both waves have Im(8k) > 0 and are therefore subdominant.
Proceeding to the region x < X, only the first two diagrams induce further waves .

Their continuation yields,
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Ss | |/> |
— 'Z'O + 3 « (I-35q) (76 )
°
r l@ a
|———> 3 20 0(|+2)
with 4 '
q = = o—eifkd'z . V (77 )

and o = sgn (W;/W;). The second transmitted wave with k < 0 similarly leads to the two

tunneling waves,

- (78)

and to the two propagating waves,

-ﬁ(l—%) + -./H:\.»(|+%) (79)
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Here we used an identity analogous to Eq.(71). We now multiply the second solution

and add the product to the first solution. Then the tunneling waves vanish identically,

by the factor,

(80)

(81)

The reflection and transmission coefficients now follow to be,

Y
L L T =7 = —dal (83)
(1+—q—)2’ 1 : (1+ 32 ’
2 2



satisfying the conservation relation R+ o (77 + ) =1.

The tunneling structure with an interior complex branch-point occurs for mode

conversion in thermal plasmas for mode conversion between fast Alven waves and

ion Bernstein waves at the two-ion hybrid resonzmce.s’%9 The dielectic tensor near
the resonance assumes the approximate form,22
a+ on’ b
D. - (84)
1) b*’ a - n2 .
with,
mZ
a = 1 - Z e =) N
w? - o2
j <l
2
b = ;i Z cj Pj
2
: w -
; W Wy
2 ' - 2 2
Y Y “pf k> T
* ) ( o - o2 T %o 402 ) = —
j f of o M
= -C
n = 5 k ,

where ¢ denotes the speed of light, T the temperature, w, the plasma frequency, w_

the cyclotron frequency, m the mass and j labels the particle species. From Eq.(84)

the dispersion relation A = 0 is obtained as,
4. 2

nt 4 (é—t—l)an +01C—(lb|2-a) = 0 . (85 )

The branches for the wave numbers are given by,

n? = -A * /B : (86)
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There océurs a cut-off for a2 = Ibl2 and further branch-points at n? = -A for a° =
4abl?/(1 + 2. The asymptotic branches are given by, n? = a(l - [bl2/a?), for the Alvén
waves and by, n? =-a/u, for the ion Bernstein waves. Assuming now, that the parameter

a varie.s from positive to negative values along tl}e x-axis, one obtains the general structure
of Fig. 8. The contours Css = 0 are also easily obtained from Cj; = a — n? and Cy, = a
+ al;z. They describe asymptotes to the Alvén wave branches (a > 0) and to the Bernstein
wave branches (a < 0) that intersect at a = 0. The orientation of the energy flow is again
given by Fig.2(b). The imagiﬁary parts of the wave numbers in the two sections of the

tunneling region can be expressed as,

'yA"/_E ; B>O0

K = + @ | (87)

1o T ‘/A+1/A2+IBI . B <O
» ' 2

These determine the mode coupling coefficients according to Eqs.{ 77 ) and ( 83 ) for

generél profiles.

6 Conclusions

Our analysis of wave tunneling has led to transmission coefficients, that are
given by loop integrals aro'und the branch-points of the tunneling structure. These
integrals are entirely determined by the local dispersion relation and therefore will
not depend on the specific operator representation , that has been used. This independ-
ence may explain the general agreement of various mode conversion models on the

form of the transmission coefficients.’ 1%
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The direction of the energy flow depends similarly on the dispersion relation,
but generally also on the cofactors of the dielectric tensor. These cofactors describe
the vector structure of the wave amplitudes and can lead to a sign change of the
energy flow across the tunneling region. The vector representation in the present
treatment is therefore appropriate to describe the forward and backward nature of
the waves.

Energy conservation in the WKB theory has been obtained by the use of a modified
Furry rule. This technique applies to extended tunneling regions, where each
branch-point can be treated separately. When this approximation is justified, we can
then describe coupling with coalescing branches both on the real and on the imaginary
k axis. For non-separable branch-points different WKB techniques have been developed,
which are however limited to specific second order equations.18’23

In summary, the present treatment of wave tunneling is based on the general
dielectric tensor of the medium, conserves the physical wave energy for dissipationless

systems and can be applied to arbitrary mode complexity by following simple graphical

rules.
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Appendix: Derivation of Modified Furry Rule

From Eqgs. (27) and (28) we have that the solutions for the components of the electric field
E(z) are,
(2) = [ dka(k kz —iS(k
E(2) /C a;(k) exp [z z—15( )] (A1)

with,

N n k
. 8(k) = 8 (k) + /k k' 2(k").

a;(k) = L ( G )
t V2t \CsVD,/ |omar)
The reader is reminded, that z(k) is determined from the local dispersion relation A(z, k) =
0 and that dz/dk = 0 at the branch-point k7. Assuming a sufficiently rapidly varying phase,
we can approximately evaluate Eq. (A1) by expanding z(k) about kr. With zr = z (k7),
27 = 2" (kr), 6k = k — kr, 62 = 2z — 27, the two WKB wavelets that merge at k = kr can
then be accurately described by the integral form,

n
E;(z) = exp [isz — g(kT)] /c dka;(k)exp [i&z&k - i%&ks +-- ] , (A2)

The k-space integral is basically an Airy integral if the sum is truncated after the cubic
term and the amplitude @; is slowly varying.

For the Hermitian problems we are considering, zr, k% and consequently also 2% are real.
For definiteness let us assume z7 > 0. The stationary phase points are at §k = 4/262/2%
and the corresponding solutions are then propagating waves for §z > 0 and evanescent
waves for 6z < 0. The contours of the k-space integration are shown in Fig. 9. In the
figure the shaded regions are where the integrand is divergent as [k — ky| — oco. For
6z > 0 the stationary phase points A (6k > 0) and B (6k < 0) are shown in Fig. 9a.
The solid contour is the steepest descent contour through point A and the dashed contour
the steepest descent contour through point B. By choosing one of these contours a single
propagating wave with k(z) = kr 4 6k is obtained.

Let us suppose that the solution of interest for §z > 0 corresponds to a single WKB
wavelet with 6k > 0. The contour of integration is the solid contour in Fig. 9a. For §z < 0
the stationary phase points are on the imaginary axis. Equivalent to the solid contour
in Fig. 9a is the solid contour in Fig. 9b. The new contour goes along the directions of
steepest descent through the stationary phase point A’, where 6k = 1,/2|6z|/2% = 6k,
and the stationary phase point B’, where 6k = —11/2|62|/2% = 6k,. In approximating the
contour integrals by the steepest descent method, we see that only one-half of the saddle
point integral through B’ is needed.
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We now evaluate the saddle point integrals by the method of stationary phase. For 6z > 0
the saddle point contribution from the stationary phase point A is given by,

. ~ A, . ____i_ "c1...2
E(z) ~ & lk=k(z) exp [zS(z)]/odpexp[ 2zr5kp} (A3)
with ,
& 2 ‘ S, /
S(z) = krz—§(br) + 5626k = S (21) + / d'k(2")
zp

and S (2r) = zrkp — § (k). Defining o = arg(i6k) and p = te™® the directions of steepest

descent at the stationary phase point satisfy the condition ¢ = —a/2 + nw. In accordance
with the orientation of the solid contour in Fig. 9a (¢ = —n/4) we choose n = 0 and find,
; or \Y2 | C; ; :
Ei(z) = @ e'S(2) ( ) = | —=L __ ¢S, A4
S O t=77) Bl Vo s v B N (A%

Here the phase of —D ; is determined by the relation, —D , = D ,dz(k)/dk = D ,z7.6k.

For 6z < 0 there are two saddle points that the contour of integration passes through.
The stationary phase contribution through the point A’ produces the dominant wavelet and
the stationary phase contribution through the point B’ one-half of the subdominant wavelet

corresponding to a Stokes’ factor 1/2. Specifically, the steepest descent evaluations yield,

is, (Z)v21 7r 1, ‘ is_ V2T
1 € P € T
k=ki(z) / n6k ok k=ka(2) |¢z4.6k|

Crsin/—Dx k=k1(z) Cffz\/_Dk

where arg (6k1) = 7/2, arg (6k;) = —m/2 and the subscripts 1,2 denote evaluation with §k; 2,

E;(z) ~

Q>

e, (A5)
k=kz(z)

respectively. The dominant wavelet 1 is the analytic continuation in the upper half k-plane
of the original WKB wavelet. The subdominant wavelet 2 is the analytic continuation of the
wavelet 1 around the branch point in the opposite sense of propagation. This result is just

the modified Furry rule given diagrammatically in Eq. (26).
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Figure Captions

1. Stokes’ lines emanating from a branch-point zp into the complex plane with one line
along the real axis. The lines are labeled by the sign of Im(6k) of the dominant wave

and the path of wave propagation is indicated.

2. Directions of energy flow. D(z,k) is assumed positive in the shadowed areas and
changes sign across the solid contours A(z, k) = 0 (—) and across the dashed contours

Cis(z, k) =0 (----).

(a) Tunneling region with Cj; # 0.
(b) Tunneling region with C;; = 0.

3. Branch-points (a) on the real and (b) on the imaginary axis in the k-plane. The

notation used for the merging roots is indicated.
4. Potential-barrier model

(a) Tunneling region with k? < 0.
(b) Branches of A(z, k) = 0 and energy flow directions.
(c) Stokes’-lines.

5. Strip —im < Im(7) < im of the 7-plane with values of (2, k) at representative points.
6. Tunneling region with real branch-points kg # 0.
7. Four wave tunneling problem with an exterior cut-off.

(a) Tunneling configuration with an exterior cut-off.

(b) Schematic representation of Stokes’ lines.
8. Four wave tunneling problem with additional complex branch points.

(a) Tunneling configuration with an interior branch-point.

(b) Corresponding Stokes’-lines.
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9. Local k-space contours in the vicinity of the turning point k¥ = kr. The steepest
descent contour when z — 7 > 0 shown in (a) goes through the saddle point A and
leads to a WKB propagating wave. An equivalent contour when z — z7 < 0 has
the steepest descent contour going through the saddle points A’ and B’ and leads to

éxponentially growing and exponentially decaying waves.
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